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An exactly solvable, Barbieri-Remiddi-like equation for bound states of two scalar constituents interacting
with massless vector particles is presented for both stable and unstable particles. With the help of this equation
the bound state spectrum is calculated toO(a4) for a SU(N) non-Abelian gauge theory. The result for the
Abelian case reproduces the known result from previous calculations. It is shown how different graphs as in the
fermionic theory contribute to the spectrum to this order. Furthermore the bound state correction to the decay
width for a weakly decaying system is calculated. This result is equal to its fermionic counterpart. Thus the
theorem on bound state corrections for weakly decaying particles, formulated previously for fermions only, has
been extended to the scalar theory.@S0556-2821~97!06021-9#

PACS number~s!: 11.10.St

I. INTRODUCTION

While the discussion of fermionic bound states has a long
history @1#, much less attention has been paid to the similar
problem with scalar constituents. Only the ladder approxima-
tion with scalar interaction is a well-known example and has
already been discussed in the 1950s and 1960s@2# in the
framework of the Bethe-Salpeter~BS! equation. Indeed, to
this day the only known fundamental matter fields are fermi-
onic. But in supersymmetric theories for each fermion two
scalar partners are required. Since some of them, probably
stop or sbottom, could have masses within the reach of the
next generation ofe1e2 accelerators, even the observation
of bound states of those particles seems possible. These ob-
jects and systems built of scalar composite particles in
atomic physics underline the need for an equally clear and
transparent approach as the one developed for the fermionic
case@3#. A recent attempt in this direction@4# splits the bo-
son propagator into a particle and antiparticle propagator in
order to be able to treat them like fermions. The spectrum is
then obtained by constructing the Hamiltonian via a Foldy-
Wouthuysen transformation and a perturbation theory in the
manner of Salpeter. Using the perturbation theory derived in
the first two works of@4# could avoid the divergencies due to
higher powers of the spatial momentum that would appear in
a pure Foldy-Wouthuysen approach@5#. Furthermore Ref.
@4# introduces a real two-body formalism opposite to@5#
where the Coulomb field appears as an external field that
makes this formalism appear to be not very reliable. All
these drawbacks can be circumvented by developing an ex-
actly solvable zero-order equation and subsequently using a
systematic perturbation theory.

To the best of our knowledge there exists no attempt in
the literature to construct a solvable zero-order equation for
the BS equation containing two charged scalars interacting
via a vector field. This goal will be achieved in Sec. II.

In Sec. III we will review briefly the BS perturbation
theory and use it to calculate the spectrum of bound states for
scalar particles with equal mass for both the Abelian and

non-Abelian case toO(a4). This will be of importance if the
stop has a narrow width. If the width becomes comparable to
the level splittings this consideration can be understood as a
determination of the scalar-antiscalar potential.

The decay width is also subject of the second application
we present in Sec. IV. We calculate the bound state correc-
tion to the decay widthG of system of scalar constituents to
O(a2G).

Finally Sec. V is devoted to the conclusions and to the
discussion of our results.

II. A BOUND STATE EQUATION
FOR SCALAR PARTICLES

A. Stable particles

As a starting point we present here an exactly solvable
equation for a stable scalar particle and its antiparticle, which
interact via a vector field. The extension to the unequal mass
case is given in Appendix B.

We start from the BS equation for a bound state wave
function x:

x i j
BS~p!52 iSii 8S P

2
1pDSj 8 j S 2

P

2
1pD

3E d4p8

~2p!4 Ki 8 j 8,i 9 j 9~P,p,p8!x i 9 j 9
BS

~p8!, ~1!

whereS is the exact scalar propagator, andK is the sum of
all two scalar irreducible graphs. Both are normalized to be
Feynman amplitudes. Furthermore, we have introduced rela-
tive momentap and p8, a total momentumP5p12p2
~where p1 is the momentum of the particle andp2 of the
antiparticle in opposite direction!, and we choose the center

of mass~CM! frame whereP5(P0 ,0W )5(2m1E,0W ).
As a first approximation to Eq.~1! we would like to use,

in addition to the free relativistic scalar propagators, the ker-
nel due to the Coulomb interaction

KC~p,p8!54pa
~P01p01p08!~P02p02p08!

