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We solve numerically to order 1/N the time evolution of a quantum dynamical system ofN oscillators of
massm coupled quadratically to a massless dynamic variable. We use Schwinger’s closed time path formalism
to derive the equations. We compare two methods which differ by terms of order 1/N2. The first method is a
direct perturbation theory in 1/N using the path integral. The second solves exactly the theory defined by the
effective action to order 1/N. We compare the results of both methods as a function ofN. At N51, where we
expect the expansion to be quite innacurate, we compare our results to an exact numerical solution of the
Schrödinger equation. In this case we find that when the two methods disagree they also diverge from the exact
answer. We also find atN51 that the 1/N corrected evolutions track the exact answer for the expectation
values much longer than the mean field (N5`) result.@S0556-2821~97!02921-4#

PACS number~s!: 11.15.Pg, 03.65.2w, 11.30.Qc, 25.75.2q

I. INTRODUCTION

The largeN approximation has a long history in both
statistical mechanics and quantum field theory, mostly in de-
termining the phase structure of various theories@1#. It is
only recently that this approximation has been used to study
the dynamical evolution of various systems, and at present
only the lowest order in the largeN expansion has been
considered. In leading order, the largeN expansion is
equivalent to using a Gaussian density matrix, and therefore
two particle scattering effects are included only indirectly.
The leading order in the largeN approximation is closely
related to a time-dependent Hartree approximation. The ex-
act connection between these methods is discussed in detail
in Ref. @2#. Although interesting results in lowest order have
been obtained for pair production from strong fields@3,4# as
well as the evolution of a chiral phase transition@5#, the
important effects of the direct two particle elastic scattering,
which determines the thermalization time scale of the
plasma, is not included in the mean field approximation. In
order to compare time scales for rethermalization with, say,
the plasma oscillation frequency, as well as the expansion
time of an evolving plasma produced in a heavy-ion colli-
sion, one needs to go to next order in the 1/N expansion. The
property of the 1/N expansion relevant here is that connected
2n-point Green’s functions first appear withG2n of order
1/Nn21. Thus direct scattering of two particles first occurs at
order 1/N. At lowest order in 1/N, the equations one has to
solve are differential equations. At next order one gets inte-
grodifferential equations which depend on the time history of
the system. This requires new numerical methods to ensure

that the update conserves energy.
There are two different ways one can determine the 1/N

corrections. The first method is to iterate the solution of the
lowest order calculation in a standard perturbative fashion.
However, one might hope that it might be more accurate to
first Legendre transform the action obtained to order 1/N and
to obtain a new effective action, which differs by terms of
order 1/N2 from the first method. In the second method, one
evolves directly the equations of motion obtained from the
effective action. By having these two different methods, one
has an upper bound on the accuracy of the 1/N expansion.
When the two methods diverge, this is a signal that 1/N2

corrections are important. AtN51 this divergence is very
close to the place where these two methods diverge from the
exact answer. We find that the method based on the effective
action is actually less stable, since solutions become un-
bounded earlier. However, this occurs much after the method
is unreliable.

In quantum field theory it is not possible to compare the
1/N expansion with an exact calculation of a dynamical evo-
lution because of the large number of degrees of freedom.
Thus we thought it appropriate to study a simple quantum-
mechanical example which we have studied before in the
lowest order mean field approximation@2,6#. The advantage
of this simple model is that, at least forN51, comparisons
can be made with a direct numerical simulation of the exact
problem@7#. Unfortunately, even for the quantum-mechanics
case, going beyondN51 is not numerically feasible for the
exact problem. So we are testing our largeN expansion in a
regime where it is not expected to work very well. However,
in spite of this short coming, we find that by adding the 1/N
correction terms, our approximation tracks the exact answer
for expectation values a factor of two longer than the lowest
order approximation—which is encouraging.

As far as we know, this is the first attempt to use
Schwinger’s closed time path~CTP! formalism in a calcula-

*Electronic address: Bogdan.Mihaila@unh.edu
†Electronic address: John.Dawson@unh.edu
‡Electronic address: Cooper@pion.lanl.gov

PHYSICAL REVIEW D 1 NOVEMBER 1997VOLUME 56, NUMBER 9

560556-2821/97/56~9!/5400~13!/$10.00 5400 © 1997 The American Physical Society



tion which is not a perturbation expansion in the coupling
constant. The methods of solving the resulting Volterra-like
equations, which we present here, can be generalized to the
field theory case. Therefore this toy model, which can be
compared with a direct solution of the Schro¨dinger equation,
is an ideal problem to test the accuracy of the numerical
methods needed for field theory calculations.

II. THE GENERATING FUNCTIONAL

We consider a system ofN oscillators of massm coupled
quadratically to a massless oscillator with couplinge. This
quantum-mechanical system is a model of a single momen-
tum mode of scalar quantum electrodynamics@8#. The La-
grangian for this system is given by

L5
1

2
Ȧ21JA1 (

a51

N H 1

2
ḟa

22
1

2
~m21e2A2!fa

21 j afaJ .

~2.1!

We introduce the scaled variables, defined as

A→A/AN, fa→fa /AN, a51,N,

J→J/AN, j a→ j a /AN, a51,N ~2.2!

e→eAN, L→L/N.

From now on, we use scaled variables. We wish to consider
the time evolution of expectation values of observables for
an initial value problem 0,t,`. The way to formulate an
initial value problem in quantum mechanics, using a gener-
ating functional, was done more than thirty years ago by
Schwinger, Bakshi, and Mahanthappa, and later by Keldysh
@9#. This formalism, which is in the Heisenberg picture, is
related to the fact that in the Schro¨dinger picture the evolu-
tion of the density matrix in quantum mechanics

r̂~ t !5e2 iĤ tr̂~0!eiĤ t, ~2.3!

requires both a forward evolution from zero tot and a back-
ward one fromt to zero. The average value of observables
are given by traces over states of the system

^Ô~ t !&5Tr$r̂~ t !Ô%5Tr$r̂~0!Ô~ t !%

in the Schro¨dinger and Heisenberg picture, respectively.
As explained in the Appendix of Ref.@2#, this necessitates

both positive and negative time ordered operators in the evo-
lution of the observable operators and the introduction of two
currents into the path integral for the generating functional.
A concise way of writing the needed functions is to define
the time integrals along a path in the complex time plane.
This closed time path is shown in Fig. 1. The CTP integra-
tion contour is given by

E
C
F~ t !dt5E

0:C1

`

F1~ t !dt2E
0:C2

`

F2~ t !dt. ~2.4!

