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We analyze the scenario of baryogenesis through leptogenesis induced by the out-of-equilibrium decays of
heavy Majorana neutrinos and pay special attention toCP violation. Extending a recently proposed resumma-
tion formalism for two-fermion mixing to decay amplitudes, we calculate the resonant phenomenon ofCP
violation due to the mixing of two nearly degenerate heavy Majorana neutrinos. Solving numerically the
relevant Boltzmann equations, we find that the isosinglet Majorana mass may range from 1 TeV up to the
grand unification scale, depending on the mechanism ofCP violation and/or the flavor structure of the neutrino
mass matrix assumed. Finite temperature effects and possible constraints from the electric dipole moment of
electron and other low-energy experiments are briefly discussed.@S0556-2821~97!04121-0#

PACS number~s!: 11.30.Er, 14.60.St, 98.80.Cq

I. INTRODUCTION

Based on the assumption that the Universe was created
initially in a symmetric state with a vanishing baryon number
B, Sakharov@1# derived the three known necessary condi-
tions that may explain the small baryon-to-photon ratio of
number densities,nB /ng5 ~4–7!310210, which is found by
present observations. The first necessary ingredient is the
existence ofB-violating interactions. With the advent of
grand unified theories~GUT’s!, this requirement can natu-
rally be satisfied at very-high-energy scales@2#, through the
decay of superheavy bosons with masses near to the grand
unification scaleMX'1015 GeV. However, such a solution
to the baryon asymmetry in the Universe~BAU! faces some
difficulties. In fact, Sakharov’s second requirement for gen-
erating the BAU prescribes that, by the same token, the
B-violating interactions should violate the discrete symme-
tries of charge conjugation (C) and that resulting from the
combined action of charge and parity (CP) transformations.
One major drawback of the solution suggested is that mini-
mal scenarios of grand unification generally predict very
small CP violation, since it occurs at very high orders in
perturbation theory. Therefore, one has to rely on no-
minimal representations of GUT’s in order to obtain appre-
ciableCP violation. Furthermore, experiments on the stabil-
ity of the proton put tight constraints on the masses of the
GUT bosons mediatingB violation and their couplings to the
matter.

The most severe limits on scenarios for baryogenesis,
however, come from Sakharov’s last requirement that theB-
and CP-violating interactions must be out of thermal equi-
librium @3,4#. In the standard model~SM!, the sum ofB and
the lepton numberL, B1L, is violated anomalously@5#
through topologically extended solutions, known as sphale-
rons. In contrast toB1L nonconservation, sphalerons pre-
serve the quantum numberB2L. The authors in@6# have
found thatB1L anomalous violation may be large at high
temperaturesT above the critical temperatureTc of the elec-

troweak phase transition. For values ofT not much larger
than theW-boson mass,MW , i.e, T.200 GeV, up to tem-
peratures ofT.1012 GeV, the anomalous (B1L) rate may
exceed the expansion rate of the Universe@7,8#. Therefore,
any primordial BAU generated at the GUT scale should not
rely on ~B1L!-violating operators, since sphalerons being in
thermal equilibrium will then wash it out. The latter appears
to be a generic feature of most GUT’s, where
(B2L)-violating terms may be suppressed against
(B1L)-violating interactions, thus leading to the net effect
of a vanishing BAU. On the other hand, it was suggested@6#
that the same anomalousB1L electroweak interactions may
also be utilized to produce the observed excess inB during a
first-order electroweak phase transition. Given the fact that
the experimental lower mass bound of the Higgs bosonH is
aboutMH.80 GeV, this scenario of electroweak baryogen-
esis must now be considered to be rather improbable to ex-
plain the observed BAU@9,10# within the minimal SM.

It is therefore important to note that baryogenesis not only
provides the strongest indication against the completeness of
the SM but also poses limits on its possible new-physics
extensions. An attractive scenario that may lead to a consis-
tent solution to the problem of the BAU is the one proposed
by Fukugita and Yanagida@11#,1 in which the baryon num-
ber is generated by out-of-equilibriumL-violating decays of
heavy Majorana neutrinosNi with massesmNi@Tc . More-
over, it was argued@11# that the excess inL will then be
converted into the desired excess inB by means of
(B1L)-violating sphaleron interactions, which are in ther-
mal equilibrium above the critical temperatureTc . Many
studies have been devoted to this mechanism of baryogenesis
through leptogenesis@12–16# over the last years.

Evidently, possible mechanisms for enhancingCP viola-
tion play a decisive role in understanding the BAU. In@11#,
the necessaryCP violation in heavy Majorana neutrino de-
cays results from the interference between the tree-level
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1The authors in@6# presented an analogous scenario, which was,
however, based on anomalous electroweak decays of exotic Dirac
leptons into quarks.
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graph and the absorptive part of the one-loop vertex. Since
CP violation originates entirely from the decay amplitude in
this case, we shall attach the characterization of the«8 type
to this kind ofCP violation, thereby making contact with the

terminology known from theK0K̄0 system@17#. The«8-type
CP violation has been discussed extensively in the literature
@12–14#. Provided all Yukawa couplings of the Higgs fields
to Ni and the ordinary lepton isodoublets are of comparable
order @12,14#, baryogenesis through the«8-type mechanism
requires very heavy Majorana neutrinos with masses not
much smaller than 107–108 GeV. If a hierarchical pattern for
the Yukawa couplings and the heavy Majorana neutrino
masses is assumed@12,13#, the above high mass bound may
be lifted and the lightest heavy neutrino can have a mass as
low as 1 TeV. Taking out-of-equilibrium constraints on scat-
terings involving heavy Majorana neutrinos into account
@12#, one finds that«8 may reach values up to 1027–1026 in
such a scenario. This must be compared with the usual sce-
nario in @14#, for which «8,10215 for mNi'1 TeV, and
hence very heavy neutrinos are needed to account for the
BAU.

In Refs.@18,6#, the authors pointed out thatCP violation
in heavy particle decays responsible for the baryon~lepton!
asymmetry may be further enhanced if one considers the
absorptive part of the Higgs self-energies, which was ne-
glected in subsequent studies. Since this kind ofCP viola-
tion may resemble the known mechanism ofCP violation
throughK0K̄0 mixing in the kaon complex@17#, we shall call
it hereafter asCP violation of the « type. Exploiting this
idea, Botella and Roldan@19# gave some estimates for«-type
CP violation in Higgs decays. They found that the ratio«/«8
may indeed be large in an extended SU~5! unified model,
since the self-energy and vertex contributions toCP viola-
tion may have different Yukawa coupling structures. Apply-
ing this mechanism, the authors in@15# concluded that«/«8
is of order unity in scenarios for leptogenesis, and hence the
known results@11# obtained for«8-type CP violation may
not need be modified drastically. Moreover, using an effec-
tive Hamiltonian approach based on the Weisskopf-Wigner
~WW! approximation@20#, the same authors@21# reached the
conclusion that«-type CP violation may be rather sup-
pressed when the two mixed heavy Majorana neutrinos are
nearly degenerate and thatCP violation vanishes completely
in the limit in which the two mass eigenvalues of the effec-
tive Hamiltonian areexactlyequal.

Recently, there has been renewed interest in the«-type
CP violation due to the mixing of heavy Majorana neutrinos
and the implications of this mechanism for the BAU@16#. It
has been observed in@16# that CP violation can be consid-
erably enhanced through the mixing of two nearly degener-
ate heavy Majorana neutrinos. Using exact solutions for the
wave functions, which were obtained from diagonalizing the
effective Hamiltonian, the authors@16# have calculated« and
found that it can be larger than«8 by two or even three
orders of magnitude. This result makes the leptogenesis sce-
nario very attractive. The enhancement of theCP-violating
phenomenon is in agreement with earlier articles on resonant
CP violation in scatterings involving top quarks, supersym-
metric quarks, or Higgs particles in the intermediate state
@22–25#, as well as with a remark@6# concerningCP viola-

tion in the decays of exotic neutral leptons to quarks.
The existing difference between earlier articles, which

found values of«/«8 of order one@15,21#, and recent authors
@24,16,25#, who discovered that« could be even of order
unity @24,25#, may be attributed to the problem of the proper
treatment of two nearly degenerate states. It is known that
conventional perturbation field theory breaks down in the
limit of degenerate particles. For example, the wave-function
amplitude that describes theCP-asymmetric mixing of two
heavy Majorana neutrinos,N1 and N2, say, is inverse pro-
portional to the mass splittingmN1

2mN2
, and it becomes

singular if the degeneracy is exact@21#. Solutions to this
problem have been based on the wave-function formalism in
the WW approximation@21,16#. Obviously, a more rigorous
field-theoretic approach to the resonant phenomenon ofCP
violation through nearly degenerate heavy Majorana neutri-
nos is still necessary. Therefore, it is rather important to pro-
vide a field-theoretic solution to the problem of«-type CP
violation and compare the so-derived results with those
found with other methods.

Since the dynamics of«-type CP violation is quite
closely related toCP violation induced by particle widths
@22#, one is therefore compelled to rely on resummation ap-
proaches, which treat unstable particles in a consistent way.
In the context of gauge field theories, a gauge-independent
resummation approach to resonant transition amplitudes has
been formulated, which is implemented by the pinch tech-
nique @26#. Subsequently, this formalism has been extended
to the case of mixing between two intermediate resonant
states in scattering processes@24,25#. Here, we develop a
related formalism for decays, which can effectively take into
account phenomena of mixing of states during the decay of
particles.

Consequently, our main interest in this paper will be to
study the«- and «8-type mechanisms ofCP violation in
some detail, within the framework of an effective field-
theoretic formalism devised for decay amplitudes. This for-
malism consistently describes the phenomenon of resonantly
enhancedCP violation through the mixing of nearly degen-
erate heavy neutrinos and can therefore be applied to any
analogous system responsible for baryogenesis, in whichCP
violation is of the« type. The analytic results obtained for
«-typeCP violation with our field-theoretic approach do not
display singularities and exhibit a physically correct analytic
behavior in transition amplitudes. The fact that resonantCP
violation through mixing may be of order one@24,25# can
lead to scenarios in which the heavy Majorana neutrinos are
relatively light with masses as low as 1 TeV. This is not far
above the mass scale at which the electroweak phase transi-
tion occurs. Most interestingly, this mechanism can produce
significant «-type CP violation, even if all Yukawa cou-
plings are of the same magnitude and the Majorana masses
are of few TeV. This novel phenomenological consequence
of resonantCP violation has not yet been studied in this
leptogenesis scenario. Furthermore, it is worth investigating
the influence of other possible phenomena on this resonant
CP-violating mechanism, such as low-energy constraints
due to the electric dipole moment~EDM! of electron or
finite-temperature effects.

The paper is organized as follows. In Sec. II, we describe
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minimally extended models that include heavy Majorana
neutrinos. At low energies, these models amount to adding
isosinglet neutrino states to the field content of an effective
one-Higgs-doublet model. Such scenarios may be embedded
into certain SO~10! and/or E6 unified theories, which can
naturally predict nearly degenerate heavy Majorana neutri-
nos as light as 100 GeV. Moreover, we discuss the renormal-
izability of the effective model. In Sec. III, we present a
resummation formalism for resonant transitions between fer-
mions in decay amplitudes. Furthermore, we illustrate some
of the advantages of this approach when compared to other
existing methods. Making use of our formalism, we calculate
the analytic expressions of the relevant transition amplitudes
in Sec. IV. In Sec. V, we give estimates of possible con-
straints coming from low-energy data, such as the EDM of
electron, which turn out to be quite weak in order to rule out
our leptogenesis scenario. In Sec. VI, we present the Boltz-
mann equations relevant for the evolution of the leptonic
asymmetry in the effective model, and give numerical esti-
mates and comparisons for the BAU generated via«- and/or
«8-type CP violation. We also discuss the implications of
finite temperature effects for the resonant phenomenon of
CP violation and find that such a phenomenon can still be
viable. We draw our conclusions in Sec. VII.

