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Spectrum of scalar-scalar bound states
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An exactly solvable, Barbieri-Remiddi-like equation for bound states of two scalar constituents interacting
with massless vector particles is presented for both stable and unstable particles. With the help of this equation
the bound state spectrum is calculatedtta®) for a SUN) non-Abelian gauge theory. The result for the
Abelian case reproduces the known result from previous calculations. It is shown how different graphs as in the
fermionic theory contribute to the spectrum to this order. Furthermore the bound state correction to the decay
width for a weakly decaying system is calculated. This result is equal to its fermionic counterpart. Thus the
theorem on bound state corrections for weakly decaying particles, formulated previously for fermions only, has
been extended to the scalar thedi$0556-282197)06021-9

PACS numbed(s): 11.10.St

[. INTRODUCTION non-Abelian case t®(a?). This will be of importance if the
stop has a narrow width. If the width becomes comparable to

While the discussion of fermionic bound states has a longhe level splittings this consideration can be understood as a
history [1], much less attention has been paid to the similadetermination of the scalar-antiscalar potential.
problem with scalar constituents. Only the ladder approxima- The decay width is also subject of the second application
tion with scalar interaction is a well-known example and hasve present in Sec. IV. We calculate the bound state correc-
already been discussed in the 1950s and 19@Qsn the tion to the decay width™ of system of scalar constituents to
framework of the Bethe-Salpet¢BS) equation. Indeed, to O(a?l’).
this day the only known fundamental matter fields are fermi- Finally Sec. V is devoted to the conclusions and to the
onic. But in supersymmetric theories for each fermion twodiscussion of our results.
scalar partners are required. Since some of them, probably

StOp or shottom, could have masses within the reach of the Il. A BOUND STATE EQUATION
next generation ob* e~ accelerators, even the observation FOR SCALAR PARTICLES
of bound states of those particles seems possible. These ob-

jects and systems built of scalar composite particles in A. Stable particles

atomic physics underline the need for an equally clear and As a starting point we present here an exactly solvable
transparent approach as the one developed for the fermioniguation for a stable scalar particle and its antiparticle, which
case[3]. A recent attempt in this directio#] splits the bo-  interact via a vector field. The extension to the unequal mass
son propagator into a particle and antiparticle propagator iRase is given in Appendix B.

order to be able to treat them like fermions. The spectrum is \ve start from the BS equation for a bound state wave
then obtained by constructing the Hamiltonian via a Foldy-fynction y:

Wouthuysen transformation and a perturbation theory in the

manner of Salpeter. Using the perturbation theory derived in BS ) P P

the first two works of4] could avoid the divergencies due to xij (P)=—iSiis >tP Sprj| — >tp

higher powers of the spatial momentum that would appear in

a pure Foldy-Wouthuysen approa¢h]. Furthermore Ref. d*p’ .\ BS .,

[4] introduces a real two-body formalism opposite [t X 2m)? Kirjr,injr(P,P.R ) X4 (P'), - (1)

where the Coulomb field appears as an external field that

makes this formalism appear to be not very reliable. All\yhereS is the exact scalar propagator, aids the sum of
these drawbacks can be circumvented by developing an e ywo scalar irreducible graphs. Both are normalized to be
actly solvable zero-order equation and subsequently using @eynman amplitudes. Furthermore, we have introduced rela-
systematic perturbation theory. _ _tive momentap and p’, a total momentumP=p;—p,

To the best of our knowledge there exists no attempt iNwhere p, is the momentum of the particle anm of the

the literature to construct a solvable zero-order equation .foéntiparticle in opposite directignand we choose the center
the BS equation containing two charged scalars mteractln%f mass(CM) frame whereP = (P 5)—(2m+E 6)
- 0 - [} .

i field. Thi I will hi i L . T ;
via a vector field is goal will be achieved in Sec As a first approximation to Eq1) we would like to use,

In Sec. Il we will review briefly the BS perturbation . o L
theory and use it to calculate the spectrum of bound states fop addition 1o the free relgtlwstlc_scalar propagators, the ker-
el due to the Coulomb interaction

scalar particles with equal mass for both the Abelian and'

