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Solving the Bethe-Salpeter equation for bound states of scalar theories in Minkowski space
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We apply the perturbation theory integral representation to solve for the bound state Bethe-$Bfeter
vertex for anarbitrary scattering kernel, without the need for any Wick rotation. The results derived are
applicable to any scalar field theofwithout derivative coupling It is shown that solving directly for the BS
vertex, rather than the BS amplitude, has several major advantages, notably its relative simplicity and superior
numerical accuracy. In order to illustrate the generality of the approach we obtain numerical solutions using
this formalism for a number of scattering kernels, including cases where the Wick rotation is not possible.
[S0556-282(197)01520-9

PACS numbds): 11.10.St, 11.86-m

[. INTRODUCTION applications, to generalize the approach to unequal-mass
constituents.

We present here an improved approach to the solution of We illustrate the BS equation for a scalar theory in Fig. 1,
the scalar-scalar Bethe-Salpet@S) equation directly in where®(p,P) is the BS amplitudeP=p;+p, is the total
Minkowski space, utilizing the perturbation theory integral four-momentum of the bound state, aper 7,p1— 7:p> is
representatiofPTIR) of Nakanishi[1]. The PTIR is a gen- the relative four-momentum for the two scalar constituents.
eralized spectral representation fepoint Green's functions We have therM = /P? for the bound state mass and also
in quantum field theory. n1+ 1,=1, but otherwise the choice of the two positive real

This work extends and improves earlier work which ap-numbers»; and », is arbitrary. As in Ref[2] we choose
plied the PTIR approach to the BS amplitug®. Here we = hereni=mn,=1/2. _
formulate a real integral equation for the BS vertex. This T?e renormalized - constituent scalar propagators are
considerably simplifies the expression for the kernel functiorP (P12 @ndK(p,q;P) is the renormalized scattering kernel.
relative to those obtained for the BS amplitud. In par-  FOr example, in simple ladder 2approximation in o
ticular, some singularity structures which were present in thénodel we W,L(,)Uld ha\ée((pz,q;P) =(19)(iD,([p—al9))(ig),
kernel of the BS amplitude equation due to the constituenfn€re Do(p%) =1/(p"~m;+i€) andm, is the o-particle
particle propagators are absent in the corresponding expre@12ss. Note that the corresponding profieg, one-particle
sion for the BS vertex. Consequently, it is much simpler tol'reducible vertex for the bound state is related to the BS

implement the problem numerically, and we therefore do no?mplitude by®=(iD)(iI’)(iD).

encounter previous difficulties with residual numerical noise. iD
We have checked that our numerical results are in agreement ) .
. . . . ir ir
with those obtained in Euclidean space by other autffors -
) ) ! a) ---- = ---- K
example, Linden and Mitt€i3], or more recently, Nieuwen-

huis and Tjon[4,5]). In particular, with sufficient computer

time we have seen no limit to the accuracy that can be iD
achieved with our formalism. We can routinely obtain four iD
figure accuracy on a workstation. ® ®
In this work we will deal exclusively with scalar theories. b) ---- — ' K
For simplicity we will consider here bound states with equal-

mass constituents, although it is easy, and desirable in many D
1

FIG. 1. Diagrammatic representation of the Bethe-Salpeter

*Electronic address: kkusaka@phys.metro-u.ac.jp equation for(a) the BS vertex [) and (b) the BS amplitude ¢).
"Electronic address: ksimpson@physics.adelaide.edu.au The fully dressed constituent particle propagator is denote® by
*Electronic address: awilliam@physics.adelaide.edu.au andK is the scattering kernel for the constituents.
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We follow standard conventions in our definitions of momentum and relative coordinateé&= n;x;+ 7,x, and

guantities,(see Refs[6,7] and also, e.g8]). Thus the BS
equation for any scalar theory can be written as

d'q

(2m)*
X[iD(a3)1K(p,q;P), (1)

where similarly top; andp, we have defined);= »,P+q
andq,= n,P—q. Equivalently in terms of the BS amplitude
we can write

iF(plypz)=J [iD(aD)I[IT(dr,02)]

4

d'q

(2m)*

f T ®(q,P)I(p.q;P)

oy D@PIP.aP),
()

where the kernel function defined byl(p,q;P)
=—iK(p,q;P) is the form typically used by Nakanisf®].
In ladder approximation for a2 model we see, for ex-
ample, that (p,q;P)=g?[m2—(p—q)2—ie]. In this treat-

®(q,P)K(p,q;P)
(2

D(pi)*lcb(p,mD(p%)*E—f

ment we will solve the vertex version of the BS equation,

i.e., Eq.(1), for anarbitrary scattering kernel.

Il. PTIR FOR SCALAR THEORIES

In contrast to the approach in R¢2], we will begin with

X=X;—X, such that x;=X+ 75X, and
P-X+p-X=py- X1+ P Xo.

Equivalently to Eq(5), we can write

Xo=X— 11X,

¢(D,P)=eip'xf d*x€P (0| T (x1) p(X2)|P)

_ J d*xeP X(0[Th( 7 S(— x)|P).  (6)

Note that the bound states are normalized such that
(PIP")=2wp(2m)38%(P' —P), where wp=(P?+M?)¥2
with M the bound state mass. For a positive energy bound
state we must hav®?=M?2, 0<P?<(2m)?, and P°>0.

