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We investigate a generalized nonlinear O(3)s model in three space dimensions where the fields are maps
from R3ø$`% to S2. Such maps are classified by a homotopy invariant called the Hopf number which takes
integer values. The model exhibits soliton solutions of closed vortex type which have a lower topological
bound on their energies. We numerically compute the fields for topological charge 1 and 2 and discuss their
shapes and binding energies. The effect of an additional potential term is considered and an approximation is
given for the spectrum of slowly rotating solitons.@S0556-2821~97!00520-1#

PACS number~s!: 11.27.1d, 11.10.Lm

I. INTRODUCTION

The nonlinear O~3! s model in~311!-dimensional space-
time is a scalar field theory whose target space isS2. The
static fields are mapsR3ø$`%°S2 and can be classified by
a homotopy invariant which is called the Hopf number. Such
a model in three space dimensions must include higher order
terms in the field gradient in order to allow non-singular,
topologically nontrivial, static solutions. The corresponding
‘‘ s model with a Skyrme term’’ was proposed long ago by
Faddeev@1#. For this model the Hopf number provides a
lower topological bound on the energy@2#.

Early studies on ‘‘Hopfions’’~soliton solutions of Hopf
number unity! in classical field theory, including estimates
for their size and mass, were carried out by de Vega@3#.
Subsequently it was suggested to employ them in an effec-
tive chiral theory describing low-energy hadron dynamics; in
that respect they are similar to Skyrmions@4#. It was later
shown by Kundu and Rybakov@5# that Hopfions in the O(3)
s model are of closed vortex type.

Models with nonzero Hopf number have also been inves-
tigated in condensed matter physics for the description of
three-dimensional ferromagnets and superfluid3He @6,7#.
These are effective theories of Ginzburg-Landau type where
the fields are interpreted as physical order parameters. How-
ever, a field configuration which is a solution of the full
equations of motion has not been found for any of the men-
tioned theories.

In this paper we mainly study classical static Hopfions.
Our model is defined in Sec. II where also an ansatz of
azimuthal symmetry is introduced which is later used for
numerical computations. In Sec. III we present our numerical
results which are minima of the energy functional for Hopf
number one and two. We discuss their shapes and binding
energies as well as their relation to~211!-dimensional soli-
tons. Our model has a self-interaction coupling parameter
and we study the dependence of the energy on this coupling.
In addition, the effect of a symmetry breaking potential term

is described. In Sec. IV we give a simple approximation for
the excitation spectrum of a Hopfion slowly rotating around
its axis of symmetry. We conclude with Sec. V where we
also remark on possible further investigations.

II. HOPF MAPS AND TOROIDAL ANSATZ

We are almost exclusively interested in static solutions
and therefore define our model by the following energy func-
tional onR3:

Estat@f#5LE
R3

dx
1

2
~] if!21

g1

8
~] if3] jf!2

1
g2

8
~] if!2~] jf!2. ~1!

For g250 this is equivalent to the static energy of the
Faddeev-Skyrme model@1,2#. The field f is a three-
component vector in isospace, subject to the constraint
f251. The cross product is taken in internal space and the
coordinate indicesi , j run from 1 to 3.

For g15g250 minima of Estat @Eq. ~1!# are harmonic
maps fromR3 to S2. As shown in@8#, all nonconstant har-
monic maps are orthogonal projectionsR3°R2, followed by
a harmonic mapR2°S2 and therefore have infinite energy.

Consistently, simple scaling arguments along the line of
the Hobart-Derrick theorem@9# show that the fourth-order
terms in the energy functional are required to stabilize the
soliton against shrinkage. We include here the most general
combination of global O(3)-invariant fourth-order terms.

The parameterL is a constant of dimension energy/length
and determines the models energy unit. The couplingsg1 and
g2 are of dimension~length! 2. The ratiog1 /g2 is the only
physically relevant coupling since an overall scaling ofg1
andg2 can be absorbed by a rescaling of length and energy
units. Using (] if3] jf)2 5 (] if)2(] jf)22(] if•] jf)2

and the inequality

2(
i j

~] if•] jf!2>(
i j

~] if!2~] jf!2>(
i j

~] if•] jf!2,

~2!

*Electronic address: Jens.Gladikowski@durham.ac.uk
†Permanent address: Institut fu¨r Theoretische Physik, Augustus-

platz, D-04109 Leipzig, Germany. Electronic address:
hellmund@tph100.physik.uni-Leipzig.de

PHYSICAL REVIEW D 15 OCTOBER 1997VOLUME 56, NUMBER 8

560556-2821/97/56~8!/5194~6!/$10.00 5194 © 1997 The American Physical Society



one sees that the allowed ranges for the coupling constants
areg2>0 andg1.22g2 .