Po+ Pot Pg) (Po—Po— P§
Ke(pop)=dma TP (E"_)sz Po™P0) g
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For a non-Ablelian theory with gauge group 3yJ(we use Po=2m—0O(ma?),
YT 2N an @

we can start with an instantaneous approximation to the ker-
nel sincep, is of O(a?m) in this region and may be in-
cluded in the corrections afterwards. Doing this, we may
write an equation fox (p): = [(dpy/27) x(p) by performing
zero-component integrations on both sides of @g.On the
right-hand side(RHS) we get by using the relativistic free

In this casey has to be a singlet in order fét. to represent
an attractive force. The kerné) has the drawback that it is
po dependent and the exact solution of Ep.with Eq. (2) is
not known. However, in the nonrelativistic regime by the
scaling argumenit6]

Po=0(ma?), |p|=0(ma), (4)  propagator E,= Jm?+ p?)
|
_ f dpo 1 1 1 1] 1 :
27 [(Po/2+ po)*—Ep+ie€l[(—Pol2+po)°—Ej+ie]  2E Py |2E,—Py 2E,+Po|  E,(4E;—P)) ®
and it is quite easy to show that a zero-order Keikgldefined by
AmyE E,/
Ko(p.p'): =4ma ——az—- (6)
gives the solvable equation
< MVEpEy

This equation is exactly solvable sing€p) = qb(f))/\/E_p transforms it into a Schobinger equation with Coulomb potential.
Thus we have, fol(p)nm (the eigenfunctions to the quantum numbetm),

VEL(M{)?—4EZ]

5). g
Xoim(P)= \/ZM(O)[(M 12+ po)?— EZ+i€l[(— M2+ pg)2— E2+i€] $rim(P) ®
x(p)=x(p) for ¢ real €)
|

to the eigenvalues foP: and that in the vicinity of a bound state poleRy=P,, [cf.

Eq. (23) below] this implies

o
MP=2myl-of,  on=5-. (10) g
Xo| o5~ (ZiDg'+Ko)|  xn=1. (14
0 Po—Pn

Here ¢, m(p) denotes the Coulomb wave function in mo-

mentum space. Equatio) is dictated by the requirement  T4uing the equation for thézero-order Green function
that x should acquire the same analytic properties as the

underlying field correlator&d denotes the scalar field opera- iGo=—Dgy+DoKGo, (15)
tor):
with
X(D):f ePX( 0| TdT x P z P 11 4 ,
2 2/ o (2m)*5*(p—p’)
O [(Po/2+ po)®— ES+i€l[(— Pol2+po)2—E+ie]’

_ . X X 16

x(p)=f e'pX< P T¢(§)®T(—§)’o>. (12 (18
instead of that for the BS wave function and using again Eq.

Using the integral representation for the step function that i$6) we find

included in the time-ordered product, one derives ).

The normalization condition is obtained by observing that Go=—F(p) Gc(E.p.p") F(p'), (17)
the four-point Green functio® and its inverse obey 4m

GG =1, (13  with
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. P§—4m2 Ill. PERTURBATION THEORY
E 4m (18) Perturbation theory for the BS equation starts from the
equation for the Green functid®, [Eq. (15)] of the scatter-
and ing of two scalars, which is exactly solvable. This is in close
analogy to the fermionic cag®]. D is the product of two
\/E—(P2—4E2) zero-order propagator; and, is the corresponding kernel.
F(p)= — LAY P ——. The exact Green functio® may be represented as
[(Po/2+po)*—Eptiel[(—Po/2+ po) —Ep+|§] )
19 -
G=2 xn’ 5 —p Xn +Gre=Go2 (HGo)", (23
| 0 n =0

G denotes the well-known Coulomb Green function in mo-
mentum space. These solutions can be used for a systemafifiere the corrections are contained in the insertidnand
BS perturbation theory for scalar constituents, as will beGreg is the part ofG regular atP,=P,,. It is easy to show
demonstrated in the next section. that H can be expressed by the full kerri€land the full
propagatord:

B. Unstable particles ) N
. H=—-K+Ky+iD 1=iDgy* (24)
As has been shown recently by Kummer anddvitsch
[7] for the fermionic case, an important simplification can beThys the perturbation kernel is essentially the negative dif-
achieved in some calculations if the width of the bound stat§erence of the exact BS kernel and of the zero-order approxi-
is already included in the zero-order equation. Furthermoremation.
if the width becomes comparable to the level shifts, this ap-  gxpanding both sides of E423) in powers ofPo— P
proach even becomes indispensible. For the scalar case thig mass shift is obtaind,10]:
can be done by the replacement

