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We present a general algorithm which permits us to construct solutions in string cosmology for heterotic and
type-IIB superstrings in four dimensions. Using a chain of transformations applied in sequence—conformal,T
duality, and SL~2,R! rotations, along with the usual generating techniques associated with Geroch transforma-
tions in Einstein frame—we obtain solutions with all relevant low-energy remnants of the string theory. To
exemplify our algorithm we present an inhomogeneous string cosmology withS3 topology of spatial sections,
discuss some properties of the solution, and point out some subtleties involved in the concept of homogeneity
and isotropy in string cosmology.@S0556-2821~97!06420-5#
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I. INTRODUCTION

The cosmological implications of string theory are receiv-
ing quite broad attention these days~for a necessarily incom-
plete list of recent and not-so-recent references see@1,2,3,4#!.
This is not by chance since, given the lack of traces of
stringy effects in ‘‘low-energy’’ particle physics, the cosmo-
logical scenario appears as a perfect arena for the search of
string blueprints in the early Universe.

In spite of the impressive progress in the study of string
theory beyond the perturbative regime~for a review see, for
example,@5#!, we still lack a full-fledged nonperturbative
formulation which allows a description of the early Universe
at Planck time, where the classical concepts of space and
time cannot be used any longer. In the meantime, one is
bound to study classical cosmology using the low-energy
effective action induced by string theory, which generalizes
general relativity by including other massless fields. As a
consequence, in string cosmology one continues to ask es-
sentially the same questions earlier formulated in the frame-
work of Einstein relativity, but now posed in the presence of
those extra degrees of freedom. The central puzzle of theo-
retical cosmology remains as well the same, and is concerned
mainly with the question of why the present Universe looks
as isotropic and homogeneous at large scales. The desire to
answer this last question leads one to consider the initial
conditions and the evolution of the Universe at the beginning
of expansion.1

Apart from a few exceptions@3,4#, most of the work in
string cosmology is focused on homogeneous solutions.
However, since in general relativity the generic solution near
the cosmological singularity is neither isotropic nor homoge-
neous, one is led to study cosmological models with less
symmetry, leaving aside not only the principle of isotropy

but homogeneity as well. The ideas to study such a general
behavior were inspired by Landau@9# and worked out in
details in classical papers by Belinski, Lifshitz, and
Khalatnikov2 ~BLK ! @10#. The techniques due to BLK are
strongly rooted in physical intuition, but lack, however, rigor
when approximations are used in a highly nonlinear regime.
Although the conclusions of this analysis are probably cor-
rect at large, one must necessarily confront them against the
analytic behavior of exact solutions.

Because of the mathematical complexity of the generic
inhomogeneous models, one usually deals with solutions in
which homogeneity is broken in only one direction. The
space-times obtained this way are usually referred to asG2

or Einstein-Rosen cosmologies@11–13# and are thought to
provide the leading approximation to a general solution near
the initial singularity@14#. It is important to mention here the
relation of the Einstein-Rosen cosmologies to the interesting
problem of scattering of plane waves in general relativity
@15,16#. This relation, considered first in@17#, consists just in
inverting the arrow of time of the vacuum, or vacuum with
massless fields, inhomogeneous solutions. After all, the ap-
proach to the focusing two-surface in the collision of self-
gravitating plane waves~not necessarily gravitational! is just
the time inverse of the behavior near the singularity in aG2

cosmology. This being so, the study of the behavior of
string-inducedG2 cosmologies may lead to a better under-
standing of such a highly nonlinear process as plane wave
scattering.

The main purpose of this paper is to describe a suffi-
ciently general algorithm which permits the construction of
new solutions of string cosmology starting from vacuum so-
lutions of the Einstein field equations. VacuumG2 space-
times will be used as the basic building blocks of our string
solutions. Before going any further in the description of our
generating technique, it will be useful to briefly mention
some facts about the low-energy effective theory of the dif-
ferent superstring models and their symmetries.
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†Electronic address: wtblasar@lg.ehu.es
‡Electronic address: wtbvamom@lg.ehu.es
1We will not dwell here on different approaches and views as to

how to solve this problem, but just mention some central ideas such
as chaotic cosmology program@6#, C-gravitational entropy@7#, and
the inflationary scenario@8#.