II. HEAVY MAJORANA NEUTRINO MODELS

Heavy Majorana neutrinos may naturally be realized in
certain GUT’s, such as SO~10! @27,28# and/or E6 @29# mod-
els. Nevertheless, these models will also predict several other
particles, e.g., leptoquarks, additional charged and neutral
gauge bosons (WR

6 andZR), which may deplete the number
density of heavy neutrinos,Ni , through processes of the type
Ni ēR→W1*→uRd̄R and so render the whole analysis very
involved. If these particles are sufficiently heavier than the
lightest heavy Majorana neutrino and/or the temperature of
the Universe@12#, this problem may be completely avoided.
Since we wish to simplify our analysis without sacrificing
any of the essential features involved in the study of the
BAU, we shall consider a minimal model with isosinglet
neutrinos, which is invariant under the SM gauge group
SU(2)L ^ U(1)Y . Then, we will present the relevant
Lagrangians that govern the interactions of the heavy Majo-
rana neutrinos with the Higgs fields and the ordinary leptons.
Also, we will identify the nontrivialCP-violating phases of
the model and pay special attention to the one-loop renor-
malization of the Yukawa couplings.

As has been mentioned above, certain SO~10! @27,28#
and/or E6 @29# models naturally predict the existence of
heavy Majorana neutrinos. In SO~10! models, an attractive
breaking pattern down to the SM may be given schematically
in the following way:

SO~10!→G4225SU~4!PŜ SU~2!R^ SU~2!L

→G32215SU~3!c^ SU~2!R^ SU~2!L ^ U~1!~B2L !

→SM5G3215SU~3! ^ SU~2!L ^ U~1!Y , ~2.1!

where the subscript ‘‘PS’’ refers to the Pati-Salam gauge
group@30#. The spinor representation of SO~10! is 16 dimen-
sional and its decomposition underG422 is given by

G422: 16→~4,1,2! % ~ 4̄ ,2,1! . ~2.2!

As can be seen from Eq.~2.2!, it is evident that SO~10! can
accommodate right-handed neutrinos, since it contains the
left-right symmetric gauge group SU~2! R^ SU~2! L ^ U~1!

(B2L) . There are several Higgs-boson representations that
can give rise to the breakdown ofG422 andG3221down to the
SM gauge groupG321 @28,31#. In E6 models @29#, the 27
spinor representation decomposes into16 % 10 % 1 under
SO~10!, which leads to four singlet neutrinos per SM family:
one neutrino as isodoublet member in16, two neutrinos as
isodoublet members in10, and one singlet neutrino in1. In
these models, two of the four isosinglets can have Majorana
masses of few TeV@29#, depending on the representation of
the E6 Higgs multiplets, whereas the other two are very
heavy with masses of the order of the unification scale. Pos-
sible flavor structures for the isosinglet neutrino mass matrix
resulting from the above two representative unified models
will be discussed below.

The minimal model under consideration extends the SM
field content of the three lepton and quark families by adding
a number nR right-handed neutrinos nRi , with
i 51,2,. . . ,nR . Even though in E6 models the active isos-
inglet neutrinos may be more than three, in the SO~10! mod-
els mentioned above the symmetric case of having one right-
handed neutrino per family turns out to be quite natural, i.e.,
nR53. Therefore, we shall not specify the number ofnRi in
the following. To be specific, the leptonic sector of our mini-
mal model consists of the fields

S n lL

l L
D , l R , nRi ,

with l 5e,m,t. Since for temperaturesT@Tc*v, one has
v(T)50, where v(T) is the vacuum expectation value
~VEV! of the SM Higgs doubletF at temperatureT @with
v5v(0)#, the only admissible mass terms are those of the
Majorana type and are given by the Lagrangian

2LM5
1

2 (
i , j 51

nR

~ n̄ Ri
C Mi j

n nR j1 n̄ RiM i j
n* nR j

C !. ~2.3!

Here, the superscriptC denotes the operation of charge con-
jugation, which acts on the four-component chiral spinorscL

and cR as (cL)C5PRCc̄T and (cR)C5PLCc̄T, where
PL(R)5@12(1)g5#/2 is the chirality projection operator. In
Eq. ~2.3!, M n is a nR3nR dimensional symmetric matrix,
which is in general complex. The isosinglet mass matrixM n

can be diagonalized by the unitary transformation
UTM nU5M̂ n, where U is a nR3nR dimensional unitary
matrix andM̂ n is a positive diagonal matrix containing the
nR heavy Majorana masses. Furthermore, thenR mass eigen-
states Ni are related to the flavor statesnRi through
nRi5PR( j 51

nR Ui j Nj . In the basis, in which the isosinglet

neutrino mass matrix is diagonal and equalsM̂ n, the Yukawa
sector describing the interaction of the heavy neutrinos with
the Higgs doublet and the ordinary leptons reads
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LY52 (
l 51

nL

(
j 51

nR

hl j ~ n̄ lL , l̄ L! S ~H 2 ix0!/A2

2 x2 D Nj 1H.c.

~2.4!

The CP-even Higgs fieldH, the CP-odd Higgs scalarx0,
and the charged Higgs scalarsx6 given in Eq.~2.4! are all
massless at high temperatures. In the limitT→0, H repre-
sents the massive SM Higgs boson, whereasx0 andx6 are
the massless would-be Goldstone bosons eaten by the longi-
tudinal degrees of freedom of the gauge bosonsZ andW6,
respectively. If the SM Higgs fieldH is very heavy with
mass of order 1 TeV atT50 and also close to the mass of
the decaying heavy neutrinos, then mass Higgs effects may
not be negligible. Therefore, we shall initially keep the full
MH dependence in our calculations and then present analytic
results for the limiting caseMH50.

Before counting all the nontrivialCP-violating phases for
the most general case, it may be more instructive to discuss
first some simple models that could predict degenerate or
almost degenerate heavy Majorana neutrinos andCP viola-
tion. To this end, we consider a minimal scenario in which
the fermionic matter of the SM is extended by adding two
right-handed neutrinos per family, e.g.,n lR and (SlL)C with
l 5e,m,t. Such a scenario may be derived from certain
SO~10! @28# and/or E6 @29# models. For our illustrations, we
neglect possible interfamily mixings. Imposing lepton-
number conservation on the model gives rise to the Lagrang-
ian

2L5
1

2
„S̄L ,~ n̄ R!C

…S 0 M

M 0 D S ~SL!C

nR
D

1hR ~ n̄ L , l̄ L!F̃nR1H.c., ~2.5!

whereF̃5 is2F is the isospin conjugate Higgs doublet and
s2 is the usual Pauli matrix. Even though the mass and cou-
pling parameters may be complex in such a scenario, the
phase redefinitions of the fields,

nL→eifnnL , l L→eif l l L , nR→eifRnR , SL→eifLSL ,
~2.6!

can, however, make them all real. This model isCP invari-
ant, unless one allows for a nontrivial mixing among genera-
tions @32#. Moreover, the model preserves the lepton number
and hence cannot produce any excess inL through heavy
neutrino decays.

There are two equivalent ways to break theL and CP
invariance of the Lagrangian in Eq.~2.5!: One has to either
~i! introduce two complexL-violating mass terms of the kind
mRn̄ RnR

C andmL S̄L
CSL , where bothmR andmL are complex,

or equivalently ~ii ! add the L-violating coupling

hR( n̄ L , l̄ L)F̃(SL)C and include theL-violating mass param-
eter, e.g.,mRn̄ RnR

C . These are the minimal enlargements that
can assureL and CP violation on the same footing in this
simple two-isosinglet neutrino model. In fact, the necessary
conditions forCP invariance in these two scenarios are writ-
ten down:

~ i! uhRu2 Im~M* 2mLmR!50,

~ ii ! Im~hLhR* mRM* !50. ~2.7!

It can easily be checked that the two equalities in Eq.~2.7!
are invariant under the phase redefinitions of the fields given
in Eq. ~2.6!. We must remark that theL-breaking parameters
mL and mR are generally much smaller thanM within E6
scenarios. The origin of these parameters is usually due to
residual effects of high-dimensional operators involving su-
perheavy neutrinos@29#. The typical size of theL-violating
parameters ismL ,mR;M2/MPlanck, M2/MX or M2/MS ,
whereMS'1023MX is some intermediate seesaw scale. As
a consequence, such effective minimal models derived from
E6 theories can naturally predict small mass splittings for the
heavy neutrinosN1 and N2. To a good approximation, this
small mass difference may be determined from the parameter
xN5mN2

/mN1
21;mL /M or mR /M . For instance, ifM510

TeV and mL5mR5M2/MX , one then findsxN'10212–
10211. As we will see in Sec. IV, these small values for the
mass differencexN can produce largeCP asymmetries in the
heavy neutrino decays.

In order to deduce the sufficient and necessary conditions
for the most general structure of the two right-handed neu-
trino model, one must consider the systematic approach pre-
sented first in@33#, which is slightly different from the pro-
cedure outlined above. In this approach@32,33#, one looks
for all possible weak-basis independent combinations that
can be formed by Yukawa couplings and the neutrino mass
matrix M n, and are simultaneously invariant under general-
izedCP transformations of the fields. These generalizedCP
transformations of the fermion fields may include unitary
flavor rotations, apart from the phase redefinitions mentioned
above. Further details may be found in Ref.@32#. Thus, for
the model at hand, we find that the sufficient and necessary
condition forCP invariance is

Im Tr~h†hMn†M nM n†hTh* M n!

5mN1
mN2

~mN1

2 2mN2

2 !Im~hl1hl2* !250. ~2.8!

The (132)-dimensional matrixh in Eq. ~2.8! contains the
Higgs Yukawa couplings, which are defined ashl j in Eq.
~2.4!, i.e., in the physical mass basis whereM n5M̂ n. One
can show that Eq.~2.8! is consistent with the conditions in
Eq. ~2.7! for the two special cases discussed above. From Eq.
~2.8!, one readily sees that only one physicalCP-violating
combination is possible in this minimal model andCP in-
variance is restored ifmN1

5mN2
provided none of the isos-

inglet neutrinos is massless. The above considerations may
be extended to models with more than two right-handed neu-
trinos and more than one lepton families. In this case, there
may be more conditions analogous to Eq.~2.8!, which in-
volve high-order terms in the Yukawa-coupling matrixh.
However, not all of the conditions are sufficient and neces-
sary for CP invariance. Instead of undertaking the rather
difficult task to derive allCP-invariant conditions, we note
in passing that the total numberNCP of all nontrivial
CP-violating phases in a model withnL weak isodoublets
andnR neutral isosinglets isNCP5nL(nR21) @34#.

SinceCP violation in Ni decays will necessitate nonzero
one-loop absorptive parts of vertex andNi self-energy graphs
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as will be seen in Sec. IV, one should also have to address
the issue of renormalization of the dispersive counterparts
~see also Fig. 1!. In order to check explicitly that our mini-
mal model leads indeed to consistent renormalizable results,
we shall adopt the following strategy in our analysis. First,
we fix the renormalization of all Higgs Yukawa couplingshl j
from the decay modeNi→ l 1x2. In this way, we determine
the counterterms~CT’s! of hl j anddhl j . Then, we show that
all ultraviolet ~UV! divergences cancel in the partial decays
Ni→n lx

0 andNi→n lH. For this purpose, we first express all
bare quantities in terms of renormalized ones as follows:

n lL
0 5 (

l 851

nL S d l l 81
1

2
dZll 8

n D n l 8L ,

l L
05 (

l 851

nL S d l l 81
1

2
dZll 8

l D l L8 ,

Ni
05(

j 51

nR S d i j 1
1

2
dZi j

NDNj , F̃5S 11
1

2
dZFD F̃,

hl j
0 5hl j 1dhl j . ~2.9!