Ep— VE;—il'm. (20 AM—i %=(ho>(1+(hl>)+(hoglh0)+O(h3).

ns

(25
While Eq. (20) leads to expressions for the BS wave func-

tions that contain unpleasant expressions for the particlélere the BS expectation values are defined as, e.g.,
poles it has the advantage that the propagator has the form as

expected from the phase space of an unstable particle. Fur- _ d*p d*p’ , ,
thermore the above calculation remains essentially un-{h)= 2m? | 2ot Xij (P hii (PP ) xirj ().
changed if we define the square root in E20) to be that (26)

with the negative imaginary pattlearly we demand'>0
andm>0). Only the energy in the resulting equation for the We emphasize the four-dimensionalintegrations, which

Green function and thus in E¢L7) changes to correspond to the generic case, rather than the usual three-
dimensional ones in a completely nonrelativistic expansion.
. P2—4m? We distinguish these two cases by introducing the notation
E=_° " Lir. (21)  (()) for a four-dimensional expectation value afidfor the
4m usual nonrelativistic expectation value:
The eigenvalues foP, are R d? d*p’ R . R
‘ ° VEEN= [ s | s 8 (B VB H(P).
r|v2 27
Po,n=2m(1—aﬁ—i —)
m Of course, EQ.(26) reduces to an ordinary “expectation

mo? T2 2r value” involving d®p and ®(p), wheneverh does not de-
~ _ 2. %n . . Yn ’
2m—mo + ir—i (220  pend onpy andpy,.
4  4m 2 0 : -
In Eq. (25) h; andg; represent the expansion coefficients

) of H and G, near the pole aP,, respectively: i.e.,
In the case of the fermions we managed to construct wave

functions independent df. This was possible because the *

small components of the propagator containfPg—iT" in- H= E hpn(Po—Po)™, (28
stead of Py+il" were projected away by the choice of an m=0

appropriate kernelK. This cannot be achieved in the scalar "

case and thus, surprisingly enough, the scalar wave functions _ m—1

look more complicgted £tah):em thegfermionic ones. A version GO_mE:O Im(Po=Pn)™ . (29
for a zero-order equation for decaying particles where the

propagator is chosen in close analogy to the fermionic cas8imilar corrections arise for the wave functidiés10]:

has been developed [&]. In our present work we, instead,

proceed in the spirit of our generalized approach. xP=(g1ho+ 3(h ) x©. (30)
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FIG. 1. Tree graph corrections. FIG. 2. Second order Coulomb corrections.

A. Fine structure H dra ( S+ 52 (52_ﬁ/2)2) o
=— +p')4— _ .
As an application of this perturbation theory as well as of T q (P+p @

the new zero-order equation for scalar particles developed in

the last section, we will present here the calculation of thePerforming the zero-component integrations exactly and ex-
fine structure of two stable scalar particles interacting via ganding in terms of the spatial momenta one obtains to lead-
vector particle. Existing calculatiorig] outline the possibil-  ing order(cf. [11])
ity of a perturbation theory similar to that of Salpeter, but the
actual calculations for the scalar-scalar case are done with Ama
the help of the Fouldy-Wouthuysen transformation and the AM={H))=— <
iterated Salpeter perturbation theory. Our present approach is
much more transparent and allows in principle the inclusion
of any higher-order effect in a straightforward manner. First Jf 1 dio 3
we will calculate the fine structure for two scalars of equal =Ma W‘L snd
mass interacting by an Abelian vector field. Then we con- 16n°
sider also the non-Abelian case, which could be of interest
for the stop-antistop system. In this case we will calculate the
spectrum up to ordes?.

Since in the zero-order equation we have replaced th
exact one Coulomb exchang® by K, as given in Eq(6)
we have now to calculate the contribution K-+ K to
the energy levels. This is shown in Figial With

m2 (395

(36)

Due to the fact that scalars can only form spin-zero bound
states, the annihilation graph into one gauge parfialith
spin one contributes only fop waves and thus is suppressed
by two additional powers im. Furthermore, as in the fermi-
onic case, it vanishes for the non-Abelian theory due to the

dp d%p’ _ color trace since the bound states are color singlets. As can

{(=Ke))=—4ma 2t 2n)® x(p) be seen from the above results the contribution of the trans-
verse gauge field is equal for fermions and bosons. However,

(Po+po+pg)(Po—pPo—Po) the relativistic correction to the Coulomb exchange appears

