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We solve numerically to order W/the time evolution of a quantum dynamical systemNobscillators of
massm coupled quadratically to a massless dynamic variable. We use Schwinger’s closed time path formalism
to derive the equations. We compare two methods which differ by terms of ofdér The first method is a
direct perturbation theory in il using the path integral. The second solves exactly the theory defined by the
effective action to order N. We compare the results of both methods as a functidd. okt N=1, where we
expect the expansion to be quite innacurate, we compare our results to an exact numerical solution of the
Schralinger equation. In this case we find that when the two methods disagree they also diverge from the exact
answer. We also find &ll=1 that the 1IN corrected evolutions track the exact answer for the expectation
values much longer than the mean fieN=f ) result.[S0556-282(97)02921-4

PACS numbsgs): 11.15.Pg, 03.65:-w, 11.30.Qc, 25.75:q

I. INTRODUCTION that the update conserves energy.
There are two different ways one can determine thé 1/
The largeN approximation has a long history in both corrections. The first method is to iterate the solution of the
statistical mechanics and quantum field theory, mostly in delowest order calculation in a standard perturbative fashion.
termining the phase structure of various theofigk It is However, one might hope that it might be more accurate to
only recently that this approximation has been used to studfirst Legendre transform the action obtained to ordér and
the dynamical evolution of various systems, and at presertb obtain a new effective action, which differs by terms of
only the lowest order in the larghl expansion has been order 1N? from the first method. In the second method, one
considered. In leading order, the lard¢ expansion is evolves directly the equations of motion obtained from the
equivalent to using a Gaussian density matrix, and thereforeffective action. By having these two different methods, one
two particle scattering effects are included only indirectly.has an upper bound on the accuracy of thd &kxpansion.
The leading order in the largh approximation is closely When the two methods diverge, this is a signal thai?1/
related to a time-dependent Hartree approximation. The ex:orrections are important. Al=1 this divergence is very
act connection between these methods is discussed in detalbse to the place where these two methods diverge from the
in Ref.[2]. Although interesting results in lowest order have exact answer. We find that the method based on the effective
been obtained for pair production from strong fie]l8s4] as  action is actually less stable, since solutions become un-
well as the evolution of a chiral phase transitif], the  bounded earlier. However, this occurs much after the method
important effects of the direct two particle elastic scatteringjs unreliable.
which determines the thermalization time scale of the In quantum field theory it is not possible to compare the
plasma, is not included in the mean field approximation. In1/N expansion with an exact calculation of a dynamical evo-
order to compare time scales for rethermalization with, saylution because of the large number of degrees of freedom.
the plasma oscillation frequency, as well as the expansiolfhus we thought it appropriate to study a simple quantum-
time of an evolving plasma produced in a heavy-ion colli-mechanical example which we have studied before in the
sion, one needs to go to next order in thi Bkpansion. The lowest order mean field approximatid,6]. The advantage
property of the I expansion relevant here is that connectedof this simple model is that, at least fodf=1, comparisons
2n-point Green's functions first appear with,,, of order can be made with a direct numerical simulation of the exact
1/N"~1, Thus direct scattering of two particles first occurs atproblem[7]. Unfortunately, even for the quantum-mechanics
order 1N. At lowest order in 1IN, the equations one has to case, going beyond =1 is not numerically feasible for the
solve are differential equations. At next order one gets inteexact problem. So we are testing our lalgexpansion in a
grodifferential equations which depend on the time history ofregime where it is not expected to work very well. However,
the system. This requires new numerical methods to ensui@ spite of this short coming, we find that by adding thil 1/
correction terms, our approximation tracks the exact answer
for expectation values a factor of two longer than the lowest

*Electronic address: Bogdan.Mihaila@unh.edu order approximation—which is encouraging.
"Electronic address: John.Dawson@unh.edu As far as we know, this is the first attempt to use
*Electronic address: Cooper@pion.lanl.gov Schwinger’s closed time pa{l€TP) formalism in a calcula-
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tion which is not a perturbation expansion in the coupling
constant. The methods of solving the resulting Volterra-like t - plane
equations, which we present here, can be generalized to the
field theory case. Therefore this toy model, which can be Gy -
compared with a direct solution of the ScHiager equation, — >
is an ideal problem to test the accuracy of the numerical e
methods needed for field theory calculations.
IIl. THE GENERATING FUNCTIONAL

We consider a system of oscillators of massn coupled FIG. 1. Complex time contou for the closed time path inte-
guadratically to a massless oscillator with couplemgThis  grals.
guantum-mechanical system is a model of a single momen-
tum mode of scalar quantum electrodynami8s The La- _ _
grangian for this system is given by Z[J,j]zf d[A]f d[ ¢, eNTA ]

1. N1
L=5 AZHIAT 2 |5 ¢7— 5 (MP @AY ¢l fadba XS[A,qb;J,j]:fdtL, 29
= C
(2.1
We introduce the scaled variables, defined as The full closed time path Green’s function for the two point
functions is

