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We study soliton solutions in~111!-dimensional gaugeds models, obtained by dimensional reduction from
its ~211!-dimensional counterparts. We show that the Bogomol’nyi bound of these models can be expressed in
terms of two conserved charges in a similar way to that of the BPS dyons in 311 dimensions. Purely magnetic
vortices of the~211!-dimensional completely gaugeds model appear as charged solitons in the corresponding
~111!-dimensional theory. The scale invariance of these solitons is also broken because of the dimensional
reduction. We obtain exact static soliton solutions of these models saturating the Bogomol’nyi bound.
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PACS number~s!: 11.15.Tk, 03.65.Ge, 11.10.Kk, 11.10.Lm

I. INTRODUCTION

Recently, there has been much interest in the study of
soliton solutions in~211!-dimensional gaugeds models@1–
7#. These models can be viewed as a low energy effective
action of certain gauged linears models with judiciously
chosen Higgs potential. The self-dual soliton solutions of the
completely gaugeds model with pure Chern-Simons~CS!
dynamics are scale invariant@1#. In fact, the scalar multiplet
is exactly equivalent to that of the usuals model@8#. More-
over, purely magnetic vortices can be obtained from this
completely gaugeds model after a suitable reduction of the
non-Abelian gauge group, as in the case of ’t Hooft–
Polyakov monopole@9#. Unlike in the monopole case, these
magnetic vortices can also be obtained from an Abelian
theory, since the Bianchi identity for the U~1!-invariant field
strength is satisfied in 211 dimensions. All these results can
be generalized to the completely gauged CPN models, either
with pure CS@1# or Yang-Mills CS dynamics@2#.

Solitons of the~211!-dimensional U~1! gaugeds models
are not scale invariant, because of the presence of a U~1!-
invariant potential term@3,5#. No exact solution is known for
any of these models. However, it is known that these models
admit a variety of new soliton solutions@3,5,7#. One such
peculiar feature is that the magnetic flux of the topological
solitons in the symmetric phase of the theory is not neces-
sarily quantized like vortices in the Abelian Higgs models.
The quantization of the magnetic flux is recovered in the
asymmetric phase. Theses models with pure CS dynamics
admit both topological as well as nontopological soliton so-
lutions, as in the case of self-dual U~1! CS Higgs theory. In
fact, these U~1! gaugeds models can be reduced to the self-
dual U~1! CS Higgs theory@10# in certain limits. All these
results have been generalized to the gauged CPN case with
pure CS dynamics@6#, where a proper subgroup of the global
SU(N11) is completely gauged.

The ~111!-dimensionals models have many properties
in common with the~311!-dimensional Yang-Mills-Higgs
~YMH ! theory. One such remarkable feature is that a class of
~111!-dimensionals models admitQ kinks @11,12# with

similar properties to those of the Bogomol’nyi-Prasad-
Sommerfield~BPS! dyons of YMH theory@13#. These~1
11!-dimensionals models are obtained by dimensional re-
duction from their ~211!-dimensional counterparts. It is
reasonable at this point to study a dimensionally reduced
version of the~211!-dimensional gaugeds models.

The purpose of this paper is to study soliton solutions in
~111!-dimensional gaugeds models obtained by dimen-
sional reduction from 211 dimensions. In particular, we
consider a dimensionally reduced version of two different
~211!-dimensional models with pure CS dynamics,~i! the
completely gaugeds model @1# and ~ii ! the U~1! gaugeds
model @5#. We find that the Bogomol’nyi bounds@14# for
both of these models are of BPS type; namely, the lower
bound on the energy is expressed as a linear combination of
the topological charge and the Noether charge. Moreover,
the scale invariant soliton solutions, describing purely mag-
netic vortices, of the~211!-dimensional completely gauged
s model, appear as soliton solutions with nonzero Noether
charge and a definite scale, in the corresponding~111!-
dimensional theory. This resembles the way BPS dyons in
311 dimensions can be obtained from four-dimensional Eu-
clidean self-dual Yang-Mills theory. Such an analogue al-
ready exists in the framework of certain~111!-dimensional
s models admittingQ kinks @11# which are necessarily time
dependent solutions. However, in our case the similarity is
between static solitons of the completely gauged model and
~311!-dimensional dyons. Recently, it has been shown that
the dimensionally reduced version of self-dual U~1! CS
Higgs theory also shares similar properties@15#. Unfortu-
nately, the soliton solutions of~211!-dimensional U~1! CS
Higgs theory are not scale invariant. Thus, the completely
gaugeds model studied in this paper has more similarities
with BPS dyons than any other existing models. We find all
the static, exact soliton solutions of the completely gaugeds
model saturating the Bogomol’nyi bound. We are able to
obtain only a class of exact soliton solutions for the U~1!
gaugeds model. The soliton solutions of both of these mod-
els are domain walls, interpolating between different sym-
metric and asymmetric vacua.

