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Closed inhomogeneous string cosmologies
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We present a general algorithm which permits us to construct solutions in string cosmology for heterotic and
type-1IB superstrings in four dimensions. Using a chain of transformations applied in sequence—corfformal,
duality, and SI2,R) rotations, along with the usual generating techniques associated with Geroch transforma-
tions in Einstein frame—we obtain solutions with all relevant low-energy remnants of the string theory. To
exemplify our algorithm we present an inhomogeneous string cosmologySiviitpology of spatial sections,
discuss some properties of the solution, and point out some subtleties involved in the concept of homogeneity
and isotropy in string cosmologyS0556-282197)06420-3

PACS numbgs): 11.25.Mj, 04.20.Jb, 04.56h

[. INTRODUCTION but homogeneity as well. The ideas to study such a general
behavior were inspired by Landd@] and worked out in

The cosmological implications of string theory are receiv-details in classical papers by Belinski, Lifshitz, and
ing quite broad attention these da§sr a necessarily incom- Khalatniko (BLK) [10]. The techniques due to BLK are
plete list of recent and not-so-recent referenced 5£63,4). strongly rooted in physical intuition, but lack, however, rigor
This is not by chance since, given the lack of traces ofwhen approximations are used in a highly nonlinear regime.
stringy effects in “low-energy” particle physics, the cosmo- Although the conclusions of this analysis are probably cor-
logical scenario appears as a perfect arena for the search i@ ct at large, one must necessarily confront them against the
string blueprints in the early Universe. analytic behavior of exact solutions.

In spite of the impressive progress in the study of string Because of the mathematical complexity of the generic
theory beyond the perturbative regirtfer a review see, for inhomogeneous models, one usually deals with solutions in
example,[5]), we still lack a full-fledged nonperturbative which homogeneity is broken in only one direction. The
formulation which allows a description of the early Universe space-times obtained this way are usually referred tGas
at Planck time, where the classical concepts of space angt Einstein-Rosen cosmologi¢$1-13 and are thought to
time cannot be used any longer. In the meantime, one igrovide the leading approximation to a general solution near
bound to study classical cosmology using the low-energyhe initial singularity{14]. It is important to mention here the
effective action induced by string theory, which generalizese|ation of the Einstein-Rosen cosmologies to the interesting
general relativi_ty by. including other massle_ss fields. As roblem of scattering of plane waves in general relativity
consequence, in string cosmology one continues to ask g5 1¢). This relation, considered first [[17], consists just in
sentially the same questions earlier formulated in the framel'nverting the arrow of time of the vacuum, or vacuum with
work of Einstein relativity, but now posed in the presence Ofmassless fields, inhomogeneous solutions. After all, the ap-
those extra degrees of freedom. The central puzzle of the ;{oach to the focusing two-surface in the collision of self-

retical cosmology remains as well the same, and is concern o . NN
mainly with the question of why the present Universe |00ksgraV|tat|ng plane wavegiot necessarily gravitationas just

as isotropic and homogeneous at large scales. The desire %e tlmle mve;?]g ofbthe behaviﬁr neta:jthe fs'?r?m%mg G.Za ¢
answer this last question leads one to consider the initigf©SMo'ogy. 1S being so, he study of the behavior o

conditions and the evolution of the Universe at the beginningtfing-inducedG, cosmologies may lead to a better under-
of expansiort. standing of such a highly nonlinear process as plane wave

Apart from a few exceptionf3,4], most of the work in ~ Scattering.
string cosmology is focused on homogeneous solutions. The main purpose of this paper is to describe a suffi-
However, since in general relativity the generic solution nea€iently general algorithm which permits the construction of
the cosmological singularity is neither isotropic nor homoge-new solutions of string cosmology starting from vacuum so-
neous, one is led to study cosmological models with les$utions of the Einstein field equations. Vacuu@} space-
symmetry, leaving aside not only the principle of isotropytimes will be used as the basic building blocks of our string
solutions. Before going any further in the description of our
generating technique, it will be useful to briefly mention
*Electronic address: wipfexxa@Ig.ehu.es some facts about the low-energy effective theory of the dif-
TElectronic address: wtblasar@lg.ehu.es ferent superstring models and their symmetries.
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we will not dwell here on different approaches and views as to
how to solve this problem, but just mention some central ideas such?n string cosmology the BLK approach has been recently dis-
as chaotic cosmology progralé], C-gravitational entropy7], and  cussed in the context of the pre-big-bang scenario by Veneziano
the inflationary scenarif8]. [4].
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A. String low-energy effective actions A—(arx+b)/(ca+d), G,,—|cA+d|G,, [18]. Writing
On general grounds, the massless bosonic sector of supdfiS transformation in terms of four-dimensional fields (

strings includes the gravitational fiefd,,,, the dilaton ¢, .=4) we flnq _that the action is invariant under the following
with vacuum expectation value determining the string couield redefinitions(cf. [19]):
pling constant, and the antisymmetric rank-two _terBEjﬁ, bd+ ace 244 acx2+(ad+bc)y,
in addition to other fields depending on the particular super-y) = 73T T2, T
string model under study. The lowest order effective action”  L(Cxatd)“+ce “®]™  [(cx,+d)"+ce =]
for the massless fields can be written as