A—AIN, ¢,—da/JN, a=1N,

ry — > ! ! < ! !
JSUN, juiu VN, a=1iN 2.2 Gap(t,t) =G (1) O(t,t") + G (t,t ) Ot 1),

e—eN, L—L/N. in terms of the Wightman functions

From now on, we use scaled variables. We wish to consider = e , ,

the time evolution of expectation values of observables for Gap(t,t") =i{(¢a(t) ¢n(t')) —(ba())(dp(t )},

an initial value problem &t<o. The way to formulate an

initial value problem in quantum mechanics, using a gener- Gt =i{(p(t") da(t)) = dp(t" )W da(t))},

ating functional, was done more than thirty years ago by

Schwinger, Bakshi, and Mahanthappa, and later by Keldysh

[9]. This formalism, which is in the Heisenberg picture, is Where(ea(t) ép(t"))=Tr{p(0)da(t) ¢5(t")}, and where the
related to the fact that in the Scluiager picture the evolu- CTP step functior®(t,t") is defined by

tion of the density matrix in quantum mechanics

O(t,t") foron C, andt’ on C,,

AN a—iHEY int

p(y=e""p(0)e, 23 / fort on C, andt’ on C_,
requires both a forward evolution from zerottand a back- Oc(t.t)= 1 fort C_. andt’on C,,
ward one fromt to zero. The average value of observables Ot 1) for tonC. andt’ on C..

are given by traces over states of the system 2.6

(O(1))=Tr{p(1)O} =Tr{p(0)O(1)}
This is equivalent to a 2 matrix Green'’s function on the
in the Schrdinger and Heisenberg picture, respectively.  vector spacd+,—}, often found in the literature.

As explained in the Appendix of Rdi2], this necessitates The large N expansion is obtained by performing the
both positive and negative time ordered operators in the evasaussian integral over thg, variables to obtain an effective
lution of the observable operators and the introduction of twaaction, and evaluating the remaining integral oveby the
currents into the path integral for the generating functionalmethod of steepest descent. This gives
A concise way of writing the needed functions is to define
the time integrals along a path in the complex time plane.

This closed time path is shown in Fig. 1. The CTP integra- Z[J,j]:f d[A]eNSerl Aidil= gINWLL.j1
tion contour is given by
Ftdt:wa tdt—fx F (hdt. (2.4 : _— _
Jrwa= |, Fewar= [ Fom e WIi 1= Sl Agid.i T+ 5y | dt D M0+,
Using the CTP contour, the generating functional for the 2.7

causal Green'’s functions for the theory described by the La-
grangian(2.1) is given by the path integral where S Ag;J,j] is given by
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1 d?
—5Aogz Aot IA

Seﬁ[Ao;J-j]:JCdt
i N
TN 2 In[GOata,t)]]

1 - N1
+§ fdtJ dt E Ja(t)GOab(tvt )Jb(t )
C C a,b=1

(2.9
The stationary poinfy(t) is determined by
2 N
2 2 1
qE &2, | 480+ 1y Conal L 0| [ Ag(D)=3(D).
(2.9
Here ¢ is defined as:
d2
az+(m2+e2Aé)]¢>0a<t>=ja(t>, (2.10

and G, is given by the solution to

d2
FTcha (m?+ eZAg)} Goap(t,t) = 8,p00(t,t"). (2.11)
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lll. TIME EVOLUTION EQUATIONS

In the Schrdinger picture the Schdinger equation gov-
erns the time evolution of the+ 1 oscillators

IV (pAL)
! ot _r

1 d* 2. A272\ 42
Ea: > —(9¢2+(m +e“A%) ¢y
a

1 4°

5 ﬂAz}\P(da,A,t). (3.1
It is the solution of this equation that we will compare with
our largeN equations for the expectation values. Since at
leading order in largeN an initial Gaussian wave packet
stays Gaussian under time evolution, we will start our prob-
lem with Gaussian initial data. Also we need to relate the
parameters of the wave function at time zero to the values of
one and two point functions and their time derivatives, since
the Green’s functions obey second order differential equa-
tions. Att=0 we choose our wave function to be a product
of Gaussians

YV (4,A0)=V ,(0)WA(0), (3.2
where

W 4(0)=[27G(0)] Yexp{ —x*[G~1(0)/4—illg(0)]}

boa(t) and Ay(t) are to be regarded as functionals of the@nd

sources J(t) and j(t). We have defined dq(t,t")
=d0(t,t")/dt.

The inverse propagatd ~(t,t") is

[ 0%Sed AL
DLt )‘_[6A<t>5A<t'>LO
=Dy M(t,t")+ (L 1), (2.12
where
d2 N 1
Dal(t,t’)=[d—z+e22 {ng(t)""-_GOaa(t,t)H5C(tat,)
t a=1 iN
(2.13
and

N
i
Ho(tat'):294Ao(t)Ao(t')abz:1 [ N Coan(t,t") Gopa(t',1)

_2¢0a(t)GOab(t't')¢0b(t')]- (2.14

W 4(0)=[27D(0)]” Yexp{ — (A— VNA)?
X[D~Y(0)/4—ill5(0)]
+ipa(0)(A— VNA)}.

The variables have the following meaning:
(¢a(0) ¢(0)) = 6a5G(0),

G(0)
HG(0)=m-

We have chosefig,) =( ¢a) =0:
D(0)+NAZ=(A2), o,

D(0)
HD(O):F(O)’

PA(0)=(—1d/3A)—o=(A(0)).