The plan of this paper is the following. First, we introduce
and study the~111!-dimensional completely gaugeds
model in Sec. II. In particular, we describe the dimensional*Electronic address: pijush@mri.ernet.in
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reduction procedure and obtain the~111!-dimensional
model from the~211!-dimensional completely gaugeds
model. We obtain the Bogomol’nyi bound of this model and
present all static, exact solutions of the Bogomol’nyi equa-
tions. In Sec. III, we discuss the U~1! gaugeds model and
obtain a set of exact, static soliton solutions saturating the
Bogomol’nyi bound. Finally, we give a summary of the re-
sults obtained in this paper and discuss possible directions to
be explored in Sec. IV. In the Appendix, we present some
more exact soliton solutions saturating the Bogomol’nyi
bound for the U~1! gaugeds model.

II. O „3… GAUGED s MODEL

The self-dual completely gaugeds model in 211 dimen-
sions is given by@1#

L05
1

2
DmxaDmxa1

k

4
emnlS Fmn

a Al
a2

e

3
eabcAm

a An
bAl

c D .

~1!

The real scalar fieldx has three components and is con-
strained to lie on a unit sphere in the internal space, i.e.,
xaxa51. The covariant derivative and the field strengthsF01

a

are defined as

Dmxa5]mxa1eeabcAm
b xc,

Fmn
a 5]mAn

a2]nAm
a 1eeabcAm

b An
c . ~2!

The self-dual equations of Eq.~1! are

D0xa50, Dix
a6e i j e

abcxbD jx
c50. ~3!

The self-dual soliton solutions of Eq.~1! are characterized by
the energyE54pq0, where the topological chargeq0 is de-
fined as

q05E d2xk0 , km5
1

2
emnlFnl,

Fmn5eabcDmxaDnxbxc2eFmn
a xa. ~4!

Here,km is the gauge invariant topological current andFmn

is the U~1! invariant field strength. The conservation of the
topological current automatically implies the Bianchi iden-
tity for Fmn . Note that the electric fieldF01 vanishes for the
self-dual field configurations, since the Gauss law implies
Fmn

a xa50. However, the magnetic field is nonzero and it
describes Liouville vortex. These self-dual field configura-
tions are of zero Noether charge. As a consequence, the spa-
tial components of the gauge fields are pure gauges and the
second equation of Eq.~4! can be exactly mapped into the
corresponding equation of the usuals model. Thus, the soli-
tons are scale invariant.

We now dimensionally reduce the model~1! to 111 di-
mensions. We take all the field variables to be independent
of the second coordinate and identify the second component
of the gauge field with a tripletMa, A2

a5Ma. Following the
standard procedure, we have the~111!-dimensional com-
pletely gaugeds model:

L15
1

2
~Dmxa!22e2@MaMa2~Maxa!2#1kMaF01

a ,

m50,1. ~5!

Note the appearance of an interaction term. The vacuum is
characterized by those field configurations, for which the
norm of the tripletM is exactly equal to the square of its own
projection alongx.

The equations of motion of Eq.~5! are

kF01
a 5e2@Ma2xa~Mbxb!#,

kD0Ma5K1
a , kD1Ma5K0

a ,

DmKa,m5e3eabcMbxc~Mdxd!, Km
a 5eeabcDmxbxc,

~6!

where a prime denotes differentiation with respect to the
space coordinate. Note thatF01

a xa50. Also, xaDmMa50,
sinceKm

a xa50.
We now define two conserved chargesY1 andZ1:

Y15kE dx@MaMa#8, Z152eE dx@xaMa#8. ~7!