For finite energy solutions one requiresf→n as ur u→`,
wheren is a constant unit vector. ThusR3 can be one-point
compactified toS3 and the fieldsf are maps

f:S3°S2. ~3!

Becausep3(S2)5Z, everyf falls into a class of topologi-
cally equivalent maps, where each class is characterized by
an integer: the Hopf numberH.

Although it is not a simple ‘‘winding number,’’H has an
elementary geometric interpretation. The preimage of every
point of the target spaceS2 is isomorphic to a circle. All
those circles are interlinked with each other in the sense that
any circle intersects the disc spanned by any other one. The
Hopf number just equals the multiplicity by which two arbi-
trary circles are linked.

H also has a differential geometric representation@10#: If
f is a generator of the de Rham cohomologyHdR

2 (S2), its
pullback F underf is necessarily exact sinceHdR

2 (S3)50.
Hence a one-formA with F5dA exist andH;*A`F.

In coordinate language, the dual ofF is
Bi5« i jkf•] jf3]kf and

H52
1

~8p!2ER3
dxB–A. ~4!

It was proved in@2# that the energy, Eq.~1!, has a lower
topological bound in terms ofH. For g1>0 it is given by

Estat>LkH3/4, ~5!

wherek5A2g1(2p)233/8 @5#.
The variational equations resulting from Eq.~1! are

coupled nonlinear partial differential equations. It would be
useful to find a parametrization off which carries nonzero
Hopf charge and allows the equations to be reduced to ordi-
nary differential equations. There have been two proposals
for such fields in the literature. One of them uses spherical
coordinates and is a composition of the standard Hopf map
and a mapS2°S2 for which a hedgehog ansatz is employed
@7,11#. Alternatively, a closed vortex ansatz in toroidal coor-
dinates was suggested@3,4,12,13#. However, as shown in
@14#, even forg250 none of these proposals allows a con-
sistent separation of variables in the variational equations
derived from Eq.~1!.

At this point it is instructive to look at the symmetries of
the field. It was shown in@5# that the maximal subgroup of
O(3)X^ O(3)I under which fields with nonvanishing Hopf
number can be invariant is

G5diag@O~2!X^ O~2! I #. ~6!

Here O(2)X and O(2)I denote rotations about a fixed axis in
space and isospace, respectively. We choose thez and f3
axes as the axes of symmetry. According to the Coleman-
Palais theorem we expect to find the minimal energy solution
in the class ofG-invariant configurations@17#. Therefore we
use the most generalG-invariant ansatz, written in terms of
two functionsw(j1 ,j2) andv(j1 ,j2). They depend on co-

ordinatesj1 and j2 which form an orthogonal coordinate
system together witha, the angle around thez axis:

f11 if25A12w2~j1 ,j2!ei [Na1v~j1 ,j2!] ,

f35w~j1 ,j2!. ~7!

We have checked the consistency of this ansatz with the
variational equations derived from Eq.~1!. The components
f1 andf2 have to vanish along thez axis for the field to be
well defined. This is realized by settingf(0,0,z) 5 n 5 ~0,
0, 1!, which also defines the vacuum state of the theory. In
order to describe a nontrivial map,f has to be surjective.
Hence there is at least one pointr0 with f(r0)52n. Under
the action ofG, r0 represents a full circle around thez axis.
We fix our coordinate system such that this circle lies in the
xy plane and definea[ur0u. On every trajectory from the
circle to thez axis or infinity, w(j1 ,j2) runs at least once
from 21 to 1. Therefore the surfaces of constantw are ho-
meomorphic to tori.

This structure prompts us to choose toroidal coordinates
(h,b,a), related to cylindrical coordinates (r ,z,a) as

r 5
asinhh

t
, z5

asinb

t
, ~8!

wheret5coshh2cosb. Surfaces of constanth describe tori
about thez axis, while each of these tori is parametrized by
the two angles (b,a). The two casesh50 andh5` corre-
spond to degenerated tori,h50 being thez axis andh5`
the circle of radiusa in the xy-plane.