We will evolve these equatior(for N=1) using a symplec-

We solve Eq.(2.11) by introducing a complete set of solu- tic integrator as described in RdfZ] to compare with the
tions f(t) to the homogeneous equation, satisfying theresults of the largéN expansion. The paramet@(t) in the

Wronskian condition
HOIXORHUINGESE (219
The causal Green’s functiorg, can then be written
Goab(t,t") =i dap{ fa(t) F3 (1) Oc(t,1")

+Ha(t) 7 (DOt 1)} (2.16

Schralinger wave function which is the real part of the width
of the wave function is related B(t,t") of the Heisenberg
approach vias(t) =Gy(t,t)/i.

A. Leading order in 1/N

Let us now consider the equations and the initial condi-
tions for the large N expansion. For simplicity and also be-
cause we are considering these equations as the single mode
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approximation to scalar electrodynamics we consider th&hus we can relate the initial conditions gnto the initial

case wherepy,= 0 for all t. In terms of the mode functions conditionsD(0) andD(O) of the wave function as
f, discussed above we then have

Goap(t,t)/i = Sapfa(t) FX (). (3.3 9(0)=vD(0),

The coupled equations which need to be solved are

[ i Db

a2 e N
[ a2t N 21 [fa(t)]?[ Ao(t)=0, (3.9
= ITo(t,t') is given by
d2
W+[m2+ ezAS(t)]} fa(t)=0. (3.9 o(t,t")=—2ie*Ay(t)Ag(t")
N

The four initial conditions that have to be specified in lowest E 2,0\ £k 2010 /
order are X[N aEl [FAOfZ5(t)O(tT)

A0).A(0):6(0).G(0). +HE2()FE2(D) Ot )]} (3.11)

Here we have assumed that thdield can be treated classi-
cally, which is the limit where the width of the fluctuations _ _ o _
in A, namelyD, can be ignored. In general we also have toOur numerical strategy for solving E3.6) is discussed in

specifyD(0) andD(0). Interms of thef , this translates into APpendix A.

the initial conditions There are two ways to calculate the ordeX Lorrections
to the time evolution problem. The first way is by a straight
fa(0)=+G(0), forward perturbation expansion @[ J,j] in powers of 1N.
. If we consider the average value Aft), we have
- G(0)
fa(0)= _T(O)_FF(O) fa(0) 1 57[3,i] 1
for all a. ! (3.12
B. Order 1/N corrections
where

The 1N corrections to the generating functioratequire
the evaluation of the second term in E8.7). We invert Eq.

(2.12 and find Al(t):[%(t)} IE Ldt’ In[D~(t',t')].
D(t,t")=Dy(t,t")
Computing the derivatives, we obtain
- fcdtlfcdtzDo(tytl)Ho(tl,tz)D(tz,t')-
a6 A=A 1) +AP () + AL (1), (3.13

Since we have chosefi,,(t) =0, we can solvéD,(t,t’) as  Where
follows. Find the two linearly independent solutiogsand

* to the homogeneous equation,
’ ? d AP(t)= —e“fcdt’D(t,t’)Ao<t’)21(t’),

2 e N ,
[W+N 2 (0] ]gm:o, 3.7

A(1b>(t)=—2e4f dt'D(t,t")Q(t),
satisfying the Wronskian condition c

g* (W9 —g* (Hg(t) =—i. (3.8

In terms of these solutions we have

Do(t.t')=i{g(t)g*(t’)@c(t,t’)+9(t')9*(t)c(t',t)(}g- 9

A<1°>(t):4e6fcdt’D(t,t')Ao(t’)EZ(t'),

where we have introduced

The initial width of the wave function is then given by

1 N
D(0)=D(0,0)/i =|g(0)|% (3.10 El(t)zﬁabzl cht Goan(t)DIL, 1) Gona(t',),
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N
E fdt’GOac(t,t')Aow) Gap(t,t') = Gab(tt)+— 2 fdtlfdtzGac(t ty)
b,c=1 JC

Z||—\

X2 oq(t1,t2) Gapltz,t'), 3.1
><fcdt”GoCb(t’,t”)D(t’,t”)Ao(t”)GOba(t",t), ad s t2) Gaplta:t') (317

Sty ty) = €28:40¢(ty, 1) D(ty,ty)

1 e
=5 3 f 0t Goan(1t)D (L) Ag(t) Gopalt' 1) AEAMCedltr D LA,

(3.18
Here, all functions are to be evaluated using the first order
solutionsAy(t). K(t,t')=2e*D(t,t’ ) 2 {Gap(t,t)Gpa(t’ )}
(3.19

C. Effective action approach

A second method of evaluation of the ordeN1¢orrec-  The equation foA has to be solved simultaneously with the
tions is to use a Legendre transformation to find the effectiveequations foiG andD which now depend on the ful\. To
actionT'[A, ¢ ]: obtainG we now need to solve for the modesvhich satisfy

2

N
_ 1 - d
T[A $]=W[J.j] fcolt[J(t)A(twaE1 Jalt)ba(t) - et A 1,0 0. (3.20
(3.19
. - . . , G is again given by
Using the fact thaB.4Ag;J,j] is a stationary point, we find,

to order 1N, s , ,
Gan(t,t") =i dap{ fa(t) FZ (1) Oc(t,1")

" +H ()5 (DO, )} (3.29)

r _fd 1 d? i S G-t
[A ¢]= ¢ t _EAWA+ma=l n[Gaa[Al(t,1)]

