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Static solitons with nonzero Hopf number

Jens Gladikowski and Meik Hellmund
Department of Mathematical Sciences, South Road, Durham DH1 3LE, England
(Received 3 September 1996

We investigate a generalized nonlinear OB )nodel in three space dimensions where the fields are maps
from R3U{} to S%. Such maps are classified by a homotopy invariant called the Hopf number which takes
integer values. The model exhibits soliton solutions of closed vortex type which have a lower topological
bound on their energies. We numerically compute the fields for topological charge 1 and 2 and discuss their
shapes and binding energies. The effect of an additional potential term is considered and an approximation is
given for the spectrum of slowly rotating solitorj§0556-282197)00520-1

PACS numbsds): 11.27+d, 11.10.Lm

I. INTRODUCTION is described. In Sec. IV we give a simple approximation for
the excitation spectrum of a Hopfion slowly rotating around
The nonlinear @) o model in(3+1)-dimensional space- its axis of symmetry. We conclude with Sec. V where we
time is a scalar field theory whose target spac&4sThe also remark on possible further investigations.
static fields are mapB3U{>=}—S? and can be classified by
a homotopy invariant which is called the Hopf number. Such
a model in three space dimensions must include higher order
terms in the field gradient in order to allow non-singular, We are almost exclusively interested in static solutions
topologically nontrivial, static solutions. The correspondingand therefore define our model by the following energy func-
*“ o model with a Skyrme term” was proposed long ago bytional onR3:
Faddeev(1]. For this model the Hopf number provides a
lower topological bound on the ener{]. 1 g
Early studies on “Hopfions”(soliton solutions of Hopf Ecl ¢]:AJ 3dX§(‘9i ¢)2+§1((9i BX 0, b)>
number unity in classical field theory, including estimates R
for their size and mass, were carried out by de VEgj
Subsequently it was suggested to employ them in an effec- +%(3i RCI & )
tive chiral theory describing low-energy hadron dynamics; in 8 J
that respect they are similar to Skyrmiojd. It was later
shown by Kundu and Rybakd¥#] that Hopfions in the O(3) For g,=0 this is equivalent to the static energy of the
o model are of closed vortex type. Faddeev-Skyrme model1,2]. The field ¢ is a three-
Models with nonzero Hopf number have also been invescomponent vector in isospace, subject to the constraint

tigated in condensed matter physics for the description of4?=1. The cross product is taken in internal space and the
three-dimensional ferromagnets and superfldide [6,7]. coordinate indices,j run from 1 to 3.

These are effective theories of Ginzburg-Landau type where For g;=g,=0 minima of Eswt [EQ. (1)] are harmonic
the fields are interpreted as physical order parameters. Hownaps fromR3 to S2. As shown in[8], all nonconstant har-
ever, a field Configuration which is a solution of the full monic maps are orthogona| projectid]ﬁ%e]ﬁz, followed by
equatiOI’lS of motion has not been found for any of the mena harmonic map%ZHSz and therefore have infinite energy.
tioned theories. Consistently, simple scaling arguments along the line of

In this paper we mainly study classical static Hopfions.the Hobart-Derrick theorerfi9] show that the fourth-order
Our model is defined in Sec. Il where also an ansatz oferms in the energy functional are required to stabilize the
azimuthal symmetry is introduced which is later used forsgjiton against shrinkage. We include here the most general
numerical computations. In Sec. Ill we present our numericatompination of global ©8)-invariant fourth-order terms.
results which are minima of the energy functional for Hopf  The parameten is a constant of dimension energy/length
number one and two. We discuss their shapes and bindingqg determines the models energy unit. The coupligand
energies as well as their relation @+ 1)-dimensional soli- g, are of dimensior(length 2. The ratiog, /g, is the only
tons. Our model has a self-interaction coupling .parame_tebhysically relevant coupling since an overall scalinggaf
and we study the dependence of the energy on this couplingnq g, can be absorbed by a rescaling of length and energy
In addition, the effect of a symmetry breaking potential term,,its Using ¢ ¢ 4, )2 = (4, qﬁ)z(&j )2~ (4, ¢ D #)?