: e %
l D 2 2 e_¢4: [(CX4+ d)2+cze—2¢4]1/41
Seﬁzmjd X\/667 é R+4(d¢)
H(l)':dH(l)_CH(2)1
1 e (1.2
__Z(H( N2+ S, (1.1 .
1 H(®' =[(cya+d)?+c2e2%4)3 —bHD + aH @),
whereH®=dB® is the field strength associated with the G, =[(cxs+d)?+c%e 2411%G,, .

Neveu-Schwarz—Neveu-SchwarédNS-NS two-form and

Smq is @ model-dependent part which includes other masslesSomparing with the corresponding transformations for the
degrees of freedom. Wheld <10 some of these massless ten-dimensional fields we find that the four-dimensional ones
fields correspond to gauge and moduli fields associated withcquire an “anomalous weight” due to the fact thaf, as

the specific compactification chosen, and the dilagoap-  measured in the string frame, does transform und€2 8.

pearing in(1.1) is related to the ten-dimensional dilatgng The algorithm to be described in the following uses as
by 2¢p=2¢1o—In Vig_p, WhereV,o_p is the volume of the input diagonal vacuum solutions to Einstein equations with
internal manifold measured in units gfx'. two commuting spacelike Killing vectors. Infinite dimen-

We restrict our attention to generic degrees of freedomsional families of solutions of this kind are known
leaving aside the internal components of the ten-dimensionall1,12,17,13 After transforming these diagonal vacuum so-
fields. In the heterotic string cas&,,y contains the Yang- lutions to generate off-diagonal terms in the metric, we gen-
Mills action for the background gauge fielﬁ, which we  eralize them to include a minimally coupled massless scalar
set to zero in the following. In the case of the model-field. A conformal rescaling of the Einstein metric gives so-
dependent part of the type-1I1B superstring things are slighthutions to four-dimensional dilaton gravity andTaduality
more involved; among the massless degrees of freedom fffi@ansformation generates an antisymmetric rank-two tensor
the Ramond-RamondR-R) sector we find, along with a Bﬁy) from the off-diagonal components of the metric. This
pseudoscalaly (the axion and a rank-two antisymmetric leaves us with string cosmology solutions of both the het-
tensorB(2), a rank four self-dual form®¢,, . The presence ~erotic and type-IIB superstring. In the latter case, we still can
of this self-dual form spoils the covariance of the effectivegenerate nontrivial background R-R fields by performing a
action for the massless fields, since there is no way of imSL(2,R) rotation of the solutioricf. [2]). In the next section,
posing the self-duality condition in a generally covariantwe Wil detail the algorithm and in Sec. Ill a concrete appli-
way. But, if we setAy to zero, we can write a covariant cati(_)n will be Workgd out. Finally, in Sec. IV we will sum-
action for the remaining fields with marize our conclusions.

1 II. STRING COSMOLOGY FROM GENERAL RELATIVITY

B _
S (a')P-202 After having outlined the key steps to be followed in the

construction of solutions, we now turn to the generating al-
1 (9x)2+ L (HOy+H@)2|, gorithm itself. In order not to get too involved with the de-
2 12 tails we shall omit some technicalities, referring in cases to
the original papers. We present here only those details and
Notice that the R-R fields do not couple directly to the dila-€Xxpressions necessary to get the final solution and to keep
ton. Thus, the lower dimensionaD& 10) R-R fieldsy and ~ the presentation self-consistent. As mentioned above our
B(?) are obtained from the ten-dimensional ones throygh Starting point is a globally diagonalizabf, line element

14

xf d®x /G|

_ rlO_Dxlo andB®@ = \/mB(l%). which may be put into the following convenient form:
By combining the dilaton and the axion of the ten-

_ af(t,2) _ 412 A b =
dimensional type-lIB superstring into a single complex field ds’=e'“?(~dt*+dZ") + yap(t.2)dx°dx", ab 15'1)