The normalization condition for the BS amplitude is given
by

d4p d4q - J L L
j (27T)4 (277_)4(1)(q’P) aPM{D (pl)D (pz)
X(2m)*6*(p—a)+K(p,q;P)}®(p,P)=2iP*,

(7
where the conjugate BS amplitud&p,P) is defined by

Bp,P)=e 7 [ dixe PX(PITY ()4 x]0)
= [ atxe m HPIT4 (08"~ m0l0). (®

A. PTIR for scattering kernel

the Bethe-Salpeter equation for the bound-state vertex, Eq. The scattering kerndl(p,q;P)=—iK(p,q;P) describes
(1), rather than the eqUivalent equation for the amplitude, eqhe processhdp— ¢, Wherep andq are the initial and final
(3), and derive a real integral equation for the BS vertex. Torelative momenta, respectively. It is given by the infinite
do this we require spectral representations for the vertex, fogeries of Feynman diagrams which are two-particle irreduc-

the ¢ propagator, and for the scattering kerhedf Eq. (1).
The renormalized) propagator may be written as

P¢(C¥)

D(q)= —2) (4)
a—g’—ie

1 f“’
B da
(mz—qz—ie (m+p)?

wherep 4(a) is the renormalized spectral function. Note that

pys(@)=0, (see, e.g., Reff6]).

The Bethe-Salpeter amplitude(p, P) for the bound state
of two ¢ particles having the total momentuR=p4+ p,
and relative momentump=(#,p;— 71p,) can be defined as

(O[T h(x1) P(x2)|P)=€"""X(0| T (1) p(— 11 X)| P)

. d*p
:e—lP-XJ e P Xp .P),
(2 (p,P)
©)

where the fields for the scalar constituents are denoted,by

and where we have made use of the translational invarianogenotes

ible with respect to the initial and final pairs of constitugnt
particles. For purely scalar theories without derivative cou-
pling we have the formal expression for the full renormalized
scattering kernell1]

- 2 (7.6
I(|o,q;P)=f0 dyfﬂdg P
an Zlfiq?+§ss+§6t e
+ — ptu(71§)
y=| 2, &l st égu| —ie
+ — pus('}’ag) ' (9)
Y- ;1 giqi2+§5u+§55 —ie

whereqi2 is the four-momentum squared carried $yands,
t, andu are the usual Mandelstam variables. The syntbol
the integral region of¢, such that

of the BS amplitude. Following the conventions of Itzykson Q={¢| 0<&<1,2&=1(i=1,...,6)}. The scattering ker-

and Zuber[7] (e.g., pp. 481-487 we define center-of-

nel PTIR can be rewritten in a more compact form as
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* > pch('yvé)
I(p,q;P)= j d f dé , 10
(P.G:P) % 0 7 Q S')’_(achqz""bchp‘q"’Cchpz""dchpz"'echQ‘P"'fchp'P)_ié (10

where the subscript ch indicates which channel we are deatequired to render the integral finite. A partial integration

ing with (eitherst, tu, or us), and{ag,, ... ,f¢} are linear of Eq. (12) with respect tow will serve to demonstrate that

combinations of the; (see Appendix B the positive integen is a dummy parameter, since it follows
For more general theories involving, e.g., fermions and/ofrom such a step that weight functions associated with suc-

derivative couplings, the numerator of E§) will also con-  cessive values afi are connected by the relation

tain momenta in general. Work is in progress to extend the

formalism to include cases, such as derivative coupling and

fermions, where momentum dependence exists in the nu- pnﬂ(a,z):nf da'pp(a’,2). (14
merator. 0

To illustrate our approach we will present here results for
three choices of kernel. Note that the larger the dummy integer parameterthe

(a) Scalar-scalar ladder model with massive scalar exsmoother the corresponding weight function. This is a par-
change: The simple-channel oner-exchange kernel is ticularly useful observation since we have a numerical solu-
given by tion of the BS equation in mind.

Using the same arguments as outlined 24, it can be
g2 shown that the vertex PTIR for bound states with nonzero
(17 angular momentuns” in an arbitrary frame of reference is

) e (p—a—ie

o 1
The BS equation with this kernel together with the perturba- r[//z](p,p):y;z(ﬁ)f d“f dz
tive constituent particle propagatbr is often referred to as ' 0 -1
the “scalar-scalar ladder modelf9]. Note that the kernel

weight function is proportional tg? for this simple case. v pil(a2)

(b) Dressed ladder model: In this instance we dress the [m?+a—(p2+zp-P+P4)—ie]"’
propagator of the exchanged of case(a). The kernel then
consists of the pole term as above, plus a piece which in- (19
volves an integratiotfstarting at a threshold ofrd?) over a
mass parametey. where P is an arbitrary timelike four-vector withP?=M?

(c) Generalized kernel: A sum of the oneexchange ker- andp’=A"!(P)p. The Lorentz transformatioA (P) con-
nel Eq.(11) and a generalized kernel with fixed kernel pa-nects P and the bound-state rest fraLne four-vector
rameter setgy(),£1}. After the Wick rotation this kernel P’=(M,0), i.e, P=A(P)P’. The quantity)’*(p’) is the
becomes complex due to the P and gq- P terms, so that solid harmonic of order”, and may be written in the form
solving the BS amplitude as a function of Euclidean relative|57|/yiz([)r), WhererZ is the ordinary spherical harmonic
momentum would be very difficult in this case. of ordér/’ b =p7)] —),'| and wheren” is the three-vector

The Wick rotated BS equation for cases and (b) has /o, PP=pIp, P

been studied numerical\8]. We use the previous numerical re Igt'vsetrgomﬁ)nrwgomgge brzl::ri]adtes\t/%e rE(?stS)frr?]rS; blte |fh£ela—
results for these kernels as a check of our new technique arﬂy y tf 9 f | bpp d stat Ythq- | i
numerical calculations. correct form for a scalar bound state with angular momentum

/. It follows from the self-reproducing property of the solid
harmonics[see Eq.(C6) in Appendix {J and from the fact
that in the bound state rest frainé is the only available
As in Ref.[2], we will use the form of the-wave ('=0) three-vector.