Using the CTP contour, the generating functional for the
causal Green’s functions for the theory described by the La-
grangian~2.1! is given by the path integral

Z@J, j #5E d@A#E d@fa#eiNS@A,f;J, j #

3S@A,f;J, j #5E
C
dtL, ~2.5!

The full closed time path Green’s function for the two point
functions is

Gab~ t,t8!5Gab
. ~ t,t8!QC~ t,t8!1Gab

, ~ t,t8!QC~ t8,t !,

in terms of the Wightman functions

Gab
. ~ t,t8!5 i $^fa~ t !fb~ t8!&2^fa~ t !&^fb~ t8!&%,

Gab
, ~ t,t8!5 i $^fb~ t8!fa~ t !&2^fb~ t8!&^fa~ t !&%,

where^fa(t)fb(t8)&[Tr$r(0)fa(t)fb(t8)%, and where the
CTP step functionQC(t,t8) is defined by

QC~ t,t8!55
Q~ t,t8! for on C1 and t8 on C1 ,

0 for t on C1 and t8 on C2 ,

1 for t C2 and t8on C1 ,

Q~ t8,t ! for t onC2 and t8 on C2 .
~2.6!

This is equivalent to a 232 matrix Green’s function on the
vector space$1,2%, often found in the literature.

The large N expansion is obtained by performing the
Gaussian integral over thefa variables to obtain an effective
action, and evaluating the remaining integral overA by the
method of steepest descent. This gives

Z@J, j #5E d@A#eiNSeff@A;J, j #[eiNW@J, j #,

W@J, j #5Seff@A0 ;J, j #1
i

2N E
C
dt ln@D21~ t,t !#1••• ,

~2.7!

whereSeff@A0;J,j# is given by

FIG. 1. Complex time contourC for the closed time path inte-
grals.
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Seff@A0 ;J, j #5E
C
dtH 2

1

2
A0

d2

dt2
A01JA0

1
i

2N (
a51

N

ln@G0aa
21 ~ t,t !#J

1
1

2 E
C
dtE

C
dt8 (

a,b51

N

j a~ t !G0 ab~ t,t8! j b~ t8!.

~2.8!

The stationary pointA0(t) is determined by

H d2

dt2
1e2(

a51

N Ff0a
2 ~ t !1

1

iN
G0aa~ t,t !G J A0~ t !5J~ t !.

~2.9!

Heref0 is defined as:

H d2

dt2
1~m21e2A0

2!J f0a~ t !5 j a~ t !, ~2.10!

andG0 is given by the solution to

H d2

dt2
1~m21e2A0

2!J G0ab~ t,t8!5dabdC~ t,t8!. ~2.11!

f0a(t) and A0(t) are to be regarded as functionals of the
sources J(t) and j (t). We have defined dC(t,t8)
5dQC(t,t8)/dt.

The inverse propagatorD21(t,t8) is

D21~ t,t8!52Fd2Seff@A;J, j #

dA~ t !dA~ t8! G
A0

5D0
21~ t,t8!1P0~ t,t8!, ~2.12!

where

D0
21~ t,t8!5H d2

dt2
1e2(

a51

N Ffa
2~ t !1

1

iN
G0aa~ t,t !G J dC~ t,t8!

~2.13!

and

P0~ t,t8!52e4A0~ t !A0~ t8! (
a,b51

N H i

N
G0ab~ t,t8!G0ba~ t8,t !

22f0a~ t !G0ab~ t,t8!f0b~ t8!J . ~2.14!

We solve Eq.~2.11! by introducing a complete set of solu-
tions f (t) to the homogeneous equation, satisfying the
Wronskian condition

f a* ~ t ! ḟ a~ t !2 ḟ a* ~ t ! f a~ t !52 i . ~2.15!

The causal Green’s functionsG0 can then be written

G0 ab~ t,t8!5 idab$ f a~ t ! f a* ~ t8!QC~ t,t8!

1 f a~ t8! f a* ~ t !QC~ t8,t !%. ~2.16!

III. TIME EVOLUTION EQUATIONS

In the Schro¨dinger picture the Schro¨dinger equation gov-
erns the time evolution of theN11 oscillators

i
]C~f,A,t !

]t
5H(

a

1

2 F2
]2

]fa
2 1~m21e2A2!fa

2G
2

1

2

]2

]A2J C~f,A,t !. ~3.1!

It is the solution of this equation that we will compare with
our largeN equations for the expectation values. Since at
leading order in largeN an initial Gaussian wave packet
stays Gaussian under time evolution, we will start our prob-
lem with Gaussian initial data. Also we need to relate the
parameters of the wave function at time zero to the values of
one and two point functions and their time derivatives, since
the Green’s functions obey second order differential equa-
tions. At t50 we choose our wave function to be a product
of Gaussians

C~f,A,0!5Cf~0!CA~0!, ~3.2!

where

Cf~0!5@2pG~0!#21/4exp$2x2@G21~0!/42 iPG~0!#%

and

CA~0!5@2pD~0!#21/4exp$2~A2ANÃ0!2

3@D21~0!/42 iPD~0!#

1 ipA~0!~A2ANÃ0!%.

The variables have the following meaning:

^fa~0!fb~0!&5dabG~0!,

PG~0!5
Ġ~0!