The functionw(h,b) is subject to the boundary condi-
tionsw(0,b)51,w(`,b)521 and is periodic inb. v(h,b)
is an angle aroundf3 and can include windings aroundb.
Therefore we set v(h,b)5Mb1v0(h,b) where
v0(.,b):S1°S1 is homotopic to the constant map. Sincev is
ill defined for w561, it is not restricted by any boundary
condition ath50,̀ .

The ‘‘potential’’ A and the ‘‘field strength’’B for this
ansatz are given by

Aa52
t

asinhh
N~w21!, Ab52

t

a
~M1 v̇0!~w11!,

Ah52
t

a
v08~w11!, Ba52

t2

a2
@w8~M1 v̇0!2v08ẇ#,

Bb522
t2

a2sinhh
Nw8, Bh52

t2

a2sinhh
Nẇ, ~9!

where the dot and prime denote derivatives with respect tob
andh, respectively. Note that the fieldA is well defined on
all of R3. The gauge has been chosen such thatAa vanishes
for h50 ~where the coordinatea is undefined! and analo-
gouslyAb vanishes forh5`.

Equation~4! then givesH5NM in accordance with the
linking number definition given above. The energy Eq.~1! of
ansatz equation~7! is given by
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E@w~h,b!,v~h,b!,a#5 pLE dhdb
a3sinhh

t3 H ~¹w!2

12w2
1~12w2!S ~¹v !21

N2t2

a2sinh2h
D

1
g1

2 S N2t2

a2sinh2h
~¹w!21~¹w3¹v !2D 1

g2

4 F ~¹w!2

12w2
1~12w2!S ~¹v !21

N2t2

a2sinh2h
D G 2J .

~10!

In toroidal coordinates the gradient includes a factora21.
Hence the term quadratic in the gradients is proportional toa
while the quartic terms are inverse proportional to it. For
soliton solutions, the energy functional has to be varied with
respect tow, v, anda.

III. NUMERICAL RESULTS

The variational equations for Eq.~10! are highly nonlin-
ear coupled partial differential equations and numerically
hard to tackle. Therefore we solved the problem by a mini-
mization of the energy functional which was discretized on
an (h,b) grid. The search for the minimum in a high-
dimensional space is feasible using theNETLIB routineve08
with an algorithm described in@15#. This method is appli-
cable if the objective function is a sumf (x)5( f i(x) of sim-
pler functionsf i , each of which is nonconstant only for a
few components of the~multidimensional! vectorx. Thus the
Hessian matrix is very sparse and can be updated locally.
This saves a considerable amount of memory and time com-
pared to a more naive implementation of a conjugate gradi-
ent search.

We obtain field configurations as displayed in Fig. 1~a!
where the Hopf number equals 1. In this plot the fieldf is
viewed from above the north pole of targetS2. Isovectors in
the northern hemisphere terminate in a cross, those in the
southern hemisphere in a dot. The toroidal structure of the
fields is clearly visible. Also note that the fields in the south-
ern hemisphere span a torus indeed.

There is an interesting interpretation of such configura-
tions in terms of the O(3)s model in~211! dimensions, the
solutions of which we call~anti-! baby Skyrmions. The fields
in the positive and negativex half-plane of Fig. 1 are baby
Skyrmions and antibaby Skyrmions, respectively. This can
be understood in the following way. Wilczek and Zee@16#
show that a~211!-dimensional configuration of Hopf num-
ber one can be produced by creating a baby-Skyrmion–
antibaby-Skyrmion pair from the vacuum, rotating the~anti-!
Skyrmion adiabatically by 2p and then annihilating the pair.
In our model time corresponds to the third space dimension,
hence Fig. 1~a! displays a ‘‘snapshot’’ at the time when the
antibaby Skyrmion is rotated byp. Baby Skyrmions are
classified by a homotopy invariantQPZ due top2(S2)5Z.
The analytic expression forQ is given by

Q5
1

4pER2
dxf•]1f3]2f, ~11!

where 1 and 2 denote Cartesian coordinates inR2. The topo-
logical charge density is half thea component ofB. The

integral over the whole plane vanishes because the contribu-
tions for negative and for positivex exactly cancel. How-
ever, if integrated over the positive half-plane only, Eq.~11!
yields the baby Skyrmion number for ansatz~7!:

Q5
1

8pE0

2p

dbE
0

`

dh
a2

t2
Ba5M , ~12!

where we useBa of Eq. ~9!.
Next we turn to Hopfions of topological charge two. For

parametrization, Eq.~7!, there are two ways of creating a
Hopfion with H52, namely by setting eitherN or M to 2.
Both cases correspond to two Hopfions sitting on top of each
other. In order to determine which configuration represents
the true ground state we computed their energies and found
that the configuration withN52, M51 yields the lower en-
ergy for all couplings. The interpretation of theH52 solu-
tions in terms of a~211!-dimensional soliton-antisoliton pair
is equivalent to the one given above for the one-Hopfion.
Because the multiplicity of the azimuthal rotation isN52
for the two-Hopfion, the antibaby Skyrmion in the negativex
half-plane@see Fig. 1~b!# has a relative angle ofp compared
to the antibaby Skyrmion of Fig. 1~a!.