These two charges,Y1 andZ1, can be identified as topologi-
cal and Noether charges, respectively. The reason for such an
identification is the following. The momentum along the
compactified direction,Py , is a conserved quantity in the
~211!-dimensional theory, because of the translational in-
variance. This quantity remains conserved in the correspond-
ing ~111!-dimensional model also. Using the Gauss law, we
find

Py52
k

2E dx]1~MaMa!. ~8!

Thus,Y1 can be identified as the topological charge. In order
to identify Z1 as the Noether charge, recall that we are deal-
ing with pure CS dynamics. Consequently, the topological
currentkm , as defined in the second equation of Eqs.~4!, can
be identified as the U~1! current in the asymmetric phase of
the ~211!-dimensional theory. This U~1! charge remains
conserved in the corresponding~111!-dimensional theory
also. In particular, the topological chargek0 @or equivalently
the U~1! Noether charge# reduces to the following expression
after the dimensional reduction:

F1252eD1xaMa52e]1~xaMa!. ~9!

Thus,Z1 is identified as the Noether charge.
The energy functional can be written as

E5E dx@~D0xa6e cosbeabcMbxc!2

1„D1xa7e sin b$Ma2xa~xbMb!%…2#

6~Y1 cosb1Z1 sin b!. ~10!

The lower bound on the energy functional is saturated for the
solutions of the first order equations
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D0xa6e cosbeabcMbxc50,

D1xa7e sin b@Ma2xa~xbMb!#50. ~11!

These two first order equations are consistent with the sec-
ond order field equations. The gauge potentialA0

a is deter-
mined in terms ofxa andMa from the first equation of Eqs.
~6! and ~11!, respectively, as

A0
a57

e

k
sin bxa7cosbMa. ~12!

Using the Gauss law and the first Bogomol’nyi equation of
Eqs.~11!, we have

D1Ma7
e2

k
cosb@Ma2xa~xbMb!#50. ~13!

Multiplying the second equation of Eqs.~11! and Eq.~13!,
respectively, byMa, we find

]1~MaMa!562 cosb@MaMa2~Maxa!2#,

]1~Maxa!56sin b@MaMa2~Maxa!2#. ~14!

We have made the following rescaling of the field variables,

Ma→
e

k
Ma, A1

a→
e

k
A1

a , x→
k

e2
, ~15!

while deriving the equation~14!. Note that all the field vari-
ables as well as the space coordinate are now dimensionless
quantity.

We now discuss the solutions of Eqs.~14! for bÞ mp/2
andb5 mp/2 separately, wherem is any integer.

~a! bÞ mp/2: Note that

Maxa5
1

2
tan b~MaMa2b! ~16!

for bÞ mp/2, whereb is the integration constant. Using the
relation~16! in the first equation of Eqs.~14!, MaMa can be
determined completely:

MaMa562d cot2 b tanh@d cosb~x2x0!#1b

12 cot2 b, d5~11b tan2 b!1/2, ~17!

wherex0 is an integration constant. The finite energy field
configurations demand that the integration constant
b>2cot2 b. The asymptotic values ofMaMa andxaMa are
~MaMa!152~16d!cot2 b1b, ~MaMa!252~17d!cot2 b1b,

~xaMa!15~16d!cot b, ~xaMa!25~17d!cot b,
~18!

where a subscript ‘‘plus’’ or ‘‘minus’’ denotes the value of
the quantity inside the bracket atx5` or x52`, respec-
tively. We will follow this notation throughout this paper.
The topological charge, the Noether charge, and the energy
are

Y156
4e2

k
d cot2 b, Z1564

e2

k
d cot b,

E5
4e2

k
d

cot b

sin b
. ~19!

Note that Y15E cosb and Z15E sinb. As a result,
E5AY1

21Z1
2, very much like dyons in YMH theory. Also,

note thatY1, Z1, and E are dependent on the integration
constantb throughd. For any value ofb, one can make all
these quantities to be zero by fixingb to take its minimum
allowed value, i.e.,b52cot2b, or equivalentlyd50. This
describes a trivial vacuum solution. Finite energy nontrivial
soliton solutions exist ford.0.