X (p— |5’)2 x(p") to be different. Let us therefore check the contribution of this

Coulomb correction from second-order perturbation theory

< P2+ 2E2+ 2E§, 47m> [Fig. 2a)]. These contributions give only rise (D_(oz5 In a)

=— — effects in the fermionic theory. Since the leading Coulomb

4PoVELE, 4 singularity is canceled we may hope that we can replace the

(31  shown that the next terms of the Green function give only
higher-order contributions.
Due to the presence of the zero-component momentum in
(Ko))= 2_m <Aﬂ> 32) the scalar Coulomb gluon vertex we observe that the contri-
0 Po \ G2/’ bution from Fig. 2b) diverges linearly. However, it is an
easy exercise to show that in the sum of grajhg. 2(b) +

we obtain Fig. 3] this linear divergence cancels. Thus we regularize all
the single graphs, sum up, and find a finite result. We have

52

) <(2m oﬁ) 47m> Green function by the free propagator. Indeed it can be
q

Py 2

47Ta> ma?
(33

0_2
AMciz«—KcﬂLKo»:?n <?— = Tent

The fact that thep integrations are well behaved and the SN N\ AN
result is of O(a*) prove the usefulness of our zero-order (a) (b) (c)
kernel.

The transverse gluon of Fig(l) gives rise to a kernel: FIG. 3. Abelian scalar box graphs.
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used dimensional regularization as well as a one-dimensional d3k I
Pauli-Villars regularization. Both give the same result for the {ho)y=\{ —i j s )/ (39
finite parts of the integrals: (2m)° K2(q— k)2

AM pos= (N + (= Ko+ Kg)g1(— K+ Kg))), wherel, is decomposed according to Fig. 3 for a generic

(37 SU(N) theory:

(P+p+p’ —ko)(P+2p—kp) (—P+2p’+k0)(—P+p+p’+k0))~( ) CF)(A ) )
(P2t p—KZ—md | [(—PR+p +KZ—m7 ~2|Ce—on)| 27 im ),

C
[B@l_|2_ —F

(39
a1 CF (P+2p'+kp)(—P+2p"+ko)(P+p+p'—kp)(P+2p—ky) Cg (A |
2N Jy, [(PI2+p—Kk)"—m7][(—P/2+p’' +k)*—m*] 2N\ 2
C Ce)l A
BOl- _|c2_=F —_|c2_=F| =
{54
Using the abbreviations
dkg A?
ﬁ;fzggﬂﬁ’ 42
N2—1
Ce= oN (43

we have written the result for Pauli-Villars regularization to make the cancellation of the liner divergent parts obvious.
For the double Coulomb exchange graph from Fig. 2 we obtain for the time component integral

’ 2__p2 2_p2
201 _ o2 [(PotKo) =P+ 4myEE, [ (pot+ ko) —P +4m\/EkEp]%_ ) (é—im). (a4
0 i [(P12+ko)?— E{I[(— P2+ ko)*— E{] 12
|
Collecting everything from above we have In supersymmetric theories [@b|* term is part of the
Lagrangian. Clearly it can be put in by hand into the Lan-
lo=1[3@14 3BT 3] 20 = _c2jm (45 gragian of an ordinary quantum field theory. The con-

tribution from an interaction term of the form

_ T4, tTa ; H .
which leads with Eqs(38), (43), and(3) immediately to the ~ M2(P T"®)(@7T°P) is easily calculated:

result 3

A ma .
. Mx==Ce) 353 0 (47)
AM ppgton b — g (46)

Abellan box™ 16n3(1+1/2) and gives a contribution of the same form as the Darwin term

(usually interpreted as a zitterbewegung contribuyti@rhich

The net result for the spectrum of two scalars bound by aiis suppressed by two orders inin the scalar theory. There
Abelian gauge field is equal to that of RE4). However, we  may exist a small chance that this term may be helpful for
showed which graphs contribute in a pure BS approachthe determination of the supersymmetry parameters of the
which can be used as a basis for any higher-order calculaheory contained in.
tion. For an ordinary quantum field theory without a direct in-