The superscript ‘‘0’’ in Eq.~2.9! indicates that the field or
coupling parameter is unrenormalized, whereas quantities
without this superscript are considered to be renormalized. In
addition, the CTdZF collectively denotes the wave-function
renormalization constants of all components of the Higgs

doubletF̃ ~or F), i.e., the fieldsx6, x0, andH. The diver-
gent part of all the Higgs wave-function renormalizations,
dZF

div , has been found to be universal. Expressions showing
the universality ofdZF

div together with other relevant one-
loop analytic results are relegated to the Appendix. Taking

the relations in Eq.~2.9! into account, we find that the renor-
malized Lagrangian in Eq.~2.4! gets shifted by an amount

2dLY5
1

2(l 51

nL

(
j 51

nR S 2
dhl j

hl j
1dZF1 (

l 851

nL

dZl 8 l
L

1 (
k51

nR

dZjk
N D L̄ l 8F̃Nk1H.c., ~2.10!

whereLl5(n lL ,l L)T anddZL5(dZl ,dZn). From Fig. 1~a!, it
is easy to see that the one-loop correction to the coupling
x1Nl can only occur via aDL52 Majorana mass insertion,
owing to charge conservation on the vertices. Naive power
counting may then convince oneself that the one-loop irre-
ducible vertexx1Nl is UV finite. Less obvious is the UV
finiteness for the proper couplingsx0Nn andHNn, which is
shown in the Appendix.

As has been discussed above, we shall now determine the
Yukawa coupling CT’sdhl j from the renormalization of the
coupling x1Nl. Requiring that all UV terms be absorbed
into the definition ofhl j , we obtain

dhl j 52
1

2 S hl j dZx2 1 (
l 851

nL

hl 8 jdZl 8 l
l* 1 (

k51

nR

hlkdZk j
N D .

~2.11!

We observe thatdhl j may be separated into two terms: The
wave-function termdZx2, which is flavor independent, and
the rest, which depends on the flavor and the wave-function
CT’s dZll 8

l and dZi j
N . If we had renormalized the Higgs

Yukawa couplings from the decaysN→nH, the only differ-
ence in Eq.~2.11! would have been the appearance of the
CT’s dZH and dZll 8

n in place of dZx2 and dZll 8
l , respec-

tively. Also, for the decayN→nx0, one has to include the
wave-function renormalization ofx0, dZx0, instead ofdZH
in the decayN→nH. Therefore, consistency of Yukawa cou-
pling renormalization requires that differences of the kind
dZll 8

l
2dZll 8

n , dZx02dZH anddZx22dZH must be UV safe.
In the Appendix, it is shown that all these CT differences are
indeed UV finite and vanish in the limit ofMH→0. This
completes our discussion concerning the one-loop renormal-
ization of heavy Majorana neutrino decays. In the next sec-
tion, we shall explicitly demonstrate how the renormalization
presented here gets implemented within our resummation
formalism for unstable particle mixing.

III. RESUMMATION APPROACH
FOR TWO-FERMION MIXING

If a Lagrangian contains unstable particles, then these
fields cannot be described by free plane waves at times
t→6` and hence cannot formally appear as asymptotic
states in the conventional perturbation field theory. Within a
simple scalar theory with one unstable particle, Veltman@35#
showed that, even if one removes the unstable particle from
the initial and final states and substitutes it in terms of

FIG. 1. One-loop graphs contributing to the renormalization of
the couplingsx2lNi , x0n lNi , andHn lNi .

56 5435CP VIOLATION AND BARYOGENESIS DUE TO HEAVY . . .



asymptotic states, the so-truncatedS-matrix theory will still
maintain the field-theoretic properties of unitarity and cau-
sality. Our main concern in this section will be to present an
approach to decay amplitudes that describes the dynamics of
unstable particle mixing. Hence, such a formulation, finite
width effects in the mixing and decay of nonasymptotic
states must be taken into account. This will be done in an
effective manner, such that the decay amplitude derived with
this method can be embedded in an equivalent form to a
transition element@26,25# in agreement with Veltman’s
S-matrix approach. This effective field-theoretic approach is
equivalent to that of the decay of an initial pure state, such as
the stateK0 or K̄0, which is initially produced by some
asymptotic states in kaon experiments, e.g., inpp2 or p p̄
collisions@17#. Since the time evolution of the decaying sys-
tem is effectively integrated out over all times, the resummed
decay amplitudes derived with this field-theoretic method
will not display any explicit time dependence.

The discussion in this section is organized as follows.
First, we briefly review the theoretical description of the
mixing between stable particles in a simple scalar theory
within the framework of the Lehmann-Symanzik-
Zimmermann~LSZ! formalism @36#. After gaining some in-
sight, we extend our considerations to the mixing between
two unstable scalars. The effective field-theoretic method de-
veloped for the scalar case can then carry over to the case of
mixing of two unstable fermions, with the help of which
«-type CP violation will be calculated in Sec. IV.

Let us now consider a field theory withN real scalarsSi
0 ,

with i 51,2, . . . ,N. We shall assume that the scalars are
stable to a good approximation and neglect possible finite
width effects of the particles. The bare~unrenormalized!
fields Si

0 and their respective massesMi
0 may then be ex-

pressed in terms of renormalized fieldsSi and massesMi in
the following way:

Si
05Zi j

1/2Sj5S d i j 1
1

2
dZi j DSj , ~3.1!

~Mi
0!25Mi

21dMi
2 . ~3.2!

Here and in the following, summation is understood over
repeated indices that do not appear on both sides of an equa-
tion. In Eqs. ~3.1! and ~3.2!, Zi j

1/2 and dMi are the wave-
function and mass renormalization constants, respectively,
which can be determined from renormalization conditions
imposed on the two-point correlation functionsP i j (p2) for
the transitionsSj→Si in some physical scheme, such as the
on-mass-shell~OS! renormalization scheme@37#.

It will prove useful for the discussion that follows to give
the relation of the pole parts between the unrenormalized

scalar propagatorsD i j (p2) and the renormalized ones

D̂ i j (p2). The two pole parts are related through@37#

D i j ~p2!up2→M
i
2 ,M

j
25Zim

1/2 dmn

p22Mn
2

Zn j
1/2T . ~3.3!

Using the LSZ reduction formalism shown schematically in
Fig. 2, one can deduce the renormalized
(n21)-nonamputated amplitudeSi , . . . , for a fixed given ex-
ternal linei , from the corresponding unrenormalizedn-point
Green functionGi . . . , wheren is the total number of exter-
nal lines. In this way, we have

Si , . . . 5 lim
p2→Mi

2

Gj , . . . Zji
21/2T~p22Mi

2!

5 lim
p2→Mi

2

T k, . . .
amp Zkm

1/2 dmn

p22Mn
2

Zn j
1/2TZji

21/2T~p22Mi
2!

5 lim
p2→Mi

2

T k, . . .
amp Zki

1/2, ~3.4!

whereTk, . . .
amp denotes the amplitude amputated at thek ex-

ternal leg. Clearly, the LSZ reduction procedure outlined
above can be generalized to all external legs, thus leading to
the physical~renormalized! S-matrix elementSi 1••• i n

, which

governs the transition amplitude ofn asymptotic states.
Let us now consider the mixing of two neutral unstable

scalars@24,25#, e.g.,S1 and S2. Since we are interested in
studying the width effects of these particles, we have first to
calculate all theSiSj Green functions, withi , j 51,2. After
summing up a geometric series of the self-energiesP i j (p2),
the full propagators may be obtained by inverting the follow-
ing inverse propagator matrix:

D i j
21~p2!5Fp22~M1

0!21P11~p2! P12~p2!

P21~p2! p22~M2
0!21P22~p2!

G . ~3.5!

FIG. 2. Diagrammatic representation of the renormalized
(n21)-nonamputated amplitude,Si , . . . , and the LSZ reduction
formalism.
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The result of inverting the matrix in Eq.~3.5! may be given
by

D11~p2!5F p22~M1
0!21P11~p2!

2
P12

2 ~p2!

p22~M2
0!21P22~p2!

G21

, ~3.6!

D22~p2!5F p22~M2
0!21P22~p2!

2
P12

2 ~p2!

p22~M1
0!21P11~p2!

G21

, ~3.7!

D12~p2!5D21~p2!52P12~s!$@p22~M2
0!21P22~p2!#

3@p22~M1
0!21P11~p2!#2P12

2 ~p2!%21, ~3.8!

whereP12(p2)5P21(p2). Moreover, we find the useful fac-
torization property for the off-diagonal (iÞ j ) resummed sca-
lar propagators

D i j ~p2!52D i i ~p2!
P i j ~p2!

p22~M j
0!21P j j ~p2!

52
P i j ~p2!

p22~Mi
0!21P i i ~p2!

D j j ~p2!. ~3.9!

The resummed unrenormalized scalar propagatorsD i j (p2)
are related to the respective renormalized onesD̂ i j (p2)
through the expression

D i j ~p2!5Zim
1/2 D̂mn~p2! Zn j

1/2T , ~3.10!

where D̂ i j (p2) may be obtained from Eqs.~3.6!–~3.8!, just

by replacingMi
0 with Mi and P i j (p2) with P̂ i j (p2). Note

that the property given in Eq.~3.9! will also hold true for the
renormalized scalar propagatorsD̂ i j (p2). Taking expressions
~3.9! and ~3.10! into account, we can derive the resummed
and renormalized transition amplitude, denoted here as
Ŝi , . . . , for the external legi which now represents an un-
stable particle. This can be accomplished in a way analogous
to Eq. ~3.4!: viz.,

Ŝi , . . . 5 lim
p2→Mi

2

T k, . . .
amp Zkm

1/2D̂mn~p2!Zn j
1/2TZji

21/2TD̂ i i
21~p2!

5 lim
p2→Mi

2
FT k, . . .

amp Zki
1/2

2T k, . . .
amp Zkm

1/2 P̂mi~p2!~12dmi!

p22Mm
2 1P̂mm~p2!

G
5Si , . . . 2Sj , . . .

P̂ j i ~Mi
2!~12d i j !

Mi
22M j

21P̂ j j ~Mi
2!

, ~3.11!

whereSi , . . . and Sj , . . . are the renormalized transition ele-
ments evaluated from Eq.~3.4! in the stable-particle approxi-
mation. One should bear in mind that the OS-renormalized

self-energiesP̂ j i (Mi
2) in Eq. ~3.11! have no vanishing ab-

sorptive parts, as renormalization can only modify the dis-
persive~real! part of these self-energies. The reason is that
the CT Lagrangian must be Hermitian as opposed to the
absorptive parts which are anti-Hermitian. In fact, these ad-
ditional width mixing effects are those which we wish to
include in our formalism for decay amplitudes and are absent
in the conventional perturbation theory. It is also important
to observe that our approach to decays is not singular; i.e.,
Ŝi , . . . displays an analytic behavior in the degenerate limit
Mi

2→M j
2 , because of the appearance of the imaginary term

i ImP̂ j j (Mi
2) in the denominator of the mixing factor present

in the last equality of Eq.~3.11!. Finally, we must stress that
the inclusion of these phenomena has been performed in an
effective manner. Since the decaying unstable particle cannot
appear in the initial state@35#, the resummed decay ampli-
tude must be regarded as being a part which can effectively
be embedded into a resummedS-matrix element@26#. This
resummedS-matrix element describes the dynamics of the
very same unstable particle, which is produced by some
asymptotic states, resides in the intermediate state, and sub-
sequently decays either directly or indirectly, through mix-
ing, into the observed final states.

It is now straightforward to extend our considerations to
the case of mixing between two unstable fermions. Follow-
ing a line of arguments similar to those presented above, we
consider a system with two unstable fermions, call themf 1
and f 2. As usual, we express the bare left- and right-handed
chiral fields f Li

0 and f Ri
0 ~with i 51,2) in terms of renormal-

ized fields as follows:

f Li
0 5ZLi j

1/2 f L j , f Ri
0 5ZRi j

1/2 f R j , ~3.12!

whereZLi j
1/2 (ZRi j

1/2) is the wave-function renormalization con-
stant for the left-~right-! handed chiral fields, which may be
determined from the fermionic self-energy transitions
f j→ f i , S i j (p” ), e.g., in the OS renormalization scheme@38#.
Analogously with Eq.~3.5!, the resummed fermion propaga-
tor matrix may be obtained from

Si j ~p” !5Fp” 2m1
01S11~p” ! S12~p” !

S21~p” ! p” 2m2
01S22~p” !

G21

,

~3.13!

wherem1,2
0 are the bare fermion masses, which can be de-

composed into the OS-renormalized massesm1,2 and the CT
mass termsdm1,2 as m1,2

0 5m1,21dm1,2. Inverting the
matrix-valued 232 matrix in Eq.~3.13! yields

S11~p” !5F p” 2m1
01S11~p” !