B. PTIR for BS vertex

BS vertex In the following sections we will study the BS equation
Eqg. (1) in an arbitrary frame in terms of this integral repre-
_ " ! sentation. Note that the dummy paramatecan always be
I'p,P)=| da| dz o :
0 -1 taken sufficiently large such that the loop-momentum inte-

gral of the BS equation, Eq1), converges for any” for
pnla,z) which a bound state exists.
X[m2+a—(p2+zp-P+ P2/4)_i6]n’ (12 Before proceeding, we should address the issue of so-
called ghost states. A bound state whose BS amplitude
®(p,P) and equivalent verteX'(p,P) are antisymmetric
under the transformatioR- p— — P- p with fixed p? and P?
(@.2) has a negative norm and is called a “gho$8]. This sym-
pnla, o

lim , (13) metry corresponds to the ore— — z in PTIR form. We do
ame a1 not consider such states herein, as they are unphysical.

with the boundary condition for the weight function
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FIG. 2. Solutions for the bound-state vertex weight function forsiveave (“=0) andp-wave ('=1) cases are given i@ and (b),

respectively, for a variety of values for the fraction of binding: JPZ12m=M/2m. The exchange particles{) mass ism,=m/2 in these
solutions. It is convenient to plot the rescaled weight funcpén,z)=p5(«,2)/a? in these figures.

Ill. BS EQUATION FOR THE WEIGHT FUNCTION

® 1

r[/v/zl(p,P)=y7f da_f dz- ! _
. n

In this section we will reformulate the BS equation Eq. o -1 [F(a,z;p,P)—ie]
(1) as an integral equation in terms of the weight functions. . L ) ,2)
This is the central result of this paper. We will very briefly Xf d“J dZPn—-
describe the procedure, and state our main results; the details 0 -1 a"
of the derivation may be found in Appendix C, as may defi-
nitions of the kernel and associated functions.

We proceed by combining, using Feynman parametriza-
tion, the integral representations for the scattering kernel an@hereF (a,z;p,P)=m’+ a—(q*+zp- P+ ;P?) is a conve-
vertex with the bare propagators for the constitugnpar-  nient shorthand notation. We have defined an “eigenvalue”
ticles. The procedure can easily be generalized to includé=g?/(4)?, which we will use in our numerical worisee
dressed constituent propagators if desired, but we do not edppendix A). This has simply been factored out of the scat-
ercise this option here, for the sake of simplicity. After usingtering kernel for convenience and for ease of comparison
the PTIR representations for the BS kernel and veftex,  with other calculations in the ladder limit. The total kernel
Egs.(10) and(15)] in the right-hand side of the BS equation function “’VCE/] is defined in Appendix (Gsee Eqs(C21)

(Eg. (1)), and after performing Feynman parametrization forand(C22)] and its structure is discussed in Appendix D with
the right-hand side, the BS equation can be written as particular attention paid to any potential singularities.

X a" N (@, Z;a,2)], (16)
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TABLE I. Comparison of the coupling strengtis= g2/ (4)? Figenvalue Spectrum
obtained for the ladder approximation kernel from the Euclidean 30F T T T T T
(i.e., Wick-rotatedl s-wave solution §g) and those obtained here b
directly in Minkowski space X), using a moderate grid choice for 2.5 E E
a andz. The Wick-rotated values are from Linden and Mitt8}. 50 [ ]
The parameter » is the “fraction of binding,” T
n=P%2m=M/2m, where P?=M?2 and M is the mass of the < 1.5F 3
bound statdi.e., O0< »<1). The results shown here hat,=m/2 ;
for the exchange particleo) mass. 1.0¢ 7
0.0L . . . . .
0 25658  2.5662 0.8 1.4055  1.4056 00 02 04 06 08 1.0 1.2
0.2 2.4984 2.4988 0.9 1.0349 1.0350 n

0.4 2.2933 2.2937 0.99 0.5167 0.5168

0.6 1.9398 1.9402 0.999 0.3852 0.3853 FIG. 3. Thes-wave (i.e., /=0) bound-state spectrum for the

ladder kernel, whera=g?/(4m)? and 5= +P%2m=M/2m. The

exchanged particlex) mass is half the constituent mass,=m/2,
Comparing Eq(16) with Eq. (15), and using the unique- in these results. These results correspond to those in Table I.

ness theorem of PTIR1], we finally obtain the integral

equation forpl1(a,2) In general(and, for example, for the dressed ladder ker-
nel) the kernel depends on higher powers of the coupling
1 PL/] p%/](a,z) thang?; in such instances we update the running valua of

o,z o 1 -
— %= Jo daJ,lethE‘/](a’ Z,a,2)

X in an appropriate way during the iteration procésse Ap-

1 pendix A). Since the BS equatiofBSE) is a homogeneous
17) integral equation and we are only interested at present in

This equation is the central result of this work. Note that inextracting_ the_ cogpling at fixed bounc_j state mass, the ch_oice
of normalization is unimportant provided that it is fixed in

; (717 N thic i
Eqg. (17) we are solving forp;”‘/a"; this is for reasons of some reasonable way.

convenience for our numerical treatment of the BS equation. . . .