In terms of the fullA and these newW we determineD using
i 4 the integral equatio(B.6) where nowD is determined using
+onMD 1A @ILY] the newf in the equation fog.
These equations of motion agree with the previous ones to
1 . order 1N2. We had hoped that these equations which par-
- fcdtfcdt' > a;l da(V)Gap [Al(L,t) Pp(t),  tially resum 1N corrections would be more accurate at late
T times. However, this turned out not to be the case, and in fact
(3.15 sinceA becomes unbounded sooner in this second approach,
the late time behavior of this approach is worse. N+ 1
which is the classical expression plus the trace-log term$?0th methods agree with the exact answer for the same
Here,G;bl[A](t,t’) andD~I[A, #](t,t") are functionals of amount of time. When they diverge from each other they
the full A(t) and ¢,(t). Again, in this case we sap,(t)  @lSo diverge from the exact answer.
=0. This effective action agrees up to ordeN1with the

true Legendre transform of the generating functional. One IV. ENERGY
can now ignore where this action came from and directly _ o
write nonperturbative equations far directly from this ac- The expectation value of the energy is given by

tion which will agree to order N with the previous equa-
tions. However, aN=1 where we will be making a numeri- ) ) 5 0o
cal comparison with the exact answer, the results are E/N= —<A >+ E (2 +m($2)+eX(AZg2)}.

expected to be quite different. We would like to know how 4.2)
the two results forA differ and which is more accurate at |
modestN. .

The equation of motion forA(t) which follows from The expectation values are related to the full connected
varying the effective actiof is Green’s functionss,D K3, , G4, by the equations

d? 92 1 A(DA() —At)At’)—l—iD_tt’) (4.2

aet E gaa(tt>]A(t>+—fdt K(LE)AE) =0, (ADAL)=ADAM)+ g DILE), (@

(3.1
1 —
(da()Pp(t'))= 7 Gan(t,t), 4.3

where
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(Da(ty) dp(ta) A(ta)A(ty))=— Gap(ts taity ty)

1
+ TA(ta) A(t)G

ab(t1,t2)

(t3!t4)G_ab(t1at2)

[ Z|I—‘

{Kab(tlvt21 3)

XA(t) + K3 (1.t t)A(ts)}.

4.9
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N
Gi(t,t")=—4ie* > fdthOac(tatl)AO(tl)fdtz
c,d=1 J¢C C
X Goeglty,t2) D(t1,12) Gogn(tz,t")Ag(ty),

G(l(;)b(t’t,) = —2¢? fcdt1GOab(tvtl)AO(tl)Al(tl)

X Gopalty,t’).

The above lead to the following expression of the energy:

We notice that to order W the connected three point func- For Eq, we find
tion K23 contributes but not the connected four point function

G*. If we are using the generating functional approach we
can now directly expand the energy in a power seriesln 1/

by assumingG"=Gg+ 1/N G} +--- . We then obtain

(A2(t))=A3(t)+ EA (HAL(1)+ iD(t t)
0 N 1 iN W)y

A2 ) 2 - . 1 ﬁzD(t,t,)
(A (t))—Ao(t)+NAO<t)A1(t)+mW ’

t=t’

(B0)=7 (GOaau D+ 5 Gl t)]

1 6°Gy(t,t")
N atat’

: 1
<¢§<t>>=i—[

]1
t=t’

1
(A2(t) p2(1)) =~ { (t)Goaa(t,t) + A(t)Glaa(tt)

!
| _,

2
+ NAO(t)Al(t)GOaa(t:t)]

2
GOaa(t DD(6D) ~ S A(DK(L LD,

where to order I,

Kg(tl toitg)=— ZGZJ dt'Go(t1,t")Gy(tp,t")
C

X D(ts,t)Ag(t"), (4.5
andG,(t,t") is the sum of three terms

Giapn(t,t) =GE(t, )+ Gt +G9y(t 1),

(4.9

with

Gg.aa)b(t’t,):iezjcdtleOab(tatl)D(tl’tl)GOba(tlvt,)a

1
Ez(t)=Eq() + 1 Ex(D). @7
N 2 !
B _1atys = ) I Coaaltit)
N 2 N a= 07t07t' t=t’
+ (m2+ ezAé)GOaa(tvt)] : 4.8
and where
Ea(t) 1§ [#Gualtt)
N~ AoAL+ 5 3 Tt |
+(m2+ezAé)Glaa(t1t)
A OA (11 1|1 #?D(t,t")
+2€"Ag(DAL()Goaa(t,l) | + 51 T

t

I
—-

N
—%2 Goaa(t,t)D(t,t) | —€?Ag(1)K3(t,t;1).

4.9

If instead we are using the effective actibrio determine
the equations of motion, then we find the following expres-
sions for the expectation values of the operators:

1

(Az(t)>=A2(t)+mD(t,t), (4.10

1 4°D(t,t")
(Az(t)> Az(t)+ Wt:t” (411

) 1
(pa(t))= T Gaa(t,1), (4.12
1 #Gaa(t,t))

PAt)) =T — , (4.13

{ )= atat o

<A2<t><f>a(t)>——A2 )Gaalt,t) = = Gaa(t,t)D(L,1)

2
- NA(t)|<3(t,t;t), (4.19
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L —— Z method =
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!
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T
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<

(b) N =16.