We now choose consistentlyA1
a to be zero. This implies

that xa andMa are not independent:

Ma5h0
a1cot bxa, ~20!

whereh0
a are three independent constants. Plugging back this

expression into the second Bogomol’nyi equation and mak-
ing use of Eq.~17!, we determinexa:

xa56
h0

a

d
tan b tanh@d cosb~x2x0!#

6uasech@d cosb~x2x0!#. ~21!

The constantsh0
a and ua satisfy the following relations in

order to maintain the unit norm ofxa:

uaua51, uah0
a50, h0

ah0
a5d2 cot2 b. ~22!

One particular choice ofu andh0 satisfying the relation~22!
is u5(0,0,1) andh05(d cosc cotb,d sinc cotb,0), where
c is an arbitrary angle. In general,ua can be parametrized as
the coordinates of unit sphere andh0

a as the coordinates of a
sphere of radiusd cotb. This reduces the number of con-
stants to four. This can further be reduced to three by impos-
ing the conditionuah0

a50.
~b! b5mp/2: We now discuss the special case

b5 (2m11)p/2. All the components ofMa are constant,
Ma5ja. The quantityjaxa is determined as

Maxa5jaxa57p tanh@~x2x0!p#, p5jaja. ~23!

Using this expression, we find

xa57Fja

p
tanh@~x2x0!p#1ha sech@~x2x0!p#G , ~24!

whereha are three different integration constants having the
properties

haja50, haha51. ~25!

These properties ofha andja are necessary in order to main-
tain the unit norm ofxa. Now note thatMaxa goes to7p at
x51`, while it is 61 at x52`. Thus, Z1572pe and
Y150. This is the zero topological charge sector. The purely
topological sector is given byb5mp. In this case, the role
of xa gets exchanged withMa.
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III. U „1… GAUGED s MODEL

The self-dual U~1! gaugeds model with pure CS dynam-
ics in 211 dimensions is given by@5#

L35
1

2
DmfW •DmfW 1

k

4
emnlAmFnl2

1

2k2
~f1

21f2
2!

3~v2f3!2, ~26!

where fW is a three component real scalar field,
fW 5n̂1f11n̂2f21n̂3f3, with unit norm in the internal
space. The covariant derivative is defined as

DmfW 5]mfW 1Amn̂33fW , ~27!

and the field strengthFmn5]mAn2]nAm . The scalar poten-
tial in Eq. ~26! has three degenerate minima for 0<uvu,1.
The symmetric phases are described byf3561, while the
asymmetric phase is atf35v. These three minima merge
into two for uvu>1 and we are left with only symmetric
phases of the theory. The Lagrangian~26! admits topological
as well as nontopological soliton solutions with nonzero No-
ether charge.

We now obtain the~111!-dimensional model correspond-
ing to Eq.~26!, following the same procedure as in the case
of the completely gaugeds model, with the identification
A25N:

L45
1

2
DmfW •DmfW 1kNF012

1

2
N2~f1

21f2
2!

2
1

2k2
~f1

21f2
2!~v2f3!2, m50,1. ~28!

The potential in Eq.~28! has three degenerate minima,~i!
f3561, N[ arbitrary constant and~ii ! f35v,N50 for
0<uvu,1. For uvu>1, there are only two degenerate
minima in the symmetric phase.

The equations of motion which follow from Eq.~28! are

kF015N~f1
21f2

2!, kN85 j 0 , k]0N5 j 1 ,

j m5f2Dmf12f1Dmf2 , ~29!

DmJWm52~ n̂33fW !S N2f31
1

k2
~v2f3!~vf31122f3

2!D .

~30!

The currentJWm5fW 3DmfW and the U~1! current is given by
j m52JWm •n̂3. The Noether chargeq is determined in terms
of the asymptotic behavior ofN from Eq. ~29! as

q5kE dxN85k@N12N2#. ~31!

Note that the nonzero Noether charge sectors are character-
ized byN1ÞN2 .

We define two different conserved charges as follows:

Y25
1

2kE dx@~v2f3!22k2N2#8,

Z25E dx@N~v2f3!#8. ~32!

We identify Y2 and Z2 as topological and Noether charge,
respectively. To see this, note that the momentum along the
compactified dimension,Py5*dxD0fW •D2fW , can be ex-
pressed in terms of the asymptotic values ofN with the help
of Gauss law. In particular,Py5 q/2 (N11N2)5qN̄. We
rewrite Y2 in terms of the asymptotic values of the field
variables:

Y25
1

2k
@~v2f3!1

2 2~v2f3!2
2 22kPy#. ~33!

