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Solitons in (1+1)-dimensional gaugedo models
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We study soliton solutions iflL+1)-dimensional gauged models, obtained by dimensional reduction from
its (2+1)-dimensional counterparts. We show that the Bogomol'nyi bound of these models can be expressed in
terms of two conserved charges in a similar way to that of the BPS dyons indmensions. Purely magnetic
vortices of the(2+1)-dimensional completely gaugedmodel appear as charged solitons in the corresponding
(1+1)-dimensional theory. The scale invariance of these solitons is also broken because of the dimensional
reduction. We obtain exact static soliton solutions of these models saturating the Bogomol'nyi bound.
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I. INTRODUCTION similar properties to those of the Bogomol'nyi-Prasad-
Sommerfield(BPS dyons of YMH theory[13]. These(1
Recently, there has been much interest in the study of-1)-dimensionalo models are obtained by dimensional re-
soliton solutions iN2+1)-dimensional gauged models[1-  duction from their (2+1)-dimensional counterparts. It is
7]. These models can be viewed as a low energy effectiveeasonable at this point to study a dimensionally reduced
action of certain gauged linear models with judiciously version of the(2+1)-dimensional gauged models.
chosen Higgs potential. The self-dual soliton solutions of the The purpose of this paper is to study soliton solutions in
completely gaugedr model with pure Chern-Simon&CS)  (1+1)-dimensional gaugedr models obtained by dimen-
dynamics are scale invariaftt]. In fact, the scalar multiplet sional reduction from 21 dimensions. In particular, we
is exactly equivalent to that of the usuaimodel[8]. More-  consider a dimensionally reduced version of two different
over, purely magnetic vortices can be obtained from thig2+1)-dimensional models with pure CS dynami¢s, the
completely gauged model after a suitable reduction of the completely gauged model[1] and (i) the U1) gaugedo
non-Abelian gauge group, as in the case of 't Hooft—-model[5]. We find that the Bogomol'nyi boundgl4] for
Polyakov monopol¢9]. Unlike in the monopole case, these both of these models are of BPS type; namely, the lower
magnetic vortices can also be obtained from an Abeliarbound on the energy is expressed as a linear combination of
theory, since the Bianchi identity for the(l-invariant field  the topological charge and the Noether charge. Moreover,
strength is satisfied in-21 dimensions. All these results can the scale invariant soliton solutions, describing purely mag-
be generalized to the completely gauged'@Rodels, either netic vortices, of th&2-+1)-dimensional completely gauged
with pure CS[1] or Yang-Mills CS dynamic$2]. o model, appear as soliton solutions with nonzero Noether
Solitons of the(2+1)-dimensional W1) gaugeds models  charge and a definite scale, in the correspondihgl)-
are not scale invariant, because of the presence ofla U dimensional theory. This resembles the way BPS dyons in
invariant potential terni3,5]. No exact solution is known for 3+1 dimensions can be obtained from four-dimensional Eu-
any of these models. However, it is known that these modelslidean self-dual Yang-Mills theory. Such an analogue al-
admit a variety of new soliton solutiori8,5,7. One such ready exists in the framework of certaih+ 1)-dimensional
peculiar feature is that the magnetic flux of the topologicale models admittingQ kinks [11] which are necessarily time
solitons in the symmetric phase of the theory is not necesdependent solutions. However, in our case the similarity is
sarily quantized like vortices in the Abelian Higgs models. between static solitons of the completely gauged model and
The quantization of the magnetic flux is recovered in the(3+1)-dimensional dyons. Recently, it has been shown that
asymmetric phase. Thesemodels with pure CS dynamics the dimensionally reduced version of self-dua(1y CS
admit both topological as well as nontopological soliton so-Higgs theory also shares similar propert{ds]. Unfortu-
lutions, as in the case of self-dual1) CS Higgs theory. In  nately, the soliton solutions d2+1)-dimensional Y1) CS
fact, these 1) gaugedo models can be reduced to the self- Higgs theory are not scale invariant. Thus, the completely
dual U1) CS Higgs theory{10] in certain limits. All these gaugeds model studied in this paper has more similarities
results have been generalized to the gaugetl €@Re with  with BPS dyons than any other existing models. We find all
pure CS dynamicfs], where a proper subgroup of the global the static, exact soliton solutions of the completely gauged
SU(N+1) is completely gauged. model saturating the Bogomol'nyi bound. We are able to
The (1+1)-dimensionalo models have many properties obtain only a class of exact soliton solutions for thélJ
in common with the(3+1)-dimensional Yang-Mills-Higgs gaugeds model. The soliton solutions of both of these mod-
(YMH) theory. One such remarkable feature is that a class ofls are domain walls, interpolating between different sym-
(1+1)-dimensionalc models admitQ kinks [11,12 with metric and asymmetric vacua.
The plan of this paper is the following. First, we introduce
and study the(1+1)-dimensional completely gauged
*Electronic address: pijush@mri.ernet.in model in Sec. Il. In particular, we describe the dimensional
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reduction procedure and obtain th@+1)-dimensional 1