2In string cosmology the BLK approach has been recently dis-
cussed in the context of the pre-big-bang scenario by Veneziano
@4#.
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A. String low-energy effective actions

On general grounds, the massless bosonic sector of super-
strings includes the gravitational fieldGmn , the dilatonf,
with vacuum expectation value determining the string cou-
pling constant, and the antisymmetric rank-two tensorBmn

(1) ,
in addition to other fields depending on the particular super-
string model under study. The lowest order effective action
for the massless fields can be written as

Seff5
1

~a8!~D22!/2 E dDxAGe22fFR14~]f!2

2
1

12
~H ~1!!2G1Smd, ~1.1!

whereH (1)5dB(1) is the field strength associated with the
Neveu-Schwarz–Neveu-Schwarz~NS-NS! two-form and
Smd is a model-dependent part which includes other massless
degrees of freedom. WhenD,10 some of these massless
fields correspond to gauge and moduli fields associated with
the specific compactification chosen, and the dilatonf ap-
pearing in~1.1! is related to the ten-dimensional dilatonf10
by 2f52f102 ln V102D , whereV102D is the volume of the
internal manifold measured in units ofAa8.

We restrict our attention to generic degrees of freedom,
leaving aside the internal components of the ten-dimensional
fields. In the heterotic string case,Smd contains the Yang-
Mills action for the background gauge fieldsAm

a , which we
set to zero in the following. In the case of the model-
dependent part of the type-IIB superstring things are slightly
more involved; among the massless degrees of freedom in
the Ramond-Ramond~R-R! sector we find, along with a
pseudoscalarx ~the axion! and a rank-two antisymmetric
tensorBmn

(2) , a rank four self-dual formAmnsl
sd . The presence

of this self-dual form spoils the covariance of the effective
action for the massless fields, since there is no way of im-
posing the self-duality condition in a generally covariant
way. But, if we setAsd to zero, we can write a covariant
action for the remaining fields with

Smd
IIB52

1

~a8!~D22!/2

3E dDxAGF1

2
~]x!21

1

12
~H ~1!x1H ~2!!2G .

Notice that the R-R fields do not couple directly to the dila-
ton. Thus, the lower dimensional (D,10) R-R fieldsx and
Bmn

(2) are obtained from the ten-dimensional ones throughx
5AV102Dx10 andB(2)5AV102DB10

(2) .
By combining the dilaton and the axion of the ten-

dimensional type-IIB superstring into a single complex field
l5x101 ie2f10, it is possible to check that the bosonic ef-
fective action is invariant under the SL~2,R! transformation3

l→(al1b)/(cl1d), Gmn→ucl1duGmn @18#. Writing
this transformation in terms of four-dimensional fields (D
54) we find that the action is invariant under the following
field redefinitions~cf. @19#!:

x485
bd1ace22f4

@~cx41d!21c2e22f4#1/41
acx4

21~ad1bc!x4

@~cx41d!21c2e22f4#1/4,

e2f485
e2f4

@~cx41d!21c2e22f4#1/4,

H ~1!85dH~1!2cH~2!,
~1.2!

H ~2!85@~cx41d!21c2e22f4#3/4~2bH~1!1aH~2!!,

Gmn8 5@~cx41d!21c2e22f4#1/2Gmn .

Comparing with the corresponding transformations for the
ten-dimensional fields we find that the four-dimensional ones
acquire an ‘‘anomalous weight’’ due to the fact thatV6 , as
measured in the string frame, does transform under SL~2,R!.