] ) ] . The numerical solution of the vertex BSE is performed by

Summary. Since the weight functionpcn(y.£) for the choosing a suitable grid af andz values, making an initial

scattering kernel are real functions by their construction, they,ess for the vertex weight function, and then iterating the
total kernel function®cl/1(@, z;@,2) is real, so that Eq. integral equatiori17) to covergence. One subtle point is that
(17) is a real integral equation in two variablesandz. Thus  integrable square-root singularities may occur and must be
we have transformed the BS equation, which is a singulaappropriately handled numericaligee Appendixes A and D
integral equation of complex distributions, into a real integralfor detailg. By optimizing the choice of grid and increasing
equation which is frame independent. Once one solves fathe number of grid points it was straightforward to increase
the BS vertex weight function, the BS vertex and the BSthe accuracy of the solutions to a relative error of 1 part in
amplitude can be written down in an arbitrary frame. This is10* and beyond. Further details of the numerical procedure
clearly advantageous for applications of the BS amplitude taised are given in Appendix A.
relativistic problems.

a,n

A. Pure ladder kernel

IV. NUMERICAL RESULTS .
We have solved the vertex BS equation, ELj7), for a

In this section we present numerical solutions for the BShumber of bound state masses betw®&r=0 (Goldstone-
vertex for bound states in scalar theories using @@ for  like bound stateand P?=4m? (the stability threshold So-
three simple choices of scattering kerr{@): pure ladder ker-  |utions were obtained for orbital excitations upAe=4 with
nel with massive scalar exchandb) dressed ladder kernel no difficulties. We plot some examples of our solutions for
with pole term as in@), and(c) a generalized kernel com- /=0 and/=1 in Fig. 2, and tabulate our results for the
bined with the pure ladder kernel ¢d). “eigenvalue” \=g?%/(4m)? in Table I. A plot of the spec-

The scattering kerndh), i.e., the ones-exchange kernel trum for /=0, i.e., of A vs the fraction of binding
depending only ort=(p—q)?, is given by Eq.(11). This  »=./P%2m, is given in Fig. 3. All solutions presented were
corresponds to choosing for the kernel in E§), say, obtained using ar mass ofm,=m/2. We have compared
pw=pus=0 and in thest channely=m?, andag=cs=1, our eigenvalues to those obtained in the Wick-rotated treat-
bsi=—2, dg;=e5=f5=0 [cf. Eq. (10)], which amounts to ment of Linden and Mitte[3], and have found agreement to
choosingps; to be an appropriate product & functions  better than 0.03% for moderate choices of thezj grid.
multiplied byg?. In the pure ladder case it is conveni¢and  This is an improvement in accuracy of at least one order of
traditiona) to factorize out the coupling constagt and a  magnitude over the results we have obtained previously for
factor of (4w)?, by defining the “eigenvalue’A=g?/(47)?>  the BS amplitude. Furthermore, much greater accuracy is
[3,10,11. Thus it is usual to fix the bound state m&&%sand  possible through an increase in the number of grid points
then to solve for the coupling?, which is what we have used in the numerical integration should it be desired for
done here. whatever reason.
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B. Dressed ladder kernel 0.30 ¢

For the “dressed ladder” case, the scattering kernel is
given byl =—iK=(ig)D,(ig), whereD, is the renormal-
ized o propagator at one-loop order. This is simply the sum g 0.20F

0.25}

of the pole term, Eq(11), and a continuum part, and is given =
by £ 0.15¢
Fr
£ 0.10¢
o [ Po(S) =
D,l(p-a)?=| ds——"—— (18
0 s—(p—q)—ie

i
i
‘ \\\\\\\\\ I

i

T
s

where PU(S):PpoIe(S)+Pcon1(S)- ppole(s) is  simply
5(s—m,2,), and it can be shown that, to one-loop order,

PcondS) IS given by the expression

FIG. 4. Rescaled weight functign(a,z) = pl’!(«,z)/ a? for the
5 s—4m? 1 dressed ladder kernel with poleraf,: m?, and a bound-state mass
Pcont= N O(s—4m°) s A’ (19 of y=P%2m=0.1.

whereA(s) is the function

For example, ous-wave (©'=0) eigenvalue foP?=3.24m?

2_g-2\{2 M t m—(zr and for the exchange particle polemag=m is A =1.516 for
Mo™s m e e e a grid of 80< 41 and is\ = 1.518 for a grid of 156 91. The

corresponding Linden and Mitter value i&=1.518. Even

with a relatively coarse grid high accuracies result. Similarly,

we have found for other values &7 that an accuracy of
4(m2—s) ( m? m? 0.3% or better is routinely attained, even with the use of the

A(s)=

+

arctam\/ ———~ i i
JmZ(4m?—m3) AmP—m2 coarse 841 grid. As the above results demonstrate higher

2

My accuracy is easily obtained at the cost of more CPU time.
We plot the rescaled weight functign®/? for the case

P2=0.04m? in Fig. 4 for purposes of comparison with the
corresponding ladder case. We have chosen this vali® of
since a smaller bound-state mass corresponds to tighter bind-
ing and hence larger coupling, which should enhance the
effect of this one-loop self-energy insertion. We see that the
shape of the weight function is not qualitatively very differ-

s—4m2> (20 ent from the ladder case.