2S12~p” !
1

p” 2m2
01S22~p” !

S21~p” !G21

,

~3.14!
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S22~p” !5F p” 2m2
01S22~p” !

2S21~p!
1

p” 2m1
01S11~p” !

S12~p” !G21

,

~3.15!

S12~p” !52S11~p” !S12~p” !@p” 2m2
01S22~p” !#21

52@p” 2m1
01S11~p” !#21S12~p” !S22~p” !,

~3.16!

S21~p” !52S22~p” !S21~p” !@p” 2m1
01S11~p” !#21

52@p” 2m2
01S22~p” !#21S21~p” !S11~p” !.

~3.17!

From Eqs.~3.16! and ~3.17!, it is now easy to see that the
resummed propagator matrix is endowed with a factorization
property analogous to Eq.~3.9!. There is also an analogous
connection between the renormalized and unrenormalized re-
summed propagators, which may be cast into the form

Si j ~p” !5~ZLim
1/2 PL1ZRim

1/2 PR!Ŝmn~p” !~ZLn j
1/2†PR1ZRn j

1/2†PL!,
~3.18!

where the caret onSi j (p” ) refers to the fact that the resummed
fermionic propagators have been OS renormalized. By anal-
ogy, the renormalized propagatorsŜi j (p” ) may be recovered
from Si j (p” ) in Eqs.~3.14!–~3.17!, if one makes the obvious

replacementsmi
0→mi andS i j (p” )→Ŝ i j (p” ).

Employing the LSZ reduction formalism, one can derive
the resummed decay amplitude,Ŝi , . . . of the unstable fer-
mion f i→X, in a way similar to what has been done for the
scalar case. More explicitly, we have

Ŝi , . . .ui~p!5T k, . . .
amp ~ZLkm

1/2 PL1ZRkm
1/2 PR!Ŝmn~p” !~ZLn j

1/2†PR

1ZRn j
1/2†PL!~ZL ji

21/2†PR1ZR ji
21/2†PL!Ŝii

21~p” !ui~p!

5Si , . . .ui~p!2~12d i j !Sj , . . .Ŝ j i ~p” !@p” 2mj

1Ŝ j j ~p” !#21ui~p!. ~3.19!

Again, Si , . . . represent the respective renormalized transition
amplitudes evaluated in the stable-particle approximation.
The amplitudesSi , . . . also include all high-ordern-point
functions, such as vertex corrections. On the basis of the
formalism presented here, we shall calculate theCP asym-
metries in the decays of heavy Majorana neutrinos in Sec.
IV.

Finally, we wish to offer a comment on other approaches,
which are used to analyze the phenomenon ofCP violation
through particle mixing@21,16#. Recently, this issue has been
studied in@25#, within a S-matrix amplitude formalism re-
lated to the one discussed in this section. Obviously, the
approach based on the diagonalization of the effective
Hamiltonian @21,16# is very helpful to describe«-type CP
violation, if the effective Hamiltonian is diagonalizable

through a similarity transformation, as is the case for the
known K0K̄0 system. However, if the effective Hamiltonian
has mathematically the Jordan form, when expressed in a
K0K̄0-like basis, then it can be shown to be nondiagonaliz-
able via a similarity transformation. In this case, the complex
mass eigenvalues of the two mixednon-free particles are
exactly equal and, most importantly,CP violation through
particle mixing reaches its maximum attainable value@25#.

To give a specific example, let us consider the following
effective Hamiltonian for the mixing system of two nearly
degenerate heavy neutrinosN1 andN2:

H~p” !5Fm12Ŝ11~p” ! 2Ŝ12~p” !

2Ŝ21~p” ! m22Ŝ22~p” !
G

'FmN1a2 i ubu 2 ib

2 ib* mN2a2 i ubuG , ~3.20!

in the approximationp”→mN'm1'm2. In Eq. ~3.20!, the
parametersa andb are real and complex, respectively, and
m15mN1a, m25mN2a. The complex parameterb repre-
sents the absorptive part of the one-loop neutrino transitions
Ni→Nj . Unitarity requires that the determinant of the ab-
sorptive part ofH(p” ) be non-negative. For the effective
Hamiltonian ~3.20!, the corresponding determinant is zero.
Such an absorptive effective Hamiltonian naturally arises in
the one-lepton doublet model with two right-handed neutri-
nos. In the limita→ubu, the two complex mass eigenvalues
of H(p” ) are exactly degenerate and equal tomN2 i ubu. As
has been shown in@25#, the effective Hamiltonian cannot be
diagonalized by a nonunitary similarity transformation in this
limit; i.e., the respective diagonalization matrices become
singular.

Since our effective field-theoretic method does not in-
volve diagonalization of the effective Hamiltonian through a
similarity transformation, such singular situations are com-
pletely avoided, leading to well-defined analytic expressions
for the decay amplitudes. Furthermore, whenever referring to
heavy Majorana neutrino masses in the following, we shall
always imply the OS-renormalized masses within the con-
ventional perturbation field theory, which differ from the real
parts of the complex mass eigenvalues of the effective
Hamiltonian. In the presence of a large particle mixing, the
corresponding eigenstates of the latter are generally nonuni-
tary among themselves, whereas the eigenvectors of the
former form a well-defined unitary basis, upon which pertur-
bation theory is based. In this context, it is important to note
that these field-theoretic OS-renormalized masses are those
that enter the condition ofCP invariance given in Eq.~2.8!.
Therefore, we can conclude that, if the two complex mass
eigenvalues of the effective Hamiltonian for the mixed heavy
Majorana neutrinos are equal, this does not necessarily entail
an equality between their respective OS-renormalized masses
and, hence, absence ofCP violation as well@25#.

IV. CP ASYMMETRIES

It is now interesting to see how the resummation formal-
ism presented in Sec. III is applied to describe«-type CP
violation in heavy Majorana neutrino decays. The same for-
malism can be used for the inverse decays, which occur in
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the formulation of the Boltzmann equations~see also Sec.
VI !. For completeness, we shall include«8-type CP viola-
tion in our analysis, which originates entirely from the one-
loop F lN irreducible vertex, and display plots with numeri-
cal comparisons between the two kinds ofCP-violating
contributions mentioned above. Moreover, we wish to ad-
dress briefly the issue pertaining to the problem of flavor-
basis invariance of theCP asymmetries.

Let us consider the decayN1→ l 2x1 in a model with
two-right handed neutrinos, shown in Fig. 3. The inclusion
of all other decay modes will then be straightforward. To
make our resummation formalism more explicit, we shall
first write down the transition amplitude responsible for
«-type CP violation, denoted asT N

(«) , and then take
CP-violating vertex corrections into account. Applying Eq.
~3.19! to the heavy neutrino decays, we have

T N1

~«!5hl1 ū l PRuN1
2 ihl2 ū l PR@p” 2mN2

1 iS22
abs~p” !#21S21

abs~p” !uN1
. ~4.1!

In Eq. ~4.1!, the absorptive part of the one-loop transitions
Nj→Ni , with i , j 51,2, has the general form

S i j
abs~p” !5Ai j ~p2!p” PL1Ai j* ~p2!p” PR , ~4.2!

where

Ai j ~p2!5
hl 8 ihl 8 j

*

32p F 3

2
1

1

2S 12
MH

2

p2 D 2 G . ~4.3!

In the limit MH→0, one finds the known result@15,16#
Ai j 5hl 8 ihl 8 j

* /(16p). On the other hand, theCP-transform
resummed amplitude describing the decayN1→ l 1x2, T N1

(«) ,

is written down:

T N1

~«!5hl1* v̄ N1
PLv l2 ihl2 v̄ N1

S12
abs~2p” !@2p” 2mN2

1 iS22
abs~2p” !#21PLv l

5hl1* ū l PLuN1
2 ihl2* ū l PL@p” 2mN2

1 i S̄22
abs~p” !#21S̄21

abs~p” !uN1
, ~4.4!

where the charge-conjugate absorptive self-energy is given
by

S̄ i j
abs~p” !5Ai j ~p2!p” PR1Ai j* ~p2!p” PL . ~4.5!

In deriving the last step of Eq.~4.4!, we have made use of the
known identitiesu(p,s)5C v̄ T(p,s) and CgmC2152gm

T .
The expressions in Eqs.~4.1! and ~4.4! may be simplified
even further if the Dirac equation of motion is employed for
the external spinors. Then, the two resummed decay ampli-
tudesT N1

(«) andT N1

(«) take the simple form

T N1

~«!5 ū l PRuN1F hl12 ihl2

mN1

2 ~11 iA22!A21* 1mN1
mN2

A21

mN1

2 ~11 iA22!
22mN2

2 G ,

~4.6!

T N1

~«!5 ū l PLuN1F hl1* 2 ihl2*
mN1

2 ~11 iA22!A211mN1
mN2

A21*

mN1

2 ~11 iA22!
22mN2

2 G .

~4.7!

The twoCP-conjugate matrix elements differ from one an-
other in having complex conjugate Yukawa couplings to
each other and scalar currents with opposite chirality. Fur-
thermore, the respective transition amplitudes involving the
decaysN2→ l 2x1, T N2

(«) , andN2→ l 1x2, T N2

(«) , may be ob-

tained from Eqs.~4.6! and ~4.7!, just by interchanging the
indices ‘‘1’’ and ‘‘2’’ everywhere in the above two formulas.

We shall now focus our attention on studying the«- and
«8-type mechanisms ofCP violation in heavy Majorana
neutrino decays. For this purpose, we define the following
CP-violating parameters:

«Ni
5

uT Ni

~«!u22uT Ni

~«!u2

uT Ni

~«!u21uT Ni

~«!u2
for i 51,2, ~4.8!

«N5
uT N1

~«!u21uT N2

~«!u22uT N1

~«!u22uT N2

~«!u2

uT N1

~«!u21uT N2

~«!u21uT N1

~«!u21uT N2

~«!u2
. ~4.9!

Correspondingly, one can define theCP-violating param-
eters«Ni

8 and«N8 , which may quantifyCP violation coming

exclusively from the one-loop irreducible vertices. In Eqs.
~4.8! and~4.9!, the parameters«Ni

and«N share the common

property that do not depend on the final state thatNi decays,
despite the fact that the individual squared matrix elements
do. In general, both«- and«8-type contributions may not be
directly distinguishable in the decay widthsG(Ni→ l 6x6),
unless one has«Ni

@«Ni
8 and vice versa, for some range of the

kinematic parameters. Evidently, the physicalCP-violating
observables we are mainly interested in are

dNi
5

G~Ni→LF†!2G~Ni→LCF!

G~Ni→LF†!1G~Ni→LCF!
for i 51,2,

~4.10!

dN5

(
i 51

2

G~Ni→LF†!2(
i 51

2

G~Ni→LCF!

(
i 51

2

G~Ni→LF†!1(
i 51

2

G~Ni→LCF!

, ~4.11!

FIG. 3. «- and «8-type CP violation in the decays of heavy
Majorana neutrinos.
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where L refers to all fermionic degrees of freedom of the
leptonic isodoublet that heavy Majorana neutrinos can decay.
Nevertheless, the parameters«Ni

, «N , and«Ni
8 defined above

are helpful to better appreciate the significance of the two
different mechanisms ofCP violation.

To elucidate our resummation formalism further, it may
be useful to calculate the analytic form of the parameters«Ni

for the interesting case of nearly degenerate heavy Majorana
neutrinos. Therefore, we shall consider the approximations
DmN

2 5mN1

2 2mN2

2 !mN1

2 ;mN2

2 and define the parameter

r N5DmN
2 /(mN1

mN2
). Moreover, we neglect high order

Yukawa couplings ofO(hl j
4 ) at the amplitude level. It is then

not difficult to find the approximate expressions

«N1
'

Im~hl1* hl2hl 81
* hl 82!

8puhl1u2

r N

r N
2 14A22

2
, ~4.12!

«N2
'

Im~hl1* hl2hl 81
* hl 82!

8puhl2u2

r N

r N
2 14A11

2
. ~4.13!

