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Ising description of the transition region in SU(3) gauge theory at finite temperature
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We attempt the numerical construction of an effective action in three dimensions for Ising spins that
represent the Wilson lines in the four-dimensional($lyauge theory at finite temperature. For each configu-
ration of the gauge theory, each spin is determined by averaging the Wilson lines over a small neighborhood
and then projecting the average tdl according to whether the neighborhood is ordered or disordered. The
effective Ising action, determined via the lattice Schwinger-Dyson equations, containdveweespin and odd
(one- and three-spjrterms with short range. We find that the truncation to Ising degrees of freedom produces
an effective action which is discontinuous across the gauge theory’s phase transition. This discontinuity may
disappear if the effective action is made more elabof&8556-282(97)07519-X]

PACS numbgs): 11.15.Ha, 05.70.Fh, 11.10.Wx

I. INTRODUCTION curately the values op on either side off*. Hence there
must be more than one odd term in the Ising action, in order
In studying the fluctuations of a complex statistical fieldto move the transition away fromn=0 and thus to destroy
theory, it is frequently useful to define simple, effective de-the Z(2) symmetry about the transition.
grees of freedom. A wise choice of these degrees of freedom For the SU3) confinement transition, we seek to charac-
allows one to focus on specific physics. We are interested iterize a neighborhood of a siteas confining or nonconfin-
the first-order phase transition of the &V gauge theory ing. We naturally settle on the Wilson ling, as the quantity
[1,2], specifically in surface phenomena such as the surfac&hich does this. As an order parameter of (&) symme-
tension between the phadel4] and the stability of bubbles try of the Euclidean theoryl, is discontinuous at the transi-
[5]. Since the transition is first order, all correlation lengthstion, with (L)=0 in the confining phase below the transition
stay finite on either side. This means that there should be nand(L)+0 in the plasma phase above. We use the modulus
delicate issues related to renormalization-group fixed pointsf L ,, suitably smeared, to assign a valuestp= + 1. (This
and the symmetries that characterize them. We are thus leginearing reflects the fact that confinement is a property of a
to degrees of freedom which simply specify whether a givemeighborhood, not of a pointRunning a Monte Carlo simu-
region is in the confined or unconfined phase. Assigning valtation of the gauge theory, we generate configurationisof
ues of+ 1 according to the two possibilities, we are led to anwhich translate into configurations of,. We then use the

effective theory of Ising spins. Ising model’'s Schwinger-Dyson equatidis8] to determine
This exercise is familiar from study of the liquid-gas tran- an approximation to the effective Ising actiGgq o].
sition [6]. One assigns values to a local Ising spiraccord- This definition ofo as a function oL integrates over the

ing to the local density of the fluid. At the first-order phase 7(3) dynamics of the Euclidean theory. Since we are inter-
boundaryT=T* the density is discontinuous, and this is ested in understanding bubbles of the confining phase in the
reflected in a discontinuity in the magnetizatiom) of the  plasma and vice versa, distinguishing among the three or-
effective Ising theory. The simplest Ising action has only onejered phases is unnecessary. Previous \@rkas taken the
term that is odd in the spins, namely, the magnetic field ternppposite approach, projecting the complex Wilson line onto
ho. The first-order transition occurs perforcetat0, and  3.state Potts spins=exp(2mni/3). This makes it harder to
one identifies the liquid-gas phase boundary with the segmentify bubbles of the disordered phase because they will
ment of theT axis between the origin and the Ising critical only be visible when calculating averagesobver sizable
point T§"9. As one slides along the phase boundary towardsieighborhoods. Since our spins depend on the magnitude
the liquid-gas critical point, the discontinuity jindecreases of L, they show directly those places whété is small and
until it reaches zero at the critical point; correspondingly, thehence disordered.
discontinuity in{o’) vanishes as one approachgg". SinceZ(3) domain structure plays a role in the confine-
The simplest Ising model, however, is incapable of de-ment phase transition, one might be concerned that domain
scribing an arbitrary first-order phase transition. An easy waywvalls should somehow be represented in the effective action.
to see this is to note that it&(2) symmetry implies that We note that calculatior|gl] have shown that, near the tran-
(0)h—o+=—{0o)_o-- Since the correspondence between sition, the disordered phase wets the ordered phases, and
andp depends on an arbitrary assignment in the first placemoreover that two ordered domains with differ&B) ori-
there is no reason to suppose that this symmetry reflects aentations will sandwich a disordered domain between them.
We note also that the physics of fluctuations among the three
ordered phases will influence the Ising couplings because the
*On leave from the Department of Physics and Astronomy, Uni-effective action comes from an integration oadlrother de-
versity of British Columbia, Vancouver, BC, Canada V6T 1Z1. grees of freedom in the gauge theory. Nevertheless,
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N AR RRREN R RN RN RN R TABLE |. OperatorsO® appearing in the truncated effective
R o —] Ising action.
o + B Single spin O'=3 o,
r T . Nearest neighbor 0?=3.3,0,00:
5 i_ T N Next-nearest neighbor O3=EHEM<VU,]U”+;¢;
L ’ | I L I b I ‘ | |: 3-Spin bent O4:EnEH<VO-nUnt;LUni;
j T ‘ L | LI [ T l:j T | T T ‘ T I T l__ 3_sp|n Stralght OSZEnE#UnUn_;LO-n.{.;
2 L B ~ 3" neighbor OP=3 0000 xey+s
- + . 4" neighbor O'=3.% 000042,
01— -1 : —
o -t i ] with U4 e SU(3). Theorder parameter for the confinement
e e e e b 1 phase transition is the Wilson line, defined on a sitef a
5 ;' | |_——_ | ! |7— three-dimensional lattice via
: i z N
C i 1 _ 0
of T ,‘ i Lo=Tr T U0,y )
- s 4 ] Mo=1
R | | | = | | | - As discussed in the Introduction, we will uketo define
| | Lt 1 - L1 Ll 1 0