It is instructive to investigate how the inclusion of a po-
tential termV@f# alters the configuration. Its energy can be
lowered by rescalingx →lx (l→0) under whichV→l3V.
This means that the potential term induces a ‘‘shrinkage’’ of
the configuration in the sense that the favored position of the
fields is closer to their vacuum value. This effect is counter-
balanced by the higher order derivatives in the energy func-
tional Eq.~1!.

Any potential explicitly breaks the model’s global O(3)
symmetry because O(3) acts transitively on the target space.
We choseV5m2*dx(12n•f), where the parameterm is of
dimension ~length! 21 and, in a quantum version of the
theory, becomes the mass of the elementary excitations. The
minimum energy solution form54 can be seen in Fig. 1~c!.
The tubelike region where the field is in the southern hemi-
sphere has clearly shrunk. Adding a linear potential term also
means that the fields fall off exponentially at large distances.
The reason is that the equations of motion become in the
asymptotic limit those of the massive Klein-Gordon equa-
tion.

The fields of minimal energy correspond, via Eq.~1!, to
energy distributions which are displayed in Fig. 2. Despite
the toroidal structure of the fields, we find that the energy for
the Hopfion ofH51 is lump-shaped, see Fig. 2~a!. Although
unexpected, this is not entirely unlikely, because the field
changes far more rapidly within the discur u<a than outside
it. Hence the gradient energy can be concentrated in the vi-
cinity of the origin.
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If the potential term becomes very large compared to the
gradient terms one expects the energy to become more local-
ized around the filament where the fields are far away from
the vacuum. We observe this transition to a toroidal energy
distribution atm'4 for g151, g250.

The energy distribution of the two-Hopfion is of toroidal
shape~for all m), as shown in Fig. 2~b!. It is a common
feature in many soliton theories that solutions of topological

charge two are tori, notably Skyrmions, baby Skyrmions, and
magnetic monopoles. It is interesting to ask whether the two-
Hopfion is in a stable state or likely to decay into two
Hopfions of charge one. As an estimate for short range in-
teractions one can compare the energy per Hopfion for the
solution of H51 andH52 and conclude from the sign of
the energy gap whether there is a repulsive or attractive
channel. Our results are plotted in Fig. 3~a!, which also

FIG. 1. ~a! Field configuration in thexz plane forH51, g150.4,g250.4. ~b! Field configuration ofH52, g150.4,g250.4. ~c! Field
configuration with potential term,H51, g151, g250, m54. The field is projected into thef1f2 plane. A cross indicatesf3.0, a dot
f3,0. Therefore the vacuum state is denoted by a cross only.
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shows the topological bound Eq.~5!. For a pure Skyrme
coupling we obtain energies of 197L and 2*158L for the
one-Hopfion and two-Hopfion, respectively. Moreover, it
turns out that for all couplings the two-Hopfion has a lower
energy per topological unit than the one-Hopfion. This indi-
cates that there is a range where the forces are attractive and
that the two-Hopfion might be stable at least under small
perturbations. Of course, there can be a range in which the
forces are repulsive, however, an investigation of such inter-
actions would require a full~311!-dimensional simulation
which is beyond our present means. Also note that the gap
between the energies per Hopfion is largest when the fourth-
order terms are purely the Skyrme term. On the other hand,
for g1→22g2 ~i.e., g→1) the energy of the quartic terms
tends to zero. Hence the energy of the soliton vanishes as a
consequence of the above-mentioned Hobart-Derrick theo-
rem.

IV. SPINNING HOPFIONS

Finally, we study the effect of a slow rotation around the
axis of symmetry. For this we use a Lorentz-invariant exten-

sion of our model into~311! dimensional space-time. The
energy of the rotating HopfionE5Erot1Estat, whereEstat is
the static energy given by Eq.~1! and Erot is the rotation
energy functional:

Erot@f#5LE
R3

dx
1

2
~] tf!21

g1

8
~] tf3] if!2

1
g2

8
~] tf!2~] if!21O@~] tf!4#. ~13!