4G~0!
.

We have chosen̂fa&5^ḟa&50:

D~0!1NÃ0
25^A2& t50 ,

PD~0!5
Ḋ~0!

4D~0!
,

pA~0!5^2 i ]/]A& t505^Ȧ~0!&.

We will evolve these equations~for N51! using a symplec-
tic integrator as described in Ref.@7# to compare with the
results of the largeN expansion. The parameterG(t) in the
Schrödinger wave function which is the real part of the width
of the wave function is related toG0(t,t8) of the Heisenberg
approach viaG(t)5G0(t,t)/ i .

A. Leading order in 1/N

Let us now consider the equations and the initial condi-
tions for the large N expansion. For simplicity and also be-
cause we are considering these equations as the single mode
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approximation to scalar electrodynamics we consider the
case wheref0a50 for all t. In terms of the mode functions
f a discussed above we then have

G0 ab~ t,t !/ i 5dabf a~ t ! f a* ~ t !. ~3.3!

The coupled equations which need to be solved are

H d2

dt2
1

e2

N (
a51

N

u f a~ t !u2J A0~ t !50, ~3.4!

H d2

dt2
1@m21e2A0

2~ t !#J f a~ t !50. ~3.5!

The four initial conditions that have to be specified in lowest
order are

A~0!,Ȧ~0!;G~0!,Ġ~0!.

Here we have assumed that theA field can be treated classi-
cally, which is the limit where the width of the fluctuations
in A, namelyD, can be ignored. In general we also have to
specifyD(0) andḊ(0). In terms of thef a this translates into
the initial conditions

f a~0!5AG~0!,

ḟ a~0!5F2
i

2G~0!
1

Ġ~0!

2G~0!
G f a~0!

for all a.

B. Order 1/N corrections

The 1/N corrections to the generating functionalZ require
the evaluation of the second term in Eq.~2.7!. We invert Eq.
~2.12! and find

D~ t,t8!5D0~ t,t8!

2E
C
dt1E

C
dt2D0~ t,t1!P0~ t1 ,t2!D~ t2 ,t8!.

~3.6!

Since we have chosenf0 a(t)50, we can solveD0(t,t8) as
follows. Find the two linearly independent solutionsg and
g* to the homogeneous equation,

H d2

dt2
1

e2

N (
a51

N

u f a~ t !u2J g~ t !50, ~3.7!

satisfying the Wronskian condition

g* ~ t !ġ~ t !2ġ* ~ t !g~ t !52 i . ~3.8!

In terms of these solutions we have

D0~ t,t8!5 i $g~ t !g* ~ t8!QC~ t,t8!1g~ t8!g* ~ t !QC~ t8,t !%.
~3.9!

The initial width of the wave function is then given by

D~0!5D0~0,0!/ i 5ug~0!u2. ~3.10!

Thus we can relate the initial conditions ong to the initial
conditionsD(0) andḊ(0) of the wave function as

g~0!5AD~0!,

ġ~0!5F2
i

2D~0!
1

Ḋ~0!

2D~0!
Gg~0!.

P0(t,t8) is given by

P0~ t,t8!522ie4A0~ t !A0~ t8!

3H 1

N (
a51

N

@ f a
2~ t ! f a*

2~ t8!QC~ t,t8!

1 f a
2~ t8! f a*

2~ t !QC~ t8,t !#J . ~3.11!

Our numerical strategy for solving Eq.~3.6! is discussed in
Appendix A.

There are two ways to calculate the order 1/N corrections
to the time evolution problem. The first way is by a straight
forward perturbation expansion ofW@J, j # in powers of 1/N.
If we consider the average value ofA(t), we have

A~ t !5
1

iNZ@ j , j # FdZ@J, j #

dJ~ t ! G
j

5A0~ t !1
1

N
A1~ t !,

~3.12!

where

A1~ t !5F d

dJ~ t !G i

2 E
C
dt8 ln@D21~ t8,t8!#.

Computing the derivatives, we obtain

A1~ t !5A1
~a!~ t !1A1

~b!~ t !1A1
~c!~ t !, ~3.13!

where

A1
~a!~ t !52e4E

C
dt8D~ t,t8!A0~ t8!S1~ t8!,

A1
~b!~ t !522e4E

C
dt8D~ t,t8!V~ t8!,

A1
~c!~ t !54e6E

C
dt8D~ t,t8!A0~ t8!S2~ t8!,

where we have introduced

S1~ t !5
1

N (
a,b51

N E
C
dt8G0 ab~ t,t8!D~ t8,t8!G0ba~ t8,t !,
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S2~ t !5
1

N (
a,b,c51

N E
C
dt8G0 ac~ t,t8!A0~ t8!

3E
C
dt9G0cb~ t8,t9!D~ t8,t9!A0~ t9!G0ba~ t9,t !,

V~ t !5
1

N (
a,b51

N E
C
dt8G0ab~ t,t8!D~ t,t8!A0~ t8!G0 ba~ t8,t !.

Here, all functions are to be evaluated using the first order
solutionsA0(t).

C. Effective action approach

A second method of evaluation of the order 1/N correc-
tions is to use a Legendre transformation to find the effective
actionG@A,fk#:

G@A,f#5W@J, j #2E
C
dtH J~ t !A~ t !1 (

a51

N

j a~ t !fa~ t !J .

~3.14!