and the inequality

II. HOPF MAPS AND TOROIDAL ANSATZ
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one sees that the allowed ranges for the coupling constantsdinatesé; and &, which form an orthogonal coordinate

areg,=0 andg;>—2g0,.
For finite energy solutions one requirgs—n as|r|— o,

wheren is a constant unit vector. Thui&® can be one-point

compactified taS® and the fieldsp are maps

¢SS (3

Becausery(S?) =7, every ¢ falls into a class of topologi-

system together witle, the angle around the axis:

P1tido=1-W(&y,EpelNervien e,
$3=W(&1,&r). (7)

We have checked the consistency of this ansatz with the

cally equivalent maps, where each class is characterized Bjariational equations derived from E(). The components

an integer: the Hopf numbe .
Although it is not a simple “winding number,H has an

¢4 and ¢, have to vanish along theaxis for the field to be
well defined. This is realized by settiny(0,0z) = n = (0,

elementary geometric interpretation. The preimage of everf, 1), which also defines the vacuum state of the theory. In

point of the target spac&? is isomorphic to a circle. All

order to describe a nontrivial magh has to be surjective.

those circles are interlinked with each other in the sense thaience _there is at least one po'natwith é(rg)=—n. Und_er
any circle intersects the disc spanned by any other one. TH&e action ofG, r represents a full circle around tlzeaxis.
Hopf number just equals the multiplicity by which two arbi- We fix our coordinate system such that this circle lies in the

trary circles are linked.

H also has a differential geometric representafib®i: If
f is a generator of the de Rham cohomoldgﬁR(Sz), its
pullback F under ¢ is necessarily exact sindegR(S3)=0.
Hence a one-fornA with F=dA exist andH~ [A/AF.

In coordinate language, the dual ofF s
Bi=sijk¢~&j¢><&k¢and
H ! fd B-A (4)
=— xB-A.
(877)2 R3

It was proved in 2] that the energy, Eq1), has a lower
topological bound in terms dfi. Forg,=0 it is given by

Esa AKHY, ©)

wherek=\2g,(27)?3%8 [5].
The variational equations resulting from E¢l) are

coupled nonlinear partial differential equations. It would be

Xy plane and defin@=|ry|. On every trajectory from the
circle to thez axis or infinity, w(£,,&,) runs at least once
from —1 to 1. Therefore the surfaces of constanare ho-
meomorphic to tori.

This structure prompts us to choose toroidal coordinates
(n,B,a), related to cylindrical coordinates ¢,«) as

asinh asin
r= 7], z= B, 8

T T

where 7= coshy—cos8. Surfaces of constan describe tori
about thez axis, while each of these tori is parametrized by
the two angles 8,«). The two cases;=0 andn=x corre-
spond to degenerated tory,=0 being thez axis and»n=
the circle of radius in the xy-plane.

The functionw(#,8) is subject to the boundary condi-
tionsw(0,8) =1w(«,B)=—1 and is periodic ir8. v(»,B)
is an angle arounds and can include windings aroungl
Therefore we set v(%n,B)=MpB+vg(n,B) where

useful to find a parametrization @ which carries nonzero go(.,ﬂ)281'951 is homotopic to the constant map. Sincés

Hopf charge and allows the equations to be reduced to ord . - o .
nary differential equations. There have been two proposalgI defmed forw=21, it is not restricted by any boundary
ﬁ:ondmon aty=0,.

for such fields in the literature. One of them uses spherica . o e ., .
coordinates and is a composition of the standard Hopf mag The pote_ntlal bA and the “field strength”B for this
and a mas?— S? for which a hedgehog ansatz is employed nsatz are given by
[7,11]. Alternatively, a closed vortex ansatz in toroidal coor-

dinates was suggestd8,4,12,13. However, as shown in A,=
[14], even forg,=0 none of these proposals allows a con-

sistent separation of variables in the variational equations
derived from Eq.(1).

At this point it is instructive to look at the symmetries of
the field. It was shown if5] that the maximal subgroup of
0O(3)x®0O(3), under which fields with nonvanishing Hopf 2 2
number can be invariant is By=—2 T Nw', B,=2 T

