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We attempt the numerical construction of an effective action in three dimensions for Ising spins that
represent the Wilson lines in the four-dimensional SU~3! gauge theory at finite temperature. For each configu-
ration of the gauge theory, each spin is determined by averaging the Wilson lines over a small neighborhood
and then projecting the average to61 according to whether the neighborhood is ordered or disordered. The
effective Ising action, determined via the lattice Schwinger-Dyson equations, contains even~two-spin! and odd
~one- and three-spin! terms with short range. We find that the truncation to Ising degrees of freedom produces
an effective action which is discontinuous across the gauge theory’s phase transition. This discontinuity may
disappear if the effective action is made more elaborate.@S0556-2821~97!07519-X#

PACS number~s!: 11.15.Ha, 05.70.Fh, 11.10.Wx

I. INTRODUCTION

In studying the fluctuations of a complex statistical field
theory, it is frequently useful to define simple, effective de-
grees of freedom. A wise choice of these degrees of freedom
allows one to focus on specific physics. We are interested in
the first-order phase transition of the SU~3! gauge theory
@1,2#, specifically in surface phenomena such as the surface
tension between the phases@3,4# and the stability of bubbles
@5#. Since the transition is first order, all correlation lengths
stay finite on either side. This means that there should be no
delicate issues related to renormalization-group fixed points
and the symmetries that characterize them. We are thus led
to degrees of freedom which simply specify whether a given
region is in the confined or unconfined phase. Assigning val-
ues of61 according to the two possibilities, we are led to an
effective theory of Ising spins.

This exercise is familiar from study of the liquid-gas tran-
sition @6#. One assigns values to a local Ising spins accord-
ing to the local densityr of the fluid. At the first-order phase
boundaryT5T* the density is discontinuous, and this is
reflected in a discontinuity in the magnetization^s& of the
effective Ising theory. The simplest Ising action has only one
term that is odd in the spins, namely, the magnetic field term
hs. The first-order transition occurs perforce ath50, and
one identifies the liquid-gas phase boundary with the seg-
ment of theT axis between the origin and the Ising critical
point Tcr

Ising. As one slides along the phase boundary towards
the liquid-gas critical point, the discontinuity inr decreases
until it reaches zero at the critical point; correspondingly, the
discontinuity in^s& vanishes as one approachesTcr

Ising.
The simplest Ising model, however, is incapable of de-

scribing an arbitrary first-order phase transition. An easy way
to see this is to note that itsZ(2) symmetry implies that
^s&h→0152^s&h→02. Since the correspondence betweens
andr depends on an arbitrary assignment in the first place,
there is no reason to suppose that this symmetry reflects ac-

curately the values ofr on either side ofT* . Hence there
must be more than one odd term in the Ising action, in order
to move the transition away fromh50 and thus to destroy
the Z(2) symmetry about the transition.

For the SU~3! confinement transition, we seek to charac-
terize a neighborhood of a siten as confining or nonconfin-
ing. We naturally settle on the Wilson lineLn as the quantity
which does this. As an order parameter of theZ(3) symme-
try of the Euclidean theory,L is discontinuous at the transi-
tion, with ^L&50 in the confining phase below the transition
and^L&Þ0 in the plasma phase above. We use the modulus
of Ln , suitably smeared, to assign a value tosn561. ~This
smearing reflects the fact that confinement is a property of a
neighborhood, not of a point.! Running a Monte Carlo simu-
lation of the gauge theory, we generate configurations ofLn
which translate into configurations ofsn . We then use the
Ising model’s Schwinger-Dyson equations@7,8# to determine
an approximation to the effective Ising actionSeff@s#.

This definition ofs as a function ofL integrates over the
Z(3) dynamics of the Euclidean theory. Since we are inter-
ested in understanding bubbles of the confining phase in the
plasma and vice versa, distinguishing among the three or-
dered phases is unnecessary. Previous work@9# has taken the
opposite approach, projecting the complex Wilson line onto
3-state Potts spinst5exp(2pni/3). This makes it harder to
identify bubbles of the disordered phase because they will
only be visible when calculating averages oft over sizable
neighborhoods. Since ours spins depend on the magnitude
of L, they show directly those places whereuLu is small and
hence disordered.