T

—— Z method

— — I method

FIG. 2. Time evolution ofA(t) for N=8, 16, and 100, using th&2 method and th& method.

where now we use the fulh and notA, in determining all  the resulting finite set of equations. In most of our calcula-
the Green’s functions ifK3. The energy for thd” method tions, we used a set of 32 polynomials. Details of this calcu-
can then be calculated as lation are given in Appendix B.

Er 2 Az(t)+

1 N (6264t
: 5, | S

2|N a=1 (9'[(9'1/

t=t/

2 ’
+(m?+e2A?) G, (t, t)’ ! Ilw

In order to make contact with our previous lowest order
N=cc results we will use the set of initial conditiofs=0.3,
E=1, m=1) given in Ref[7]. Time is measured in units of
1/m. We would first like to compare the two methods at
large but finiteN starting off with Gaussian initial data for
the wave function. In a mean field approximation, such as

2N atot’ |, : .
t=t lowest order largeN, a wave function which starts out as a
e2 N e? Gaussian remains Gaussian. Thus in mean field theory the
- — E Gaa(t,1)D(t,1) ——A(t)K (t,t;1). only physical measurable quantities a(&(t)), ([A(t)
N 2= —(A1))]»=D(t,t)/i, and (p%(t))=G(t,t)/i. It is just

(4.19 these three moments that we will plot here to make contact
with mean field results(At infinite N, D is also zero, but it
Using the equations of motion, we can show that all expresis finite in a Hartree approximation, as discussefi7ih) We
sions for the energy, Eq$4.9), (4.7), (4.15), are time inde- Will denote the straightforward use of theNl/expansion
pendent, so that the energy is conserved for both the pertuffom the path integral as thé method and the results com-
bative calculation as well as the effective action method. ing from the effective action approach, themethod.
In Fig. 2, we plo{A(t)) for N=100,16, and 8. We notice
that as we reduch the two different methods start diverging
V- NUMERICAL RESULTS after one period. We also find that the second method which
In order to find numerical solutions to these equations, weas based on the effective action has corrections which be-
expand all functions in Chebyshev polynomials, and solvecome unbounded at late times which leads us to believe that
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15 4
[ —— Zmethod [ — Zmethod
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FIG. 3. Time evolution ofj(t,t)/i for N=8, 16, and 100, using th# method and thé method.

the second method is less stable. Both methods seem to haaeN=100,16, and 8. From Fig. 5 we see that wiherb the

secular behaviofi.e., corrections which grow as a power in 1/N? effects are starting to appear.

time). For the casé\=1, it is possible to compare the results of
In Fig. 3, we show results fof¢?(t))=G(t,t)/i for  both expansions with an exact numerical simulation of the

N=100, 16, and 8. We notice that at late times, this can g&chralinger equation which we obtained in RET). Figure

negative. This is a result of the fact that the operatdras a

1/N expansiong= ¢o+ (1/N)p,+--- , so that the positive

definite width of the wave packet i§(¢o+(1N) 1)) i
which also includes N? corrections. So once theN/cor- 0 ethod
rection becomes as large as the lowest order term, the expar 00 — ’
sion breaks down and keeping terms only to ordét ity the - ’
expansion of the expectation value can lead to negative re- | 0= ’!
sults. This negative result occurs after the two methods di- 400 — N I
verge which is an indication of when the expansion is break- 300 - A
ing down. - I\
Now let us look at the effective width of the wave func- 200 - 7 | |
tion of the A oscillator. For thez method, we have that the 100 — J |
correlation functionD(t,t"), defined by Eq(3.6), is inde- oL { |
pendent ofN. However, the width determined in the effec- 0 20 40 60 80 100

tive action approach hasN/corrections due to the implicit
dependence of(t) on N. First, in Fig. 4, we compare the
two approaches for calculatirig(t,t)/i atN=100. In Fig. 5, FIG. 4. Time evolution ofD(t,t)/i for N=100, as computed
we show theN dependence dD(t,t)/i using thel-method  using theZ method and thd& method.
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800 0.6
= _ exact solution
00— — N - Go0 /i
- — = N=16
00— 05 — — Z method 4
L — N=3 X — T method
500 — I e
D - . G
400 — , | 04 —
300 — : L
200 [— ’ / 03—
100 — /_ / / B
s A\VZAV/ o | T R R
0 20 40 0 80 100 0 ! 2 3 4 3 6
¢ t
FIG. 5. Time evolution ofD(t,t)/i for N=8,16,100, as com- FIG. 7. G,4(t,1)/i for the first and second order lar@eapproxi-
puted using thd" method. mations as a function of time.