A= x1otie %10, it is possible to check that the bosonic ef-
fective action is invariant under the 8R) transformatiod  The local behavior of the spacetime is defined by the gradi-
ent of the transitivity surface ared(t,z)=/dety,, which
can be globally timelike, spacelike, null or vary from point to
*The two antisymmetric tensoB{!) andB{?) also transform as a  point. We will not restrict our attention to any of these spe-

doublet under S2,R). Notice that here we are using the string Cific cases keeping the determinant arbitrary; just mention
frame in which the metric is not invariant. that in cosmology one is most interested in a globally time-
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like case, which includes anisotropic Bianchi type I-VII .

models and their inhomogeneous generalizations, and a gen- g (Ko~ 5; (K¢')=0. (2.9
eral case where the gradient of the transitivity area may vary

from point to point. The latter includes the most generalif the gradient of the transitivity surface area is globally
Bianchi VIII and IX types with local rotational symmetry timelike one may choos&~t, and the solutions of the

with or without inhomogeneitie$12], precisely the case equation may be presented as combinations of the Bessel
which will serve us as example in this paper. If one of thefunctions of the first and second kifd7]:

Killing vector fields ¢,=4, and&,=4, is orthogonal to the

hypersurface obtained by dragging the surfe@ealong the ¢=pInt+L{A, cod w(z+25)]Ip(wt)}

other Killing vector field then the spacetime is globally di-

agonalizable. We thus start from such a spacetime in vacuum +L{B., cogw(z+29) INo(wl)}

and notice that we can write z+z
—E d arccos?(u n

Yan(t,2) X" =K((t,2)[ P2 (dx}) 2+ e P2 (dx?)?],

2.2 - . L :
22 where £ indicates linear combinations of the terms in curly

where the functiorp(t,z) satisfies the linear wave equation brackets, ando can have a discrete or continous spectrum.
On the other hand, in the more general case when the gradi-
) , ent varies from point to point and the spatial sections I&ive
gt (KP)— 57 (Kp")=0 topology, as it happens in the case of Bianchi IX models,
K~sintsinz [24] and the general solution of the equation
and the other metric functioffi(t,z) may be found by a (2.5 can be expanded in Legendre polynomials of the first
quadraturd11-13. and second kind:

One now applies one of the standard techniques to gener-
ate the nondiagonal solution starting from the diagonal seed
(2.2). This can be done in multiple ways: either using inverse
scattering method of Ref14], the solution generating algo-
rithm described in[20], or an appropriately adapted
Hoenselaers-Kinnersley-Xanthopould$iKX) transforma-
tion [21]. Actually, even a simple Ehlers rotation of the Kill-
ing vectors 22] will do the job. Although this last procedure X[CiP(coz)+D,Q(coz)]. (2.9
does not generate a genuinely nondiagonal sol{toe may , , .
globally rediagonalize the metric leading to a new solytion  Eduations(2.3), (2.4), and (2.6) summarize the prelimi-
combined with aT-duality transformation in the string frame Nary construction in the Einstein frame. Now we transform

it will produce the desired nonvanishing components for th¢€ solution into the string frame by the conformal transfor-
B field mation[25,26|
uv :

z
tan-

tt
an >

d=ay In 5|tz In + a3 In|sint sinz|

o

+|§O [A/P,(cog)+B,Q(cog)]

Assuming that the nondiagonal vacuum solution has been d2_, 2%t g2,
constructed, we now have to solve Einstein equations for the
metric (2.1 with a minimally coupled massless scalar field This provides us with a solution to four-dimensional dilaton
(our proto-dilaton. Fortunately, these solutions may be quite gravity. We are, nevertheless, interested in having nontrivial
easily obtained, since a massless scalar field has the sameglues for other background fields, mainly the two-form po-
characteristics of propagation as gravity, and does not IntI‘Otent|a|B(1) appearing in(1.1). To accomplish this we can use
duce any extra degree of nonlinearity into the problem. Ing T- duallty transformation. Taking adapted coordinates in
fact, if ¢(t,2) is the scalar field, the new solution of the \yhich x° denotes the coordinate along the Killing vector
Einstein equations may be written [23] chosen to dualize, we find new values foB(, ,¢,B(")

iven by[27]:
Yap(t,2)= yip(t,2), 9 y[27]