model from the(2+1)-dimensional completely gauged ﬁlzi(DMXa)z—ez[MaMa—(MaXa)ZHKMang
model. We obtain the Bogomol'nyi bound of this model and

present all static, exact solutions of the Bogomol'nyi equa- ©=0,1. (5)

tions. In Sec. Ill, we discuss the(l) gaugeds model and
obtain a set of exact, static soliton solutions saturating théote the appearance of an interaction term. The vacuum is
Bogomol'nyi bound. Finally, we give a summary of the re- characterized by those field configurations, for which the
sults obtained in this paper and discuss possible directions tworm of the tripletM is exactly equal to the square of its own
be explored in Sec. IV. In the Appendix, we present someprojection alongy.
more exact soliton solutions saturating the Bogomol'nyi The equations of motion of E¢5) are
bound for the Y1) gaugeds model.
KF5=€IMa= XA (M°x")],
Il. O (3) GAUGED o MODEL KDOMa:Ki, kD, M= 8,
The self-dual completely gaugedmodel in 2+1 dimen-

sions is giVen b)[l] DMKa,M:eSEabCM bXC(MdXd)l KzzeeabcDMXbX(:!

(6)

1 K e
Lo=5D X D"y + 7 e FiyAi—gfabcAiAgAﬁ : where a prime denotes differentiation with respect to the
(1) Space coordinate. Note th&f;x*=0. Also, x*D,M?=0,
sinceK® x*=0.
The real scalar fieldy has three components and is con- We now define two conserved chargésandZ;:
strained to lie on a unit sphere in the internal space, i.e.,

XaXa:; The covariant derivative and the field strengtiis leKf dx[M3Ma]’, lezef dx x2Ma]".  (7)
are defined as

D, x?=3,x*+eePAb ¢, These two charge¥;; andZ,, can be identified as topologi-
g a K’ cal and Noether charges, respectively. The reason for such an
@) identification is the following. The momentum along the
compactified directionPy, is a conserved quantity in the
(2+1)-dimensional theory, because of the translational in-
variance. This quantity remains conserved in the correspond-

— bcab
F2,=a,A% 9,A%+eeADAC,

The self-dual equations of E¢l) are

_ bc, b _ ing (1+1)-dimensional model also. Using the Gauss law, we
Dox?=0, Djx?*€;;€**°x°D;x°=0. (3) fingd( ) g
The self-dual soliton solutions of E¢L) are characterized by «
the energyE=41m(q,, where the topological chargg is de- P,=— _f dxd,(MaM?). (8)
fined as 2
1 Thus,Y; can be identified as the topological charge. In order
qozf d?xkg, k//,:Ee/u})\]:w\! to identify Z, as the Noether charge, recall that we are deal-
ing with pure CS dynamics. Consequently, the topological
currentk , , as defined in the second equation of Egs,. can
— cab b
Fur=€"D,x*D x"x —eFy X~ 4 pe identﬁ‘ied as the () current in the asymmetric phase of