~pW 2pW 8!2 . ~2!
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For a non-Ablelian theory with gauge group SU(N) we use

a5
N221

2N

g2

4p
. ~3!

In this casex has to be a singlet in order forKC to represent
an attractive force. The kernel~2! has the drawback that it is
p0 dependent and the exact solution of Eq.~1! with Eq. ~2! is
not known. However, in the nonrelativistic regime by the
scaling argument@6#

p05O~ma2!, upW u5O~ma!, ~4!

P052m2O~ma2!,

we can start with an instantaneous approximation to the ker-
nel sincep0 is of O(a2m) in this region and may be in-
cluded in the corrections afterwards. Doing this, we may
write an equation forx(pW ):5*(dp0/2p)x(p) by performing
zero-component integrations on both sides of Eq.~1!. On the
right-hand side~RHS! we get by using the relativistic free
propagator (Ep5Am21pW 2)

2 i E dp0

2p

1

@~P0/21p0!22Ep
21 i e#@~2P0/21p0!22Ep

21 i e#
5

1

2EpP0
F 1

2Ep2P0
2

1

2Ep1P0
G5

1

Ep~4Ep
22P0

2!
~5!

and it is quite easy to show that a zero-order KernelK0 defined by

K0~p,p8!:54pa
4mAEpEp8

qW 2 ~6!

gives the solvable equation

x~pW !52
1

Ep~P0
224Ep

2!
E d3p

~2p!3 4pa
4mAEpEp8

qW 2 x~pW 8!. ~7!

This equation is exactly solvable sincex(pW )5f(pW )/AEp transforms it into a Schro¨dinger equation with Coulomb potential.
Thus we have, forx(p)nlm ~the eigenfunctions to the quantum numbersnlm!,

xnlm~p!5 i
AEp@~Mn

~0!224Ep
2#

A2Mn
~0!@~Mn

~0!/21p0!22Ep
21 i e#@~2Mn

~0!/21p0!22Ep
21 i e#

fnlm~pW !, ~8!

x̄~p!5x~p! for f real ~9!

to the eigenvalues forP0 :

Mn
~0!52mA12sn

2, sn5
a

2n
. ~10!

Here fnlm(pW ) denotes the Coulomb wave function in mo-
mentum space. Equation~9! is dictated by the requirement
that x̄ should acquire the same analytic properties as the
underlying field correlators~F denotes the scalar field opera-
tor!:

x~p!5E eipxK 0UTF†S x

2DFS 2
x

2D UPnL , ~11!

x̄~p!5E e2 ipxK PnUTFS x

2DF†S 2
x

2D U0L . ~12!

Using the integral representation for the step function that is
included in the time-ordered product, one derives Eq.~9!.
The normalization condition is obtained by observing that
the four-point Green functionG and its inverse obey

GG2151, ~13!

and that in the vicinity of a bound state pole atP05Pn @cf.
Eq. ~23! below# this implies

x̄nF ]

]P0
~2 iD 0

211K0!G
P0→Pn

xn51. ~14!

Taking the equation for the~zero-order! Green function

iG052D01D0K0G0 , ~15!

with

D05
~2p!4d4~p2p8!

@~P0/21p0!22Ep
21 i e#@~2P0/21p0!22Ep

21 i e#
,

~16!

instead of that for the BS wave function and using again Eq.
~6! we find

G052F~p!
GC~Ê,pW ,pW 8!

4m
F~p8!, ~17!

with
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Ê5
P0

224m2

4m
~18!

and

F~p!5
AEp~P0

224Ep
2!

@~P0/21p0!22Ep
21 i e#@~2P0/21p0!22Ep

21 i e#
.

~19!

GC denotes the well-known Coulomb Green function in mo-
mentum space. These solutions can be used for a systematic
BS perturbation theory for scalar constituents, as will be
demonstrated in the next section.