The difference between the above expressions and those ob-
tained within the framework of the ordinary perturbation
theory is that the regulating termsA11

2 andA22
2 are absent in

the latter. Clearly, if these finite width terms were not con-
sistently taken into account, this would cause a singular be-
havior when the degeneracy between the two heavy Majo-
rana neutrinos is exact@19,15,16#. On physical grounds,
however, this should not be very surprising, since the only
natural parameter that can regulate such a singularity is the
finite width of the heavy Majorana neutrinos. Therefore, one
of the main advantages of our approach is that the dynamics
of CP violation through heavy-neutrino mixing can be prop-
erly described by giving rise to physically well-behaved ana-
lytic expressions.

Another important point, also reported in@39#, is the fact
that both parameters«N1

and«N2
contribute constructively to

CP violation. Technically speaking, this can be seen as fol-
lows. As has been mentioned above, the expression«N2

in
Eq. ~4.13! may be obtained from Eq.~4.12! if one replaces
the heavy-neutrino index ‘‘1’’ with ‘‘2’’ everywhere in that
formula. As a result, theCP-violating combination of
Yukawa couplings Im(hl1* hl2hl 81

* hl 82) flips sign, which gets
compensated by a similar sign flip in the parameterr N . An-
other significant feature of our analytic results in Eqs.~4.12!
and ~4.13! is that both «N1

and «N2
vanish in the limit

mN1
→mN2

, which is consistent with the requirement ofCP

invariance given in Eq.~2.8!. We have checked that this
property ofCP invariance persists even if one calculates«N1

and«N2
exactly from the expressions~4.6! and ~4.7!. In ad-

dition, we have verified that«N2
(«N1

) vanishes in the limit

mN1
(mN2

)→0, as is also prescribed by Eq.~2.8!. As a con-

sequence, our analytic expressions for«-type CP violation
are indeed proportional to the flavor-basis invariant combi-
nation of CP noninvariance@cf. Eq. ~2.8!#, mN1

mN2
(mN1

2

2mN2

2 )Im(hl1* hl2hl 81
* hl 82).

In order to make our analysis complete, it is important to
include the contributions from«8-type CP violation, since
they may be significant for very large differences of heavy-
neutrino masses, e.g., formN1

2mN2
;mN1

or mN2
. In this

regime, the«-type terms are suppressed by the large virtual-
ity of the heavy-neutrino propagator and so become compa-
rable to the«8-type terms@15#. It is now useful to define the
function

F~x,a!5Ax F12a2~11x!lnS 12a1x

x D G . ~4.14!

If one setsa50 in Eq. ~4.14!, thenF(x,a) reduces to the
known function f (x)5Ax@12(11x)ln(111/x)#, found in
@11#. Here, we are only interested in theL-violating absorp-
tive parts of the one-loop verticesx1lNi , x0n lNi , and
Hn lNi , shown in Figs. 1~a!–1~c!. The complete analytic ex-
pressions are calculated in the Appendix. For later conve-
nience, we also assume that the external decaying heavy Ma-
jorana neutrinos are off shell. Having this in mind, we find
the off-shell absorptive couplings

V x1 lNi

abs
~p” !52

hl 8 i
* hl 8 jhl j

16pAp2
p” PLFS mN j

2

p2
,0D , ~4.15!

V x0n lNi

abs
~p” !5V Hn lNi

abs ~p” !52
hl 8 i
* hl 8 jhl j

32pAp2
p” PLFFS mN j

2

p2
,0D

1FS mN j
2

p2
,
MH

2

p2 D G . ~4.16!

To make contact with the«Ni
8 expressions existing in the

literature@11–14#, we compute the«8-type CP asymmetry
in the conventional perturbation theory, using Eqs.~4.15!
and~4.16! and neglecting wave-function contributions. Con-
sidering all decay channels for the decaying heavy Majorana
neutrino, e.g.,N1, we obtain

«N1
8 5

Im~hl1* hl2hl 81
* hl 82!

16puhl1u2 F3

4
1

1

4
~12MH

2 /mN1

2 !2G H 5

4
FS mN2

2

mN1

2
,0D

1
1

4
FS mN2

2

mN1

2
,
MH

2

mN1

2 D 1
1

4S 12
MH

2

mN1

2 D 2FFS mN2

2

mN1

2
,0D

1FS mN2

2

mN1

2
,

MH
2

mN1

2 D G J . ~4.17!

In the vanishing limit of the Higgs-boson mass, the above
formula simplifies to@11–14#

«N1
8 5

Im~hl1* hl2hl 81
* hl 82!

8puhl1u2
f S mN2

2

mN1

2 D . ~4.18!

Unlike «N1
, «N1

8 does not vanish in the degenerate limit of

the two heavy Majorana neutrinosN1 and N2. However,
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when the value ofmN1
approaches that ofmN2

, the «8-type

part of the transition amplitude squared for theN1 decay
becomes equal but opposite in sign with the respective one
of the N2 decay. Thus, these two«8-type terms cancel one
another, leading to a vanishing result for theCP-violating
parameter«N8 (Þ«N1

8 1«N2
8 ), which may be defined analo-

gously to Eq.~4.9!.
We are now in a position to implement the vertex correc-

tions of the Yukawa couplings to the resummed amplitudes
T N1

(«) and T N1

(«) given in Eqs.~4.1! and ~4.4!, respectively.

Taking Eqs.~4.15! and ~4.16! into account, we find

TN1
5 ū l PR$hl11 iV l1

abs~p” !2 i @hl21 iV l2
abs~p” !#@p” 2mN2

1 iS22
abs~p” !#21S21

abs~p” !%uN1
, ~4.19!

TN1
5 ū l PL$hl1* 1 iV l1

abs~p” !2 i @hl2* 1 iV l2
abs~p” !#@p” 2mN2

1 i S̄ 22
abs~p” !#21S̄ 21

abs~p” !%uN1
, ~4.20!

where we have simplified the notation of the off-shell one-
loop vertices asV l i

abs(p” ). The vertex functionsV l i
abs(p” ) are

the charge conjugates ofV l i
abs(p” ) and may hence be recov-

ered from Eqs.~4.15! and~4.16! by taking the complex con-
jugate for the Yukawa couplings and replacingPR with PL .
It may not be very convenient to present analytic expressions
for the CP-violating observablesdNi

, defined in Eq.~4.10!,
in a rather compact form, although their derivation from Eqs.
~4.19! and ~4.20! is quite straightforward. Instead, we shall
compare the numerical results obtained from our resumma-
tion approach with those found with different methods.

Before we proceed with our numerical analysis, it is cru-
cial to take the out-of-equilibrium constraints on heavy-
neutrino decays into account. Detailed study of the latter will
be performed by solving numerically the Boltzmann equa-
tions in Sec. VI. To a good approximation however, Sa-
kharov’s third condition imposes a lower bound on the life-
time of the decaying heavy Majorana neutrino, 1/GNi

, which
may qualitatively be given by the inequality

GNi
~T5mNi

!&2H~T5mNi
!, ~4.21!

whereH(T) is the Hubble parameter:

H~T!51.73g
*
1/2 T2

MPlanck
. ~4.22!

In Eq. ~4.22!, g* '100–400 represents the number of active
degrees of freedom in usual extensions of the SM and
MPlanck51.231019 GeV is the Planck mass scale. Consider-
ing the total decay width of the heavy neutrino,
GNi

5uhli u2mNi
/(8p), the out-of-equilibrium constraint in

Eq. ~4.21! yields

uhli u2&7.2310214S mNi

1 TeV
D . ~4.23!

In order to have the baryon-to-entropy density ratio in the
observed ballpark, i.e.,YB'10210'udNi

u/g* , one must al-

low for CP asymmetriesudNi
u of order 1027–1026. This is

practically independent of the heavy-neutrino mass, for
massesmNi

*1 TeV, provided the out-of-equilibrium con-
straint on the Yukawa coupling in Eq.~4.23! is satisfied.

We shall give numerical estimates ofCP asymmetries in
two heavy-neutrino scenarios, which are in compliance with
the out-of-equilibrium limits derived above. For our illustra-
tions, we analyze models in which the two right-handed neu-
trinos mix actively with one lepton familyl only. Despite
their simplicity, such models exhibit all the essential features
of CP violation through heavy-neutrino mixing. Specifically,
we consider the following two scenarios:

~ I! mN1
510 TeV, hl151026, hl151026~11 i !,

~ II ! mN1
5109 TeV, hl151022, hl151022~11 i !,

~4.24!

and assume thatN2 is always heavier thanN1, i.e.,
mN1

<mN2
.

In Fig. 4, we display numerical estimates of theCP asym-
metries defined above as a function of the parameter
xN5mN2

/mN1
21 for the scenario~I!. We have divided the

range of values for the parameterxN into two regions: The
first region is plotted in Fig. 4~a! and pertains to the kine-

FIG. 4. Numerical estimates ofCP asymmetries in scenario~I!.
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matic domain, where resonantCP violation due to heavy-
neutrino mixing occurs. The second one, shown in Fig. 4~b!,
represents the kinematic range, far away from the resonant
CP-violating phenomenon. The dotted line in Fig. 4~a! gives
the prediction of«N1

, obtained from Eq.~4.12! in the con-

ventional perturbation theory. Obviously,«N1

pert diverges for

sufficiently small values ofxN , e.g.,xN,10213. If resumma-
tion of the relevant fermionic self-energy graphs is consid-
ered, the prediction for«N1

is given by the dashed lines in

Fig. 4, which shows a maximum forxN'10213. In such a
case,CP violation may resonantly increase up to order of
unity @24,25#. As has been mentioned above, the physical
regulating parameter of the singularity in«N1

pert is the finite

width of the heavy neutrinoN2, which arises naturally within
our field-theoretic approach. Thus, the condition for resonant
enhancement ofCP violation reads

mN1
2mN2

;6A22mN2
5

GN2

2
and/or A11mN1

5
GN1

2
.

~4.25!

Clearly, Fig. 4~a! satisfies the above condition. However, the
magnitude of theCP asymmetries is governed by the expres-
sion

dCP5
uIm@~hl1* hl2!2#u

uhl1u2uhl2u2
, ~4.26!

which is alwaysdCP<1. Evidently, both scenarios~I! and
~II ! given above represent maximal cases ofCP violation
with dCP51. Therefore, results for any other model may
readily be read off from Figs. 4, 5, and 6, by multiplying
them with the appropriate model-dependent factordCP . The
solid line in Fig. 4 gives the numerical estimate for the
CP-violating parameterdN in Eq. ~4.11!, where«8-type con-
tributions are included. The latter are very small in this sce-
nario so as to potentially account for the BAU e.g.,
«N1
8 '10216. Furthermore, it may be important to stress that

dN vanishes in theCP-invariant limit xN→0, as it should be
on account of Eq.~2.8!.

In Figs. 5 and 6, we give numerical estimates of theCP
asymmetries in scenario~II !. The difference in this model
with scenario I is that the«8-type effects may not be negli-
gible in the off-resonant region, as can be seen from Figs.
5~a! and 6. In particular, for values of the parameter
xN,10211 or xN.1, the individual«N1

8 - and«N2
8 -type con-

tributions may dominate over those of the« type. Models
with xN.1 have extensively been discussed in the literature
@11–14#. Numerical estimates for such models are displayed
in Fig. 6. Our attention will now be focused on the domain
with xN,1022. In Fig. 5~a!, we observe that«N1

8 and «N2
8 ,

represented by the dotted lines, do not vanish in the
CP-invariant limit xN→0, as opposed to«N1

. As a conse-

quence, theCP asymmetrydN1
in Eq. ~4.10!, in which both

«N1
- and «N1

8 -type terms are considered within our formal-

ism, does not vanish either. The reason is that the physical
CP-violating parameter in this highly degenerate mass re-
gime for N1 and N2 is the observabledN defined in Eq.

~4.11!. In fact, the quantitydN shares the common feature
with «N1

and tends consistently to zero asxN→0. This fact
must be considered to be one of the successes of our resum-
mation approach. Again,CP violation is resonantly ampli-
fied, when the condition in Eq.~4.25! is satisfied, as can be
seen from Fig. 5~b!. Finally, we must remark that2dN has a
zero point and eventually becomes negative forxN@1, as is
plotted in Fig. 6. Nevertheless, this result should be viewed
with great caution. The actual reason is that the effect of the
different dissipative Boltzmann factors multiplying the decay
rates of the heavy Majorana neutrinosN1 and N2 must be
considered in the definition ofdN in Eq. ~4.11!. These phe-
nomena will be taken into account in Sec. VI, in which we
shall write down and solve numerically the relevant Boltz-
mann equations.