2

1 ) /s—4m2I
Z + s N

¢§+m>]
2

+)\2772<

Note that the use of Eq18) introduces an extra integration C. Generalized kernel
(over the mass parametgy. We performed this numerically This particular example of a “generalized” kernel is an
using Gaussian quadrature; 10 to 15 quadrature poings in instance of a scattering kernel for which Euclidean space
provide solutions of satisfactory accuracy. solution is not possible. We have solved the BS equation for
We have solved Eq(17) for the dressed ladder kernel this case, in particular for a sum of the pure ladder kernel as
above, with the pole being situated mf,=m, for various described above and two randomly chosen nonladder terms,
values of the bound state mass squaP@dAs for the pure each with a weight of 0.25 and with the fixed parameter
ladder case above, solutions have been obtained up-té. sets(in the st channe)

{7,851,Ds1,Cst, st €51, Foth = (1){2.25m2,0.4726115018% 0.29743163287,0.58277042955,0.28282145969,
—0.23965580016,0.32196629047
(2){2.25m2,0.47261150181,0.29743163287,0.58277042955,0.282821459609,
—0.23965580016; 032196629047 (21)
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equation rather than the amplitude equation. We obtained an
accuracy in all of our results of approximately 1 in“1@ith
modest ,z)-grid choices on a workstation. This can be
improved by using finer grids and larger computers as de-
sired.

Further applicatiorfsof our formalism are currently being
investigated, particularly the crossed ladder and separable
kernels. These will not only provide yet another test of our
implementation of the method, as Euclidean space results are
also available for these cases, but also will provide us with
an opportunity to solve a problem featuring more realistic
scattering kernels.

It is also important to consider how the PTIR can be ex-
tended to include fermions and derivative coupling, so that
we have a covariant framework within which to study, for
example, mesons in QCD using a coupled Bethe-Salpeter—
Dyson-Schwinger equation approach. This would require us
to incorporate confinement into the PTIR, which at this stage
remains another important and interesting challenge.

Weight Function p

FIG. 5. Rescaled weight functiop(a,z)=p(«,2)/a? for a
random choice of generalized kernel as described in the text.

The parameter$ag,, .. .,fs} were obtained from a set of

values{&,, ... &} produced by a random number generator

(see Appendix B This was done to emphasize that our tech- ACKNOWLEDGMENTS

nique produces well-behaved solutions forabitrary ker- We thank Stewart Wright for assistance in generating the
nel. We have had little difficulty obtaining noise-free solu- nymerical results and the figures, and V. Sauli for a careful
tions for this kernel for orbital excitations up 6=4. proofreading of the manuscript and A.W. Thomas for some

This kemel vyields an s-wave eigenvalue of helpful comments on the manuscript. This work was sup-
N=g%/(4m)?=1.3569 forP?=1.44m7, cf. the ladder value ported by the Australian Research Council, by Scientific Re-
of A=1.9402 for the same bound state mass. We thereforgearch Grant No. 1491 of the Japan Ministry of Education
find, as befor¢2], that the additions to the pure ladder kerneland Culture, and also in part by grants of supercomputer time
have enhanced the binding, i.e., they are attractive. This is Gfom the U.S. National Energy Research Supercomputer
course to be expected in a scalar theory and was also Olgenter and the Australian National University Supercom-
served in Refs[4,5]. Not only is the eigenvalue lower, but pyter Facility. K.K. thanks the JSPS for financial support.
additional structure is present in the vertex weight function
(see Fig. 5. In contrast to the solutions obtained for the BS APPENDIX A: ALGORITHM
amplitude in the previous work], we find that there is no
numerical noise in the vertex weight function. If one com- Here we detail the algorithm used in our numerical stud-
pares the general kernel example solution in Fig. 5 with thees of the integral equation
ladder solution for the same bound-state mase Fig. 2, it .
is readily apparent that there is some additional structurel pi (e, z) ° 1 pL/](a,Z)tot = _.
superimposed upon the weight function, due to the additiory ~ —7 fo d“f_ldzT Ke (@, z;a,z)),
of the generalized kernel terms. (A1)

V. SUMMARY AND CONCLUSIONS where we have .explicitly shown t_he coupling depgndence of
the kernel function. We have defined here an “eigenvalue”
We have derived a real integral equation for the weight\ =g2/(44r)2. Our rationale for this is as follows. For a
function of the scalar-scalar Bethe-Salpe®®) vertex from  given scattering kernel the integral equatiohl) may be
the BS equation for scalar theories without derivative cousglved for the bound state maB€=M?2. However, the de-
pling. This was achieved using the perturbation theory inte-pendence of the kernel functiobcl)(a,z;a,7) on the
M M H H n 1 1 1
?ralll representtatt_|ofPleRt), Wh'c.h tlsGan ex,terfwsmrt\_of thef Spt;“c,;hbound state masB? is highly nonlinear and complicated. It
t[]ae rseégrt?;ﬁ:gak'gpn e{?éqw(%}'ﬁ)zﬂ d tr:EeIQSS vl(Jarr]t(; ;Oﬂzéﬁ%rq OMis therefore convenient and traditional to instead solve the
. . - - 2 . . .
(15)]. The uniqueness theorem of the PTIR and the appropri?quatlon for the coupling”, which appears in the weight

ate application of Feynman parametrization then led to thdUnction pei(v,£) fzor the scattering kernel, with a fixed
central result of the paper given in EG.7). bound state masB?. We first fix the bound state mas¥

We have demonstrated that E47) is numerically trac- @nd regard the integral equati¢Al) as an “eigenvalue”
table for several simple kernels, including a randomly choseRroblem. The “e|genvazlue” is then introduced by factorizing
case where it is not possible to write the kernel as a sum df'€ coupling constang” from the scattering kernel weight
ordinary Feynman diagrams. Our results for both the pure
and dressed ladder kernels are in excellent agreement with
the results obtained previously in the Wick-rotated approach. Those interested in applications of this technique may request a
The agreement for the pure ladder kernel is even better thatbpy of the computer code from A.G.W. at the given e-mail ad-
in Ref.[2], vindicating our decision to solve here the vertexdress.
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function pch(’y,g). In this convention, the kernel function pL/](a,z) -
oyl (g 7 i i ———K(a,z;a,z\) (A3)

Ky '(a,z;a,z;\) becomes a power series ln starting o" n P ER SR
from order 1 for a perturbative scattering kernel.