The algorithm to be described in the following uses as
input diagonal vacuum solutions to Einstein equations with
two commuting spacelike Killing vectors. Infinite dimen-
sional families of solutions of this kind are known
@11,12,17,13#. After transforming these diagonal vacuum so-
lutions to generate off-diagonal terms in the metric, we gen-
eralize them to include a minimally coupled massless scalar
field. A conformal rescaling of the Einstein metric gives so-
lutions to four-dimensional dilaton gravity and aT-duality
transformation generates an antisymmetric rank-two tensor
Bmn

(1) from the off-diagonal components of the metric. This
leaves us with string cosmology solutions of both the het-
erotic and type-IIB superstring. In the latter case, we still can
generate nontrivial background R-R fields by performing a
SL~2,R! rotation of the solution~cf. @2#!. In the next section,
we will detail the algorithm and in Sec. III a concrete appli-
cation will be worked out. Finally, in Sec. IV we will sum-
marize our conclusions.

II. STRING COSMOLOGY FROM GENERAL RELATIVITY

After having outlined the key steps to be followed in the
construction of solutions, we now turn to the generating al-
gorithm itself. In order not to get too involved with the de-
tails we shall omit some technicalities, referring in cases to
the original papers. We present here only those details and
expressions necessary to get the final solution and to keep
the presentation self-consistent. As mentioned above our
starting point is a globally diagonalizableG2 line element
which may be put into the following convenient form:

ds25ef ~ t,z!~2dt21dz2!1gab~ t,z!dxadxb, a,b51,2.
~2.1!

The local behavior of the spacetime is defined by the gradi-
ent of the transitivity surface areaK(t,z)[Adetgab, which
can be globally timelike, spacelike, null or vary from point to
point. We will not restrict our attention to any of these spe-
cific cases keeping the determinant arbitrary; just mention
that in cosmology one is most interested in a globally time-

3The two antisymmetric tensorsBmn
(1) andBmn

(2) also transform as a
doublet under SL~2,R!. Notice that here we are using the string
frame in which the metric is not invariant.
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like case, which includes anisotropic Bianchi type I–VII
models and their inhomogeneous generalizations, and a gen-
eral case where the gradient of the transitivity area may vary
from point to point. The latter includes the most general
Bianchi VIII and IX types with local rotational symmetry
with or without inhomogeneities@12#, precisely the case
which will serve us as example in this paper. If one of the
Killing vector fieldsj15]1 andj25]2 is orthogonal to the
hypersurface obtained by dragging the surfacet-z along the
other Killing vector field then the spacetime is globally di-
agonalizable. We thus start from such a spacetime in vacuum
and notice that we can write

gab~ t,z!dxadxb5K~ t,z!@ep~ t,z!~dx1!21e2p~ t,z!~dx2!2#,
~2.2!

where the functionp(t,z) satisfies the linear wave equation

d

dt
~Kṗ!2

d

dz
~Kp8!50

and the other metric functionf (t,z) may be found by a
quadrature@11–13#.

One now applies one of the standard techniques to gener-
ate the nondiagonal solution starting from the diagonal seed
~2.2!. This can be done in multiple ways: either using inverse
scattering method of Ref.@14#, the solution generating algo-
rithm described in @20#, or an appropriately adapted
Hoenselaers-Kinnersley-Xanthopoulos~HKX ! transforma-
tion @21#. Actually, even a simple Ehlers rotation of the Kill-
ing vectors@22# will do the job. Although this last procedure
does not generate a genuinely nondiagonal solution~one may
globally rediagonalize the metric leading to a new solution!,
combined with aT-duality transformation in the string frame
it will produce the desired nonvanishing components for the
Bmn

(1) field.
Assuming that the nondiagonal vacuum solution has been

constructed, we now have to solve Einstein equations for the
metric ~2.1! with a minimally coupled massless scalar field
~our proto-dilaton!. Fortunately, these solutions may be quite
easily obtained, since a massless scalar field has the same
characteristics of propagation as gravity, and does not intro-
duce any extra degree of nonlinearity into the problem. In
fact, if f(t,z) is the scalar field, the new solution of the
Einstein equations may be written as@23#

gab~ t,z!5gab
vac~ t,z!,

f ~ t,z!5 f vac~ t,z!1 f sc~ t,z!, ~2.3!