Using the fact thatSeff@A0;J,j# is a stationary point, we find,
to order 1/N,

G@A,f#5E
C
dtH 2

1

2
A

d2

dt2
A1

i

2N (
a51

N

ln@Gaa
21@A#~ t,t !#

1
i

2N
ln@D21@A,f#~ t,t !#J

2E
C
dtE

C
dt8

1

2 (
a,b51

N

fa~ t !Gab
21@A#~ t,t8!fb~ t8!,

~3.15!

which is the classical expression plus the trace-log terms.
Here,Gab

21@A#(t,t8) andD21@A,f#(t,t8) are functionals of
the full A(t) and fa(t). Again, in this case we setfa(t)
50. This effective action agrees up to order 1/N with the
true Legendre transform of the generating functional. One
can now ignore where this action came from and directly
write nonperturbative equations forA directly from this ac-
tion which will agree to order 1/N with the previous equa-
tions. However, atN51 where we will be making a numeri-
cal comparison with the exact answer, the results are
expected to be quite different. We would like to know how
the two results forA differ and which is more accurate at
modestN.

The equation of motion forA(t) which follows from
varying the effective actionG is

H d2

dt2
1

e2

iN (
a51

N

Gaa~ t,t !J A~ t !1
1

N E
C
dt8K~ t,t8!A~ t8!50,

~3.16!

where

Gab~ t,t8!5Gab~ t,t8!1
i

N (
c,d51

N E
C
dt1E

C
dt2Gac~ t,t1!

3Scd~ t1 ,t2!Gdb~ t2 ,t8!, ~3.17!

Scd~ t1 ,t2!5e2dcddC~ t1 ,t2!D~ t1 ,t2!

24e4A~ t1!Gcd~ t1 ,t2!D~ t1 ,t2!A~ t2!,

~3.18!

K~ t,t8!52e4D~ t,t8!
1

N (
a,b51

N

$Gab~ t,t8!Gba~ t8,t !%.

~3.19!

The equation forA has to be solved simultaneously with the
equations forG andD which now depend on the fullA. To
obtainG we now need to solve for the modesf which satisfy

H d2

dt2
1m21e2A2~ t !J f a~ t !50. ~3.20!

G is again given by

Gab~ t,t8!5 idab$ f a~ t ! f a* ~ t8!QC~ t,t8!

1 f a~ t8! f a* ~ t !QC~ t8,t !%. ~3.21!

In terms of the fullA and these newf we determineD using
the integral equation~3.6! where nowD0 is determined using
the newf in the equation forg.

These equations of motion agree with the previous ones to
order 1/N2. We had hoped that these equations which par-
tially resum 1/N corrections would be more accurate at late
times. However, this turned out not to be the case, and in fact
sinceA becomes unbounded sooner in this second approach,
the late time behavior of this approach is worse. AtN51
both methods agree with the exact answer for the same
amount of time. When they diverge from each other they
also diverge from the exact answer.

IV. ENERGY

The expectation value of the energy is given by

E/N5
1

2
^Ȧ2&1

1

2 (
a51

N

$^f̆21m2^fa
2&1e2^A2fa

2&}.

~4.1!

The expectation values are related to the full connected
Green’s functionsḠ,D̄ Kab

3 , Gab
4 by the equations

^A~ t !A~ t8!&5A~ t !A~ t8!1
1

iN
D̄~ t,t8!, ~4.2!

^fa~ t !fb~ t8!&5
1

i
Ḡab~ t,t8!, ~4.3!
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^fa~ t1!fb~ t2!A~ t3!A~ t4!&52
1

iN2 Gab
4 ~ t3 ,t4 ;t1 ,t2!

1
1

i
A~ t3!A~ t4!Gab~ t1 ,t2!

2
1

N
D̄~ t3 ,t4!Ḡab~ t1 ,t2!

2
1

N
$Kab

3 ~ t1 ,t2 ;t3!

3A~ t4!1Kab
3 ~ t1 ,t2 ;t4!A~ t3!%.

~4.4!

We notice that to order 1/N the connected three point func-
tion K3 contributes but not the connected four point function
G4. If we are using the generating functional approach we
can now directly expand the energy in a power series in 1/N
by assumingGn5G0

n11/N G1
n1••• . We then obtain

^A2~ t !&5A0
2~ t !1

2

N
A0~ t !A1~ t !1

1

iN
D~ t,t ! ,

^Ȧ2~ t !&5Ȧ0
2~ t !1

2

N
Ȧ0~ t !Ȧ1~ t !1

1

iN

]2D~ t,t8!

]t]t8
U

t5t8

,

^fa
2~ t !&5

1

i H G0aa~ t,t !1
1

N
G1aa~ t,t !J ,

^ḟa
2~ t !&5

1

i H ]2G0aa~ t,t8!

]t]t8
U

t5t8

1
1

N

]2G1~ t,t8!

]t]t8
U

t5t8
J ,

^A2~ t !fa
2~ t !&5

1

i H A0
2~ t !G0aa~ t,t !1

1

N
A0

2~ t !G1aa~ t,t !

1
2

N
A0~ t !A1~ t !G0aa~ t,t !J

2
1

N
G0aa~ t,t !D~ t,t !2

2

N
A0~ t !K0

3~ t,t;t !,

where to order 1/N,

K0
3~ t1 ,t2 ;t3!522e2E

C
dt8G0~ t1 ,t8!G0~ t2 ,t8!

3D~ t3 ,t8!A0~ t8!, ~4.5!

andG1(t,t8) is the sum of three terms

G1ab~ t,t8!5G1ab
~a! ~ t,t8!1G1ab

~b! ~ t,t8!1G1ab
~c! ~ t,t8!,

~4.6!

with

G1ab
~a! ~ t,t8!5 ie2E

C
dt1G0ab~ t,t1!D~ t1 ,t1!G0ba~ t1 ,t8!,

G1ab
~b! ~ t,t8!524ie4 (

c,d51

N E
C
dt1G0ac~ t,t1!A0~ t1!E

C
dt2

3G0cd~ t1 ,t2!D~ t1 ,t2!G0db~ t2 ,t8!A0~ t2!,

G1ab
~c! ~ t,t8!522e2E

C
dt1G0ab~ t,t1!A0~ t1!A1~ t1!

3G0ba~ t1 ,t8!.

The above lead to the following expression of the energy:

EZ~ t !5E0~ t !1
1

N
E1~ t !. ~4.7!