Our computation of theCP asymmetries has been carried
out in the physical basis, in which the heavy-neutrino mass
matrix is non-negative and diagonal. One might, however,
raise the question of whether our analytic results would have
been modified if we had chosen a different basis other than
the mass basis. The best way to address this question is to
discuss first how our expressions would change under a basis
transformation. Let us assume a model with two right-
handed neutrinos for simplicity and imagine that we wish to

FIG. 5. Numerical estimates ofCP asymmetries versus
mN2

/mN1
21 in scenario~II !.
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perform our calculations in a basis in which the two heavy
Majorana neutrinos,n1 andn2, say, span a nondiagonal mass
matrix. The heavy Majorana neutrinosn1 and n2 are then
related to the neutrinosN1 andN2, defined in the mass basis,
through the unitary transformation

S n1

n2
D

R

5UnS N1

N2
D

R

, S n1

n2
D

L

5Un* S N1

N2
D

L

. ~4.27!

The 232 unitary matrixUn relates the physical and nondi-
agonal mass matrices in the following way:

M̂ n5UnTMnUn. ~4.28!

It is now helpful to see how the various kinematic param-
eters transform under the action ofUn. In particular, the
inverse propagator matrixSN

21(p” ) undergoes a change de-
pending onSn

21(p” ), which is given by

SN
21~p” !5~UnTPR1Un†PL!Sn

21~p” !~UnPR1Un* PL!.
~4.29!

This in turn implies that

SN~p” !5~Un†PR1UnTPL!Sn~p” !~Un* PR1UnPL!,
~4.30!

whereSN(p” ) and Sn(p” ) are the 232 propagator matrices,
evaluated in the two different heavy neutrino bases. Finally,
the Yukawa couplingsh5(hl1 ,hl2), defined in the mass ba-
sis, are related to the Yukawa couplingshn5(hl1

n ,hl2
n ) of the

nondiagonal basis, via the unitary rotationh5hnUn.
Given the aforementioned transformation of the Yukawa

couplings and that of the resummed propagators in Eq.~4.30!
under a basis rotation, it is not difficult to show that the
propagator part of theS-matrix amplitude for the process,
e.g., l 2x1→ l 1x2,

T~ l 2x1→ l 1x2!}Tr@hPRSN~p” !PRhT#,

is rotational invariant underUn, i.e.,

Tr@hPRSN~p” !PRhT#5Tr@hnPRSn~p” !PRhnT#,

where the trace should be taken over the product of spinor
and flavor matrices as well. In fact, this avenue has been
followed in @25#. If decays of particles are considered, how-
ever, such as heavy Majorana neutrino decays, the above
flavor-basis invariance is not manifest. The reason is that,
within the LSZ formalism, theS-matrix amplitude is ob-
tained by amputating the external legs of the Green functions
with inverse propagators defined in the mass basis and any
basis transformation will affect theS-matrix expression for
the decaying particle.

Therefore, it is essential to introduce a method that always
makes reference to the decay of the neutrinos in the diagonal
mass basis. To accomplish this, one has to truncate the Green
function, e.g.,T n

ampSn(p” ), for the decayni→ l 2x1, in the
following scheme:

ŜiuNi
~p!5T n

ampSn~p” !~Un* PR1UnPL!~ZL
21/2†PR

1ZR
21/2†PL! i~ŜN! i i

21~p” !uNi
~p!, ~4.31!

where ZL5ZR* due to the Majorana property of the heavy
neutrinos and summation over not displayed indices is im-
plied. Note thatT n

amp in Eq. ~4.31! is calculated in the non-
diagonal basis. We must remark that our field-theoretic ap-
proach to solving the problem of flavor-basis invariance
leads to nonvanishingCP asymmetries proportional to the
flavor-basis-independent combination ofCP invariance
given in Eq.~2.8!. In particular, in the limit (mN2

2mN1
)→0,

the vanishing ofdN in Figs. 4~a! and 5~a! explicitly demon-
strates that our numerical estimates describe genuine effects
of CP violation.

V. LOW-ENERGY CONSTRAINTS

If heavy Majorana neutrinos are not much heavier than
few TeV @40#, these novel particles may then be produced at
high-energyee @41#, ep @42#, andpp colliders @43#, whose
subsequent decays can give rise to distinct like-sign dilepton
signals. If heavy Majorana neutrinos are not directly ac-
cessed at high-energy machines, they may have significant
nondecoupling quantum effects on lepton-flavor-violating
decays of theZ boson@44,45#, the Higgs particle (H) @46#,
and thet and m leptons @47#. Their presence may cause
breaking of universality in leptonic diagonalZ-boson @48#
and p decays@38# or influence@49# the size of the elec-
troweak oblique parametersS, T, andU @50#. In fact, there
exist many observables@51#, including the t-polarization
asymmetries and neutrino-counting experiments at the
CERN Large Electron Positron Collider~LEP1! or at the
SLAC Linear Collider~SLC!, to which Majorana neutrinos
may have sizable contributions. However, if the out-of-
equilibrium constraints are imposed on all lepton families of
the model@cf. Eq. ~4.23!#, all these non-SM effects men-
tioned above are estimated to be extremely small at the tree
or one-loop level. For example, typical tree-level terms

FIG. 6. Numerical estimates ofCP asymmetries as a function of
mN2

/mN1
21 in scenario~II !.
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breaking charged-current universality inp decays due to
heavy Majorana masses depend linearly on the ratio
uhli vu2/mNi

2 and are therefore very suppressed. Moreover,

one-loop-induced flavor-changing decays of theZ boson are
also very small, of order

aw

4p

uhli vu2

mNi

2

v2

MW
2

&102153S 1 TeV

mNi
D 2

, ~5.1!

at the amplitude level, withaw being the SU~2! L elec-
troweak fine-structure constant.

It is known that below the critical temperatureTc of the
first-order electroweak phase transition, the Higgs boson ac-
quires a nonvanishing VEV@6#. This leads to nonzero light-
neutrino masses, which may be obtained from the five-
dimensional operator

LT^FTF&LhT~M̂ n!21h' n̄ lL
C n lL (

i 51

2

hli
2 v2

mNi

. ~5.2!

However, for the scenarios~I! and ~II !, the light-neutrino
masses generated at temperaturesT!Tc are much below the
cosmological limit, i.e.,mn!10 eV. Obviously, all the afore-
mentioned limits cannot jeopardize the viability of our mini-
mal new-physics scenarios.

New-physics interactions may also give large contribu-
tions to the EDM of electron, whose experimental upper

bound is (de /e),10226 cm @52#. In particular, this bound is
crucial, since it may impose a constraint onCP-violating
operators similar to those that induceCP violation in heavy
Majorana neutrino decays. In our SM extension with right-
handed neutrinos, the contribution to the EDM of electron
arises at two loops@53#. A typical diagram that gives rise to
an EDM for the electron,

Ld5 ieS de

e D ēsmng5e]mAn, ~5.3!

is shown in Fig. 7. Following the semiquantitative prescrip-
tion in @53# by making naive dimensional counting for
mN2

,mN1
@MW , we find

S de

e D;Im~h1eh2e* h1lh2l* !
aw

2

16p2

me

MW
2

v4

MW
4

mN1
mN2

~mN1

2 2mN2

2 !

~mN1

2 1mN2

2 !2
lnS mN1

MW
D

;10224 cm Im ~h1eh2e* h1lh2l* !
mN1

mN2
~mN1

2 2mN2

2 !

~mN1

2 1mN2

2 !2
lnS mN1

MW
D , ~5.4!

where the remaining factor depending on the masses of the
heavy Majorana neutrinos only in Eq.~5.4! is usually less
than 1. It is then obvious that the above EDM limit may be
important, if uhli u.0.1, i.e., for superheavy Majorana neutri-
nos withmNi

.1011 TeV. On the other hand, stability of the

Higgs potential under radiative corrections requires that
uhli u5O(1) @40#. Nevertheless, the EDM bound derived
above gets less restrictive when the mass difference between
N1 andN2 is much smaller than the sum of their masses, i.e.,
(mN1

2mN2
)/(mN1

1mN2
)!1, and is practically absent for

values of the parameterxN,1023. As a consequence, in our
analysis, we have only considered scenarios with
uhl1u,uhl2u&1022, on which the EDM constraint in Eq.~5.4!
is still weak.

In the above discussion of low-energy effects, we have
assumed that the out-of-equilibrium constraint given in Eq.
~4.23! applies to all lepton families. As we have seen in Sec.
IV, one lepton family is sufficient to get theCP asymmetries
required for the BAU. Furthermore, sphaleron interactions

preserve the individual quantum numbersB/32Li , e.g.,
B/32Le . Also, an excess inLe will be converted into the
observed asymmetry inB. Most interestingly, the so-
generated BAU will not be washed out, even if operators that
violate Lm and Lt are in thermal equilibrium provided that
possible (Le2Lm)- and (Le2Lt)-violating interactions are
absent@54#. For instance, this can be realized if there are two
right-handed neutrinos that mix with the electron family only
and produce the BAU, and the remaining isosinglet neutrinos
strongly mix with them andt families. This class of heavy
Majorana neutrino models may predict sizable new-physics
phenomena, which have been mentioned above and can be
probed in laboratory experiments.

VI. BOLTZMANN EQUATIONS

In this section, we write down the relevant Boltzmann
equations@3,4,55,56#, which determine the time evolution of
the lepton-number asymmetries. Then, we solve these equa-
tions numerically and present results for the expected BAU

FIG. 7. Typical two-loop diagram contributing to the EDM of
electron.
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within the two different democratic-type scenarios~I! and
~II ! discussed in Sec. IV. Last, we give estimates of the
finite-temperature effects, which may have an impact on the
resonant phenomenon ofCP violation due to mixing.

The Boltzmann equations describing the time evolution of
the lepton asymmetry for a system with two heavy Majorana
neutrinos are given by@55,12#

dnNi

dt
13HnNi

52S nNi

nNi

eq
21D gNi

, ~6.1!

dnL

dt
13HnL5(

i 51

2 F dNiS nNi

nNi

eq
21D 2

nL

2nl
eqGgNi

2
nL

nl
eq

gs ,

~6.2!

wherenNi
, nL5nl2n l̄ are the densities of the number ofNi

and the lepton-number asymmetry, respectively, andnNi

eq and

nl
eq are their values in thermal equilibrium. The Hubble pa-

rameterH5(dR/dt)/R determines the expansion rate of the
Universe and also depends on the temperatureT, through the
relation in Eq.~4.22!. In Eqs.~6.1! and~6.2!, gNi

andgs are
the collision terms given by

gNi
5nNi

eq
K1~mNi

2 /T!

K2~mNi

2 /T!
GNi

, ~6.3!

gs5
T

8p4E0

`

dss3/2K1~As/T!s8~s!. ~6.4!

Here, K1(z) and K2(z) are the modified Bessel functions
defined in@57#. In addition,GNi

ands8(s) are, respectively,

the usualT50 expressions for the total decay width ofNi
and the cross section of the 2→2 scatterings, involving theL
andF states, which are taken here to be massless. The latter
comprises the scatterings, i.e.,LCF→LF† and its
CP-conjugate processLF†→LCF. In fact, the cross section
s8(s) is calculated by subtracting all those real intermediate
contributions that have already been taken into account in the
direct and inverse decays of heavy Majorana neutrinos@4#.
Therefore, gs may be regarded as an additional
CP-conserving depletion term, which can be shown to be of
order hli

4 in the Yukawa couplings; i.e., one formally finds
that gs;gNi

2 in the narrow width approximation@55#.