In the spirit of a moduli space approximation we assume that
the configuration does not alter its shape due to the rotation
~‘‘rigid rotor’’ !, i.e., it is given at any time by a static solu-
tion ~see@17# for a review on similar treatment of the Skyr-
mion!. We impose time dependence on the azimuthal angle
by a→a1(v/N)t with constant velocityv. Erot leads to a
term in the energy that is proportional tov2:

FIG. 2. ~a! Energy density e ~arbitrary units! for
H51, g150.4,g250 in cylindrical coordinatesr ,z. ~b! Energy
densitye for H52, g150.4,g250.8 overr ,z.

FIG. 3. ~a! Dependence of the energyEstat per Hopfion on the
quartic couplings. They are parametrized asg15123g, g25g.
Henceg50 corresponds to pure (] if3] jf)2 coupling,g51/3 to
pure (] if)2(] jf)2 coupling and g51 to the case
(] if)2(] jf)222(] if3] jf)2. The energy is given in units ofL.
The topological bounds for pure Skyrme coupling are also dis-
played.~b! Dependence of the moment of inertiaJ per Hopfion on
the couplingg.
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E5Estat1
J

2
v2, ~14!

where terms O(v4) are neglected.J is the moment of inertia
and, using Eq.~7!, given by

J52pLE dhdbH 11
g1

2

~¹w!2

12w2
1

g2

2

3F ~¹w!2

12w2
1S ~¹v !21

N2t2

a2sinh2h
D ~12w2!G J ~12w2!.

~15!

J can be measured explicitly on the individual solution. We
plotted the values forH51 andH52 in Fig. 3~b!. The mo-
ment of inertia per Hopfion is always larger for theH51
solution, with an increasing gap for decreasingg. This
should be compared with the dependence ofEstat on g.

The functional Estat @Eq. ~1!# is invariant under
a-rotations while the fields of ansatz~7! are clearly not.
Therefore, upon quantization, the coordinatea describes a
zero mode and requires treatment as a collective coordinate.
This is similar to the problem of the rotating radially sym-
metric Skyrmion. In analogy to the Skyrme model we there-
fore use, as a first approximation, the spectrum obtained by a
straightforward quantization. The canonical momentum is
l 5 i (d/da)(\51) and the rotational energyErot52 l 2/2J. It
is then trivial to solve the eigenvalue problemErotc5lc,
which givesln5n2/2J.

V. CONCLUSIONS

We have studied topological solitons in a generalized
nonlinear O(3)s model in three space dimensions. Physi-
cally one may think of them as a model for hadronic matter
or topological defects in a condensed matter system. By us-
ing a general ansatz for the fields we obtained explicit nu-
merical solutions for soliton number one and two. Unexpect-
edly, the energy of the one-Hopfion is distributed as a lump.
We also observed that two solitons sitting on top of each

other attract, thus indicating a stable configuration.
There are several interesting questions which remain un-

answered. In particular, the stability of Hopfions of higher
topological charge deserves some scrutiny. It is worthwhile
asking how multisolitons which sit on top of each other, or at
least are very close, behave under induced perturbations. In
analogy to planar O(3)s models there might be several
decay channels into less symmetric configurations@18#.

At the opposite end of the scale, it would be instructive to
look in greater detail at the interaction potential of two or
more well-separated Hopfions. This is also interesting in
comparison to the well-studied dynamics of Skyrmions and
monopoles. Clearly, a first step in such an investigation
would be to determine the asymptotic fields of the Hopf
soliton. It seems obvious that intersoliton forces will depend
on the orientation of the Hopfions.

The complete description of Hopfion dynamics would re-
quire a huge numerical effort which can, however, possibly
be reduced by an appropriate approximation scheme. For
Bogomol’nyi solitons, the low-energy behavior can be ap-
proximated via the truncation of the dynamics to the moduli
space. Although our numerical results show that Hopfions
are not of Bogomol’nyi type, given that the static forces
between them are weak, there is a chance that their dynamics
can be described by some kind of moduli space approxima-
tion, in analogy to Skyrmions~which are also not of
Bogomol’nyi type!.

Finally, it seems worthwhile to study spinning Hopfions
in a more sophisticated way. This should include an assess-
ment of the back reaction of the rotation on the matter fields.
From this one expects a nontrivial shift of the energy levels
in the rotation spectrum and possibly radiation of excessive
energy.
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