We have also checked the derivatish€/ 9P, contributing  teraction on the tree level it was shown first by RohrliH]
to h, and theX graphs of Fig. 4g) with transverse gauge that a counter term of this form is needed for the scattering of
particles for possible contributions. Our estimates only yieldwo scalarge.g., the graphs of Fig. 3 and the first of Fig.
contributions to higher order. Due to mass and wave functior2(b) with photons in the Feynman gaugé is interesting to
renormalization we can further assume that the graphs afote that in the Coulomb gauge the divergencies for the Cou-
Figs. 4e) and 4f) give only contributions t@(a® In @) as  lomb photons cancel and the only divergent graph is the one
in the fermionic casd12]. Possible large contributions of of Fig. 3(c) with transverse photons.
lighter particles to the vacuum polarization as depicted in The spectrum calculated so far is common for the Abelian
Fig. 4(c) can be treated as in the fermionic c44&8]. and the non-Abelian theory. Collecting all pieces we have
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CeA
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- (49)

whereAMjF]nI originates in the contribution df light fermi-
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ons to the vacuum polarization and can be founglid.

It was pointed out first if15] that in the case of a non-
Abelian gauge field further corrections may arise due to the
gluon splitting vertices. Th&®(a?) corrections from Figs.
4(a) and 4b) as well as theO(a?) corrections from the
corresponding two-loop graphs are obviously the same as in
the fermionic case. The vertex correction shown below in
Fig. 4(d) has been calculated [i15] for the fermionic case.

Here we will give a calculation of the same contribution
for scalar constituents. After performing the color trace the
perturbation kernel for the second graph in Fi¢d)4eads

Hia 2= _8i94J (

Performing thek, integration and using the scaling
Po—2m+0(a?),
Po— Py,
k— ak

to extract the leading contribution im we find that

2 > >
g m pq
H =——r=3. 50
[4(d),2] 2 [qP (50)
Adding the similar contribution from the first graph in Fig.
4(d) gives
s o O
S
a b c
d e

2m)* GA(K—q)°[(P/2+p+k)?—m?]k?

5K) (Gk
(—(ﬁq>+—(p 1 ))- (49)
k2
[
97%a’m

This result differs by a factor@? from the fermionic result,
which is compensated by a corresponding difference in the
wave functions to give eventually precisely the same result
as in the fermionic case

9ma*

9m2a?
AM = =

-~ 52
am[g| (%2

32nd |+1
2

In view of the fact that the result depends only on the angular
momentum and not on the spin this seems reasonable. How-
ever, we have seen in the case of the Darwin term that this
kind of reasoning sometimes fails.

Proceeding to the graph of Fig(h} we observe that in
contrast to the fermionic case the zero component integration
develops Coulomb divergencies like the Abelian contribu-
tions. Since these integrations are a little bit cumbersome in
dimensional regularization we sketch the calculation in the
Appendix. It turns out finally that the box graph contribution
in Fig. 4(h) gives the same result as in the fermionic case,
which was calculated recent[\L6]:

81 ) a®
(Hpam)=— 155 7(12—=7°) &/ (53

The box graph with two Coulomb lines crossed vanishes due
to the color trace. Another box graph with the Coulomb ver-
tices on one scalar line replaced by a “seagull vertéixiio
gauge boson—two scalar verjecan be shown to contribute
to O(a®). However, they are in principle needed to cancel
the Coulomb singularities.

Thus the difference in the spectrum of the scalar bound
state toO(a?) compared to the fermionic case is entirely due
to the graphs also present in the Abelian theory discussed

FIG. 4. Graphs contributing equally as in the fermionic case. above.
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IV. BOUND STATE CORRECTIONS width (cf. Sec. Il B. Thus we have to reexamine the relativ-
TO THE DECAY WIDTH istic corrections to the energy levels. Among the contribu-

. . . . tions considered in the last section only the relativistic Cou-

Assuming that the scalar particle under consideration delbmb correction Fig. (@) can produce corrections to

cays into two other particles, the decay width is the imagi-o(azr) '

nary part of the co_rresponding seli-energy functﬁ;rat the Ctis éasy to see that the only difference comes from the

mass shell. Focusing on the stop qqark a posslble SCENANY + that the perturbation has to be taken at the position of the

could betg—b+; [17]. We shall be interested in terms of ole (22), which leads to the replacement

the orderO(a?T") wherel is the tree level decay width. The P ' P

first part of the perturbation kernel due to the exact inverse T

propagatorp?—m?—3,(p?) for the bound state corrections b ot o (60)

to the decay width reads

in Eqg. (31). We thus get a relativistic correction to the decay
width of the bound state