the effective Ising spingr which will label a neighborhood
o 2 == 0 = on the lattice as confining or nonconfining. A first attempt
might be to define

|
V]

FIG. 1. Distribution of the Wilson lineL,, averaged over

mXmxXm cubes, in the complex plane. Lefg=5.0 (disordered —1, |L,|<r
phasg. Right: 8=5.2 (ordered phageTop to bottomm=1 (single o= o e (3
site), m=2, m=3. The lattice size is & 8°. 1, Lo >,

. : - ; ; The problem with this is thdt , fluctuates violently from site
integrating thus over th&(3) fluctuations may impair the . ) no- -
ability of the Ising theory to represent the phase transitiorf S'te- Even deep n the conﬂmng phase, whidrg=0, Ln

Is by no means confined to a region around zero, and in fact

correctly. Our effective Ising action turns out to be discon- ils th i q ilable to it in th | lds
tinuous at the phase transition. Although this might be due t r's the entire wedge available to It in the compiex piasee

the small number of terms we permit in the action, it might ig. 1. o as defined by Eq(3) thus does not offer a good

stem from the use of Ising variables itself. We discuss thigeflnltlon of a Fioma_un in the confmm_g_p_hase.
further below. The fluctuations irL,, are reduced if it is averaged over a

small volume. We defin&!™ to be the average df over
the mxmxm block surrounding n. A glance at Fig. 1
Il. DEFINING THE EFFECTIVE ISING THEORY shows that 8! discriminates well, on a local basis, between
domains that resemble the two respective phasgg!, on
the other hand, fluctuates too little about the volume average
of L, so that, with a reasonable value chosenrfor the o
spins would lose all information about fluctuations and re-
main entirely ordered witl=+ 1. We thus choose!®! for
insertion in Eq.(3) to calculate thes configurations; as
shown in Fig. 2, we set?=0.8.

With the definition ofo in hand, we turn to the determi-
nation of the effective Ising action. In principle the action

We simulate the S(3) gauge theory at finite temperature
by using, as usual, a Euclidean latticeMfx Ng sites, with
the physical temperature given By=(N,a) ! in terms of
the lattice spacin@. All results presented in this paper were
obtained from lattices wittN,=2. The gauge theory is gov-
erned by the Wilson plaquette action

_ v out o et A . .
S\N_ﬂ; TVU#UnWUann ' @ has an infinite number of terms; we truncate it to a combi-
u<v nation of a magnetic field term and two- and three-spin terms
with range 2,
2 : [ rTTT | T TT T l:f T | T ! 1Tt | T l:
r 7::7 _: Seff[a-]: E Baoav (4)
0 T _ _ _
r T ] where the seven operataf¥* are listed in Table I. The two-
of + A spin operator€)? and 0%, as well as the three-spin operator
N T N T O R O*, couple spins within distancg2; the remaining operators

2 0 2 -2 o 2 reach out to distance 2.