For E0 , we find

E0~ t !

N
5

1

2
Ȧ0

2~ t !1
1

2iN (
a51

N H ]2G0aa~ t,t8!

]t]t8
U

t5t8

1~m21e2A0
2!G0aa~ t,t !J . ~4.8!

and where

E1~ t !

N
5Ȧ0~ t !Ȧ1~ t !1

1

2iN (
a51

N H ]2G1aa~ t,t8!

]t]t8
U

t5t8

1~m21e2A0
2!G1aa~ t,t !

12e2A0~ t !A1~ t !G0aa~ t,t !J 1
1

2 H 1

i

]2D~ t,t8!

]t]t8 U
t5t8

2
e2

N (
a51

N

G0aa~ t,t !D~ t,t !J 2e2A0~ t !K0
3~ t,t;t !.

~4.9!

If instead we are using the effective actionG to determine
the equations of motion, then we find the following expres-
sions for the expectation values of the operators:

^A2~ t !&5A2~ t !1
1

iN
D~ t,t !, ~4.10!

^Ȧ2~ t !&5Ȧ2~ t !1
1

iN

]2D~ t,t8!

]t]t8
U

t5t8

, ~4.11!

^fa
2~ t !&5

1

i
Gaa~ t,t !, ~4.12!

^ḟa
2~ t !&5

1

i

]2Gaa~ t,t8!

]t]t8
U

t5t8

, ~4.13!

^A2~ t !fa
2~ t !&5

1

i
A2~ t !Gaa~ t,t !2

1

N
Gaa~ t,t !D~ t,t !

2
2

N
A~ t !K3~ t,t;t !, ~4.14!
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where now we use the fullA and notA0 in determining all
the Green’s functions inK3. The energy for theG method
can then be calculated as

EG

N
5

1

2
Ȧ2~ t !1

1

2iN (
a51

N H ]2Gaa~ t,t8!

]t]t8
U

t5t8

1~m21e2A2!Gaa~ t,t !J 1
1

2N H 1

i

]2D~ t,t8!

]t]t8
U

t5t8

2
e2

N (
a51

N

Gaa~ t,t !D~ t,t !J 2
e2

N
A~ t !K3~ t,t;t !.

~4.15!

Using the equations of motion, we can show that all expres-
sions for the energy, Eqs.~4.8!, ~4.7!, ~4.15!, are time inde-
pendent, so that the energy is conserved for both the pertur-
bative calculation as well as the effective action method.

V. NUMERICAL RESULTS

In order to find numerical solutions to these equations, we
expand all functions in Chebyshev polynomials, and solve

the resulting finite set of equations. In most of our calcula-
tions, we used a set of 32 polynomials. Details of this calcu-
lation are given in Appendix B.

In order to make contact with our previous lowest order
N5` results we will use the set of initial conditions~e50.3,
E51, m51) given in Ref.@7#. Time is measured in units of
1/m. We would first like to compare the two methods at
large but finiteN starting off with Gaussian initial data for
the wave function. In a mean field approximation, such as
lowest order largeN, a wave function which starts out as a
Gaussian remains Gaussian. Thus in mean field theory the
only physical measurable quantities are^A(t)&, Š@A(t)
2^A(t)&#2

‹5D(t,t)/ i , and ^f2(t)&5G(t,t)/ i . It is just
these three moments that we will plot here to make contact
with mean field results.~At infinite N, D is also zero, but it
is finite in a Hartree approximation, as discussed in@7#.! We
will denote the straightforward use of the 1/N expansion
from the path integral as theZ method and the results com-
ing from the effective action approach, theG method.

In Fig. 2, we plot̂ A(t)& for N5100,16, and 8. We notice
that as we reduceN the two different methods start diverging
after one period. We also find that the second method which
is based on the effective action has corrections which be-
come unbounded at late times which leads us to believe that

FIG. 2. Time evolution ofA(t) for N58, 16, and 100, using theZ method and theG method.
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the second method is less stable. Both methods seem to have
secular behavior~i.e., corrections which grow as a power in
time!.

In Fig. 3, we show results for̂ f2(t)&5G(t,t)/ i for
N5100, 16, and 8. We notice that at late times, this can go
negative. This is a result of the fact that the operatorf has a
1/N expansionf5f01(1/N)f11••• , so that the positive
definite width of the wave packet iŝ„f01(1/N)f1…

2&
which also includes 1/N2 corrections. So once the 1/N cor-
rection becomes as large as the lowest order term, the expan-
sion breaks down and keeping terms only to order 1/N in the
expansion of the expectation value can lead to negative re-
sults. This negative result occurs after the two methods di-
verge which is an indication of when the expansion is break-
ing down.

Now let us look at the effective width of the wave func-
tion of theA oscillator. For theZ method, we have that the
correlation functionD(t,t8), defined by Eq.~3.6!, is inde-
pendent ofN. However, the width determined in the effec-
tive action approach has 1/N corrections due to the implicit
dependence ofA(t) on N. First, in Fig. 4, we compare the
two approaches for calculatingD(t,t)/ i at N5100. In Fig. 5,
we show theN dependence ofD(t,t)/ i using theG-method

at N5100,16, and 8. From Fig. 5 we see that whent>5 the
1/N2 effects are starting to appear.

For the caseN51, it is possible to compare the results of
both expansions with an exact numerical simulation of the
Schrödinger equation which we obtained in Ref.@7#. Figure

FIG. 3. Time evolution ofG(t,t)/ i for N58, 16, and 100, using theZ method and theG method.

FIG. 4. Time evolution ofD(t,t)/ i for N5100, as computed
using theZ method and theG method.
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6 shows the time evolution ofA(t) as computed using both
the G and theZ methods, compared with the exact solution
for 0,t,25. For comparison we also include the lowest
order in largeN result. Both methods agree with each other
and with the exact result fort,8. They are accurate for at
least twice the time scale asA0(t), the first order largeN
result. It is gratifying to see that the two solutions diverge
from each other approximately the same time as when they
diverge from the exact solution so that the divergence of the
two approaches which signals the onset of 1/N2 corrections
sets the time scale for the accuracy of the result even forN
51.