B. Unstable particles

As has been shown recently by Kummer and Mo¨dritsch
@7# for the fermionic case, an important simplification can be
achieved in some calculations if the width of the bound state
is already included in the zero-order equation. Furthermore,
if the width becomes comparable to the level shifts, this ap-
proach even becomes indispensible. For the scalar case this
can be done by the replacement

Ep→AEp
22 iGm. ~20!

While Eq. ~20! leads to expressions for the BS wave func-
tions that contain unpleasant expressions for the particle
poles it has the advantage that the propagator has the form as
expected from the phase space of an unstable particle. Fur-
thermore the above calculation remains essentially un-
changed if we define the square root in Eq.~20! to be that
with the negative imaginary part~clearly we demandG.0
andm.0!. Only the energy in the resulting equation for the
Green function and thus in Eq.~17! changes to

Ê5
P0

224m2

4m
1 iG. ~21!

The eigenvalues forP0 are

P0,n52mS 12sn
22 i

G

mD 1/2

'2m2ms22
msn

4

4
1

G2

4m
2 iG2 i

sn
2G

2
. ~22!

In the case of the fermions we managed to construct wave
functions independent ofG. This was possible because the
small components of the propagator containingP02 iG in-
stead ofP01 iG were projected away by the choice of an
appropriate kernelK. This cannot be achieved in the scalar
case and thus, surprisingly enough, the scalar wave functions
look more complicated than the fermionic ones. A version
for a zero-order equation for decaying particles where the
propagator is chosen in close analogy to the fermionic case
has been developed in@8#. In our present work we, instead,
proceed in the spirit of our generalized approach.

III. PERTURBATION THEORY

Perturbation theory for the BS equation starts from the
equation for the Green functionG0 @Eq. ~15!# of the scatter-
ing of two scalars, which is exactly solvable. This is in close
analogy to the fermionic case@9#. D0 is the product of two
zero-order propagators andK0 is the corresponding kernel.
The exact Green functionG may be represented as

G5(
l

xnl
BS 1

P02Pn
x̄nl

BS1Greg5G0(
n50

`

~HG0!n, ~23!

where the corrections are contained in the insertionsH and
Greg is the part ofG regular atP05Pn . It is easy to show
that H can be expressed by the full kernelK and the full
propagatorsD:

H52K1K01 iD 212 iD 0
21. ~24!

Thus the perturbation kernel is essentially the negative dif-
ference of the exact BS kernel and of the zero-order approxi-
mation.

Expanding both sides of Eq.~23! in powers ofP02Pn ,
the mass shift is obtained@6,10#:

DM2 i
DG

2
5^h0&~11^h1&!1^h0g1h0&1O~h3!.

~25!

Here the BS expectation values are defined as, e.g.,

Š^h&‹[E d4p

~2p!4 E d4p8

~2p!4 x̄ i j ~p!hii 8 j j 8~p,p8!x i 8 j 8~p8!.

~26!

We emphasize the four-dimensionalp integrations, which
correspond to the generic case, rather than the usual three-
dimensional ones in a completely nonrelativistic expansion.
We distinguish these two cases by introducing the notation
Š^ &‹ for a four-dimensional expectation value and^ & for the
usual nonrelativistic expectation value:

^V~pW ,pW 8!&5E d3p

~2p!3 E d3p8

~2p!3 f* ~pW 8!V~pW ,pW 8!f~pW !.

~27!

Of course, Eq.~26! reduces to an ordinary ‘‘expectation
value’’ involving d3p and F(pW ), wheneverh does not de-
pend onp0 andp08 .

In Eq. ~25! hi andgi represent the expansion coefficients
of H andG0 near the pole atPn , respectively: i.e.,

H5 (
m50

`

hm~P02Pn!m, ~28!

G05 (
m50

`

gm~P02Pn!m21. ~29!