Notice that Z25 (v71/k) q, in casef3 interpolates from
any one of the symmetric vacua to the asymmetric vacuum.
This is also true whenf3 interpolates between the same
symmetric phase. However,Z2 receives an extra contribu-
tion, Z25 (v/k) q72(Py /q), in case it interpolates between
the different symmetric phases. In a broad sense,Z2 can thus
be regarded as the Noether charge.

The energy functional corresponding to Eqs.~28! is

E5
1

2E dxFD0fW •D0fW 1D1fW •D1fW 1N2~f1
21f2

2!

1
1

k2
~f1

21f2
2!~v2f3!2G . ~34!

The termk0NF01 does not contribute to the energy func-
tional, since it is first order in space-time derivative. Let us
now introduce two orthogonal vectorsAW andBW as follows:

BW 5n̂33fW , AW 5fW 3BW . ~35!

These two vectors have the following properties:

AW •AW 5BW •BW 5f1
21f2

2 , AW •BW 50,

DmfW •AW 5]mf3 , DmfW •BW 52 j m . ~36!

Using Eqs.~35! and Eqs.~36!, the energy functional~34! can
be conveniently rewritten as

E5
1

2E dx@~D0fW 7BW P!21~D1fW 6AW Q!2#6~Y2 cosa

1Z2 sin a!, ~37!

whereP andQ are defined as

P5N cosa2
1

k
~v2f3!sin a,

Q5N sin a1
1

k
~v2f3!cosa. ~38!

Note that the lower bound on the energy functional~37!, i.e.,
E>uY cosa1Z cosau, is expressed as a linear combination
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of the Noether charge and the topological charge. This is
reminiscent of what happens in the case of dyons in the
~311!-dimensional YMH theory.

The Bogomol’nyi bound is saturated, when the following
first order equations hold true:

D0fW 7BW P50, D1fW 6AW Q50. ~39!

These two first order equations are of course consistent with
the field equations~29! and ~30!. With the help of the first
equation of Eqs.~39!, the Gauss law can be conveniently
rewritten as

kN857~f1
21f2

2!P. ~40!

Using the stereographic projection,

u15
f1

11f3
, u25

f2

11f3
, u5u11 iu2 , ~41!

the second equation of Eqs.~39! is transformed as

~]11A1!u7Qu50. ~42!

The gauge potentialA1 is determined in terms of the argu-
ment ofu, A152@Arg(u)#8, and hence can be consistently
chosen as zero. We get the decoupled second order equation
in terms ofr5uuu2 after combining Eq.~40! with Eq. ~42!:

]2

]x2
ln r5

r

~11r!3
@~v21!1~v11!r#. ~43!

We have scaledx as x→ (k/A8) x in the above equation.
Equation~43! is precisely the one-dimensional version of the
decoupled equation obtained in the~211!-dimensional U~1!
self-dual gaugeds model~26!. However, no exact solution is
known in the~211!-dimensional case. Equation~43! can be
written as a first order nonlinear equation:

]r

]x
56

r

11r
@a1br1a0r2#1/2, ~44!

wherea5a022v, b52(a02v21), anda0 is the integra-
tion constant. Note that Eq.~44! with the upper sign can be
related to the same equation with the lower sign, by changing
x→2x. Hence, we will consider the lower sign only now
onwards. Oncer is known from Eq.~44!, N can be deter-
mined as

N5
1

kF A2

sin a

r8

r
2cot a

~v21!1~v11!r

11r G . ~45!

We present some exact solutions of Eq.~44! below.
No exact solution of Eq.~44! is known for arbitrarya0

andv. We first try the simplest cased054aa02b250. The

constants are determined asa05 1
2 (11v)2, a5 1

2 (12v)2,
andb5v221. The problem now is to find the solution of the
algebraic equation

rS 11
b

2a
r D g21

5
2a

bg
e2Aa~x2x0!, ~46!

for a,a0.0, whereg5Aa/a0 andx0 is the integration con-
stant. The most obvious choice now is to chooseg51. How-
ever, the solutionr52e2 (1/A2) (x2x0) is not a physical one,
because of the presence of a minus sign in front of it. The
next possibility,g50, is ruled out sincea is zero in this
case. The algebraic equation~46! certainly can be solved for

g5 1
2 , 1

3 , 1
4 , 2

3 , 3
4 and their reciprocals. This is because Eq.~46!

is at most quartic inr for these values ofg. It may be
possible to solve Eq.~46! for other values ofg also. How-
ever, there is no general procedure for finding roots of fifth
or higher order polynomial equations and we do not discuss
such cases here. Now note that for a fixedg, v is completely
determined. In fact, for each value ofg, v has two different
values:

v52
g21

g11
, 2

g11

g21
. ~47!