where f vac(t,z) is the vacuum solution of the line element
~2.1!, f sc(t,z) is determined by

ḟ sc5
2K

K822K̇2
@2K8ḟf82K̇~ḟ21f82!#,

f 8sc5
2K

K822K̇2
@K8~ḟ21f82!22K̇ḟf8# ~2.4!

and the scalar fieldf(t,z) verifies the following linear dif-
ferential equation:

d

dt
~Kḟ !2

d

dz
~Kf8!50. ~2.5!

If the gradient of the transitivity surface area is globally
timelike one may chooseK;t, and the solutions of the
equation may be presented as combinations of the Bessel
functions of the first and second kind@17#:

f5b ln t1L$Av cos@v~z1z0!#J0~vt !%

1L$Bv cos@v~z1z0!#N0~vt !%

2(
i

diarccoshS z1zi

t D ,

whereL indicates linear combinations of the terms in curly
brackets, andv can have a discrete or continous spectrum.
On the other hand, in the more general case when the gradi-
ent varies from point to point and the spatial sections haveS3

topology, as it happens in the case of Bianchi IX models,
K;sint sinz @24# and the general solution of the equation
~2.5! can be expanded in Legendre polynomials of the first
and second kind:

f5a1 lnUtan
t

2U1a2 lnUtan
z

2U1a3 lnusint sinzu

1(
l 50

`

@Al Pl~cost !1BlQl~cost !#

3@Cl Pl~cosz!1DlQl~cosz!#. ~2.6!

Equations~2.3!, ~2.4!, and ~2.6! summarize the prelimi-
nary construction in the Einstein frame. Now we transform
the solution into the string frame by the conformal transfor-
mation @25,26#

ds2→e2f~ t,z!ds2.

This provides us with a solution to four-dimensional dilaton
gravity. We are, nevertheless, interested in having nontrivial
values for other background fields, mainly the two-form po-
tentialBmn

(1) appearing in~1.1!. To accomplish this we can use
a T-duality transformation. Taking adapted coordinates in
which x0 denotes the coordinate along the Killing vector
chosen to dualize, we find new values for (Gmn ,f,Bmn

(1))
given by @27#:

G̃005
1

G00
, G̃0m5

B0m
~1!

G00
,

G̃mn5Gmn2
G0mG0n1Bm0

~1!B0n
~1!

G00
,

B̃0m
~1!5

G0m

G00
, B̃mn

~1!5Bmn
~1!2

G0mB0n
~1!1G0nBm0

~1!

G00
,

~2.7!

f̃5f2 lnAG00.

The new background fields so obtained automatically satisfy
the field equations derived from the effective action~1.1!
@27#. Since we have two commuting Killing vectors we can
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dualize with respect to both of them to end up with nonzero
values for several components ofBmn

(1) . At this point it is
important to stress that we are using Buscher’s formula~2.7!
just as a formal procedure to generate new solutions of the
low-energy field equations.

So far, the application of our algorithm leads to solutions
to the low-energy equations for the ‘‘universal massless
spectrum’’ of the four dimensional heterotic and type-II su-
perstring. In the latter case we would be interested in getting
solutions including also background values for the R-R
fields. In the case of the type-IIB superstring this can be done
using the invariance of the whole effective actionSuniv

1Smd
IIB under the four-dimensional SL(2,R) transformation

~1.2! @2#. In particular, starting with a solution in whichx
5Bmn

(2)50, we can generate nontrivial values for these R-R
fields, thus completing our generating algorithm. The impor-
tant point here is to realize that, in this last step, we are doing
more than just performing aS-duality transformation. Al-
though SL~2,R! is a symmetry of the low-energy effective
type-IIB supergravity, only a subgroup SL~2,Z! is an actual
symmetry of the full underlying string theory. Therefore in
performing a generic SL~2,R! rotation we will end up with
solutions which are not equivalent to the original one at the
level of the string theory.