Similar corrections arise for the wave functions@6,10#:

x~1!5~g1h01 1
2 ^h1&!x~0!. ~30!
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A. Fine structure

As an application of this perturbation theory as well as of
the new zero-order equation for scalar particles developed in
the last section, we will present here the calculation of the
fine structure of two stable scalar particles interacting via a
vector particle. Existing calculations@4# outline the possibil-
ity of a perturbation theory similar to that of Salpeter, but the
actual calculations for the scalar-scalar case are done with
the help of the Fouldy-Wouthuysen transformation and the
iterated Salpeter perturbation theory. Our present approach is
much more transparent and allows in principle the inclusion
of any higher-order effect in a straightforward manner. First
we will calculate the fine structure for two scalars of equal
mass interacting by an Abelian vector field. Then we con-
sider also the non-Abelian case, which could be of interest
for the stop-antistop system. In this case we will calculate the
spectrum up to orderas

4.
Since in the zero-order equation we have replaced the

exact one Coulomb exchange~2! by K0 as given in Eq.~6!
we have now to calculate the contribution of2KC1K0 to
the energy levels. This is shown in Fig. 1~a!. With

Š^2KC&‹524paE d4p

~2p!4

d4p8

~2p!4 x̄~p!

3
~P01p01p08!~P02p02p08!

~pW 2pW 8!2 x~p8!

52K P0
212Ep

212Ep8
2

4P0AEpEp8

4pa

qW 2 L
52K S 2m

P0
2

sn
2

2 D 4pa

qW 2 L ~31!

^^K0&&5
2m

P0
K 4pa

qW 2 L , ~32!

we obtain

DMC :5Š^2KC1K0&‹5
sn

2

2 K 4pa

qW 2 L 5
ma4

16n4 . ~33!

The fact that thep integrations are well behaved and the
result is of O(a4) prove the usefulness of our zero-order
kernel.

The transverse gluon of Fig. 1~b! gives rise to a kernel:

HT5
4pa

q2 S ~pW 1pW 8!22
~pW 22pW 82!2

qW 2 D . ~34!

Performing the zero-component integrations exactly and ex-
panding in terms of the spatial momenta one obtains to lead-
ing order~cf. @11#!

DMT5Š^HT&‹52
4pa

m2 K pW 2

qW 22
~pW qW !2

qW 4 L ~35!

5ma4S 1

8n4 1
d l0

8n32
3

16n3S l 1
1

2D D .

~36!

Due to the fact that scalars can only form spin-zero bound
states, the annihilation graph into one gauge particle~with
spin one! contributes only forp waves and thus is suppressed
by two additional powers ina. Furthermore, as in the fermi-
onic case, it vanishes for the non-Abelian theory due to the
color trace since the bound states are color singlets. As can
be seen from the above results the contribution of the trans-
verse gauge field is equal for fermions and bosons. However,
the relativistic correction to the Coulomb exchange appears
to be different. Let us therefore check the contribution of this
Coulomb correction from second-order perturbation theory
@Fig. 2~a!#. These contributions give only rise toO(a5 ln a)
effects in the fermionic theory. Since the leading Coulomb
singularity is canceled we may hope that we can replace the
Green function by the free propagator. Indeed it can be
shown that the next terms of the Green function give only
higher-order contributions.

Due to the presence of the zero-component momentum in
the scalar Coulomb gluon vertex we observe that the contri-
bution from Fig. 2~b! diverges linearly. However, it is an
easy exercise to show that in the sum of graphs@Fig. 2~b! 1
Fig. 3# this linear divergence cancels. Thus we regularize all
the single graphs, sum up, and find a finite result. We have

FIG. 1. Tree graph corrections. FIG. 2. Second order Coulomb corrections.

FIG. 3. Abelian scalar box graphs.
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used dimensional regularization as well as a one-dimensional
Pauli-Villars regularization. Both give the same result for the
finite parts of the integrals:

DMbox5Š^h0
~3!&‹1Š^~2KC1K0!g1~2KC1K0!&‹,

~37!

Š^h0&‹5KK 2 i E d3k

~2p!3

I 0

kW2~qW 2kW !2L L, ~38!

where I 0 is decomposed according to Fig. 3 for a generic
SU(N) theory:

I 0
@3~a!#5S CF

22
CF

2ND E
k0

S ~P1p1p82k0!~P12p2k0!

@~P/21p2k!22m2#
1

~2P12p81k0!~2P1p1p81k0!