6 shows the time evolution o&(t) as computed using both
the " and theZ methods, compared with the exact solution ~What we can conclude from the above results are that
for 0<t<25. For comparison we also include the lowest1/N? corrections become important rather early in this par-
order in largeN result. Both methods agree with each otherticular time evolution problem. The period of agreement of
and with the exact result far<8. They are accurate for at our two methods is approximately the period when they give
least twice the time scale a&)(t), the first order largeN accurate results for the time evolution. We find\&t 1 that
result. It is gratifying to see that the two solutions divergethe width of the¢ oscillator is much better described when
from each other approximately the same time as when theye add the I corrections. Also the time evolution of the
diverge from the exact solution so that the divergence of th@scillator is now accurate for about twice the time period
two approaches which signals the onset df%torrections ~found previously at lowest order.
sets the time scale for the accuracy of the result eveiNfor ~ In our calculations, we were able to verify energy conser-
=1 vation to one part in 1D In spite of this, when the W

In Fig. 7, we plot the effective width of thes oscillators expansion breaks down it fails to preserve the positivity of
([¢>(t)—<¢>(t)>]2)=gaa(t,t)/i using both methods and com- certain expectation values. If we look at E¢B.6) for
pare these results to the exact solution ¥or 1 as well as  D(t,t)/i, which is the positive definite expectation value
the lowest order result. Here we notice a marked improve{[A(t) —(A(t))]%), we notice that this is an integral equation
ment of the IN corrected results from the lowest order ones.Which sums all the bubbles and thus correctly takes into
We find again that the time at which the two methods starficcount the shift in the frequency of the quantum fluctuations
diverging from one another they also diverge from the exac®f the A oscillator. However in the equation fA(t)) itself,
answer. Eg. (3.16), the term which is the time-dependent mass of the

In Fig. 8, we plot the effective width of tha oscillator ~ oscillator, namely(¢?(t)), which should also be positive
D(t,t)/i for theZ andT" methods, as a function of time. In definite, is given by Eq(3.17). We notice that Eq(3.17) is
this case the lowest order inNLis equivalent to a function ot an integral equation but only the leading term in Bl 1/
width and so did not give a prediction. Here again we findexpanded Green’s function. This quantity need notearel is
the two solutions diverge from one another just when theot) positive definite. We can understand how this can hap-

approximation breaks down. pen in an example. In the vacuum stai(t))=G(t,t)/i is
12 140
L exact solution = exact solution
Y A0 B, 120 — ~— ~ Z method )
[ — — Z method / r = T method I
B _._ — * I' method / 100 — l
A - . / D 80— :
41— e T T o~ KV} =
e _/*)Q/ \V) 60— /
L ~ i /
A 40— = -
0 ] L e T T — s
L = ~
P T T T T SN O Lo i 0 i I B B R RN N iy
0 5 10 15 20 25 0 5 10 15 20 25
t t

FIG. 6. Time evolution oA(t) for N=1, as computed using the FIG. 8. Comparison of exact numerical simulationft,t)/i
Z method and thé method, compared with the exact solution.  with the value computed using theandI” methods.



56 ORDER 1N CORRECTIONS TO THE TIME-DEPENDEN. .. 5409

— E,0.E0 E, — Eq
— - Eo) T ——EB—E N N\ X
o T \
2
- 2l
E :
09 —
08 —
07 J I | ‘ | | I | I R | ‘ | | | I |
0 5 10 15 20 25

t

FIG. 10. Various components of the energy, as com-
FIG. 9. The energyE,=E,+E,/N, computed using the& puted in the .Z method, as q function ] of time.
method, ancE; using thel’ method. Here we have introduced the notationE,=(1/2)A%(t), E,
=(1/2IN)=N_ [ #2Gaa(t, ") dtot" 1] =y, Ec=(L/2N)ZN_,(m?

272 — H 2 ' ' —
time independent and is positive definite. One of the effects € A)Yaa(t), Eq=(1/2IN)[7"D(t,t")/otdt Je=v Ee=

— in2yS N 2 —_ 2 3 .
of the interactions is to renormalize the mdsbange the (1/2IN%)Z5-18°Gaa(t, 1) D(t,1), Ef=—(1/N)e°A(t)K(t,t;t).
frequency of the oscillator. So consider the toy problem

. N
i
* dw Gan(t,1")=Gap(t,t") + = E jdtlf dt;Gac(t,ty)
G(t,t):—f > ~ c,d=1 JC C
27 ) o [w?+mG+ (€°/N) ms]

L X Zeq(ty,t2) Gan(ta,t"). (5.3

2 —-1/2
2, e 5
2 mo ml y

N

We then have to modify appropriately Eq2.13, (2.14),

where we have kept only the’/N correction to the mass %;2 and(3.19 in order to guarantee energy conservation

shift of the ¢ oscillator. prmf is positive since we have —~1pase mogdifications only change the results at ords? 1/
assumed the interaction is repulsive. Again reexpan@ng ¢ are obviously very important because of the early break-
we get down of the naive methods. However, in this paper we did
- not want to go beyond what one obta_\ins direct_ly u_sing the
G(t,t)= i 1— ermy two direct approaches_to theNLiexpansion and will discuss
' 2m, 2N moz ' the resummed theory in a separate paper.
This problem with expectation values becoming un-

so we see that ifn? is large enough, then this quantity which Pounded is more acute in tHémethod. In Fig. 9 we show
at energy is conserved. However, in Figs. 10 and 11 we

is positive definite can appear negative when reexpanded ﬁtﬂ] L
1/,\5) PP g P show the above phenomena that several of the individual

o(;ontributions to the energy become negative if we keep

This problem can also be a source of secular terms. F
Jgrms only up to M.

example, consider the fact that the frequency of the classic
A oscillator is shifted by M corrections so that one has

w
1y

L (5.9

A(t)=A(0)cos( wot +

If, however, the actual N expansion for the oscillator in-
stead gave the first two terms in the Taylor series we would
get