In Fig. 7, we plot the effective width of thef oscillators
Š@f(t)2^f(t)&#2

‹5Gaa(t,t)/ i using both methods and com-
pare these results to the exact solution forN51 as well as
the lowest order result. Here we notice a marked improve-
ment of the 1/N corrected results from the lowest order ones.
We find again that the time at which the two methods start
diverging from one another they also diverge from the exact
answer.

In Fig. 8, we plot the effective width of theA oscillator
D(t,t)/ i for the Z andG methods, as a function of time. In
this case the lowest order in 1/N is equivalent to ad function
width and so did not give a prediction. Here again we find
the two solutions diverge from one another just when the
approximation breaks down.

What we can conclude from the above results are that
1/N2 corrections become important rather early in this par-
ticular time evolution problem. The period of agreement of
our two methods is approximately the period when they give
accurate results for the time evolution. We find atN51 that
the width of thef oscillator is much better described when
we add the 1/N corrections. Also the time evolution of theA
oscillator is now accurate for about twice the time period
found previously at lowest order.

In our calculations, we were able to verify energy conser-
vation to one part in 104. In spite of this, when the 1/N
expansion breaks down it fails to preserve the positivity of
certain expectation values. If we look at Eq.~3.6! for
D(t,t)/ i , which is the positive definite expectation value
Š@A(t)2^A(t)&#2

‹, we notice that this is an integral equation
which sums all the bubbles and thus correctly takes into
account the shift in the frequency of the quantum fluctuations
of theA oscillator. However in the equation for^A(t)& itself,
Eq. ~3.16!, the term which is the time-dependent mass of the
oscillator, namely^f2(t)&, which should also be positive
definite, is given by Eq.~3.17!. We notice that Eq.~3.17! is
not an integral equation but only the leading term in a 1/N
expanded Green’s function. This quantity need not be~and is
not! positive definite. We can understand how this can hap-
pen in an example. In the vacuum state^f2(t)&5G(t,t)/ i is

FIG. 5. Time evolution ofD(t,t)/ i for N58,16,100, as com-
puted using theG method.

FIG. 6. Time evolution ofA(t) for N51, as computed using the
Z method and theG method, compared with the exact solution.

FIG. 7. Gaa(t,t)/ i for the first and second order large-N approxi-
mations as a function of time.

FIG. 8. Comparison of exact numerical simulation ofD(t,t)/ i
with the value computed using theZ andG methods.
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time independent and is positive definite. One of the effects
of the interactions is to renormalize the mass~change the
frequency! of the oscillator. So consider the toy problem

G~ t,t !5
1

2p E
2`

` dv

@v21m0
21 ~e2/N! m1

2#

5
1

2 S m0
21

e2

N
m1

2D 21/2

,

where we have kept only thee2/N correction to the mass
shift of the f oscillator. Nowm1

2 is positive since we have
assumed the interaction is repulsive. Again reexpandingG
we get

G~ t,t !5
1

2m0
S 12

e2m1
2

2Nm0
2D ,

so we see that ifm1
2 is large enough, then this quantity which

is positive definite can appear negative when reexpanded in
1/N.

This problem can also be a source of secular terms. For
example, consider the fact that the frequency of the classical
A oscillator is shifted by 1/N corrections so that one has

A~ t !5A~0!cosS v0t1
v1

N
t D . ~5.1!

If, however, the actual 1/N expansion for the oscillator in-
stead gave the first two terms in the Taylor series we would
get

A~ t !5A~0!Fcos~v0t !2
v1t

N
sin~v0t !G . ~5.2!

Using this expression would lead to blow up ofA(t) in a
time scaleN/v1 . This type of behavior is found in our nu-
merical simulations. One way of solving the secular problem
as well as guaranteeing the positivity of expectation values is
by appropriately summing the series. That is we replace Eq.
~3.17! by

Gab~ t,t8!5Gab~ t,t8!1
i

N (
c,d51

N E
C
dt1E

C
dt2Gac~ t,t1!

3Scd~ t1 ,t2!Gdb~ t2 ,t8!. ~5.3!

We then have to modify appropriately Eqs.~2.13!, ~2.14!,
~3.18!, and~3.19! in order to guarantee energy conservation
again.

These modifications only change the results at order 1/N2

but are obviously very important because of the early break-
down of the naive methods. However, in this paper we did
not want to go beyond what one obtains directly using the
two direct approaches to the 1/N expansion and will discuss
the resummed theory in a separate paper.

This problem with expectation values becoming un-
bounded is more acute in theG method. In Fig. 9 we show
that energy is conserved. However, in Figs. 10 and 11 we
show the above phenomena that several of the individual
contributions to the energy become negative if we keep
terms only up to 1/N.

FIG. 9. The energyEZ5E01E1 /N, computed using theZ
method, andEG using theG method.

FIG. 10. Various components of the energy, as com-
puted in the Z method, as a function of time.
Here we have introduced the notations:Ea5(1/2)Ȧ2(t), Eb

5(1/2iN)(a51
N @]2Gaa(t,t8)/]t]t8 ] u t5t8 , Ec5(1/2iN)(a51

N (m2

1e2A2)Gaa(t,t), Ed5(1/2iN)@]2D(t,t8)/]t]t8 #u t5t8 , Ee5

2(1/2iN2)(a51
N e2Gaa(t,t)D(t,t), Ef52(1/N)e2A(t)K3(t,t;t).