@~2P/21p81k!22m2# D'2S CF
22

CF

2ND S L

2
2 imD ,

~39!

I 0
@3~b!#5

CF

2N E
k0

~P12p81k0!~2P12p81k0!~P1p1p82k0!~P12p2k0!

@~P/21p2k!22m2#@~2P/21p81k!22m2#
'

CF

2N S L

2
22imD , ~40!

I 0
@3~c!#52S CF

22
CF

2ND E
k0

52S CF
22

CF

2ND L

2
. ~41!

Using the abbreviations

E
k0

5E dk0

2p

L2

k0
21L2 , ~42!

CF5
N221

2N
, ~43!

we have written the result for Pauli-Villars regularization to make the cancellation of the liner divergent parts obvious.
For the double Coulomb exchange graph from Fig. 2 we obtain for the time component integral

I 0
@2~b!#52CF

2E
k0

@~p081k0!22P214mAEkEp8#@~p01k0!22P214mAEkEp#

@~P/21k0!22Ek
2#@~2P/21k0!22Ek

2#
'2CF

2 S L

2
2 imD . ~44!

Collecting everything from above we have

I 05I 0
@3~a!#1I 0

@3~b!#1I 0
@3~c!#1I 0

@2~b!#52CF
2 im, ~45!

which leads with Eqs.~38!, ~43!, and~3! immediately to the
result

DMAbelian box52
ma4

16n3~ l 11/2!
. ~46!

The net result for the spectrum of two scalars bound by an
Abelian gauge field is equal to that of Ref.@4#. However, we
showed which graphs contribute in a pure BS approach,
which can be used as a basis for any higher-order calcula-
tion.

We have also checked the derivative]K/]P0 contributing
to h1 and theX graphs of Fig. 4~g! with transverse gauge
particles for possible contributions. Our estimates only yield
contributions to higher order. Due to mass and wave function
renormalization we can further assume that the graphs of
Figs. 4~e! and 4~f! give only contributions toO(a5 ln a) as
in the fermionic case@12#. Possible large contributions of
lighter particles to the vacuum polarization as depicted in
Fig. 4~c! can be treated as in the fermionic case@13#.

In supersymmetric theories auFu4 term is part of the
Lagrangian. Clearly it can be put in by hand into the Lan-
gragian of an ordinary quantum field theory. The con-
tribution from an interaction term of the form
2l/2(F†TaF)(F†TaF) is easily calculated:

DMX52CFl
ma3

32pn3 d l0 ~47!

and gives a contribution of the same form as the Darwin term
~usually interpreted as a zitterbewegung contribution!, which
is suppressed by two orders ina in the scalar theory. There
may exist a small chance that this term may be helpful for
the determination of the supersymmetry parameters of the
theory contained inl.

For an ordinary quantum field theory without a direct in-
teraction on the tree level it was shown first by Rohrlich@14#
that a counter term of this form is needed for the scattering of
two scalars@e.g., the graphs of Fig. 3 and the first of Fig.
2~b! with photons in the Feynman gauge#. It is interesting to
note that in the Coulomb gauge the divergencies for the Cou-
lomb photons cancel and the only divergent graph is the one
of Fig. 3~c! with transverse photons.

The spectrum calculated so far is common for the Abelian
and the non-Abelian theory. Collecting all pieces we have
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DM5DMF,nl
j 1

ma4

8 F 5

4n4 1
d l0

n3 S 12
CFl

4pa D

2
4

n3S l 1
1

2D G , ~48!

whereDMF,nl
j originates in the contribution ofj light fermi-

ons to the vacuum polarization and can be found in@13#.
It was pointed out first in@15# that in the case of a non-

Abelian gauge field further corrections may arise due to the
gluon splitting vertices. TheO(a3) corrections from Figs.
4~a! and 4~b! as well as theO(a4) corrections from the
corresponding two-loop graphs are obviously the same as in
the fermionic case. The vertex correction shown below in
Fig. 4~d! has been calculated in@15# for the fermionic case.