] ) ) ] the (2+1)-dimensional theory. This (1) charge remains
Here,k,, is the gauge invariant topological current aAgl,  conserved in the correspondin@-+1)-dimensional theory
is the U1) invariant field strength. The conservation of the also. In particular, the topological charkg [or equivalently

t_opological current automatically implies the. Bianchi iden- ihe U(1) Noether chargkreduces to the following expression
tity for 7,, . Note that the electric fieltFy;, vanishes for the  sfter the dimensional reduction:

self-dual field configurations, since the Gauss law implies
F‘;VX"’f:O. However, the magnetic field is nonzero apd it Fro=—eDx*M?= —ed,(x2M?). 9)
describes Liouville vortex. These self-dual field configura-
tions are of zero Noether charge. As a consequence, the spBhus,Z, is identified as the Noether charge.
tial components of the gauge fields are pure gauges and the The energy functional can be written as
second equation of Eq4) can be exactly mapped into the
corresponding 'equa'tlon of the uswamodel. Thus, the soli- E:f dX[(Dox®= e cos BealMPy )2
tons are scale invariant.
We now dimensionally reduce the mod@) to 1+1 di- ae— a  as brabiin2
mensions. We take all the field variables to be independent +(Dax*Fe sin BIMA— x*(x°"MP)D)°]
of the second coordinate and identify the second component + (Y, cosB+Z; sin ). (10)
of the gauge field with a tripleé?, A3=M?2. Following the
standard procedure, we have tte+1)-dimensional com- The lower bound on the energy functional is saturated for the
pletely gaugedr model: solutions of the first order equations
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Dox2*e cos Be*MPy°=0, 4e? e?
oX P X Yi=t——6cof B, Zi=+4_scotp,
Dix%Fe sin B{M3— x3(x°MP)]=0. (12
. _ _ _ 4e? cotpB
These two first order equations are consistent with the sec- = ﬂ (19

ond order field equations. The gauge poter#iglis deter-
mined in terms ofy® andM? from the first equation of Eqs. Note that Y;=E cosg and Z;=E sinB. As a result,

(6) and (11), respectively, as E= \/Y21+Zzl, very much like dyons in YMH theory. Also,
note thatY,, Z;, and E are dependent on the integration
_e_ _ b through §. For any value of3, one can make all
Ad=F—sin Bx?+cos M2 12 constant throug y value : . -~
0T T AX"= B (12 these quantities to be zero by fixifgto take its minimum

_ _ _ ~ allowed value, i.e.p=—cotB, or equivalentlys=0. This
Using the Gauss law and the first Bogomol'nyi equation ofdescribes a trivial vacuum solution. Finite energy nontrivial

Egs.(11), we have soliton solutions exist fos>0.
) We now choose consistent; to be zero. This implies
D,M aI%COSB[Ma_Xa(XbM b)1=0. (13) that y* andM? are not independent:
. ) 2= pd+cot Bx?, (20)
Multiplying the second equation of Eq&ll) and Eq.(13),
respectively, byM?, we find where 73 are three independent constants. Plugging back this
expression into the second Bogomol’'nyi equation and mak-
91(M3M?) =+ 2 cos S{M3M 23— (M?3y?)?], ing use of Eq(17), we determiney®:
d1(M3x®)=£sin B[MM3—(M3x?)?]. 14 75

x2= tgotan B tani & cos B(X—Xop)]
We have made the following rescaling of the field variables,

*+ #%secli & cos B(X—Xg)]. (21
e e K
M2——M23  Al——-Af, x——, (15  The constants;j and 6 satisfy the following relations in
K K e? 70 .
order to maintain the unit norm of?:
while deriving the equatiofil4). Note that all the field vari- 020°=1, @*73=0, niyi=5% col B. (22)
ables as well as the space coordinate are now dimensionless
quantity. _ _ One particular choice of and 7, satisfying the relatiori22)
We now discuss the solutions _of Eqs_.4) for B# mm/2  is 9=(0,0,1) andy,= (S cosy cotB,5sin i cot 5,0), where
and 8= mm/2 separately, wherm is any integer. & is an arbitrary angle. In genera? can be parametrized as
(@ B# mm/2: Note that the coordinates of unit sphere apg as the coordinates of a
1 sphere of radius cot 8. This reduces the number of con-
M2y2=_tan B(M2M3—b) (16) _stants to four._Thli c;in further be reduced to three by impos-
2 ing the condition6®73=0.