These two values ofv are reciprocal to each other. Conse-
quently, for a fixed value ofg, once we know a solution at a
particularv, we also know the solution at 1/v. Also, note that
g→ 1/g implies v→2v.

We now present some exact soliton solutions and their
asymptotic behavior for different values ofg.

~i! For g5 1
2, we have the following two solutions in terms

of the variableX5Aa(x2x0):

r1,25ae2X@e2X6~e22X14!1/2# , ~48!

wherer1 (r2) denotes the solution with the upper~lower!
sign. The field variableN is not nonsingular all over the real
line for r2 and, hence, is not a finite energy solution. On the
other hand,r1 vanishes atx5` and diverges atx52`.
This implies thatf3 interpolates from21 to 1. The asymp-
totics of N for this solution is

N15
1

kF2
A2a

sin a
2~v21!cot aG ,

N25
1

kF2
2A2a

sin a
2~v11!cot aG . ~49!

This solutionr1 is valid for bothv5 1
3 andv53.

~ii ! We have the following solutions forg52:

r1,25
a

bF216S 11
4

b
e2XD 1/2G . ~50!

This solution is valid for bothv52 1
3 andv523. However,

b is negative forv52 1
3 and r1,2 becomes imaginary for

certain values ofx. Thus, solutions withv52 1
3 cannot be

physical. On the other hand,r2 goes to2 2a/b as x→`.
This meansf3 goes tov523 at spatial infinity. Unfortu-
nately, f3 cannot take this value because of the constraint
fW •fW 51. Thus, the only acceptable solution isr1 with
v523, which vanishes at one end and diverges in the other
end, implying thatf3 interpolates between the symmetric
vacua. The behavior ofN corresponding to this solution is
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N15
4

kFcot a2
1

sin a G , N252
1

k sin a
1

2

k
cot a.

~51!

~iii ! For g5 3
2 andv52 1

5, we determiner as

r5
1

2
1

1

4
B1/31B2 1/3,

B5
1

2
@161225e22X115e2X~321225e22X!1/2#. ~52!

As x→`, r→ 3
2 andr diverges asx→2`. This is the solu-

tion interpolating between the symmetric and the asymmetric
vacuum. In particular,f3 interpolates from21 atx52` to
v52 1

5 at x5`. The behavior ofN corresponding to this
solution is

N150, N252
4

5k sin a
2

4

5k
cot a. ~53!

We find exact solutions for~a! g5 1
3 ,v52, ~b! g53,v522,

~c! g5 2
3 ,v5 1

5, ~d! g5 1
4 ,v5 5

3, and ~e! g5 3
4 ,v57. All of

these solutions interpolate from21 to 1 and we present
some of these solutions in the Appendix. The solutions for
other values ofg and v are not physical in the sense that
either they are of infinite energy or they become imaginary
over a certain region of space.

Let us now consider the cased0Þ0. The problem again is
to solve an algebraic equation similar to Eq.~46!, but more
complicated. We are able to solve this equation only for
v50. For this choice ofv, a5a0 and b52(a021). We
have the following expression forr with a0.0:

r1,25
1

2a0
@A6~A224a0

2!1/2#,

A52a0 cosh2
X

2
1~2a011!sinh2

X

2
. ~54!

f3 goes to21 at both the spatial infinities for the solution
~54!. However,N is not well behaved all over the space for
r2. We discard this solution. The asymptotic behavior ofN
corresponding tor1 is given by

N15
1

kF A2

sin a
2cot aG , N25

1

kF2
A2

sin a
2cot aG .

~55!