~=2i(2m)*8*(p1—pp— P)X' (M?)(pf—m?)(p5—m?). o2

Hy=iD '-iDgy"

In Eq. (54), p; andp, are the four momenta of the particle Thjs has to be added to ti@(2I") term of Eq.(22) to yield
and the antiparticle, respectivelf. is the total momentum. the final result for the bound state correction to the decay
To derive Eq.(54) we expanded the self-energy function \yigth:

around the mass shell

% (p?) =2 (m?)+3"(m?)(p?~m?)+O[(p?~m?)?] Al'=— 77 (62
(55)

and we assumed that the decay width used in the zero-order 1S result generalizes the result[of,18] to the bosonic
equation(e.g., inDy) is given by case. We can thus say that the effect of the bound state

corrections to the decay width can be interpreted entirely as a

S(m?) time dilatation effect as was first conjectured for the fermi-
F=—im——. (56)  onic theory[19].
As has been first shown ifl8], the gauge dependence V. CONCLUSION

contained in the off-shell contributiol,’ is canceled by
parts of the vertex correction depicted in Figf)4The latter
give rise to a perturbation kernel,

We have presented a consistent formalism for the calcu-
lation of bound state properties for scalar particles interaction
with an Abelian or non-Abelian spin one vector field. This is

4 done by deriving a solvable relativistic zero-order equation
Ho=A¢ —5 (= Po+po+pg), (570  similar to that of Barbieri and Remiddi both for stable and
q unstable scalars. Based on this equation a systematic pertur-
§ation theory can be built that allows especially the calcula-
tion of the position of the bound state poles to higher orders.
Using this approach the bound state spectrum was calcu-
ed toO(a*). We found that we had to take into account

with A representing the vertex correction. The color trace i
already included ina. As in the fermionic casg7] it is
possible to derive a Ward identity, which guarantees the car'|-
cellation of the gauge-dependent terfitke T®'s are the at

the Abelian box graphs to this order. This is not the case in
N
SU(N) generatork the fermionic theory. All the relativistic Coulomb corrections
A 9 X only reproduce th@* term from the expansion ofm?+ p>,
AL(p,q=0)=—2gT%, 707 2(p9), indicating that a fully relativistic formulation is not really

economic for the lowest orders in perturbation theory. How-
ever, the advantage of the presented formalism is that it is
straightforwardly applicable to any higher-order calculation.

. - - 4
But the detailed calculation shows differences to the fermi- V€ calculated also the non-Abelian contributionsX(u*).

onic case: the sum of the contributions frasy and H. Furthermore our approach makes possible the calculation of

vanishes to the desired order with the help of the zero-ordetthe bqund state cor_rections to the decay Width of We_akl_y
equation decaying scalar particles. We show that—as in the fermionic

case—the inclusion of a finite, constant decay width in the
Im{(H+ H,))~0. (59) zero-order equation simplifies the problem of the bound state

correction to the decay width in a profound way. It is now

On the other hand, we observed above that the wave fungossible to clearly isolate the underlying cancellation mecha-
tions for decaying fermions and scalars were very differentnism, which automatically gives a gauge-independent result
While it was possible to obtain the same wave functions fotthat can be interpreted as time dilatation alone. We can thus
decaying fermions and for stable ones, in the bosonic casgeneralize the theorem on the bound state corrections for the
we used wave functions explicitly containing the decaydecay width to the scalar case: the leading bound state cor-

ImAo[p=(m,0),q=0]=—2m Im3’'(m?). (58
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rections for weakly bound systems of unstable scajaith ACKNOWLEDGMENTS
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It would be very interesting to observe a particle where . . d ful readi £ th . h
the above-mentioned predictions could be tested. Today ﬁilscussmns an falcare u rea'klng ot the mgnhuslcn]E)t. Further-
seems that the stop-antistop system could be a Candidate.mor;}ta}{? r%r:lt:nue:(r)o?.inR;luen::z:IlglzjiIg(tjioLﬁ \(l)\??h: ,&nbgl?aaogl;;
will be heavy enough to allow a perturbative treatment even 9 . i
for the non-Abelian case. Whether the decay width will begraphs and for checking large parts of the calculations.
small enough to allow a detailed study of the spectrum re-

mains open to speculation at present. But even for a quite AppENDIX A: ZERO-COMPONENT INTEGRATIONS
large decay width the scalar-scalar potential will provide the FOR T.HE NON-ABELIAN BOX GRAPH

basis for interesting threshold calculations for this d&8,

analogous to the ones for the top-antitop systég21]. The diagram &) leads to the energy component integrals

| __f dko [ dtg (Po+2po—1to)(Po+2pg—0do—to)(—Po+2po—0do—ko)(—Po+2po—ko)
o= | —

—. (A1)
2m 127 [(Py/2+po—to)*~ E;_I[(~Po/2+Po—ko)*~ Ej_I[(to—ko)*~(f—K)’]