_ . _ . (b) B=mm/2: We now discuss the special case
for # mm/2, whereb is the integration constant. Using the g= (2m+1)x/2. All the components oM? are constant,
relation(16) in the first equation of Eqg14), M®M® can be  M2=¢2 The quantity£y? is determined as
determined completely:

Mex®=&%=Fp tan (x—xg)p], p=¢£%¢* (23

Using this expression, we find

MaM?23=+26 cof B tant & cos B(x—Xy)]+b
+2cof B, &=(1+btar? B)2 (17

a
wherex, is an integration constant. The finite energy field X4== Ftani[(x—xo)p]Jr 7 sechi(x—Xo)p]|, (24)
configurations demand that the integration constant
b=—cof B. The asymptotic values df°M® andx®M® are  \yhere 52 are three different integration constants having the
(M3M3), =2(1+§)cof B+b, (M3M?3)_=2(1%d)cof B+b,  properties

(X®M3) . =(1%8)cot B, (x*M?3)_=(17F d)cot B, 7°¢=0, 7 n=1. (25

18

18 These properties af? and£2 are necessary in order to main-
where a subscript “plus” or “minus” denotes the value of tain the unit norm of¢®. Now note thatM®x? goes to+ p at
the quantity inside the bracket at=c or x=—o, respec- x=+%, while it is £1 atx=—«. Thus,Z;=%2pe and
tively. We will follow this notation throughout this paper. Y,;=0. This is the zero topological charge sector. The purely
The topological charge, the Noether charge, and the energppological sector is given bg=ma. In this case, the role
are of x? gets exchanged witi 2.
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1ll. U (1) GAUGED o MODEL 1 ) -
Yo=——| dX[(v— ¢3)%— k>N?]’,
The self-dual W1) gaugeds model with pure CS dynam- 2 ZKJ [(v=¢g)™= kN
ics in 2+1 dimensions is given bj5]

1 K 1 2z~ [ xNw- a1 (32
L3=-D,b-D*¢+ — e A F ,\— —(2+ ¢3)
72 ne: D% 4 M2 G We identify Y, and Z, as topological and Noether charge,
5 respectively. To see this, note that the momentum along the
X(v=¢3)%, (26)

compactified dimensionP,=[dxDy¢-D,h, can be ex-
pressed in terms of the asymptotic values\ofvith the help
of Gauss law. In particularPy= q/2(N; +N_)=qN. We
rewrite Y, in terms of the asymptotic values of the field
variables:

where ¢ is a three component real scalar field,

d=nNy1p1+Nydp+N3bz, With unit norm in the internal
space. The covariant derivative is defined as

D,¢=0d,+A,N3X, (27)

and the field strengtk ,,=J,A,—d,A,. The scalar poten-
tial in Eq. (26) has three degenerate minima fos{|<1. Notice thatZ,= (v¥ 1/k) q, in case ¢4 interpolates from
The symmetric phases are describedday= +1, while the  any one of the symmetric vacua to the asymmetric vacuum.
asymmetric phase is ab;=v. These three minima merge This is also true whenp; interpolates between the same
into two for [v|=1 and we are left with only symmetric Symmetric phase. However,, receives an extra contribu-
phases of the theory. The Lagrangi@®) admits topological tion, Z,= (v/«x) g+ 2(P,/q), in case it interpolates between
as well as nontopological soliton solutions with nonzero No-the different symmetric phases. In a broad sedgean thus
ether charge. be regarded as the Noether charge.

We now obtain thé1+ 1)-dimensional model correspond-  The energy functional corresponding to E(29) is
ing to Eq.(26), following the same procedure as in the case
of the completely gauged model, with the identification 1
A,=N: E=- f dx

Y:i[( —$3)5—(v—¢3)° —
2=5 (v $3)5— (v—3)=—2kPy]. (33

Do Dodp+D1¢p-D1db+N3(p2+ ¢3)