A(t)=A(0) : (5.2

wlt )
COS(th)— W S|n(wot)

Using this expression would lead to blow up Aft) in a
time scaleN/w;. This type of behavior is found in our nu-
merical simulations. One way of solving the secular problem F|G. 11. Various components of the energy, as computed in the
as well as guaranteeing the positivity of expectation values ig method, as a function of time. The notations are similar to those
by appropriately summing the series. That is we replace Epf Fig. 10, with the addition that now we havé,,(t,t")
(3.17 by =Goaal(t,t) + Gaa(t,t’)/N, andG,,(t,t') becomeG,,(t,1').
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The appearance of secular terms in a perturbation expamerforming a 1IN expansion, one using the generating func-
sion is quite well knowrj10]. As an example for the classi- tional Z and one the effective actioRi, we found that the

cal anharmonic oscillator direct perturbation theory in O from Z gave results that
were bounded for longer times. However, having both meth-
d?y ods, allowed us to determine wherN&/corrections became
F+y+gy3=0, important. Thus having both methods will be quite useful in
simulating field theories, when there will be no exact solu-
if we assume a solution of the form tion to compare with. Solving the secular problem we found

here will be discussed elsewhere.

y=Yo(t) +ayi(t),
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where theW¥ ,(¢,A) are the solutions of the time indepen-
dent Schrdinger equation. We can do a larjeexpansion APPENDIX A: EQUATION FOR D(T,T’)

for the eigenfunctions and eigenvalues separately. We then
find thatW,,(#,A) has a Taylor series in {N andE,, has a
Taylor series in M. As long as we do not reexpand the
exponentials having the time dependencee., keep
exp{—i[E%t+ (1/N) ELt---]}) then there are no secular D(tvt,):DO(t:tl)_fdtlfdtZDO(tvtl)H(tl:tZ)D(tZ’t,)-
terms. However if we reexpand the exponentials and keep ¢ ¢ (A1)
only terms of order M, secular terms proportional to pow-
ers oft will appear. We believe that this might very well be e first note that the causal Green's functions are symmetric
pccurring in the larg& expansion based on the CTP formal- j5 the sense thatd, (t,t')=A-(t',t), and obey the addi-
ISm. tional condition

In this appendix we discuss how we approach the problem
of finding the solution of Eq(3.6):

VI. CONCLUSIONS Ao c(tt)=—AL _(t,t")=A_ (t",1). (A2

We have presented two methods for calculating tié¢ 1/ The last equation gives
corrections to the time evolution of a systemM# 1 oscil-

lators using Schwinger's CTP formalism. These two meth- Re( A (t,t")}=—Re{ A_(t,t")}, (A3)
ods differ by terms of order W? so that the divergence of
results is an indication of the time during which keeping Im{A-(t,t")}=—Im{A_(t,t")} (A4)

terms up to order N is accurate. This was verified by com-
paring with direct numerical simulation of the ScHioger  Of
equation for the casd=1. We found that foN= 1, keeping

the 1N corrections allows us to extend the range of time for A () — AZ(Lt) = 2Re[ A= (t,t")}, (A5)
which the expectations values track the exact answer signifi- .
cantly. This was most noticable for the the quantity which Ao () + AZ(t,t) =2Im{ A (t,t")}. (A6)

describes the width of theé wave function.

In performing these numerical simulations, we foundWlth these equations in mind, the causal Green’s fumction
some shortcomings in the N/expansion. It does not guar- A(t,t") is fully determined by the component.(t,t’)
antee the boundedness of various expectation values, evenRe[A=(t,t")}+ilm{A-(t,t")}, and we need to evaluate
though energy is exactly conserved. As a result of this, wéhe function only fort’ <t.
expect that we are seeing secular behavior in our expansion Directing our attention now to the calculation B{t,t"),
which needs to be cured. One way of curing this problem idt is convenient to introduce
to instead look at a N expansion for the eigenfunctions and
eigenvalues of the Schiinger equation instead of working , :j " " "
with the CTP formalism. Another is to resum the Green'’s QL) cdt Do(t, O™ 1). (A7)
function for the¢ oscillator and modify the equations for the
other variables appropriately so that energy is conserveddote that even though the functiomyy(t,t’) and I1(t,t")
These two ideas will be discussed in a future work. satisfy the properties of the Green’s functions listed above,

In conclusion, by comparing our two direct approaches tahe new functionQ(t,t') satisfies only some: i.e.,
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Q>’<(t,t’)=—Qi'>(t,t/)¢Q<’>(t',t). (A8)

This does not prevent the Green’s functibr{t,t’) to re-

5411

us to solve first Eq(A13) for thereal part of D (t,t’), and
then use this result to derive timaginarypart of D~ (t,t’)
from Eq. (A14).

cover all the desired properties after one more CTP integra-

tion. In practice, this translates into the fact that we have to

actually calculate the functio®- (t,t") for all momentst

APPENDIX B: NUMERICAL METHODS

andt’, whereas the other causal functions need only some Our numerical technique involves the expansion of all the

half of the data.
Then, Eq.(Al) becomes

D(t,t")=Dg(t,t")— fcdt”Q(t,t”)D(t”,t’) (A9)

or

t
D>(t,t')=Do>(t,t')—fodt"[Q>(t,t”)