FIG. 2. L, distributions form=2, as in Fig. 1, with circle
|L,/2=r2=0.8 superimposed. 1f m is even them is a site of the dual lattice.
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TABLE Il. Couplings 8, for the (tentative effective Ising ac- TABLE IV. Couplings B, for the effective Ising action after
tion on a 18 lattice, for the ordered and disordered phases adecimation to an 8lattice, for several gauge couplings surrounding

B=5.091. the phase transition.
a Ordered Disordered a pB=508 pB=5091 B=5.091 B=5.1 B=5.2
1 0.0544) 013516 (disordered (ordered
2 —0.4581) —0.3908) 1 0.146) 0.025 —0.0292) -—0.0542) -—0.263)
3 —0.05231) —0.0262) 2 —-0.212 —-0.242 -0.1321) -0.1311) -0.121)
4 —0.00566) 0.0211) 3 —0.0433) —-0.0503) —0.0231) -—0.0211) -—0.0253)
5 0.00639) 0.0222) 4 -0.011¥2) -0.0152) 0.00434) 0.00284) —0.001416)
6 0.0441) 0.0454) 5 0.0035 -—0.0017) —0.0032) —0.00039) —0.0044)
7 0.1521) 0.1323) 6 —0.0023) —0.0024) -—0.0081) -—0.0051) -—0.0062)
7 —0.0032) 0.0037) 0.0017) 0.0081) 0.0043)

A Schwinger-Dyson equation of the Ising theory is de-
rived by flipping a spino, in the sum defining the expecta-
tion value of some operator. For the operators in Table I, we

IIl. RESULTS AND DISCUSSION

have

(Of)=—(Onexn(25y)), 6]
where we have define®? to be those terms i0* that
containo,,, and

=2 BOS (6)

3

is the part of the action that contailag,. These are seven
equations for determining the seven unknowhs. After
generating an ensemble efconfigurations via Monte Carlo
simulation of the gauge theory, we determig iteratively
as solutions of Eq(5).

We simulated the S(3) gauge theory on a lattice of vol-
ume 2x16°. The confinement phase transition is in the
neighborhood 10] of 3=5.09, and we settled on the value
B=5.091 after seeing no tunneling between the coexisting
phases in moderately long runs at that coupling.
Straightforward application of the method described
above gives an Ising action for a three-dimensional lattice of
volume 16. We show the couplings for this action, derived
from ordered and disordered runs@t 5.091, in Table Il. In
both cases, the action contains couplings with ragigeand
2 (0% and ©7, respectively which are as strong as the
shorter-ranged two-spin coupling®t and©®®) and compete
with them in sigr? This raises the suspicion that a longer-
ranged Ising action is needed to reproduce the Ising configu-
rations correctly, and that the range-2 action is too crude a
truncation. This suspicion is confirmed by simulating di-

As a consistency check, one may use the vacuum equatidgctly the Ising model with the couplings just derived. As

1=(exp(25,)) @)

or the Schwinger-Dyson equation for any other operator

the theory. A more satisfying check, however, is to run a,
direct Monte Carlo simulation of the Ising model with action

(4) to see if the expectation values Gf as computed in the
gauge theory are reproduced. This was the procedure

ensemble.

TABLE Ill. Averages ofO“ in ordered and disordered phases of
the gauge theory @8=5.091, compared with results of Ising Monte
Carlo calculation for the couplings listed in Table Il. Averages are

normalized to 1.

seen in Table Ill, comparison af0*) with the averages
from the gauge configurations shows poor agreerhent.
This problem was encountered by Deckefral. [11] in a

incalculation of the effective action for tH#(2) gauge theory.

A solution, noted i8], is to perform a block-spin transfor-
ation on the spins, so that the effective action has twice the
range. We do this simply by decimating the Ising spins, al-
ready defined via smeared averages, to &ns@blattice.

followed. We calculated error estimates by subdividing th\(,;@OIVIng the Schwinger-Dyson equations with the decimated

configurations gives the couplings shown in Table IV. The
longer-ranged two-spin coupling8g and 3;, are negligible,
as is the straight three-spin coupligg. Moreover, compari-
son of an Ising Monte Carlo simulation with the gauge
theory (see Table ¥ now gives satisfactory agreement.

The effective Ising couplings shown in Table IV vary

a Ordered phase Disordered phase 5 o )

Gauge theory  Ising MC  Gauge theory  Ising MC Note that the magnetic field ls= — B4, and thamnegativevalues

for B,, B3, Bs, and B, indicate ferromagnetic couplings.