ﬁle ¢ D d+ kNF _EN2(¢2+¢Z) L s g2 2
4=5Du 01 5 1T &5 +F(¢1+¢2)(U—¢3) . (34

1 2, 42 2 _ The term xoNF,; does not contribute to the energy func-
2K2(¢1+¢2)(v ¢3)%  p=01. (28) tional, since it is first order in space-time derivative. Let us
now introduce two orthogonal vectofsand B as follows:
The potential in Eq(28) has three degenerate minim@) oL
¢3==1, N= arbitrary constant andii) ¢3=v,N=0 for B=n3gX¢, A=¢XB. (35
O0<|v|<1. For |v|=1, there are only two degenerate
minima in the symmetric phase.
The equations of motion which follow from E8) are

These two vectors have the following properties:
A-A=B-B=¢2+¢3, A-B=0,

kFoi=N(p2+¢2), «kN'=jo, kdIN=]i, L. o
01 1 2 0 0 1 DM¢-A:(?[L¢3’ Dud"B:_]H- (36)

Ju=®2D 1= 1D 3, (29 Using Eqs(35) and Eqs(36), the energy functiona34) can
be conveniently rewritten as

D,J*=—(n3X ¢)

NZ s+ i(U_ b3)(v g+ 1_2¢2)) .
k2 3

1 o I
E= —J dX[(DopFBP)%2+(D1p+=AQ)?]=(Y, cosa
2
(30)
o ) +2Z, sin a), (37)
The current),= ¢ XD, ¢ and the W1) current is given by

Ju= —5M~F13. The Noether chargq is determined in terms
of the asymptotic behavior dfl from Eq. (29) as

whereP andQ are defined as

1
P=N cosa— ;(v—¢3)sin a,

q:Kf dXN' =x[N,—N_]. (3D 1
Q=N sina+ ;(v—qﬁg)COSa. (38
Note that the nonzero Noether charge sectors are character-

ized byN, #N_. Note that the lower bound on the energy functiof@), i.e.,
We define two different conserved charges as follows: E=|Y cosa+Zcosal, is expressed as a linear combination
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of the Noether charge and the topological charge. This i$or a,aq>0, wherey=+/a/a, andx, is the integration con-
reminiscent of what happens in the case of dyons in thetant. The most obvious choice now is to chogsel. How-

(3+1)-dimensional YMH theory. ever, the solutiop=—e~ () =X js not a physical one,
The Bogomol'nyi bound is saturated, when the following because of the presence of a minus sign in front of it. The
first order equations hold true: next possibility, y=0, is ruled out sincea is zero in this
. N case. The algebraic equatiofb) certainly can be solved for
Do$p+BP=0, D;¢6*=AQ=0. (39 _ 11123

v=3%,5,4,3,3 and their reciprocals. This is because Etf)
These two first order equations are of course consistent wit/f & Most quartic inp for these values ofy. It may be

the field equationg29) and (30). With the help of the first POSSible to solve Eq46) for other values ofy also. How-
equation of Eqs(39), the Gauss law can be conveniently €Ver: there is no general procedure for finding roots of fifth

rewritten as or higher order polynomial equations and we do not discuss
such cases here. Now note that for a fixed is completely
kN'=F(p2+ p3)P. (400  determined. In fact, for each value ¢f v has two different
values:
Using the stereographic projection,
y—1 y+1
v=——F, ——F. 4
ulzlfiﬁs, uzzlfz)s, u=u;+iu,, (41 y+1 y—1 7

These two values of are reciprocal to each other. Conse-

quently, for a fixed value of, once we know a solution at a
(9,4 A;)UFQu=0. (42)  particularv, we also know the solution atd/Also, note that

v— 1/y impliesv— —v.

The gauge potentiad; is determined in terms of the argu-  We now present some exact soliton solutions and their

ment ofu, A;=—[Arg(u)]’, and hence can be consistently asymptotic behavior for different values gf

chosen as zero. We get the decoupled second order equation(i) For y= 3, we have the following two solutions in terms

in terms of p=|u|? after combining Eq(40) with Eq. (42):  of the variableX= \a(x—x):

the second equation of EqR9) is transformed as

§ = X[ a= X4+ (a—2X 1/2
ﬁ—zln p=—L—[-D++Dpl. 43 prz-ae e (e )], (48)
X (1+p)

wherep; (p,) denotes the solution with the uppéower)