Here we will give a calculation of the same contribution
for scalar constituents. After performing the color trace the
perturbation kernel for the second graph in Fig. 4~d! reads

H @4~d!,2#528ig4E d4k

~2p!4

~P01p01p082k0!~2P01p01p08!

qW 2~kW2qW !2@~P/21p1k!22m2#k2 S 2~pW qW !1
~pW kW !~qW kW !

kW2
D . ~49!

Performing thek0 integration and using the scaling

P0→2m1O~a2!,

p0→a2p0 ,

kW→akW

to extract the leading contribution ina we find that

H @4~d!,2#52
g2m

2

pW qW

uqW u3 . ~50!

Adding the similar contribution from the first graph in Fig.
4~d! gives

H @4~d!#52
9p2a2m

uqW u
. ~51!

This result differs by a factor 4m2 from the fermionic result,
which is compensated by a corresponding difference in the
wave functions to give eventually precisely the same result
as in the fermionic case

DM5 K 9p2a2

4muqW u L 5
9ma4

32n3S l 1
1

2D . ~52!

In view of the fact that the result depends only on the angular
momentum and not on the spin this seems reasonable. How-
ever, we have seen in the case of the Darwin term that this
kind of reasoning sometimes fails.

Proceeding to the graph of Fig. 4~h! we observe that in
contrast to the fermionic case the zero component integration
develops Coulomb divergencies like the Abelian contribu-
tions. Since these integrations are a little bit cumbersome in
dimensional regularization we sketch the calculation in the
Appendix. It turns out finally that the box graph contribution
in Fig. 4~h! gives the same result as in the fermionic case,
which was calculated recently@16#:

Š^H @4~h!#&‹52
81

128
p~122p2!K a3

qW 2L . ~53!

The box graph with two Coulomb lines crossed vanishes due
to the color trace. Another box graph with the Coulomb ver-
tices on one scalar line replaced by a ‘‘seagull vertex’’~two
gauge boson–two scalar vertex! can be shown to contribute
to O(a5). However, they are in principle needed to cancel
the Coulomb singularities.

Thus the difference in the spectrum of the scalar bound
state toO(a4) compared to the fermionic case is entirely due
to the graphs also present in the Abelian theory discussed
above.FIG. 4. Graphs contributing equally as in the fermionic case.
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IV. BOUND STATE CORRECTIONS
TO THE DECAY WIDTH

Assuming that the scalar particle under consideration de-
cays into two other particles, the decay width is the imagi-
nary part of the corresponding self-energy functionS at the
mass shell. Focusing on the stop quark a possible scenario
could bet̃R→b1x̃ i @17#. We shall be interested in terms of
the orderO(a2G) whereG is the tree level decay width. The
first part of the perturbation kernel due to the exact inverse
propagatorp22m22S(p2) for the bound state corrections
to the decay width reads

H15 iD 212 iD 0
21

'22i ~2p!4d4~p12p22P!S8~m2!~p1
22m2!~p2

22m2!.

~54!

In Eq. ~54!, p1 and p2 are the four momenta of the particle
and the antiparticle, respectively.P is the total momentum.
To derive Eq.~54! we expanded the self-energy function
around the mass shell

S~p2!5S~m2!1S8~m2!~p22m2!1O@~p22m2!2#
~55!

and we assumed that the decay width used in the zero-order
equation~e.g., inD0! is given by

G52Im
S~m2!

m
. ~56!

As has been first shown in@18#, the gauge dependence
contained in the off-shell contributionS8 is canceled by
parts of the vertex correction depicted in Fig. 4~f!. The latter
give rise to a perturbation kernel,

H25L0

4pa

qW 2 ~2P01p01p08!, ~57!

with L0 representing the vertex correction. The color trace is
already included ina. As in the fermionic case@7# it is
possible to derive a Ward identity, which guarantees the can-
cellation of the gauge-dependent terms@the Ta’s are the
SU(N) generators#

Lm
a ~p,q50!522gTapm

]

]p2 S~p2!,

ImL0@p5~m,0W !,q50#522m ImS8~m2!. ~58!

But the detailed calculation shows differences to the fermi-
onic case: the sum of the contributions fromH1 and H2
vanishes to the desired order with the help of the zero-order
equation

ImŠ^H11H2&‹'0. ~59!