This integral is power counting logarithmic divergent, but it The limit »— 0 has to be performed very carefully to obtain

turns out that the first integration is finite, which leads to a
2

linear divergent second integration. After scaling E41) 2m m
reduces to lo=——= - -,
|[t—k|* 2|t—K]|
dkg dtg
- "
277' 277' |0’2: - oo (A4)
2|T—K|

(2m—tg)(2m+ko)

X— ) — (A2)  Thus we have to the desired accuracy
(to_ | 6)(k0+ | E)[(to_ ko)z_(f_ k)2+ | E]

2

2m
To make this integral accessible for the methods of dimen- lo= Pt (A5)
sional regularization we use the following trick: [Tk
It should be noted that dimensional regularization does not
i _ — lim ———. (A3) show linear divergencies. Instead the use of the regulariza-
2mto*ie o) 2mtg—puitie tion (42) leads to a visible liner divergent tertof higher

order ina) i A/(8|f—K|), which has to be canceled by simi-
lar contributions from graphs where the two Coulomb gluon
vertices on one or both scalar lines are double Coulomb ver-

Performing first they integration we have

lo=lo1* o2, tices.
|01:f dko (Zm: k0)2(k0_+“) o APPENDIX B: ZERO-ORDER EQUATION
' 2 ko—m tie 0 FOR UNEQUAL MASSES
dk, It is possible to extend the formalism derived in this work
loo= 5 Ity to the case of unequal constituent masses. To illustrate this
’ aw

we will give in this Appendix a solvable relativistic zero-
order equation for two scalar particles with unequal masses.

. 2mil’(2—D/2) We start with Eq(1) with S;;,S;;, replaced by
o™ D/2
4 o Po st _Pe.
1 (xko— p)[X(1—x)]P"?"2 1|2 PR T TR
X | dx 5 2-DI2 1
—k2+ B k2% - S— I
X [(Po/2+po) —Efp+iel[(=Po/2+pg) —E5p+ie€]
ir(1-D/2) . (B1)

T T |P_Kk|P—-2
(447)PR2 Je=k where



5394
Eip: mi + ﬁza

2 _ 2 =2
Ezyp—m2+p .

Assuming again a static zero-order kernel and performing the

po integration leads to

E1’p+ EZ’p
2B B[ (EqptEzp)2—P3]

x(p)=—

d3
% | s Kol B POX(EY.  (B2)

Since Eqpt Ez,p)Z—PS does not lead to a Schdimger

equation we multiply the numerator and denominator of the
right-hand side with the nonrelativistic limit of the latter ex-

pression:M?+M/mgp®— P2, where

M=m;+m,,
mymy
mR:
m;+m,

are the mass threshold and the reduced mass, respectively.

With a kernel of the form

., _ — dra
Ko(B,B’,Po)=2M VR(B,Po)R(P’,Po) =2’
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with

 2E1pEpp(EiptEpp)®— Pl
(Epp+Ezp)[M?+(M/mg)p°—Pg]’

R(p,Po) (B3)

the Bethe-Salpeter equatidf) may be solved in the same
way as the equal mass case except tf&g— R.
The eigenvalues are obtained from

P—M?  mga?
2M  2n?”
2

2
mMra mRa2

POZPn:M+W_+W+"' .

The normalization of the wave function is now more in-

volved. Again we start from

GG =1,

Xn=1, (B4)

lae
Xnl 75~ (=D +Ko)
0 Po—Ph

but now alsdK is Py dependent. After some calculation we

finally abtain for the normalized wave function

VR(B,P)[M2+(M/mg)p2— P2]

x(p)=-—

become more involved.

|
V2P [(Pp/2+po)2—ES+i€][(—Py/2+ po)?—E5+ie]

The extension of the present work to the unequal mass case is thus possible in a straightforward manner but the calculations

#(P). (B5)
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