FIG. 11. Various components of the energy, as computed in the
Z method, as a function of time. The notations are similar to those
of Fig. 10, with the addition that now we haveGaa(t,t8)
5G0aa(t,t8)1G1aa(t,t8)/N, andGaa(t,t8) becomesG0aa(t,t8).
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The appearance of secular terms in a perturbation expan-
sion is quite well known@10#. As an example for the classi-
cal anharmonic oscillator

d2y

dt2
1y1gy350,

if we assume a solution of the form

y5y0~ t !1gy1~ t !,

and perform a perturbation series in the coupling constantg,
secular terms linear int appear iny1(t). One can see by
doing a large-N expansion in the Schro¨dinger picture, that
one can avoid the secular problem in a simple way. If we
solve the Schro¨dinger equation at largeN in terms of the
eigenfunctions and eigenvalues we find

C~f,A,t !5(
m

cmCm~f,A!e2 iEmt, ~5.4!

where theCm(f,A) are the solutions of the time indepen-
dent Schro¨dinger equation. We can do a large-N expansion
for the eigenfunctions and eigenvalues separately. We then
find thatCm(f,A) has a Taylor series in 1/AN andEm has a
Taylor series in 1/N. As long as we do not reexpand the
exponentials having the time dependence~i.e., keep
exp$2i @Em

0 t1 (1/N) Em
1 t•••#%) then there are no secular

terms. However if we reexpand the exponentials and keep
only terms of order 1/N, secular terms proportional to pow-
ers of t will appear. We believe that this might very well be
occurring in the largeN expansion based on the CTP formal-
ism.

VI. CONCLUSIONS

We have presented two methods for calculating the 1/N
corrections to the time evolution of a system ofN11 oscil-
lators using Schwinger’s CTP formalism. These two meth-
ods differ by terms of order 1/N2 so that the divergence of
results is an indication of the time during which keeping
terms up to order 1/N is accurate. This was verified by com-
paring with direct numerical simulation of the Schro¨dinger
equation for the caseN51. We found that forN51, keeping
the 1/N corrections allows us to extend the range of time for
which the expectations values track the exact answer signifi-
cantly. This was most noticable for the the quantity which
describes the width of thef wave function.

In performing these numerical simulations, we found
some shortcomings in the 1/N expansion. It does not guar-
antee the boundedness of various expectation values, even
though energy is exactly conserved. As a result of this, we
expect that we are seeing secular behavior in our expansion
which needs to be cured. One way of curing this problem is
to instead look at a 1/N expansion for the eigenfunctions and
eigenvalues of the Schro¨dinger equation instead of working
with the CTP formalism. Another is to resum the Green’s
function for thef oscillator and modify the equations for the
other variables appropriately so that energy is conserved.
These two ideas will be discussed in a future work.

In conclusion, by comparing our two direct approaches to

performing a 1/N expansion, one using the generating func-
tional Z and one the effective actionG, we found that the
direct perturbation theory in 1/N from Z gave results that
were bounded for longer times. However, having both meth-
ods, allowed us to determine when 1/N2 corrections became
important. Thus having both methods will be quite useful in
simulating field theories, when there will be no exact solu-
tion to compare with. Solving the secular problem we found
here will be discussed elsewhere.
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APPENDIX A: EQUATION FOR D„T,T8…

In this appendix we discuss how we approach the problem
of finding the solution of Eq.~3.6!:

D~ t,t8!5D0~ t,t8!2E
C
dt1E

C
dt2D0~ t,t1!P~ t1 ,t2!D~ t2 ,t8!.

~A1!

We first note that the causal Green’s functions are symmetric
in the sense thatA

‹,(t,t8)5A.(t8,t), and obey the addi-
tional condition

A.,,~ t,t8!52A,,.* ~ t,t8!5A,,.~ t8,t !. ~A2!

The last equation gives

Re$A.~ t,t8!%52Re$A,~ t,t8!%, ~A3!

Im$A.~ t,t8!%52Im$A,~ t,t8!% ~A4!

or

A.~ t,t8!2A,* ~ t,t8!52Re$A.~ t,t8!%, ~A5!

A.~ t,t8!1A,* ~ t,t8!52Im$A.~ t,t8!%. ~A6!

With these equations in mind, the causal Green’s fumction
A(t,t8) is fully determined by the componentA.(t,t8)
5Re$A.(t,t8)%1 i Im$A.(t,t8)%, and we need to evaluate
the function only fort8<t.

Directing our attention now to the calculation ofD(t,t8),
it is convenient to introduce

Q~ t,t8!5E
C
dt9D0~ t,t9!P~ t9,t8!. ~A7!

Note that even though the functionsD0(t,t8) and P(t,t8)
satisfy the properties of the Green’s functions listed above,
the new functionQ(t,t8) satisfies only some: i.e.,
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Q.,,~ t,t8!52Q,,.* ~ t,t8!ÞQ,,.~ t8,t !. ~A8!

This does not prevent the Green’s functionD(t,t8) to re-
cover all the desired properties after one more CTP integra-
tion. In practice, this translates into the fact that we have to
actually calculate the functionQ.(t,t8) for all momentst
and t8, whereas the other causal functions need only some
half of the data.

Then, Eq.~A1! becomes

D~ t,t8!5D0~ t,t8!2E
C
dt9Q~ t,t9!D~ t9,t8! ~A9!

or

D.~ t,t8!5D0.~ t,t8!2E
0

t

dt9@Q.~ t,t9!

2Q,~ t,t9!#D~ t9,t8!1E
0

t8
dt9Q~ t,t9!

3@D.~ t9,t8!2D,~ t9,t8!#, ~A10!

D,~ t,t8!5D0,~ t,t8!2E
0

t

dt9@Q.~ t,t9!

2Q,~ t,t9!D,~ t9,t8!#

1E
0

t8
dt9Q,~ t,t9!@D.~ t9,t8!2D,~ t9,t8!#.

~A11!

Using the properties~A2!–~A6!, we see that Eq.~A11! is
redundant, and we can write Eq.~A10! as

D.~ t,t8!5D0.~ t,t8!22E
0

t

dt9Re$Q.~ t,t9!%D.~ t9,t8!