On the other hand, we observed above that the wave func-
tions for decaying fermions and scalars were very different.
While it was possible to obtain the same wave functions for
decaying fermions and for stable ones, in the bosonic case
we used wave functions explicitly containing the decay

width ~cf. Sec. II B!. Thus we have to reexamine the relativ-
istic corrections to the energy levels. Among the contribu-
tions considered in the last section only the relativistic Cou-
lomb correction Fig. 1~a! can produce corrections to
O(a2G).

It is easy to see that the only difference comes from the
fact that the perturbation has to be taken at the position of the
pole ~22!, which leads to the replacement

sn
2→sn

21 i
G

m
~60!

in Eq. ~31!. We thus get a relativistic correction to the decay
width of the bound state

DG@1~a!#52
Ga2

2n2 . ~61!

This has to be added to theO(a2G) term of Eq.~22! to yield
the final result for the bound state correction to the decay
width:

DG52
Ga2

4n2 . ~62!

This result generalizes the result of@7,18# to the bosonic
case. We can thus say that the effect of the bound state
corrections to the decay width can be interpreted entirely as a
time dilatation effect as was first conjectured for the fermi-
onic theory@19#.

V. CONCLUSION

We have presented a consistent formalism for the calcu-
lation of bound state properties for scalar particles interaction
with an Abelian or non-Abelian spin one vector field. This is
done by deriving a solvable relativistic zero-order equation
similar to that of Barbieri and Remiddi both for stable and
unstable scalars. Based on this equation a systematic pertur-
bation theory can be built that allows especially the calcula-
tion of the position of the bound state poles to higher orders.

Using this approach the bound state spectrum was calcu-
lated toO(a4). We found that we had to take into account
the Abelian box graphs to this order. This is not the case in
the fermionic theory. All the relativistic Coulomb corrections
only reproduce thepW 4 term from the expansion ofAm21pW 2,
indicating that a fully relativistic formulation is not really
economic for the lowest orders in perturbation theory. How-
ever, the advantage of the presented formalism is that it is
straightforwardly applicable to any higher-order calculation.
We calculated also the non-Abelian contributions toO(a4).
Furthermore our approach makes possible the calculation of
the bound state corrections to the decay width of weakly
decaying scalar particles. We show that—as in the fermionic
case—the inclusion of a finite, constant decay width in the
zero-order equation simplifies the problem of the bound state
correction to the decay width in a profound way. It is now
possible to clearly isolate the underlying cancellation mecha-
nism, which automatically gives a gauge-independent result
that can be interpreted as time dilatation alone. We can thus
generalize the theorem on the bound state corrections for the
decay width to the scalar case: the leading bound state cor-
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rections for weakly bound systems of unstable scalars~with
decays such ast̃R→b1x̃ i! arealwaysof the form ~62!.

It would be very interesting to observe a particle where
the above-mentioned predictions could be tested. Today it
seems that the stop-antistop system could be a candidate. It
will be heavy enough to allow a perturbative treatment even
for the non-Abelian case. Whether the decay width will be
small enough to allow a detailed study of the spectrum re-
mains open to speculation at present. But even for a quite
large decay width the scalar-scalar potential will provide the
basis for interesting threshold calculations for this case@20#,
analogous to the ones for the top-antitop system@19,21#.
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APPENDIX A: ZERO-COMPONENT INTEGRATIONS
FOR THE NON-ABELIAN BOX GRAPH

The diagram 4~h! leads to the energy component integrals

I 0 :5E dk0

2p
E dt0

2p

~P012p02t0!~P012p02q02t0!~2P012p02q02k0!~2P012p02k0!

@~P0/21p02t0!22E
pW 2 tW
2

#@~2P0/21p02k0!22E
pW 2kW
2

#@~ t02k0!22~ tW2kW !2#
. ~A1!

This integral is power counting logarithmic divergent, but it
turns out that the first integration is finite, which leads to a
linear divergent second integration. After scaling Eq.~A1!
reduces to

I 052E dk0

2p
E dt0

2p

3
~2m2t0!~2m1k0!