In writing down Eqs.~6.1! and ~6.2!, several applicable
assumptions have been made, which are also reviewed in
Ref. @55#. First, we have considered the Friedmann-
Robertson-Walker model in the nonrelativistic limit. Second,
we have adopted the Maxwell-Boltzmann statistics, which is
a good approximation in the absence of effects that originate
from Bose condensates or arise due to degeneracy of many
Fermi degrees of freedom. Third, we have assumed that the
lepton and Higgs weak isodoubletsL andF are practically
in thermal equilibrium, and neglected high orders innL /nl

eq

and dNi
. In this context, it has also been assumed that the

different particle species are in kinetic equilibrium; i.e., the
particles may rapidly change their kinetic energy through

elastic scatterings but the processes responsible for a change
of the number of particles are out of equilibrium. These out-
of-equilibrium reactions are described by the Boltzmann
equations~6.1! and~6.2!. Finally, there may exist additional
contributions to the Boltzmann equations@12#, coming from
processes such asNiL→F*→Qi t̄ R , NiQi→L t̄ R , where
Qi ( i 51,2,3) denotes the usual quark isodoublets in the SM.
These reactions as well as those of the kindFF†→LLC are
still very weak to wash out the BAU generated by the direct
heavy Majorana neutrino decays@58#, as long as the out-of-
equilibrium constraint on the Yukawa couplings in Eq.
~4.23! is imposed. Hence, we have neglected these small
depletion terms.

Before we evaluate numerically the Boltzmann equations
written above, it will prove helpful to make the following
substitutions:

x5
mN1

T
, t5

1

2H~T!
5

x2

2H~x51!
, ~6.5!

which is a good approximation for the radiation dominated
phase of the Universe. We assume the heavy-neutrino mass
hierarchymN1

<mN2
for the two right-handed neutrino sce-

narios~I! and ~II !, given in Sec. IV. Furthermore, we intro-
duce the quantitiesYNi

5nNi
/s andYL5nL /s, wheres is the

entropy density. In an isentropically expanded universe,
the entropy density has the time dependence
s(t)5const3R23(t) and may be related to the number den-
sity of photons,ng , ass5g* ng , whereg* is given after Eq.
~4.22!. For our discussion, it will be more convenient to de-
fine the parameters

K5
K1~x!

K2~x!

GN1

H~x51!
, g5

K2~x!K1~jx!

K1~x!K2~jx!

GN2

GN1

, ~6.6!

with j5mN2
/mN1

. Making use of the above definitions and
relations among the parameters, we obtain the Boltzmann
equations for the new quantitiesYN1

, YN2
, andYL , viz.

dYN1

dx
52~YN1

2YN1

eq !Kx2, ~6.7!

dYN2

dx
52~YN2

2YN2

eq !gKx2, ~6.8!

dYL

dx
5F ~YN1

2YN1

eq !dN1
1~YN2

2YN2

eq !gdN2

2
1

2
g* YL~YN1

eq1gYN2

eq !2g* YLYN1

eq gs

gN1
GKx2.

~6.9!

In our numerical analysis, we shall neglect the Yukawa cou-
pling suppressed term in Eq.~6.9!, which is proportional to
gs , sincegs!gNi

. Moreover, the heavy-neutrino number-

to-entropy densities in equilibrium,YNi

eq(x), are given by@4#
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YN1

eq~x!5
3

8g*
E

x

`

dzzAz22x2e2z5
3

8g*
x2K2~x!,

~6.10!

andYN2

eq(x)5YN1

eq(jx). The differential equations~6.7!–~6.9!

are solved numerically, using the initial conditions

YN1
~0!5YN2

~0!5YN1

eq~0!5YN2

eq~0! and YL~0!50.

~6.11!

These initial conditions merely reflect the fact that our Uni-
verse starts evolving from a lepton symmetric state, in which
the heavy Majorana neutrinos are originally in thermal equi-
librium. After the evolution of the Universe until tempera-
tures much belowmN1

, a net lepton asymmetry has been
created. This lepton asymmetry will then be converted into
the BAU via the sphalerons. During a first-order electroweak
phase transition, the produced excess inL will lead to an
excess inB, which is given by@8,56#

YB5
8Ng14NH

22Ng113NH
YB2L'2

1

3
YL , ~6.12!

whereYB5nB /s, Ng is the number of generations, andNH is
the number of Higgs doublets. The observed BAU is
YB

obs5(0.621)310210 @55#, which corresponds to an excess
of leptons2YL

obs'1029–10210. In the latter estimate, other
alternatives for generating the BAU are also considered,
which may arise from the conversion of an individual lepton
asymmetry@54# only, e.g.,Le , into the BAU.

In Fig. 8, the observed range forYL, denoted asYL
obs, is

indicated with two confining horizontal dotted lines. Further-
more, we display our numerical estimates ofYL(x) as a
function of the parameterx5mN1

/T, for selected heavy-
Majorana-neutrino scenarios, stated in Eq.~4.24!. Specifi-
cally, Fig. 8~a! shows explicitly the dependence ofYL on x,
for the three different values of the parameter
xN5mN2

/mN1
2151028, 1029, and 10210 in scenario~I!.

In this scenario, the lightest heavy Majorana neutrinoN1 has
a massmN1

510 TeV and the values of the Yukawa cou-

plings arehl151026 and hl251026(11 i ). The parameter
xN is a measure of the degree of mass degeneracy forN1 and
N2. For comparison, it is worth mentioning that the degree of
mass degeneracy betweenKL and KS is of order 10215,
which is by far smaller than the one considered here. Since
«8-type CP violation is very small in scenario~I!, as has
already been discussed in Sec. IV, one has to rely onCP
violation through heavy-Majorana-neutrino mixing. We find
that for small heavy-neutrino mass splittings determined by
xN , with xN being in the range between 1029 and 1028, a
sufficiently large lepton~baryon! asymmetry can be gener-
ated. The significance of our«-type CP-violating mecha-
nism may be seen from the fact that in democratic-type sce-
narios, i.e., in models with all Yukawa couplings being of
the same order as those considered here, heavy Majorana
neutrinos with masses as low as 1 TeV can still be respon-
sible for the excess of baryons, found by observational mea-
surements. Of course, for largerxN values, e.g.,xN.1028,
the BAU is getting much smaller thanYL

obs. Furthermore, we

have also checked thatCP violation and hence BAU van-
ishes in the limitxN→0, i.e., when the two OS-renormalized
heavy-neutrino massesN1 and N2 are exactly equal, as it
should be on account of theCP invariance condition in Eq.
~2.8!.

Figure 8~b! gives numerical estimates ofYL as a function
of x, for scenario ~II !. In this model, we have chosen
mN1

5109 TeV, and hl151022 and hl251022(11 i ). We
also present results for three different values of the parameter
xN , xN50.1, 1, and 10. In this large-mN1

scenario, a high

degree of degeneracy forN1 andN2 is not required in order
to get sufficientCP violation for the BAU. In fact, the«-
and «8-type contributions to the decays of heavy Majorana
neutrinos are of comparable order and should both be taken
into account. Again, one finds numerically an appreciable
excess of leptons,YL , within the observed rangeYL

obs. For
the scenario withxN510, we obtain positive values forYL
up to x.0.5. This small excess of leptons is rapidly erased
by theN1 heavy neutrino decays, which are almost in ther-
mal equilibrium. At lower temperatures, i.e., forx@0.5, the
heaviest heavy Majorana neutrinoN2 gets decoupled from
the system, and out-of-equilibriumN1 decays will eventually
produce a nonzero value forYL at the observable level. Since

FIG. 8. Lepton asymmetries for selected heavy Majorana neu-
trino scenarios.
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the «- and«8-type contributions are formally of orderhli
4 in

this highly nondegenerate scenario, other collision terms of
order hli

4 may also be significant, such as the scatterings
FLC→F†L and FF†→LLC @12,58#. However, the inclu-
sion of these additional effects will not quantitatively affect
our numerical results much, as long as the constraint in Eq.
~4.23! is valid.

In our numerical analysis presented above, we have not
taken into account other effects, which might, to some ex-
tent, affect the resonant condition, given in Eq.~4.25!. Apart
from the intrinsic width of a particle resonance, there may be
an additional broadening at high temperatures, due to colli-
sions among particles. Such effects will contribute terms of
order hli

4 to the total Ni widths and are small in general
@4,59#. Of the most importance are, however, finite-
temperature effects on theT50 masses of the particles.
Since SM gauge interactions are in kinetic equilibrium in the
heat bath, they can give rise to thermal masses to the leptons
and the Higgs fields@60–62#. These thermal masses are
given by

mL
2~T!

T2
5

1

32
~3g21g82!'0.044,

MF
2 ~T!

T2
52dS 12

Tc
2

T2D , ~6.13!

whereg andg8 are the SU~2! L and U~1! Y gauge couplings
at the running scale MZ , respectively, and
d5@2MW

2 1MZ
212mt

21MH
2 #/(8v2). The critical tempera-

ture Tc calculated at one loop may be obtained from@62#

Tc
25

1

4d FMH
2 2

3

8p2v2
~2MW

4 1MZ
424mt

4!

2
1

8dp2v4
~2MW

3 1MZ
3!2G . ~6.14!

Although the isosinglet heavy neutrinos do not have tree-
level couplings to the SM gauge bosons, the difference be-
tween the thermal mass ofNi and its respective zero-
temperature mass will proceed through Yukawa interactions
@60#, i.e.,

mNi

2 ~T!2mNi

2 ~0!

T2
5

1

16
uhli u2. ~6.15!

Such aT-dependent shift in the masses ofNi is very small
and may be safely neglected in the mass difference
mN1

2 (T)2mN2

2 (T), which enters the analytic expressions for

resonantCP violation @see, e.g., Eqs.~4.12! and ~4.13!#.
Making now use of Eqs.~6.13! and ~6.14!, the authors in
@62# find that 0.5,MF(T)/T,2, whenMH varies from 60
GeV up to 1 TeV, forT@Tc'200 GeV. In particular, one
obtains MF(T)/T&0.6, for MH,200 GeV. In this Higgs
boson mass range, the effective decay widths of the heavy
neutrinos GNi

(T) will be reduced relative toGNi
(0) by

70–80 %, because of considerable phase-space corrections

@61#. If MH.350 GeV,MF(T)/T is getting larger than 1,
which signals the onset of a nonperturbative regime and pure
perturbative methods may not be sufficient to deal with very
heavy Higgs bosons. For temperaturesT near to the critical
temperatureTc , MF(T)/T will be smaller because of the
suppression factor (12Tc

2/T2) in Eq. ~6.13!. It appears that
low-scale leptogenesis is less affected by finite-temperature
effects, even though one can always choose larger Yukawa
couplings to enhanceGNi

(T) in the light-Higgs-boson sce-
nario. In either case, the resonant phenomenon of mixing-
inducedCP violation plays a crucial roˆle to generate suffi-
ciently largeCP asymmetries.

VII. CONCLUSIONS

We have studied the impact of the«- and«8-type mecha-
nisms forCP violation on generating the excess of baryons
detected in the Universe. As for the scenario of baryogenesis,
we have considered that out-of-equilibriumL-violating de-
cays of heavy Majorana neutrinos produce an excess inL,
which is converted into the observed asymmetry inB,
through the (B1L)-violating sphaleron interactions. In Sec.
II, we have described minimal extensions of the SM with
right-handed neutrinos, which can predict nearly degenerate
heavy Majorana neutrinos without resorting to a fine-tuning
of the mass parameters. Such models may naturally occur in
certain subgroups of SO~10! @28# or E6 theories@29#. In a
one-lepton family model, the presence of two right-handed
neutrinos is sufficient to give rise to the nontrivial
CP-violating combination of Yukawa couplings, given in
Eq. ~2.8!. As has been demonstrated in Sec. IV, our physical
CP asymmetries depend indeed on thisCP-odd invariant. In
addition, particular emphasis has been laid on the renormal-
ization of the Yukawa couplings in the minimally extended
model.