SinceZ(3) domain structure plays a role in the confine-
ment phase transition, one might be concerned that domain
walls should somehow be represented in the effective action.
We note that calculations@4# have shown that, near the tran-
sition, the disordered phase wets the ordered phases, and
moreover that two ordered domains with differentZ(3) ori-
entations will sandwich a disordered domain between them.
We note also that the physics of fluctuations among the three
ordered phases will influence the Ising couplings because the
effective action comes from an integration overall other de-
grees of freedom in the gauge theory. Nevertheless,
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integrating thus over theZ(3) fluctuations may impair the
ability of the Ising theory to represent the phase transition
correctly. Our effective Ising action turns out to be discon-
tinuous at the phase transition. Although this might be due to
the small number of terms we permit in the action, it might
stem from the use of Ising variables itself. We discuss this
further below.

II. DEFINING THE EFFECTIVE ISING THEORY

We simulate the SU~3! gauge theory at finite temperature
by using, as usual, a Euclidean lattice ofNt3Ns

3 sites, with
the physical temperature given byT5(Nta)21 in terms of
the lattice spacinga. All results presented in this paper were
obtained from lattices withNt52. The gauge theory is gov-
erned by the Wilson plaquette action

SW5b (
n

m,n

TrUn
mUn1m̂

n
Un1 n̂

m†
Un

n† , ~1!

with Un
mPSU(3). Theorder parameter for the confinement

phase transition is the Wilson line, defined on a siten of a
three-dimensional lattice via

Ln5 Tr )
n051

Nt

U ~n,n0!
0 . ~2!

As discussed in the Introduction, we will useL to define
the effective Ising spinss which will label a neighborhood
on the lattice as confining or nonconfining. A first attempt
might be to define

sn5H 21, uLnu,r s ,

1, uLnu.r s .
~3!

The problem with this is thatLn fluctuates violently from site
to site. Even deep in the confining phase, where^L&50, Ln
is by no means confined to a region around zero, and in fact
fills the entire wedge available to it in the complex plane~see
Fig. 1!. s as defined by Eq.~3! thus does not offer a good
definition of a domain in the confining phase.

The fluctuations inLn are reduced if it is averaged over a

small volume. We defineLn
[m3] to be the average ofL over

the m3m3m block surrounding1 n. A glance at Fig. 1
shows thatLn

[8] discriminates well, on a local basis, between
domains that resemble the two respective phases.Ln

[27] , on
the other hand, fluctuates too little about the volume average
of L, so that, with a reasonable value chosen forr s , the s
spins would lose all information about fluctuations and re-
main entirely ordered withs561. We thus chooseLn

[8] for
insertion in Eq. ~3! to calculate thes configurations; as
shown in Fig. 2, we setr s

250.8.
With the definition ofs in hand, we turn to the determi-

nation of the effective Ising action. In principle the action
has an infinite number of terms; we truncate it to a combi-
nation of a magnetic field term and two- and three-spin terms
with range 2,

Seff@s#5(
a

baOa, ~4!

where the seven operatorsOa are listed in Table I. The two-
spin operatorsO2 andO3, as well as the three-spin operator
O4, couple spins within distanceA2; the remaining operators
reach out to distance 2.

1If m is even thenn is a site of the dual lattice.

FIG. 1. Distribution of the Wilson lineLn , averaged over
m3m3m cubes, in the complex plane. Left:b55.0 ~disordered
phase!. Right:b55.2 ~ordered phase!. Top to bottom:m51 ~single
site!, m52, m53. The lattice size is 2383.

FIG. 2. Ln distributions for m52, as in Fig. 1, with circle
uLnu25r s

250.8 superimposed.

TABLE I. OperatorsOa appearing in the truncated effective
Ising action.

Single spin O15(nsn

Nearest neighbor O25(n(msnsn1m̂

Next-nearest neighbor O35(n(m,nsnsn1m̂6 n̂

3-spin bent O45(n(m,nsnsn6m̂sn6 n̂

3-spin straight O55(n(msnsn2m̂sn1m̂

3rd neighbor O65(nsnsn1 x̂6y6 ẑ

4th neighbor O75(n(msnsn12m̂
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A Schwinger-Dyson equation of the Ising theory is de-
rived by flipping a spinsn in the sum defining the expecta-
tion value of some operator. For the operators in Table I, we
have

^Õn
a&52^Õn

aexp~2S̃n!&, ~5!

where we have definedÕn
a to be those terms inOa that

containsn , and

S̃n5(
a

baÕn
a ~6!

is the part of the action that containssn . These are seven
equations for determining the seven unknownsba . After
generating an ensemble ofs configurations via Monte Carlo
simulation of the gauge theory, we determineba iteratively
as solutions of Eq.~5!.