We have scaled as x— («/y/8)x in the above equation. Sign. The field variabl& is not nonsingular all over the real
Equation(43) is precisely the one-dimensional version of theline for p; and, hence, is not a finite energy solution. On the
decoupled equation obtained in tt+1)-dimensional Y1)  other hand,p; vanishes at=% and diverges ak=—o.
self-dual gauged model(26). However, no exact solution is  This implies thatés interpolates from-1 to 1. The asymp-
known in the(2+1)-dimensional case. Equatigd3) can be totics of N for this solution is

written as a first order nonlinear equation:

[ (v—1)cot
dap p 2912 =T = —(v—1)cot«|,
—_— =t K Sin o
o —1+p[a+bp+aop 174 (44)
wherea=ay—2v, b=2(ag—v—1), anda, is the integra- :E _ 2\/5—(v+1)cota (49)
tion constant. Note that E¢44) with the upper sign can be T k| sina '
related to the same equation with the lower sign, by changing
x— —X. Hence, we will consider the lower sign only now This solutionp, is valid for bothv =3 andv =3.
onwards. Once is known from Eq.(44), N can be deter- (iil) We have the following solutions foy=2:
mined as
a 12
1 2 p’' (v—=L+((w+21)p P10=1 —1i(1+—ex) . (50
= — —cot . (45 b b

—| — o
k[SiIna p 1+p
This solution is valid for botly = — 3 andv = — 3. However,
b is negative forv=—3 and p1 becomes imaginary for
andy. We first try the simplest casé,=4aa,—b2=0. The certajn values ok. Thus, solutions withy = —3 cannot be

i T 5 4 ) physical. On the other hang, goes to— 2a/b as x—o.
constants are determined ag=3(1+v)* a=3(1-v)%  This means¢, goes tov=—3 at spatial infinity. Unfortu-
andb=v?—1. The problem now is to find the solution of the nately, ¢, cannot take this value because of the constraint
algebraic equation é-d=1. Thus, the only acceptable solution jg with
1 24 v=-3, Wh_ich vanishe_s at one end and diverges in the ot_her

~Z e Vax—xo). (46) end, implying that¢, interpolates between the symmetric

b” vacua. The behavior dfl corresponding to this solution is

We present some exact solutions of E4¢) below.
No exact solution of Eq(44) is known for arbitraryag

1+ b
2a
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1 2 dual gaugeds models with pure CS dynamics. We have
, N_=-— < Sina + ;COt a. found a remarkable similarity between thegd+1)-
(51) dimensional models and th&3+1)-dimensional YMH
theory. In particular, the Bogomol'nyi bound is expressed in
(iii) For y=3% andv=—1%, we determine as terms of the topological and the Noether charge in a similar
way to that of the BPS dyons. Moreover, the scale invariant
11 e s solitons with vanishing Noether charge, of th&+1)-
p=5TzBTHB di ional letely gaugedmodel, have definite scale
24 imensional completely gaug ,
and nonzero Noether charge in the correspondihgl)-
1 dimensional theory. This resembles the way BPS dyons can
B=§[16+22%_2X+ 15e7%(32+225 )12, (52)  pe obtained from four-dimensional Euclidean Yang-Mills
theory. Such a similarity betwedd kinks and the BPS dy-
As x—», p—3 andp diverges ax— —o. This is the solu- ONS already exists. HoweveQ kinks are necessarily time
tion interpolating between the symmetric and the asymmetri€épendent solutions, while BPS dyons are static, minimum
vacuum. In particularg; interpolates from-1 atx=—o to  €nergy solutions of the YMH theory. In our case, the simi-
v=—1 at x=c. The behavior ofN corresponding to this larity is between the static solitons of gaugednodel with

4
N+=;

1
sin a

cota—

solution is BPS dyons. Recently, it has been shown that the static soli-
tons of dimensionally reduced self-dual(ly CS Higgs
4 4 theory also share similar properties with the BPS dydias.
Ny=0, N_=-g—— g cota. (53)  However, the soliton solutions of the self-dual CS theory in