III. INHOMOGENEOUS MIXMASTER STRING
COSMOLOGIES

To illustrate the use of the algorithm we suggest to look at
the following example. It is well known in cosmology that
Bianchi type IX models~the famous Mixmaster universes
@6#!, let alone their inhomogeneous generalizations, represent
a very interesting class of models to study. Because of the
presence of spatial curvature and the nontrivialS3 topology
one may investigate their effects on the initial expansion. We
consider here the locally rotationally symmetric~LRS! case
which may be incorporated within the Einstein-Rosen space-
times @12#. To shorten the procedure we pass over the first
two steps and start directly with the solution to Einstein-
Klein-Gordon equations obtained previously by one of us
@12#. We can write it in the string frame as

ds25S tan
t

2D 2M /k

e2f1~ t,u!$ef ~ t,u!~2dt21du2!1@ I 1
2~ t !sin2u

1I 3
2~ t !cos2u#dw21I 3

2~ t !dc212I 3
2~ t !cosudwdc%

~3.1!

where the functionsf (t,u), I 1(t), andI 3(t) are defined by

f ~ t,u!52 lnI 1~ t !1C2sin22t~113 cos2u!sin2u

12C2 sin2t~123 cos2t !sin4u216
M

k
C costsin2u,

I 1
2~ t !5

k2

2A

~ tant/2!2A/k1~cott/2!2A/k

~ tant/21cott/2!2 ,

I 3
2~ t !5

2A

~ tant/2!2A/k1~cott/2!2A/k ,

and the coordinates 0<u<p, 0<f<2p, and 0<c<4p
are taken to be Euler angles. For the sake of simplicity, we
have chosen a scalar dilation fieldf(t,u)5f0(t)1f1(t,u)
containing just two modes, the homogeneous one

f0~ t !5
M

k
ln tan

t

2
,

and the inhomogeneous growing modef1(t,u) compatible
with the boundary conditions atu50,p @12#,

f1~ t,u!5
C

4
~123 cos2t !~123 cos2u!.

The S3 topology plays an important role near the initial sin-
gularity by imposing strong restrictions on the allowed
modes of the scalar field, excluding for example strictly de-
creasing inhomogeneous solutions.

After T-dualizing with respect to the Killing vectorj
5]w we trade the off-diagonal term in the metric,Gwc , for
a nonvanishing componentBwc

(1) of the rank-two tensor po-
tential. The dual metric has finally the form

ds̃ 25S tan
t

2D 2M /k

e2f1~ t,u!Fef ~ t,u!~2dt21du2!

1
I 1

2~ t !I 3
2~ t !sin2u

I 1
2~ t !sin2u1I 3

2~ t !cos2u
dc2G

1S tan
t

2D 22M /k e22f1~ t,u!

I 1
2~ t !sin2u1I 3

2~ t !cos2u
dw2,

~3.2!

while the new dilaton fieldf̃(t,u) turns out to be

f̃52
1

2
ln@ I 1

2~ t !sin2u1I 3
2~ t !cos2u#. ~3.3!

The newly generated two-form field can be expressed as

B̃~ t,u!5
I 3

2~ t !cosu

I 1
2~ t !sin2u1I 3

2~ t !cos2u
dw∧dc.

It is remarkable that the expression~3.3! for the transformed
dilaton is independent of the particular dilaton we began
with. However, the latter leaves its imprint on the geometry,
as can be seen from Eq.~3.2!.

Several interesting things happen with this solution. When
the homogeneous part of the dilatonf0 is absent the solution
is everywhere regular in the sense of curvature invariants and
fields, whatever the value ofk, except for the points located
along the axisu50,p at t50. This can be traced back to the
fact that those points are on singular orbits of the Killing
vector field]w . Whenf0(t)Þ0 we get a big-bang singular-
ity as t goes to zero, as well as a big crunch int5p. With
respect to the homogeneous character of the initial singular-
ity, we find that for the metric beforeT-duality ~3.1! the
singularity is approached homogeneously, whereas Eq.~3.2!
gives rise to an inhomogeneous big-bang. As will be dis-
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cussed later this is not unexpected after all, since some types
of inhomogeneities are generated by theT-duality transfor-
mation.