Strictly speaking, the integral equatiéil) is not an “ei- . ) )
genvalue” equation, since the kernel function itself containgO" the other hand, the integral of the weight function aver
X in the general(i.e., nonladder case. We thus solve the and z for_an ant|symm.etr|c ;olutlgn vanishes identically.
equation by iteration rather than applying methods for eigen Nen the integral equatiofAl) is written as
systems. With an appropriate initial guess for the weight ] —— (1
function pl’)(a,2) for the BS vertex and the coupling con- 1 Pn "(@,2) (= v pn(a2) 5 .

n : . . ————=—| da| dz——K} (a,z;a,Z;\).

stantA we generate the new weight function by evaluating\ a" 0 1 n
the right-hand side of the integral equatiohl). The “ei- (A4)
genvalue”\ associated with the weight function is extracted
by imposing an appropriate normalization condition whichAs discussed in the main text, the bound state whose BS
we will discuss later. This generated weight function and itsamplitude®(p,P) and equivalent verteX'(p,P) are anti-
“eigenvalue” are used as inputs and we obtain updated valsymmetric under the transformatiéh p— — P - p with fixed
ues, which ought to be closer to the solution than the inpup? and P2 has a negative norm and is called a “gho$8].

values, by evaluating the integral. We repeat this cycle untilrhis symmetry corresponds to the oze——z in PTIR
both the “eigenvalue” and the weight function converge. form. Thus a bound state whose weight function is antisym-
The normalization condition for the BS vertex or equiva- metric in z reflection and which satisfies the homogeneous

lent BS amplitude in momentum space is well known andintegral equatior(A4) is a “ghost” state. We hereafter con-

to the bound state four-momentubn[see Eq(7) in Sec. . gnes, and on the integral equatiohd).
When the scattering kernel depends on the total momentum ¢ can be shown that the inhomogeneous term vanish un-

P, the normalization condition is the integral over two rela- .-~ oy, Whereay, is the threshold of the weight func-
tive momenta; one for the BS vertex and the other for the, . — _ i
on depending on the value af for a given scattering ker-

conjugate one. The corresponding normalization condition inf ,
PTIR form is written as the four-dimensional integral over N€l- For a ones exchange kernel with the mags, the
spectral parameters and z. Imposing a condition that in- threshold can be written as

volves such a multidimensional integral in the iteration cycle
makes the calculation less accurate and time consuming. We

sha}II rather.use[% suitable .normali.zatio.n condition fqr the ath(z_): (mz—(l—?)P_z 1/2+M 2
weight functionp;, '(«,z) during the iteration. The physical 4

normalization condition(7) may be imposed by appropri- p2

ately rescaling the obtained solution. Of course, the value of - ( m2— (1_?)_>_ (A5)
N=g?/(47)? is unaffected by the choice of normalization of 4

the vertex weight function. ) ) ) )
Since we are considering bound states whose constituenfd!is thréshold determines the support of the weight function
are of equal mass), we expect that a physically reasonable P ©Of €auivalentlye for the normal solution. Although we
scattering kernell(p,q;P) will give a kernel function c&nnotwrite the threshold in a simple form such as [@&4)
ICV](? Z)\) symmefric under the transformation for general scattering kernels, we can extract it numerically
Bon A& 441 y Y . } by analyzing the inhomogeneous term. On the other hand,
z—— z. The weight functiorpy '(a.2) is then either sym- oo el functioncl1(a, z; @,z;\) has the support prop-
metric or antisymmetric ir— —z. For a symmetric solution L —— . . .
the following normalization is convenient: erty for a givena, z, andz that it vanishes unless is less

than some valuey,,.. For the case of a one-exchange
kernel it is given by

=t pl(e2)
f daf dzpn—n=1, (A2) 2\ 12 12
0 -1 - _ —
“ amak(avzaz): at mz_(l_ ZZ)Z) _ILL:|
2 —

provided that the integral does not identically vanish. From —(mz—(l—?)P_” 15z for 7272,
Eq. (C21), the kernel function is given by the difference of 41157
two terms, viz.KY1(a, z;0,0\) - KV (a, z;a,z;\). With (A6)

the normalization conditiofA2) the integral equatiofAl)

can be written as an inhomogeneous one: _ ) .
As in the case ofy,, the analytic form of the upper limit

amax 1S UNknown, so we extract the corresponding upper

1 [/](—z) . 1 limit numerically for general scattering kernels. Writing
ZPn %2 =Kl a,z;0,000)— j daf dz these limits of the integral explicitly the integral equation we
A ah n 0 -1 use is then
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1 pL/](TZ) P— variabley~1/2. We thgp 'discre.tise boly]'(equivaltlantlya)
N Tn=ICL' la,z;0,0\) andz and prepare the |_n|t|al weight funcUo_n on this grid. For
a each cycle of the iteration we perform the integral as follows.
(@21 Z) [/](a 2) ﬂe first evaluate ther integral for a given point in the and
f f wl® T z plane and on the grid. For each value of the discretized
¢ and y we extract the support of the the kernel function
XK (o, z;a,zN). (A7) KL(a,z;a,z;\). We then divide the integral range

_ _ [an(2),amaf @, Z,2)] into subranges according to the sup-
We evaluate the integral over andz in the RHS of EQ. o1t of the kernel function with discretizetiand y. As dis-