Note that the energy is expressed in terms of the topological
and the Noether charge asE5AY2

21Z2
2, for all of these so-

lutions. This is exactly like the energy bound in BPS dyons.
These solitons are domain walls in nature, interpolating be-
tween different symmetric and asymmetric vacua.

IV. SUMMARY AND DISCUSSIONS

In conclusion, we have studied soliton solutions in certain
~111!-dimensional gaugeds models. These models are ob-
tained by dimensionally reducing~211!-dimensional self-

dual gaugeds models with pure CS dynamics. We have
found a remarkable similarity between these~111!-
dimensional models and the~311!-dimensional YMH
theory. In particular, the Bogomol’nyi bound is expressed in
terms of the topological and the Noether charge in a similar
way to that of the BPS dyons. Moreover, the scale invariant
solitons with vanishing Noether charge, of the~211!-
dimensional completely gaugeds model, have definite scale
and nonzero Noether charge in the corresponding~111!-
dimensional theory. This resembles the way BPS dyons can
be obtained from four-dimensional Euclidean Yang-Mills
theory. Such a similarity betweenQ kinks and the BPS dy-
ons already exists. However,Q kinks are necessarily time
dependent solutions, while BPS dyons are static, minimum
energy solutions of the YMH theory. In our case, the simi-
larity is between the static solitons of gaugeds model with
BPS dyons. Recently, it has been shown that the static soli-
tons of dimensionally reduced self-dual U~1! CS Higgs
theory also share similar properties with the BPS dyons@15#.
However, the soliton solutions of the self-dual CS theory in
211 dimensions are not scale invariant. Thus, the soliton
solutions of completely gaugeds models studied in this pa-
per have more similarities with the BPS dyons than any other
existing models. Finally, we have obtained all static, exact
soliton solutions of the completely gaugeds model saturat-
ing the Bogomol’nyi bound. On the other hand, we found
only a class of exact, static soliton solutions for the U~1!
gaugeds model. The soliton solutions of both of these mod-
els are domain walls in nature interpolating between differ-
ent symmetric and asymmetric vacua.

The models considered in this paper have no kinetic en-
ergy term corresponding to the gauge fields and the gauge
field equations appear as constraints. This is because they are
dimensionally reduced versions of~211!-dimensional mod-
els with pure CS dynamics. In this regard, one might also
consider the dimensionally reduced version of the~211!-
dimensional completely gaugeds model with both Yang-
Mills as well as CS dynamics@2#. The resulting Lagrangian
would have not only the gauge field kinetic energy term, but
also a kinetic energy term for the tripletM in terms of its
covariant derivative and certain interaction terms dictated by
the~211!-dimensional anomalous magnetic moment interac-
tion term. We expect that all the results obtained in this
paper will go through in a straightforward way for this case
also.

It is known that gaugeds models can be viewed as a low
energy effective action of certain gauged linears models@3#.
These linear models are useful in studying different kinds of
~211!-dimensional soliton solutions in a unified manner.
However, in general, it is difficult to analyze the
Bogomol’nyi equations arising out of these linears models
in detail. The study of~111!-dimensional versions of these
models, which are expected to be the gauged linears models
corresponding to the models studied in this paper, may shed
some light on the~211!-dimensional problem. Similar con-
siderations also apply for the gauged CPN models.

ACKNOWLEDGMENTS

I would like to thank Avinash Khare for a careful reading
of the manuscript and valuable comments.

5158 56PIJUSH K. GHOSH



APPENDIX: SOME MORE EXACT SOLUTIONS

In this appendix, we present some more exact solutions of
Eq. ~46! for different values ofg and v. For all of these
solutions,f3 interpolate between21 and 11. Also, the
energy is expressed in terms of the topological and Noether
charge asE5(Y2

21Z2
2)1/2.

~a! g5 1
3, v52:

r5e23X1S 2

3CD1/3

e23X~213e23X!1S C

18D
1/3

,

C53e23XF116e23X16e26X1S 11
4

3
e23XD 1/2G .

~A1!

~b! g53, v522:

r5221D1/31D2 1/3,

D5
1

2
@213e2X1A3e2 X/2~413e2X!1/2#. ~A2!

~c! g5 2
3, v5 1

5:

r5
2

15S 2

ED 1/3

@24e23X121/3E2/3#,

E5e23X@151~225132e23X!1/2#. ~A3!
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