2+1 dimensions are not scale invariant. Thus, the soliton
We find exact solutions fdi) y=3,0=2, (b) y=3p=—2, solutions of completely gauged models studied in this pa-
_2 1 () v=Lp=% and _3 7 Al of per have more similarities with the BPS dyons than any other
(© y=30v=5 (d) y=3,0=3 and(¢) y=3,0=7. All of  gyisting models. Finally, we have obtained all static, exact
these solutions interpolate from1 to 1 and we present sgjiton solutions of the completely gaugedmodel saturat-
some of these solutions in the Appendix. The solutions foqng the Bogomol'nyi bound. On the other hand, we found
other values ofy andv are not physical in the sense that gnly a class of exact, static soliton solutions for thélU
either they are of infinite energy or they become imaginarygaugeds model. The soliton solutions of both of these mod-

over a certain region of space. ~ els are domain walls in nature interpolating between differ-
Let us now consider the cagg# 0. The problem againis ent symmetric and asymmetric vacua.
to solve an algebraic equation similar to E46), but more The models considered in this paper have no kinetic en-

complicated._We are able to solve this equation only forergy term corresponding to the gauge fields and the gauge
v=0. For this choice ov, a=a, andb=2(ap—1). We fie|d equations appear as constraints. This is because they are

have the following expression for with ag>0: dimensionally reduced versions (#+1)-dimensional mod-
1 els with pure CS dynamics. In this regard, one might also
o1 2=—[Ai(A2—4a§)1’2], cpnside_r the dimensionally reduced vers_ion of tRe-1)-
“ 2ag dimensional completely gauged model with both Yang-

Mills as well as CS dynamick2]. The resulting Lagrangian
would have not only the gauge field kinetic energy term, but
also a kinetic energy term for the tripl&t in terms of its
covariant derivative and certain interaction terms dictated by
¢3 goes to—1 at both the spatial infinities for the solution the (2+1)-dimensional anomalous magnetic moment interac-
(54). However,N is not well behaved all over the space for tion term. We expect that all the results obtained in this
p». We discard this solution. The asymptotic behavioMNof paper will go through in a straightforward way for this case

X X
A=2a, cosﬁ§+(2ao+ 1)S|nhZ§. (54)

corresponding te, is given by also.
It is known that gauged- models can be viewed as a low
1] V2 1 V2 energy effective action of certain gauged lineanodels[3].
+=dsing ote| N-=g - ——cotal. These linear models are useful in studying different kinds of

(55) (2+1)-dimensional soliton solutions in a unified manner.
However, in general, it is difficult to analyze the
Note that the energy is expressed in terms of the topologicaogomol’nyi equations arising out of these lineamodels
and the Noether charge &= Y3+ Z3, for all of these so- in detail. The study of1+1)-dimensional versions of these
lutions. This is exactly like the energy bound in BPS dyons.models, which are expected to be the gauged lineaodels
These solitons are domain walls in nature, interpolating beeorresponding to the models studied in this paper, may shed
tween different symmetric and asymmetric vacua. some light on th€2+1)-dimensional problem. Similar con-
siderations also apply for the gauged"ORodels.
IV. SUMMARY AND DISCUSSIONS
. . . . . . ACKNOWLEDGMENTS
In conclusion, we have studied soliton solutions in certain
(1+1)-dimensional gauged models. These models are ob- | would like to thank Avinash Khare for a careful reading
tained by dimensionally reducin{®+1)-dimensional self- of the manuscript and valuable comments.



56 SOLITONS IN (1+1)-DIMENSIONAL GAUGED o MODELS 5159

APPENDIX: SOME MORE EXACT SOLUTIONS p=—2+ D34 p- 13

In this appendix, we present some more exact solutions of
Eq. (46) for different values ofy andv. For all of these
solutions, ¢ interpolate between-1 and +1. Also, the

energy is expressed in terms of the topological and Noether
charge a£=(Y3+23)'2

1
D={2+ 3e X+ 3e  X2(4+3e %12, (A2)

(@ y= 1v=2:
° N 13 » » C\13 (c) y=3 v=2t
=Xy —| e +3e )+ | —
p=e 3Ce (2+3e )(18)’
2/(2 1/3
4 1/2 s A a—3X_1 5l/32/
C=3e ¥ 1+6e +6e +|1+ e ¥ | =g g| [Tee TH2TET
(AL)
(b) y=3,v=—2: E=e 315+ (225+ 32 3%, (A3)
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