A7) as follows. Recall that the kernel function . . . —_—
(A7) cussed in Appendix D the kernel functiedd(«, z; a,z;\)

A5 72 e A ;
ICL ](a' Z;a,Z;A) is given by the integral may diverge as an integrable square root singularity at the
boundary of the support. While this is always the case for the
one o exchange kernel, the kernel may take a finite value in
general. We thus choose an appropriate integration method
to perform the integration ovewx for each subrange. The
weight function at arbitraryr is evaluated by interpolating
the values op on the grid. We perform the integral in this

We thus start by replacing the integrations over Feynmaivay for each grid point oz and the integral over is per-

parameterg and the spectral variablg by summations over formed by interpolating these values. With this careful treat-

discretized variables. Secondly, we map the semidefinit ent of integrable square root singularities we need not in-
range ofa e [0) to the finite on,eye [0,1]: roduce any regularization or cutoff parameters. Furthermore,

this method allows us to choose tleand z grid for the
y newly generated weight function independent of thendz
a= “0+C1Ty' (A9) grid. We optimize the “new” grid by analyzing the shape of
the “old” weight function used in the RHS of EqA7). the
wherea, andC are some constants which should be chosereigenvalue is evaluated using the normalization condition
such that the weight function is largest around the mappe(@A2).

K a, z;a,z,0) =2, fﬁdérdy
0

ch

1 .
?Pch( ¥,6)

XK (a, 20,2, 7,€). (A8)

APPENDIX B: PTIR FOR SCATTERING KERNEL

In this appendix we list the dimensionless coefficiefigg,,bch,Cen, - - - et I Eq. (10) for different channels

{cht ={st},{tu},{us} in terms of the Feynman parametéisdefined in Eq.(9).
st tu us

ach &1+ &+ & §1+ &+ Es5+ & &1+ &+ s
bch —2¢&g 2(&6— &x) 285
Cch E3t+ &4+ &6 E3+ &4+ E5+ & E3t+ &4+ s
dch F(E1téptégtéy)+és TGt &t étéy) T(E1tétéstéy)+és
€ch §1— & §—& §1— &
fch §3— & &3— &4 §3— &4

Beginning with the above definitions for the scattering APPENDIX C: KERNEL FUNCTION
kernel parameters in terms of the Feynman paramétersd In this appendix we detail our derivation of the real inte-

noting that=?_,&=1, it is possible to prove the following gral equation for the BS vertex. We begin with the PTIR
relations between the kernel parameters, for all three charform of the bound-state vertgi0]
nels:

2 o 1
ac— %20, rWﬂ(q,m:)//(A*l(P)q)fo dafﬁldz
H(a2)

b P : C1
fiE‘Q’ [F(a,z;q,P)—ie]" b
eb b? ~ _ _ _

af—? <ac— . (B1) In Eqg. (CD), ));Z[A }(P)q] is the solid harmonic for a
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bound state with angular momentum quantum numbérs on the right-hand side of the resultant equatibare propa-
and /,, pY1(a,2) is the PTIR weight function for the dators, scattering kernel and vertex PTI&sing Feynman

bound-state vertex function, andis a dummy parameter. Parametrization. We first combine the bare propagators for
The functionF is given by the scalar constituents with the denominator of the vertex

PTIR:
F P 1+z[ 2 ( 1Pﬂ D( +1P)D< +1P) !
,Z2,(, =at+——|M— + = A - P ;
(@zP)Zat 72 72 2 [F(a,z;q,P)—i€]"
1 I'(n+2) (1 1
1- 1\2 =————1| d fdtt"*l 1-t
B P } 2T(MT2)) 1" "), (1-9
2 2
1
1 ><{F[t tz+(1-t)7;q,P]—ie" "2 €3
=a+m?— q2+zq~P+ZP2>. (C2 “ 7.9, €

We now combine the factor [I#(---)]"*2 from the inte-
We proceed by substituting this form of the vertex into grand with the denominator of the PTIR for the scattering
the vertex BSE, Eq(1), and combining the various factors kernel[see Eq.(10)]. After some algebra this yields

1 1
y—(ag?+bp-q+cp’+dP?+eq-P+fp-P)—ie [F(ta,tz+(1—1)7;q,P)—ie]"*?

_ T(n+3) 1 xn+l 1
TTT(n+2) Jo T (1=x"3 (y+a)3

1

X . : (C4
Hlc(y+a)= (b%4)]/(y+a)’}F' —{q+ [bp+(e+[tz+(1-t) nly)Pl/2(a+y)}*—ie]"*?
where
F'=F[A(ta,tz+(1-t) n;y), 2(tz+ (1-t) ;y);p,P],
p? 2
A(a,z;y)sc(eraw1 a+m2—(1—22)Z (y+a)?+ 7—(a+c)m2—aa+[a+c—4d+22(e—az)]Z
b?( —2(az—e)\?%|P?
X(y+a)+ | mie P(T) it
f(y+a)—(b/2)(e+y2)
Z(zyy)= C5
(zY) c(y+a)—b?/4 (€
X
Y=1=x'

Note that the parametefs, . .. ,f} do not explicitly have the subscript ch attached to them in this instaricAppendix
B and Eq.(9)], for the sake of brevity. We will also, for the time being, omit for brevity the sum over chasndls, us in
the kernel function.