T .
2asinh77 N(w—1), Ag= 25( M+vg)(w+1),

T 7 . )
An=25v(’)(w+ 1), Ba=2¥[w’(M +vg) —vwl],

o —Nw, (9
a’sinhy a’sinhy
G=diad O(2)x®0(2),]. (6)

where the dot and prime denote derivatives with respegt to
Here O(2) and O(2) denote rotations about a fixed axis in and », respectively. Note that the fiel is well defined on
space and isospace, respectively. We choose thrd ¢4 all of R3. The gauge has been chosen such favanishes
axes as the axes of symmetry. According to the Colemanfor =0 (where the coordinate is undefinegl and analo-
Palais theorem we expect to find the minimal energy solutiomgously A; vanishes forp=co.
in the class ofG-invariant configuration§l7]. Therefore we Equation(4) then givesH=NM in accordance with the
use the most gener@-invariant ansatz, written in terms of linking number definition given above. The energy Ep.of
two functionsw(&,,&,) andu(&1,€,). They depend on co- ansatz equatiofi7) is given by



5196

(Vw)?
— W2

a3sinhy
L. )0 (n.8),a1= mA [ s

N2z
GO YT
2\ a%sintty

In toroidal coordinates the gradient includes a facior.
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+(1—w2)( (Vou)2+

(VW)2+ (Vwx Vv)z)

2
a’sinttn

2
L 92 (VW)
411 2

2.2
a’sintfy

|

+(1—W2)<(Vv)2+

(10

integral over the whole plane vanishes because the contribu-

Hence the term quadratic in the gradients is proportional to tions for negative and for positive exactly cancel. How-
while the quartic terms are inverse proportional to it. Forever, if integrated over the positive half-plane only, Ebfl)
soliton solutions, the energy functional has to be varied withyields the baby Skyrmion number for anséfz:

respect tow, v, anda.

IIl. NUMERICAL RESULTS

The variational equations for E¢10) are highly nonlin-

1 (2w © g2
Q=g | Tap [ arsem. a2

where we usé, of Eq. (9).

ear coupled partial differential equations and numerically Neéxt we turn to Hopfions of topological charge two. For
hard to tackle. Therefore we solved the problem by a miniParametrization, Eq(7), there are two ways of creating a

mization of the energy functional which was discretized on

an (n,B) grid. The search for the minimum in a high-
dimensional space is feasible using NErLIB routineve08
with an algorithm described ifil5]. This method is appli-
cable if the objective function is a sufifx) ==f;(x) of sim-
pler functionsf;, each of which is nonconstant only for a
few components of thénmultidimensional vectorx. Thus the

Hopfion with H=2, namely by setting eithed or M to 2.

Both cases correspond to two Hopfions sitting on top of each
other. In order to determine which configuration represents
the true ground state we computed their energies and found
that the configuration wittN=2, M =1 yields the lower en-
ergy for all couplings. The interpretation of té=2 solu-
tions in terms of 42+ 1)-dimensional soliton-antisoliton pair

is equivalent to the one given above for the one-Hopfion.

Hessian matrix is very sparse and can be updated locall3ecause the multiplicity of the azimuthal rotation Ne=2
This saves a considerable amount of memory and time confy the two-Hopfion, the antibaby Skyrmion in the negative
pared to a more naive implementation of a conjugate grad'half-plane[see Fig. 1b)] has a relative angle af compared

ent search.

We obtain field configurations as displayed in Figa)l
where the Hopf number equals 1. In this plot the fieids
viewed from above the north pole of targgt Isovectors in

to the antibaby Skyrmion of Fig.(&).

It is instructive to investigate how the inclusion of a po-
tential termV[ ¢] alters the configuration. Its energy can be
lowered by rescaling —\x (A—0) under whichvV—\3V.

the northern hemisphere terminate in a cross, those in thehis means that the potential term induces a “shrinkage” of

southern hemisphere in a dot. The toroidal structure of thene configuration in the sense that the favored position of the
fields is clearly visible. Also note that the fields in the south-io|ds is closer to their vacuum value. This effect is counter-

ern hemisphere span a torus indeed.

balanced by the higher order derivatives in the energy func-

There is an interesting interpretation of such configurasjgna Eq.(1).

tions in terms of the O(3y model in(2+1) dimensions, the
solutions of which we calfanti-) baby Skyrmions. The fields

Any potential explicitly breaks the model's global O(3)
symmetry because O(3) acts transitively on the target space.

in the positive and negative half-plane of Fig. 1 are baby \y/e choseV/=m?2[dx(1— n- ¢), where the parameten is of

Skyrmions and antibaby Skyrmions, respectively. This caryinension (length ~*

be understood in the following way. Wilczek and Zd)|
show that a2+ 1)-dimensional configuration of Hopf num-

and, in a quantum version of the
theory, becomes the mass of the elementary excitations. The
minimum energy solution fom=4 can be seen in Fig.(4d).

ber one can be produced by creating a baby-Skyrmion—ry,q ¢ pelike region where the field is in the southern hemi-

antibaby-Skyrmion pair from the vacuum, rotating theti-)
Skyrmion adiabatically by 2 and then annihilating the pair.

sphere has clearly shrunk. Adding a linear potential term also
means that the fields fall off exponentially at large distances.