As a consistency check, one may use the vacuum equation

15^exp~2S̃n!& ~7!

or the Schwinger-Dyson equation for any other operator in
the theory. A more satisfying check, however, is to run a
direct Monte Carlo simulation of the Ising model with action
~4! to see if the expectation values ofOa as computed in the
gauge theory are reproduced. This was the procedure we
followed. We calculated error estimates by subdividing the
ensemble.

III. RESULTS AND DISCUSSION

We simulated the SU~3! gauge theory on a lattice of vol-
ume 23163. The confinement phase transition is in the
neighborhood@10# of b55.09, and we settled on the value
b55.091 after seeing no tunneling between the coexisting
phases in moderately long runs at that coupling.

Straightforward application of the method described
above gives an Ising action for a three-dimensional lattice of
volume 163. We show the couplings for this action, derived
from ordered and disordered runs atb55.091, in Table II. In
both cases, the action contains couplings with rangeA3 and
2 (O6 and O7, respectively! which are as strong as the
shorter-ranged two-spin couplings (O2 andO3) and compete
with them in sign.2 This raises the suspicion that a longer-
ranged Ising action is needed to reproduce the Ising configu-
rations correctly, and that the range-2 action is too crude a
truncation. This suspicion is confirmed by simulating di-
rectly the Ising model with the couplings just derived. As
seen in Table III, comparison of̂Oa& with the averages
from the gauge configurations shows poor agreement.3

This problem was encountered by Deckertet al. @11# in a
calculation of the effective action for theZ(2) gauge theory.
A solution, noted in@8#, is to perform a block-spin transfor-
mation on the spins, so that the effective action has twice the
range. We do this simply by decimating the Ising spins, al-
ready defined via smeared averages, to an 83 sublattice.
Solving the Schwinger-Dyson equations with the decimated
configurations gives the couplings shown in Table IV. The
longer-ranged two-spin couplings,b6 andb7, are negligible,
as is the straight three-spin couplingb5. Moreover, compari-
son of an Ising Monte Carlo simulation with the gauge
theory ~see Table V! now gives satisfactory agreement.

The effective Ising couplings shown in Table IV vary

2Note that the magnetic field ish52b1, and thatnegativevalues
for b2, b3, b6, andb7 indicate ferromagnetic couplings.

3The violent disagreement for the ordered phase, including even
the sign of the magnetization, suggests that the gauge theory’s op-
erator averages are to be sought in a metastable phase of the Ising
action. We did not succeed, however, in reaching this phase with
our Monte Carlo calculation. In the disordered phase, the positive
magnetic fieldh52b1 prefers a positive magnetization, but the
positive three-spin couplingsb4 and b5 compete with it and turn
the magnetization negative.

TABLE II. Couplings ba for the ~tentative! effective Ising ac-
tion on a 163 lattice, for the ordered and disordered phases at
b55.091.

a Ordered Disordered

1 0.054~4! 20.135~16!

2 20.455~1! 20.390~8!

3 20.052~1! 20.026~2!

4 20.0056~6! 0.021~1!

5 0.0063~9! 0.022~2!

6 0.044~1! 0.045~4!

7 0.152~1! 0.132~3!

TABLE III. Averages ofOa in ordered and disordered phases of
the gauge theory atb55.091, compared with results of Ising Monte
Carlo calculation for the couplings listed in Table II. Averages are
normalized to 1.

a Ordered phase Disordered phase
Gauge theory Ising MC Gauge theory Ising MC

1 0.185~7! 20.849~2! 20.877~1! 20.696~6!

2 0.500~1! 0.812~2! 0.837~1! 0.708~4!

3 0.353~1! 0.775~2! 0.804~1! 0.626~5!

4 0.137~6! 20.738~3! 20.779~1! 20.595~6!

5 0.141~6! 20.742~2! 20.781~1! 20.602~6!