—Q<(t,t”>]D<t”,t’>+J;,d"’Q(t,t’v

X[D~(t",t")=D(t",t")], (A10)

t
D<(t!t,): D0<(t!t,)_ fodt,,[Q>(t!t,,)
—Q(t,t")D(t",t")]

+Jt,dt”Q<(t,t”)[D>(t”,t’)—D<(t”,t’)].
0

(A11)

Using the propertiesA2)—(A6), we see that Eq(All) is
redundant, and we can write EGA10) as

D>(t,t’)=DO>(t,t’)—2ftdt”Re{Q>(t,t”)}D>(t”,t’)
0

+2ft,dt”Q>(t,t”)Re{D>(t”,t')}. (A12)
0

We separate now theeal and theimaginary part of Eq.

(A12) and obtain the system of integral equations

t
Re[D.- (1)} =RelD- (1)} -2 | dUR(Q- (1)

><Re{D>(t",t’)}+2JI dt”
0

XRe[Q=(1,t")}ReD - (t",t")},  (AL3)

t
Im{D. (1)} =Im(Dg)(t.1)) -2 [ arRelQ- (1)}

><Im{D>(t”,t’)}+2J;,dt”lm{Q>(t,t”)}

X Re{D-(t",t')}. (A14)

The above system of equations has to be solved 'fert.

Notice that the two equations are independent, which allows

unknown functiond (t), g(t), A(t), D(t,t") in a Chebyshev
polynomial basis. We follow a method developed by El-
gendy[11] and have applied it to combined differential and
integrals equations of the type we have here. We use the
same Chebyshev expansion methods for solving the Green’s
function equation foD(t,t"), in the CTP formalism, as ex-
plained in Appendix A. In addition, we divide the time up
into small blocks, moving along block by block.
Chebyshev polynomials of the first kind of degneare

defined by

T,(X)=cogn arccos). (B1
We define the grid in the intervdl—1,1] by choosing the
positions

~ jm

Xj=cos—,j=0,1,..,N.

N (B2)

Then, the Chebyshev polynomials satisfy a discrete orthogo-
nality relation of the form

N
I(ZO "TXOT(X) =65, (B3)

where the constantg; are

N
Bi=1 2’ (B4)
N, i=0N.

An arbitrary functionf(x) can be approximated in the inter-
val [—1,1] by the formula

N

fo0)=2 "aT(x).

j=0

(BS)

We denotef,=f(X,). The coefficientsa; are defined by

N

2
a=g 2 "f0T(K0, j=0..N.  (B6)

and the summation symbol with double primes denotes a
sum with first and last terms halved. As shown by El-gendy,
we never have to actually compute these expansion coeffi-
cientsa; . Instead, we find; directly. The advantage of the
Chebyshev expansion method is that E85), which is an
expansion in dinite set, is exact fox=%;, j=0,...N.

We can approximate the calculation of the indefinite inte-
gral [* ,f(t)dt by

N
I(x)=f f(ydt=2, "a; [ T;(vdt, (B7)
-1 =0 -1
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where the integral* ; T;(t)dt is given by of the first kind of degreg¢. By inserting the expression of
o thea; coefficients, and evaluating the derivativexatX, we
Tir1(¥) T (=) obtain a matrix equation:

I if j=1,
2(j+1) 2(j-1)  j°-1 N
s — — "R[-1,1
HT,00-1]  if j=1, Di=D()=2, "Bl ). (B12)
Ti(x)+1 if j=0. (B8 HereBI-1U is given by
When the variablex takes the values of the grid poini82), 5 N
we can write Eq(B7) in a matrix format, such as gi[j— 1,1]:N kgo ”T'k(7i)Tk(3zj)- (B13)
N
Ii=I(?i)=;]" B, Mt (B9  Note that the approximation®9) and (B12) are exactfor
X=Xj, j=0,... N. o

where BI"1Y is a square matrix of orderN(+1), whose Finally, the approximationéB5), (B9), (B12) can be gen-
eIementsBi[j’l'l] are equal to eralized by allowing the range of the approximation to be

between two arbitrary limita andb, instead of just-1 to 1.
1 - 1 - - This is done performing the change of variables:
WTN(Xi)TN—l(ij)_i_ mTN+1(Xi)TN(Xj)

x—(1/2)(b+a)

N2t o Y= TR (- (B19
> S TR Til(X) — 5 To(X) Ta(X)) _
k=0kz1) N k“—1 2N :

As a consequence, the matrid@sand B become

1 - 1
+mTN—1(Xi) TN—2&])_§TN(Xj) B[a,b]:b;aB[—l,l]' (B15
N—-2
b3 TG a )~ Ter®)] (B10)
OB et Bev=pZ B 10

_a '

In a similar manner, the derivativaf(x)/dx is approximated
by and the Chebyshev polynomials in E@5) become now
; \ functions of the variablg. The matriceg f], [ % ,f(t)dt],
", and[ df(x)/dx] will give then the value of the functiof(x),
D(x)= &f(x):go aT"j(x), (B1Y) s inte(grzal and dgerivative, at the coordinat&;szf;k()b
—a)/2+(b+a)/2, wherey, are the N+1) coordinates
whereT’;(x) is the derivative of the Chebyshev polynomial given by Eq.(B2).
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