In our model time corresponds to the third space dimensionr. reason is that the equations of motion become in the

hence Fig. (a) displays a “snapshot” at the time when the
antibaby Skyrmion is rotated byr. Baby Skyrmions are
classified by a homotopy invaria@ e Z due tom,(S?) =Z.
The analytic expression fd@D is given by

1
Q= prp ‘szxq} 1pX dy¢h, (11

where 1 and 2 denote Cartesian coordinate$?nThe topo-
logical charge density is half the component ofB. The

asymptotic limit those of the massive Klein-Gordon equa-
tion.

The fields of minimal energy correspond, via Ef), to
energy distributions which are displayed in Fig. 2. Despite
the toroidal structure of the fields, we find that the energy for
the Hopfion ofH =1 is lump-shaped, see Fig&@. Although
unexpected, this is not entirely unlikely, because the field
changes far more rapidly within the difd=<a than outside
it. Hence the gradient energy can be concentrated in the vi-
cinity of the origin.
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FIG. 1. (a) Field configuration in thexz plane forH=1,g,=0.4,9,=0.4. (b) Field configuration oH=2,g,=0.4,9,=0.4. (c) Field
configuration with potential termki=1,9,=1,9,=0,m=4. The field is projected into theés; ¢, plane. A cross indicateg;>0, a dot
$3<0. Therefore the vacuum state is denoted by a cross only.

If the potential term becomes very large compared to theharge two are tori, notably Skyrmions, baby Skyrmions, and
gradient terms one expects the energy to become more locahagnetic monopoles. It is interesting to ask whether the two-
ized around the filament where the fields are far away fromHopfion is in a stable state or likely to decay into two
the vacuum. We observe this transition to a toroidal energyHopfions of charge one. As an estimate for short range in-
distribution atm~4 for g;=1,g,=0. teractions one can compare the energy per Hopfion for the

The energy distribution of the two-Hopfion is of toroidal solution ofH=1 andH=2 and conclude from the sign of
shape(for all m), as shown in Fig. @). It is a common the energy gap whether there is a repulsive or attractive
feature in many soliton theories that solutions of topologicalchannel. Our results are plotted in Fig@3 which also
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FIG. 3. (a) Dependence of the enerds.,; per Hopfion on the
quartic couplings. They are parametrized @&s=1— 39, g,=0.

FIG. 2. (@ Energy density e (arbitrary unitg for  Henceg=0 corresponds to purejfgx d;¢)? coupling,g=1/3 to
H=1,9,=0.4,9,=0 in cylindrical coordinates',z. (b) Energy  pure 4,)2(,9] $)2 coupling and g=1 to the case
densitye for H=2,9,=0.4,9,=0.8 overr,z. (01$)%(9;)>—2(9;px ;). The energy is given in units of.

The topological bounds for pure Skyrme coupling are also dis-
shows the topological bound Eg¢5). For a pure Skyrme played.(b) Dependence of the moment of inerfigoper Hopfion on
coupling we obtain energies of 187and 2*158\ for the the couplingg.
one-Hopfion and two-Hopfion, respectively. Moreover, it
turns out that for all couplings the two-Hopfion has a lowersion of our model into(3+1) dimensional space-time. The
energy per topological unit than the one-Hopfion. This indi-energy of the rotating HopfioE = E,+ Egiat, WhereEg,;is
cates that there is a range where the forces are attractive agise static energy given by Eql) and E,, is the rotation
that the two-Hopfion might be stable at least under smalenergy functional:
perturbations. Of course, there can be a range in which the
forces are repulsive, however, an investigation of such inter-
actions would require a ful{3+1)-dimensional simulation E t[¢]:Af dxl(a ¢)2+%(3 bX 9, )2

ro t t i
which is beyond our present means. Also note that the gap RS2 8
between the energies per Hopfion is largest when the fourth-
order terms are purely the Skyrme term. On the other hand, +%(5t¢)2((9i ®)°+0[(3,0)*]. (13
for g;— —2g, (i.e., g—1) the energy of the quartic terms 8
tends to zero. Hence the energy of the soliton vanishes as a
consequence of the above-mentioned Hobart-Derrick thedn the spirit of a moduli space approximation we assume that
rem. the configuration does not alter its shape due to the rotation