6 0.269~1! 0.756~3! 0.789~1! 0.583~6!

7 0.206~2! 0.743~3! 0.781~1! 0.552~7!

TABLE IV. Couplings ba for the effective Ising action after
decimation to an 83 lattice, for several gauge couplings surrounding
the phase transition.

a b55.08 b55.091 b55.091 b55.1 b55.2
~disordered! ~ordered!

1 0.14~6! 0.02~5! 20.027~2! 20.054~2! 20.26~3!

2 20.21~2! 20.24~2! 20.132~1! 20.131~1! 20.12~1!

3 20.043~3! 20.050~3! 20.023~1! 20.021~1! 20.025~3!

4 20.011~2! 20.015~2! 0.0043~4! 0.0028~4! 20.0014~16!

5 0.003~5! 20.001~7! 20.003~2! 20.0003~9! 20.004~4!

6 20.002~3! 20.002~4! 20.006~1! 20.005~1! 20.006~2!

7 20.003~2! 0.003~7! 0.0016~7! 0.005~1! 0.004~3!
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smoothly asb is varied on either side of the transition, but
they are discontinuous across the transition. Atb55.091 we
have, then,two actions,Scold andShot, which are the limits of
Seff@s# from the ordered and disordered sides of the transi-
tion. Curiously, we find thatShot is at a point of phase coex-
istence, that is, at a phase transition between phases with
^s&,0 and ^s&.0. We show in Table V the expectation
values of the seven operatorsOa for Scold and for both
phases ofShot. For Shot, the phase witĥ s&,0 describes
well the expectation values in the gauge theory on the disor-
dered side of its transition. The other phase ofShot, of
course, does not; neither does it describe the ordered phase
of the gauge theory. The actionShot thus ‘‘knows’’ that it
describes a phase transition, but it is capable of describing
correctly only one of the phases.Scold describes the ordered
phase well, and shows no phase coexistence.

The discontinuity in the effective action is an example of
the singularities that can result from renormalization group
transformations. Griffiths and Pearce@12# noted that a
blocked action might be a singular function of the unblocked
couplings even though the blocking transformation is local.
Later work @13# found discontinuities in the blocked action
associated with first-order phase transitions in the original
action. It was conjectured that there may be different
renormalization-group flows resulting from the various meta-
stable phases at a fixed coupling. In view of theorems proven
by van Enter, Ferna´ndez, and Sokal@14#, however, such dis-

continuities are impossible in an effective action which pos-
sesses finite range in the infinite-volume limit. Our effective
action, however, is approximate in that it contains a small
number of couplings. Adding longer-ranged and multispin
terms to the action will bring consistency with the theorem
of van Enteret al. in one of two ways: Either the couplings
will become continuous@15#, or the effective action~s! will
acquire too many non-local terms in the infinite-volume
limit, meaning the statistical measure is non-Gibbsian. In the
first case, we will have an effective action well suited to
describing the phase transition; in the second case, the con-
clusion will be that an Ising description of the phase transi-
tion is impossible. Deciding between these alternatives re-
quires great numerical precision.

The discontinuity of the effective action is sensitive to the
definition of the effective degrees of freedom, just as singu-
larities in the renormalization group may be created or elimi-
nated by different choices of the block-spin transformation.
A more sophisticated definition ofsn , perhaps using a
Kadanoff kernel to associate it with the smearedLn , may
restore continuity, even without marked increase in the num-
ber of interaction terms. Note also that a reduction of the
gauge theory toZ(3) spins in@9# resulted in an action that is
continuous across the phase transition. Perhaps a more com-
plex effective spin, combining Ising withZ(3), will yield an
effective action that offers both continuity and a local de-
scription of confinement physics.
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K. Kajantie, L. Kärkkäinen, and K. Rummukainen, Nucl. Phys.
B333, 100 ~1990!; S. Huang, J. Potvin, C. Rebbi, and S. Sani-
elevici, Phys. Rev. D42, 2864~1990!; R. Brower, S. Huang, J.
Potvin, and C. Rebbi,ibid. 46, 2703 ~1992!; Y. Iwasaki, K.
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@13# H. J. Blöte and R. H. Swendsen, Phys. Rev. Lett.43, 799
~1979!; C. B. Lang, Nucl. Phys.B280, 255 ~1987!; A.
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