12E
0

t8
dt9Q.~ t,t9!Re$D.~ t9,t8!%. ~A12!

We separate now thereal and the imaginary part of Eq.
~A12! and obtain the system of integral equations

Re$D.~ t,t8!%5Re$D0.~ t,t8!%22E
0

t

dt9Re$Q.~ t,t9!%

3Re$D.~ t9,t8!%12E
0

t8
dt9

3Re$Q.~ t,t9!%Re$D.~ t9,t8!%, ~A13!

Im$D.~ t,t8!%5Im$D0&~ t,t8!%22E
0

t

dt9Re$Q.~ t,t9!%

3Im$D.~ t9,t8!%12E
0

t8
dt9Im$Q.~ t,t9!%

3Re$D.~ t9,t8!%. ~A14!

The above system of equations has to be solved fort8<t.
Notice that the two equations are independent, which allows

us to solve first Eq.~A13! for the real part ofD.(t,t8), and
then use this result to derive theimaginarypart of D.(t,t8)
from Eq. ~A14!.

APPENDIX B: NUMERICAL METHODS

Our numerical technique involves the expansion of all the
unknown functionsf (t), g(t), A(t), D(t,t8) in a Chebyshev
polynomial basis. We follow a method developed by El-
gendy@11# and have applied it to combined differential and
integrals equations of the type we have here. We use the
same Chebyshev expansion methods for solving the Green’s
function equation forD(t,t8), in the CTP formalism, as ex-
plained in Appendix A. In addition, we divide the time up
into small blocks, moving along block by block.

Chebyshev polynomials of the first kind of degreen are
defined by

Tn~x!5cos~n arccosx!. ~B1!

We define the grid in the interval@21,1# by choosing the
positions

x̃ j5cos
j p

N
, j 50,1,...,N. ~B2!

Then, the Chebyshev polynomials satisfy a discrete orthogo-
nality relation of the form

(
k50

N

9Ti~ x̃k!Tj~ x̃k!5b id i j , ~B3!

where the constantsb i are

b i5H N

2
, iÞ0,N

N, i 50,N.

~B4!

An arbitrary functionf (x) can be approximated in the inter-
val @21,1# by the formula

f ~x!5 (
j 50

N

9ajTj~x!. ~B5!

We denotef k5 f ( x̃k). The coefficientsaj are defined by

aj5
2

N
(
k50

N

9 f ~ x̃k!Tj~ x̃k!, j 50,...,N. ~B6!

and the summation symbol with double primes denotes a
sum with first and last terms halved. As shown by El-gendy,
we never have to actually compute these expansion coeffi-
cientsaj . Instead, we findf j directly. The advantage of the
Chebyshev expansion method is that Eq.~B5!, which is an
expansion in afinite set, is exact forx5 x̃ j , j 50, . . . ,N.

We can approximate the calculation of the indefinite inte-
gral *21

x f (t)dt by

I ~x!5E
21

x

f ~ t !dt5(
j 50

N

9ajE
21

x

Tj~ t !dt, ~B7!
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where the integral*21
x Tj (t)dt is given by

Tj 11~x!

2~ j 11!
2

Tj 21~x!

2~ j 21!
1

~2 ! j 11

j 221
if j >1,

1
4 @T2~x!21# if j 51,

T1~x!11 if j 50. ~B8!

When the variablex takes the values of the grid points~B2!,
we can write Eq.~B7! in a matrix format, such as

I i5I ~ x̃i !5( 9
j 50

N

Bi j
@21,1# f j , ~B9!

where B@21,1# is a square matrix of order (N11), whose
elementsBi j

@21,1# are equal to

1

N2 TN~ x̃i !TN21~ x̃ j !1
1

2N~N11!
TN11~ x̃i !TN~ x̃ j !

1 (
k50~kÞ1!

N

9
2

N

~2 !k11

k221
T0~ x̃i !Tk~ x̃ j !2

1

2N
T0~ x̃i !T1~ x̃ j !

1
1

N~N21!
TN21~ x̃i !FTN22~ x̃ j !2

1

2
TN~ x̃ j !G

1 (
k51

N22
1

kN
Tk~ x̃i !@Tk21~ x̃ j !2Tk11~ x̃ j !#. ~B10!

In a similar manner, the derivatived f(x)/dx is approximated
by

D~x!5
d

dx
f ~x!5(

j 50

N

9ajT8 j~x!, ~B11!

whereT8 j (x) is the derivative of the Chebyshev polynomial

of the first kind of degreej . By inserting the expression of
theaj coefficients, and evaluating the derivative atx5 x̃k we
obtain a matrix equation:

Di5D~ x̃i !5(
j 50

N

9B̃i j
@21,1# f j . ~B12!

Here B̃@21,1# is given by

B̃i j
@21,1#5

2

N (
k50

N

9T8k~ x̃i !Tk~ x̃ j !. ~B13!

Note that the approximations~B9! and ~B12! are exact for
x5 x̃ j , j 50, . . . ,N.

Finally, the approximations~B5!, ~B9!, ~B12! can be gen-
eralized by allowing the range of the approximation to be
between two arbitrary limitsa andb, instead of just21 to 1.
This is done performing the change of variables:

x→y[
x2 ~1/2! ~b1a!

~1/2! ~b2a!
. ~B14!

As a consequence, the matricesB and B̃ become

B@a,b#5
b2a

2
B@21,1#, ~B15!

B̃@a,b#5
2

b2a
B̃@21,1#, ~B16!

and the Chebyshev polynomials in Eq.~B5! become now
functions of the variabley. The matrices@ f #, @*21

x f (t)dt#,
and@d f(x)/dx# will give then the value of the functionf (x),
its integral and derivative, at the coordinatesxk5yk(b
2a)/21(b1a)/2, where yk are the (N11) coordinates
given by Eq.~B2!.
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