(“rigid rotor” ), i.e., it is given at any time by a static solu-

IV. SPINNING HOPFIONS tiqn (see[l?] for a rgview on similar treatment Qf the Skyr-
mion). We impose time dependence on the azimuthal angle

Finally, we study the effect of a slow rotation around theby a— a+ (w/N)t with constant velocityw. E, leads to a
axis of symmetry. For this we use a Lorentz-invariant extenterm in the energy that is proportional &
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) other attract, thus indicating a stable configuration.
E=Esart 507, (14 There are several interesting questions which remain un-
answered. In particular, the stability of Hopfions of higher

where terms %4) are neg|ected_] is the moment of inertia tOpO'OgiCﬁ' charge deserves some Scrutiny. It is worthwhile

and, using Eq(7), given by asking how multisolitons which sit on top of each other, or at
least are very close, behave under induced perturbations. In
9; (Vw)? g, analogy to planar O(3)r models there might be several
JIZWAJ dndB) 1+ = ;v decay channels into less symmetric configuratidir&.
1-w At the opposite end of the scale, it would be instructive to
(Vw)2 N22 look in greater detail at the interaction potential of two or
X +| (Vv)?+ —)(1_\,\,2) ](1_\,\,2)_ more well-separated Hopfions. This is also interesting in
1-w? a’sintf 5 comparison to the well-studied dynamics of Skyrmions and

(15) monopoles. Clearly, a first step in such an investigation

would be to determine the asymptotic fields of the Hopf

J can be measured explicitly on the individual solution. Wesoliton. It seems obvious that intersoliton forces will depend
plotted the values foH=1 andH=2 in Fig. 3b). The mo-  on the orientation of the Hopfions.

ment of inertia per Hopfion is always larger for the=1 The complete description of Hopfion dynamics would re-
solution, with an increasing gap for decreasigg This  quire a huge numerical effolrt which can, hqwever, possibly
should be compared with the dependenc&gf; on g. be reduced by an appropriate approximation scheme. For

The functional Eg, [Eq. (1)] is invariant under Bogomol'nyi solitons, the low-energy behavior can be ap-
a-rotations while the fields of ansai{Z) are clearly not. Pproximated via the truncation of the dynamics to the moduli
Therefore, upon quantization, the coordinatedescribes a space. Although our numerical results show that Hopfions
zero mode and requires treatment as a collective coordinatéreé not of Bogomolnyi type, given that the static forces
This is similar to the problem of the rotating radially sym- between them are weak, there is a chance that their dynamics
metric Skyrmion. In analogy to the Skyrme model we there-can be described by some kind of moduli space approxima-
fore use, as a first approximation, the spectrum obtained by #0n, in analogy to Skyrmions(which are also not of
straightforward quantization. The canonical momentum ig8ogomol'nyi type.

|=i(d/da)(f=1) and the rotational enerdy;,;= —1%/2J. It Finally, it seems worthwhile to study spinning Hopfions
is then trivial to solve the eigenvalue probleB, =\, in a more sophisticated way. This should include an assess-
which gives\,,=n?/2J. ment of the back reaction of the rotation on the matter fields.
From this one expects a nontrivial shift of the energy levels
V. CONCLUSIONS in the rotation spectrum and possibly radiation of excessive
energy.

We have studied topological solitons in a generalized
nonlinear O(3)o model in three space dimensions. Physi-
cally one may think of them as a model for hadronic matter
or topological defects in a condensed matter system. By us- It is a pleasure to thank Wojtek Zakrzewski, Jacek Dziar-
ing a general ansatz for the fields we obtained explicit numaga, and Rob deJeu for helpful discussions. We also wish
merical solutions for soliton number one and two. Unexpectto thank Bernd Schroers for makifig] available to us. J.G.
edly, the energy of the one-Hopfion is distributed as a lumpacknowledges an EPSRC Grant No. 94002269. M.H. was
We also observed that two solitons sitting on top of eachsupported by Deutscher Akademischer Austauschdienst.
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