~ 1 - By
f(t,z)=1"3qt,z) + f54t,2), (2.3 GOOZG_oo’ GO”:G_O/;’
where f¥3{t,z) is the vacuum solution of the line element - B<1)B
(2.2), £54t,2) is determined by g -a 0.Gort or
Y o Goo ’
. 2K . .
fo=———— [2K' o' —K(¢?*+ %], ~. G ~ Go,BEY +Go,BY
K/Z_KZ Bgl):_ﬂ, 5(1323(13 13 v ,
" C':'OO " " G00 (2 7)
2K . .. ~
f’SC:—K,2 2 [K'(¢?+¢'2)—2Kpp'] (2.9 ¢=¢—In{Gqq

The new background fields so obtained automatically satisfy
and the scalar field)(t,z) verifies the following linear dif- the field equations derived from the effective actidnl)
ferential equation: [27]. Since we have two commuting Killing vectors we can



56 CLOSED INHOMOGENEOUS STRING COSMOLOGIES 5169

dualize with respect to both of them to end up with nonzercand the coordinates90<m, 0<¢<2m, and O<y<4w
values for several components Bf!). At this point it is ~ are taken to be Euler angles. For the sake of simplicity, we
important to stress that we are using Buscher’s forn@@ld  have chosen a scalar dilation fief(t, 0) = ¢o(t) + ¢4(t, 6)
just as a formal procedure to generate new solutions of theontaining just two modes, the homogeneous one
low-energy field equations.

So far, the application of our algorithm leads to solutions
to the low-energy equations for the “universal massless bo(t)= - Intanz,
spectrum” of the four dimensional heterotic and type-Il su-
perstring. In the latter case we would be interested in gettingind the inhomogeneous growing mode(t,8) compatible
solutions including also background values for the R-Rwith the boundary conditions &= 0,7 [12],
fields. In the case of the type-1IB superstring this can be done
using the invariance of the whole effective acti®),;, C
+Syg under the four-dimensional SLR) transformation $1(t,0)= 7 (1-3 cost)(1-3 cod).
(2.2) [2]. In particular, starting with a solution in which

=B{?)=0, we can generate nontrivial values for these R-Rrhe S? topology plays an important role near the initial sin-
fields, thus completing our generating algorithm. The imporguylarity by imposing strong restrictions on the allowed
tant point here is to realize that, in this last step, we are doinghodes of the scalar field, excluding for example strictly de-
more than just performing &-duality transformation. Al-  creasing inhomogeneous solutions.

though SI2R) is a symmetry of the low-energy effective  After T-dualizing with respect to the Killing vectog
type-1IB supergravity, only a subgroup §17) is an actual =, _we trade the off-diagonal term in the metri®,,,, for
symmetry of the full underlying string theory. Therefore in 4 nonvanishing componelﬁifpl) of the rank-two tensor po-

performing a generic SB,R) rotation we will end up with  tantial. The dual metric has finally the form
solutions which are not equivalent to the original one at the

level of the string theory. 2M/k

ds 2= tanz e2#1(L0) ef (L0 —dt2+ d §?)
IIl. INHOMOGENEOUS MIXMASTER STRING
COSMOLOGIES 12(t)15(t)sir?0 2}
To illustrate the use of the algorithm we suggest to look at 13(t)sinf 6+ 15(t)cos 6

the following example. It is well known in cosmology that £ —2Mrk —244(t,6)

Bianchi type 1X models(the famous Mixmaster universes +| tan= , -e 5 de?

[6]), let alone their inhomogeneous generalizations, represent 2 13(t)siP+15(t)cos’6

a very interesting class of models to study. Because of the 3.2

presence of spatial curvature and the nontri@&itopology
one may investigate their effects on the initial expansion. Wi
consider here the locally rotationally symmet(ldRS) case
which may be incorporated within the Einstein-Rosen space- _ 1

times[12]. To shorten the procedure we pass over the first o=—= |n[|§(t)sin20+lg(t)cos°-0]. 3.3
two steps and start directly with the solution to Einstein- 2

Klein-Gordon equations obtained previously by one of us i
[12]. We can write it in the string frame as The newly generated two-form field can be expressed as

Svhile the new dilaton fieldz(t,e) turns out to be

t\ 2M/k ~ 13(t)cosd
ds?=(tanz| et (—dt2+de?)+[15(1)siPo B0 = 2P+ 1Ztcog e 1979V
+15(t)cog]de?+ 15(t)dy?+ 215(t) cosfd pd 7} It is remarkable that the expressit®3) for the transformed

3.1) dilaton is independent of the particular dilaton we began
' with. However, the latter leaves its imprint on the geometry,

where the functions(t, 6), 1,(t), andls(t) are defined by @S ¢an be seen from E(B.2). o ,
Several interesting things happen with this solution. When

f(t,0)=2 Inl,(t)+ C2sirP2t(1+ 3 co6)sirPd the homogeneous part of the dilatag is absent the solution

is everywhere regular in the sense of curvature invariants and
fields, whatever the value & except for the points located
along the axi®¥=0,7 att=0. This can be traced back to the
fact that those points are on singular orbits of the Killing
K2 (tart/2)2AK+ (cott/2)2AK vector fieldd,, . Whengy(t) #0 we get a big-bang singular-
— ity ast goes to zero, as well as a big crunchtiaw. With
respect to the homogeneous character of the initial singular-
ity, we find that for the metric befor@-duality (3.1) the
12(t) = 2A singularity is approached homogeneously, whereagEd.