Suppose now the inhomogeneous part of the dilaton field
is switched off,C;0 and f0(t)Þ0. The solution before
T-duality describes then a Bianchi IX LRS cosmology which
becomes inhomogeneous after the transformation. Had we
started with the isotropic Friedmann-Robertson-Walker solu-
tion (2I 1

252I 3
25k sin t) beforeT dualizing, we would have

finished with anisotropic Kantowski-Sachs-type cosmology,

ds̃ 25S tan
t

2D 6)

I 1
2~ t !~2dt21du21sin2udc2!

1
1

I 1
2~ t !

S tan
t

2D 7)

dw2,

which falls into the class of solutions recently studied by
Barrow and Da¸browski in @1#.

One thing to be learned from the above examples is that
inhomogeneous and/or anisotropic spacetimes can be related
to homogeneous and isotropic backgrounds viaT-duality.
Since this is a symmetry of string theory, and therefore
strings cannot distinguish between dual spacetimes, it seems
that isotropy and homogeneity, and even some types of cur-
vature singularities, become less intuitive concepts in string
theory than they are in classical general relativity. This is not
really a surprise, since it is well known that string theory
forces us to revise the physical role of other classical con-
cepts, such as the topology of the spacetime or the value of
the cosmological constant@28#. Imagine now an inhomoge-
neous spacetimeT-dual to a homogeneous one, so the phys-
ics at the string scale is the same in both backgrounds.4 This
seems to pose an apparent puzzle, for in the field theory limit
(a8→0) we are left with point particles which could, in
principle, probe these inhomogeneities. Looking more care-
fully at the problem it turns out that this is not really the
case, because of the hidden presence of the Planck length
Aa8 in Buscher’s formulae. This makes the typical scale of
theseT-duality-generated inhomogeneities to be of the order
of the Planck length, so they cannot be detected using low-
energy~particle! probes. Thus the dual spacetime looks as

homogeneous as the original one when looked at large dis-
tances. The moral of the story is then that there are certain
types of inhomogeneities, those that can be removed by a
T-duality transformation, which in a sense are ‘‘pure gauge’’
from the string theory point of view. In the same vein, this
generalizes to the case when we start with an inhomogeneous
background: now we have, in addition to the long-
wavelength inhomogeneities inherited from the original ge-
ometry, those generated byT-duality. Since their typical
scale is of the order of the Planck length they look like
ripples on a smooth manifold.

IV. CONCLUSIONS

Before closing let us summarize the main results ob-
tained. We have designed a general algorithm which allows
the construction of cosmological solutions to the low-energy
effective theory of the heterotic and type-IIB superstring,
starting with vacuum solutions to Einstein equations. This
provides us with a powerful tool to construct new solutions
in string cosmology, given the huge amount of vacuum
spacetimes with two or more commuting spacelike Killing
vectors known in general relativity. Starting from either ho-
mogeneous or inhomogeneous seed metrics, we pass to
Einstein-Klein-Gordon solutions, to end up after a conformal
rescaling with solutions to dilaton gravity. UsingT-duality
and theS-duality of the type-IIB superstring we finally get
cosmological spacetimes for both the heterotic and type-IIB
theories, in the latter case also including nontrivial R-R
fields.

As an illustrative example we have constructed the string
theory version of the inhomogeneous Mixmaster-type cos-
mology obtained in Ref.@12#. We have also discussed the
role played by inhomogeneities in string cosmology and ar-
gued that there is a class of those, the ones generated by
T-duality, that have no physical relevance at any energy
scale. Thus,T-duality classifies inhomogeneous spacetimes
into physically equivalent pairs. As it happens with many
other issues, string theory seems to challenge our physical
intuition about the real meaning of a homogeneous geom-
etry.
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