~ t02 i e!~k01 i e!@~ t02k0!22~ tW2kW !21 i e#
~A2!

To make this integral accessible for the methods of dimen-
sional regularization we use the following trick:

E dt0
2p

1

t06 i e
5 lim

m→0
E dt0

2p

t06m

t02m21 i e
. ~A3!

Performing first thet0 integration we have

I 05I 0,11I 0,2,

I 0,15E dk0

2p

~2m1k0!~k01m!

k0
22m21 i e

I t0
,

I 0,25E dk0

2p
I t0

,

I t0
52

2miG~22D/2!

~4p!D/2

3E
0

1

dx
~xk02m!@x~12x!#D/222

F2k0
21

m2

x
1u tW2kW u2/~12x!G 22D/2

2
iG~12D/2!

~4p!D/2
u tW2kW uD22.

The limit m→0 has to be performed very carefully to obtain

I 0,15
2m2

u tW2kW u2
2

m

2u tW2kW u
,

I 0,252
m

2u tW2kW u
. ~A4!

Thus we have to the desired accuracy

I 05
2m2

u tW2kW u2
. ~A5!

It should be noted that dimensional regularization does not
show linear divergencies. Instead the use of the regulariza-
tion ~42! leads to a visible liner divergent term~of higher

order ina! iL/(8u tW2kW u), which has to be canceled by simi-
lar contributions from graphs where the two Coulomb gluon
vertices on one or both scalar lines are double Coulomb ver-
tices.

APPENDIX B: ZERO-ORDER EQUATION
FOR UNEQUAL MASSES

It is possible to extend the formalism derived in this work
to the case of unequal constituent masses. To illustrate this
we will give in this Appendix a solvable relativistic zero-
order equation for two scalar particles with unequal masses.

We start with Eq.~1! with Sii 8Sj j 8 replaced by

Sii 8
~1!S P0

2
1p0DSj j 8

~2!S 2
P0

2
1p0D

5
1

@~P0/21p0!22E1,p
2 1 i e#@~2P0/21p0!22E2,p

2 1 i e#
,

~B1!

where
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E1,p
2 5m1

21pW 2,

E2,p
2 5m2

21pW 2.

Assuming again a static zero-order kernel and performing the
p0 integration leads to

x~pW !52
E1,p1E2,p

2E1,pE2,p@~E1,p1E2,p!22P0
2#

3E d3p

~2p!3 K0~pW ,pW 8,P0!x~pW 8!. ~B2!

Since (E1,p1E2,p)22P0
2 does not lead to a Schro¨dinger

equation we multiply the numerator and denominator of the
right-hand side with the nonrelativistic limit of the latter ex-
pression:M21M /mRpW 22P0

2, where

M5m11m2 ,

mR5
m1m2

m11m2

are the mass threshold and the reduced mass, respectively.
With a kernel of the form

K0~pW ,pW 8,P0!52MAR~pW ,P0!R~pW 8,P0!
4pa

~pW 2pW 8!2 ,

with

R~pW ,P0!5
2E1,pE2,p@~E1,p1E2,p!22P0

2#

~E1,p1E2,p!@M21~M /mR!pW 22P0
2#

, ~B3!

the Bethe-Salpeter equation~1! may be solved in the same
way as the equal mass case except thatAEp→AR.

The eigenvalues are obtained from

P0
22M2

2M
5

mRa2

2n2 ,

P05Pn5M1
mRa2

2n2 1
mR

2a2

8Mn4 1••• .

The normalization of the wave function is now more in-
volved. Again we start from

GG2151,

x̄nF ]

]P0
~2 iD 0

211K0!G
P0→Pn

xn51, ~B4!

but now alsoK0 is P0 dependent. After some calculation we
finally abtain for the normalized wave function

x~p!52 i
AR~pW ,Pn!@M21~M /mR!pW 22Pn

2#

A2Pn@~Pn/21p0!22Ep
21 i e#@~2Pn/21p0!22Ep

21 i e#
f~pW !. ~B5!

The extension of the present work to the unequal mass case is thus possible in a straightforward manner but the calculations
become more involved.
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