3 (tart/2)?A*+ (cott/2) 2~k gives rise to an inhomogeneous big-bang. As will be dis-

M
+2C? sirft(1— 3 cogt)sint6— 16--C codsirf,

13(t)=
1 2A (tart/2+cott/2)®>
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cussed later this is not unexpected after all, since some typd®mogeneous as the original one when looked at large dis-
of inhomogeneities are generated by fheluality transfor- tances. The moral of the story is then that there are certain
mation. types of inhomogeneities, those that can be removed by a
Suppose now the inhomogeneous part of the dilaton field -duality transformation, which in a sense are “pure gauge”
is switched off, C~0 and ¢o(t)#0. The solution before from the string theory point of view. In the same vein, this
T-duality describes then a Bianchi IX LRS cosmology which deneralizes to the case when we start with an inhomogeneous

becomes inhomogeneous after the transformation. Had weackground: now we have, in addition to the long-

started with the isotropic Friedmann-Robertson-Walker soluVavelength inhomogeneities inherited from the original ge-

tion (2@:2'%:'( sint) beforeT dualizing, we would have ometry, those generated bi-duality. Since their typical

finished with anisotropic Kantowski-Sachs-type cosmology,rsi;?)llislsor? fatgfr] o(gt?]e:ngrli;g% Planck length they look like

+v3
ds?=|tan- 12(t)(— dt?+ d 6+ sirfod ?) V. CONCLUSIONS
2 Before closing let us summarize the main results ob-
1 £\ T3 tained. We have designed a general algorithm which allows
+——|tans de?, the construction of cosmological solutions to the low-energy
17(t) 2 effective theory of the heterotic and type-IIB superstring,

starting with vacuum solutions to Einstein equations. This
which falls into the class of solutions recently studied byprovides us with a powerful tool to construct new solutions
Barrow and Darowski in[1]. in string cosmology, given the huge amount of vacuum
One thing to be learned from the above examples is thagpacetimes with two or more commuting spacelike Killing
inhomogeneous and/or anisotropic spacetimes can be relatggictors known in general relativity. Starting from either ho-
to homogeneous and isotropic backgrounds Tiduality. ~ mogeneous or inhomogeneous seed metrics, we pass to
Since this is a symmetry of string theory, and thereforeEinstein-Klein-Gordon solutions, to end up after a conformal
strings cannot distinguish between dual spacetimes, it seenfigscaling with solutions to dilaton gravity. Usingduality
that isotropy and homogeneity, and even some types of cugnd theS-duality of the type-IIB superstring we finally get
vature singularities, become less intuitive concepts in stringosmological spacetimes for both the heterotic and type-IIB
theory than they are in classical general relativity. This is notheories, in the latter case also including nontrivial R-R
really a surprise, since it is well known that string theory fields.
forces us to revise the physical role of other classical con- As an illustrative example we have constructed the string
cepts, such as the topology of the spacetime or the value d¢heory version of the inhomogeneous Mixmaster-type cos-
the cosmological constafi28]. Imagine now an inhomoge- mology obtained in Ref{12]. We have also discussed the
neous spacetim&-dual to a homogeneous one, so the phys+ole played by inhomogeneities in string cosmology and ar-
ics at the string scale is the same in both backgrodridds ~ gued that there is a class of those, the ones generated by
seems to pose an apparent puzzle, for in the field theory limif-duality, that have no physical relevance at any energy
(a'—0) we are left with point particles which could, in scale. ThusT-duality classifies inhomogeneous spacetimes
principle, probe these inhomogeneities. Looking more careinto physically equivalent pairs. As it happens with many
fully at the problem it turns out that this is not really the other issues, string theory seems to challenge our physical
case, because of the hidden presence of the Planck lengttiuition about the real meaning of a homogeneous geom-
Ja' in Buscher’s formulae. This makes the typical scale oféetry.
theseT-duality-generated inhomogeneities to be of the order
of the Planck length, so they cannot be detected using low- ACKNOWLEDGMENTS
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