In the conventional perturbation theory, the wave-
function amplitude becomes singular, whenever the degener-
ate limit of the two mixed heavy neutrinos is considered.
Several effective methods have been proposed to solve this
problem, such as diagonalizing the effective Hamiltonian of
the two-heavy-neutrino system@16,21#. The results obtained
with these methods show a resonant enhancement ofCP
violation, when the two heavy-neutrino masses are getting
closer. Such a resonantCP-violating phenomenon is in line
with earlier studies in@22#. Unfortunately, the methods based
on diagonalizing the effective Hamiltonian are not analytic,
if the effective Hamiltonian itself is not diagonalizable@25#.
Therefore, it is important to compare the results obtained for
theCP asymmetries with a more rigorous field-theoretic ap-
proach. In Sec. III, we have extended, in an effective man-
ner, the resummation formalism for particle mixing, which
was applied to scatterings in@25#, to that of the decays of
particles. The resummed decay amplitudes possess all the
desirable field-theoretic properties and exhibit an analytic be-
havior in the mass degenerate limit.

In Sec. IV, we have used the aforementioned field-
theoretic approach to perform a systematic analysis of the«
and «8 types ofCP violation in theL-violating decays of
heavy Majorana neutrinos. For illustration, we have consid-
ered minimal extensions of the SM with two right-handed
neutrinos. We have found that«-type CP violation is reso-
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nantly enhanced up to order of unity, if the mass splitting of
the heavy Majorana neutrinos is comparable to their widths,
as is stated in Eq.~4.25!, and if the parameterdCP defined in
Eq. ~4.26! has a value close to 1. In our view, these two
necessary and sufficient conditions for resonantCP violation
of order unity constitute a novel aspect in the leptogenesis
scenario, which have not been pointed out in their most ex-
plicit form before. Taking full advantage of the mechanism
of resonantCP violation, one may consider scenarios with
nearly degenerate heavy Majorana neutrinos at the TeV scale
and all Yukawa couplings being of the same order, which
can still be responsible for the BAU. In this kinematic range,
the «8-type contributions are extremely suppressed. Of
course, the higher the isosinglet Majorana mass is, the less
the above degeneracy is required in order to get sufficiently
largeCP violation. However, even in the weak-mixing limit,
i.e., mN1

!mN2
, «-type CP violation is equally important

with the «8-type one and therefore should not be ignored
@15#. In contrast, only«-type CP violation is important in
the strong mixing regime, i.e., whenmN1

2mN2
'GNi

. An-

other alternative of having sufficiently largeCP violation for
TeV leptogenesis, withmN1

;1 TeV, is to assume an hierar-
chic pattern for the heavy Majorana masses and the Yukawa
couplings, e.g.,mN2

@mN1
andhl2@hl1. Such scenarios were

thoroughly investigated in@12,13#, and therefore we have not
repeated this analysis here. On the other hand, a wide range
of heavy-neutrino masses,Tc&mNi

&109 TeV, is still able to
account for the BAU, even if all Yukawa couplings are of the
same order. We can hence conclude that the two
CP-violating mechanisms under consideration are, to a great
extent, determined from the flavor structure of the neutrino
mass matrix and the flavor hierarchy of the Yukawa cou-
plings in the model.

In Sec. V, we have presented estimates of low-energy
constraints on our minimal model, coming mainly from the
electron EDM. The two-loop EDM bound derived is found
to be not very severe in order to rule out the leptogenesis
scenario and is practically absent if the heavy Majorana neu-
trinos are nearly degenerate. In Sec. VI, we have briefly dis-
cussed the implications of finite-temperature effects for our
resonantly enhancedCP violation. Although temperature ef-
fects on the heavy-Majorana-neutrino masses are very small,
because isosinglet neutrinos interact quite feebly with the
Higgs fields in the thermal bath, the final leptons and Higgs
fields acquire appreciable nonzero thermal masses. As a con-
sequence, there will be a reduction of the widths of the heavy
Majorana neutrinos, relative to their respective values at
T50, due to a phase-space suppression. The size of the re-
duction of the Ni widths depends crucially on the zero-
temperature Higgs-boson massMH . For MH,200 GeV, the
effective decay width ofNi , GNi

(T), is estimated to be

smaller thanGNi
(0) by 80% at most. This will roughly lead

to an 80% decrease of theCP asymmetries, calculated at
zero temperature. In this respect, the resonant phenomenon
of CP violation through mixing of heavy neutrinos plays a
very important roˆle for leptogenesis, since«-type CP viola-
tion can still be large for heavy-neutrino mass differences
comparable to the effective decay widthsGNi

(T). Finally,
further support for the viability of the resonantly enhanced

CP-violating phenomenon is obtained from solving numeri-
cally the Boltzmann equations. Numerical estimates reveal
that E6-type scenarios, which naturally predict a certain de-
gree of degeneracy between the heavy Majorana neutrinos,
are able to account for the present excess of baryons. In
conclusion, even if all heavy Majorana neutrinos have
masses as low as 1 TeV and all couple to the lepton and
Higgs isodoublets with a universal Yukawa strength, they
can still be responsible for the BAU observed in our epoch,
by means of the resonant mechanism ofCP violation pre-
sented in this paper.
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APPENDIX: ONE-LOOP ANALYTIC EXPRESSIONS

In this appendix, we list the analytic expressions for the
one-loop self-energies of the Higgs and fermion fields as
well as the one-loop vertex couplingsx1lNi , x0n lNi , and
Hn lNi . Detailed discussion of mixing renormalization for
Dirac and Majorana fermion theories may be found in@38#
and will not be repeated here. Instead, we present the rela-
tions between the wave-function CT’s and unrenormalized
self-energies. Our analytic results will be expressed in terms
of standard loop integrals presented in@63#, adopting
the signature for the Minkowskian metricgmn

5diag(1,21,21,21) ~see also Appendix A of Ref.@64#!.
The Feynman rules used in our calculations may be read

off from the Lagrangian~2.4!. We first compute the Higgs
self-energiesx2x2, x0x0, and HH, shown in Figs. 1~d!–
1~f!. They all found to be equal, viz.

Px2x2~p2!5Px0x0~p2!5PHH~p2!

5(
l 51

nL

(
i 51

nR uhli u2

8p2
@mNi

2 B0~p2,mNi

2 ,0!

1p2B1~p2,mNi

2 ,0!#. ~A1!

Thus, the universality of the divergent parts of the wave
functionsdZx2, dZx0, anddZH is evident if one calculates
dZF

div52ReP8F
div(0) from Eq.~A1!, for all field components

of the Higgs doubletF.
The individual contributions to the one-loop fermionic

transitionsl 8→ l , n l 8→n l , andNj→Ni are displayed in Figs.
1~g!, 1~h!, and 1~j!, respectively. Explicit calculation of the
fermion self-energy transitions gives

S l l 8~p” !52(
i 51

nR hli hl 8 i
*

16p2
p” PLB1~p2,mNi

2 ,0!, ~A2!
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Sn ln l 8
~p” !52(

i 51

nR 1

32p2
$~hli* hl 8 i p” PR1hli hl 8 i

* p” PL!

3@B1~p2,mNi

2 ,0!1B1~p2,mNi

2 ,MH
2 !#

1mNi
~hli* hl 8 i

* PR1hli hl 8 i PL!@B1~p2,mNi

2 ,0!

2B1~p2,mNi

2 ,MH
2 !#%, ~A3!

SNiNj
~p” !52(

l 51

nL 1

16p2
~hli* hl j p” PR1hli hl j* p” PL!

3S 3

2
B1~p2,0,0!1

1

2
B1~p2,0,MH

2 ! D . ~A4!

Note that the light-neutrino self-energiesSn ln l 8
(p” ) contain

nonvanishing mass terms in the limitp”→0. Even though
these contributions vanish whenMH→0, they are nonzero at
T50, becauseMHÞ0, and light neutrinos may hence re-
ceive small radiative masses@65#. However, the latter are
generally controlled by the mass differences of the heavy
neutrinos and/or the Higgs Yukawa couplingshli . If the
range of parameters relevant for the BAU is considered, as
has been derived in Sec. VI, possible experimental limits on
light neutrino masses are estimated to be not very restrictive.

The wave-function renormalization constants can now be
expressed in terms of unrenormalized self-energies@38#. Be-
fore doing so, we first notice that the one-loopf j→ f i tran-
sitions calculated above between the fermionsf i5 l ,n l ,Ni
have the generic form

S i j ~p” !5S i j
L ~p2!p” PL1S i j

R~p2!p” PR1S i j
M~p2!PL

1S j i
M* ~p2!PR , ~A5!

where only dispersive parts are considered. If the transitions
are between Majorana fermions in Eq.~A5!, one then has the

extra propertiesS i j
L (p2)5S i j

R* (p2) and S i j
M(p2)5S j i

M(p2).
Adapting the results of@38# to our model, we obtain the
wave-function CT’s

dZii
f 52S i i

L ~mi
2!22mi

2S i i
L 8~mi

2!2mi@S i i
M8~mi

2!

1S i i
M* 8~mi

2!#1
1

2mi
@S i i

M~mi
2!2S i i

M* ~mi
2!#

~A6!

and, for iÞ j ,

dZi j
f 5

2

mi
22mj

2 @mj
2S i j

L ~mj
2!1mimjS i j

L* ~mj
2!1miS i j

M~mj
2!

1mjS i j
M* ~mj

2!#. ~A7!

The wave-function renormalization of charged leptons may
be recovered from Eqs.~A6! and~A7! if one drops all terms
depending onS i j

M(p2) and its derivative. At this point, it is
important to remark that there will be additional contribu-
tions to our wave-function CT’s of the Higgs and fermion
fields from the gauge sector of the SM@64#. For example,
there are nonzero thermal mass effects on the particles in-
volved in the loop, which may further break the wave-
function universality of the different components of the
Higgs doublet@60,61#. As has been discussed in Sec. II, this
should not pose any problem to the Yukawa coupling renor-
malization, as long as all differences of the kinddZx22dZH
or dZx22dZx0 are UV finite.

We will now present analytic results for the one-loop cor-
rections to the verticesx6l 7Ni , x0n lNi , andHn lNi , keep-
ing all MH-dependent mass terms. From Figs. 1~a!–1~c!, we
observe that the one-loop couplingx6l 7Ni proceeds via a
DL52 mass insertion only, whereas the couplingsx0n lNi
and Hn lNi can occur through bothL-conserving and
L-violating interactions. More explicitly, we have

iVx1 l 2Ni
52 i ū l PRuNi (

l 851

nL

(
j 51

nR mNi
mNj

16p2
hl 8 i
* hl 8 jhl j @C0~0,0,mNi

2 ,0,mNj

2 ,0!1C12~0,0,mNi

2 ,0,mNj

2 ,0!#, ~A8!

Vx0n lNi
52 ū l PRuNi (

l 851

nL

(
j 51

nR H mNi
mNj

32A2p2
hl 8 i
* hl 8 jhl j @C0~0,0,mNi

2 ,0,mNj

2 ,0!1C0~0,0,mNi

2 ,MH
2 ,mNj

2 ,0!1C12~0,0,mNi

2 ,0,mNj

2 ,0!

1C12~0,0,mNi

2 ,MH
2 ,mNj

2 ,0!#1
1

32A2p2
hl 8 ihl 8 j

* hl j $mNi
mNj

@C12~0,0,mNi

2 ,0,mNj

2 ,0! 2 C12~0,0,mNi

2 ,MH
2 ,mNj

2 ,0!#

2MH
2 C0~0,0,mNi

2 ,MH
2 ,mNj

2 ,0!%J , ~A9!
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2 iVHn lNi
5 i ū l PRuNi (

l 851

nL

(
j 51

nR H mNi
mNj

32A2p2
hl 8 i
* hl 8 jhl j @C0~0,0,mNi

2 ,0,mNj

2 ,0!1C0~0,0,mNi

2 ,MH
2 ,mNj

2 ,0!1C12~0,0,mNi

2 ,0,mNj

2 ,0!

1C12~0,0,mNi

2 ,MH
2 ,mNj

2 ,0!#1
1

32A2p2
hl 8 ihl 8 j

* hl j $mNi
mNj

@C12~0,0,mNi

2 ,0,mNj

2 ,0!2C12~0,0,mNi

2 ,MH
2 ,mNj

2 ,0!#

2MH
2 C0~0,0,mNi

2 ,MH
2 ,mNj

2 ,0!%J . ~A10!

As can be readily seen from Eqs.~A9! and~A10!, the part of the couplingsx0n lNi andHn lNi that conserves lepton number
is UV finite and vanishes identically in the massless limit of the Higgs boson.
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