1 0.1887) —0.8492) —0.8711) —0.6966) 3The violent disagreement for the ordered phase, including even
2 0.50Q1) 0.8122) 0.8311) 0.7084) the sign of the magnetization, suggests that the gauge theory’s op-
3 0.3531) 0.7752) 0.8041) 0.6265) erator averages are to be sought in a metastable phase of the Ising
4 0.1376) —0.7383) -0.7791) —0.5956) action. We did not succeed, however, in reaching this phase with
5 0.1416) —0.7422) —0.7811) —0.6046) our Monte Carlo calculation. In the disordered phase, the positive
6 0.2691) 0.7563) 0.7891) 0.5836) magnetic fieldh=— 3, prefers a positive magnetization, but the
7 0.2062) 0.7433) 0.781(1) 0.5527) positive three-spin coupling8, and B85 compete with it and turn

the magnetization negative.
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TABLE V. Comparison of operator averagé®®) in ordered  continuities are impossible in an effective action which pos-
and disordered phases of the gauge theorg-a6.091, compared sesses finite range in the infinite-volume limit. Our effective

with the effective Ising actionS.,q and Sy simulated directly. action, however, is approximate in that it contains a small

number of couplings. Adding longer-ranged and multispin

a Gauge theory S Shot Gauge theory  terms to the action will bring consistency with the theorem
(ordered (6)>0  (0)<0  (disorderel  of van Enteret al.in one of two ways: Either the couplings

0.1887) 0.1542) 0.98661) —0.87991) —0.8781) will pecome continuou$15], or the eff_ective qct.io(rs) will
0.2062) 0.2031) 0.97391) 0.78492) 0.7822) acquire too many no_n—.IocaI terms in the |n_f|n|t(_a-volume
0.1232) 0.1191) 0.97341) 0.77722) 0.7742) I!m|t, meaning the statistical measure is npn—GlbbS|an. In the
00603  0.0491) 0.96151) —0.70082) —0.6982) first case, we will have ar_1_effe_ctwe action well suited to

' describing the phase transition; in the second case, the con-
0.0633)  0.0531) 0.96141) —0.69942) -—0.6972) clusion will be that an Ising description of the phase transi-
0.0922)  0.081) 0.97331)  0.77511) 0.7722) tion is impossible. Deciding between these alternatives re-
0.0802)  0.0731) 0.97331) 0.77432) 0.7722) quires great numerical precision.

The discontinuity of the effective action is sensitive to the
smoothly asg is varied on either side of the transition, but definition of the effective degrees of freedom, just as singu-
they are discontinuous across the transition34t5.091 we larities in th_e renormalllzatlon group may bg created or el!ml—
have, thentwo actions S.,q andS,;, which are the limits of nated by dlffe(er]t choices .of 'the block-spin transformatlon.
S.i ] from the ordered and disordered sides of the transi®t More sophisticated definition oé,, perhaps using a
tion. Curiously, we find thaS, ., is at a point of phase coex- <adanoff kemel to associate it with the smeated may
istence, that is, at a phase transition between phases wilstore continuity, even without marked increase in the num-

(0)<0 and{c)>0. We show in Table V the expectation ber of interaction terms. Note also that a reduction of the
values of the seven operato8® for S,,q and for both ~9auge theory t&(3) spins in[9] resulted in an action that is

phases 0fS,,. For Sy, the phase witha)<0 describes continuous across the phase transition. Perhaps a more com-
ot- ots

well the expectation values in the gauge theory on the diso!€X €ffective spin, combining Ising with(3), will yield an
dered side of its transition. The other phase S, of effgct_lve action _that offers bqth continuity and a local de-
course, does not: neither does it describe the ordered phaSg'iPtion of confinement physics.

of the gauge theory. The actid,, thus “knows” that it
describes a phase transition, but it is capable of describing
correctly only one of the phaseS,y describes the ordered We thank Doug Toussaint for giving us a copy of the
phase well, and shows no phase coexistence. MILC Collaboration’s Monte Carlo code for the $8) lat-

The discontinuity in the effective action is an example oftice gauge theory, a program employing overrelaxation with
the singularities that can result from renormalization groupthe Kennedy-Pendleton heat bath algorithm. We are indebted
transformations. Griffiths and Peardd2] noted that a to Professor Kurt Binder for a very valuable conversation, to
blocked action might be a singular function of the unblockedProfessor Jechiel Lichtenstadt for a discussion of error analy-
couplings even though the blocking transformation is localsis, and to the Weizmann Institute of Science for its continu-
Later work[13] found discontinuities in the blocked action ing hospitality. This work was supported by the Israel Sci-
associated with first-order phase transitions in the originaénce Foundation under Grant No. 255/96-1. Further support
action. It was conjectured that there may be differentwas provided by the Basic Research Fund of Tel Aviv Uni-
renormalization-group flows resulting from the various meta-versity. N.W. wishes to thank the National Sciences and En-
stable phases at a fixed coupling. In view of theorems provegineering Research Council of Canada and the Israel Science
by van Enter, Fernadez, and Sokdll4], however, such dis- Foundation for their financial support.
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