Having combined all factors on the right hand side, we are now in a position to perform the integral over the loop
momentumg. To do so, we must utilize the property of the solid harmonics

f d*qF(G?) Y4 A+ P)=V/(p) f d*qF(q?), (Ce)
whereF is a sufficiently rapidly decreasing function which gives a finite inte@tél. Also note thatA ~*(P) boosts the

four-vectorP to rest, i.e.,A‘l(P)P=(\/52,5), and that the solid harmonics are functions purely of the three-vector part of
their argument, i.e.yjz(p)=|§|/Y;Z(f)) (herep=p/|p|). Bearing this in mind, we obtain for the loop integral
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o T(n+1) YAAXP)p)
(a+y)” (4m)%T(n+3) (M2—ie)"*1’

f d“q YA (P)a) _(_9
(2m)4 [M2—{q+ [bp+(e+zy)]P/2(a+y)}2—ie]”+3_ 2

(C7

whereM? is simply that part of the denominator of E@4) that does not depend at all on the four-momentym
Ignoring integrations over weight functions for the moment, we have, after performing the loop momentum integral, the
result

+1p
a2

( 1 ) YA Y P)q]
D| —g+ 5P -
2 J[F(a,z;q,P)—ie€]"

f d'q I(p,q;P)D
(2m)% P-4

1 1 b, I(n+l) - yntt (y+a)"?!
(477)22 2 I'(n) f d”f dr(1- t)f (1 x)2(y+a)/[c(y+a)—b2/4]n+l

y Y HAY(P)p)
{FLA(ta,tz+(1-t) y), Z(tz+ (1—t) 7;y);p,P]—ie}"* 1

(C8)

In order to obtain a real integral equation involving only weight functions, it is necessary to recast the last fact¢€i) Eq.
in a form similar to that found in the vertex PTIR, E&1). To proceed we therefore insert the trivial integral

| dzaz- 2tz a-vmyn-1 9
-1

into the right-hand side of EqC8), and eliminate the integration overy rewriting the § function in terms oft. We are
permitted to do this because the functiBns bounded between 1 and 1. That this is true is easily seen by observing that
is monotonic in the variablg, with ye[0,), and then by taking the limitg—0 andy—«. The former limit gives

= 0) af—eb/2 (€10
zy—0)= ————,

Y ac— b%/4
and so from the third inequality in EqB1) we have thatZ(z;y—0)|<1. The second limit gives

_ = (b/2)z
2zy—e)=—(c (C11)

which allows us to use the second inequality in Bfl) to conclude thatZ(z;y— »)|<1, given that Eq(C11) is monotonic
in z. Since| Z|<1 in these two limits,Z must be bounded betweenl and 1 for ally e [0,©).
The insertion of this integral gives us

1 E(_E)/ _E’F(n+1)f f YL (y+a)nt
S N T ray
6(2-G)0(G+1) [ dpn Z=C (G"?)”_l VAN Y(P)p]

-1 77y (z— 77) Z—7 {F[A(toa,G),Z_;p,P]—ie}”“

xfld h z-G (G—n)”l YAAYP)p] ]

6 Y (z—p?\ =1 {F[A(tea,G),Z;p,P]—ie}" !

—6(G—2)0(1-G)

(C12

where we have introduced b2
h=h(y)=c(y+a)— .
G—7
to=——,
g We next make a change of variable— @, such that
2(cz—f) —
G=G(z;y)= T( ta)—| —yz+tel|, —_y(y+a) a(zy)
o= Oa'+

(C13 h h
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9(z;y)=A"(z)(y+a)*+B'(z)(y+a)+C'(2), YHA Y P)p)
X —— e (C19
o —2(cz_—f) 2] p2 [F(a,z;p,P)—i€]
A(z)=m?— 1_(T) R
L L p2 with the functionsR.. being defined by
B’(z)Ey—(a+c)m2+[a+c—4d—22(cz—f)]T,
—_b —.,P?
C'(z)=—[m=(1-2z9)]—. (C149 —
4 4 - V)
Ri(z,z;y)zy(wa) Glziy)>1 (C16)

Note that for brevity we sometimes writgz;y) asg below. h(y) zx1

This should not be confused with the coupling strength

since the meaning should be clear from the context. With this

transformation the factor in braces in E12) becomes We may use the following to shift the limits of integration
of a to (—o0,0):

Ryat+g/h 1 h2 1

|0(Z—G)0(G+1) do— — ———
g/h a" Y [y(y+a)]"

b o o © - _
><(hE—g)“—1+ev(cs—z)a(l—e)JM+g/hd0‘_i f d“:J d“‘J d“:f dal6(a—a)=6(a=b)].
g/h a" a a b —®
(C17
h? 1 _
X (ha—g)""! _
Y [y(y+a)]" The expressiofiC15) then becomes

_ g n-1
_H)

. n+1
> G[i(G—z)]G(llG)J oloTi n
+ - a

J— . /'Z A—l P
il @ 9(“_9)—9(a—9—R+a” Y1 (P)p]
nyn+l(y+a)n

h [F(a,z;p,P)—ie]"
(C18

We complete our derivation of the integral equation by integrating by parts with resp&intorder to reduce the power
of 1/F(---) from n+1 ton, noting that the boundary term resultant from such an integration vanishes due to the presence of
the step functions. We therefore have, finally,

rivd(p P)—y/Z[A’l(P)p]Jx da_Jl P deaJ'l 422D o T
’ / L -1 [F(Q,Z,p,P)_|€]n 0 _1 an n 1 &, 0, .
(C19
We may use the uniqueness theorem of PT1Rto obtain the equation which we will solve numerically:
1% a.2) (= [t [V a,z
—L:J’ daJ dz‘OtICL/](a,z;a,z)M, (C20
A an 0 -1 a”
where the full analytical expression for the kernel functfiC can be written as
o=kl (e, 2;0,0 -k (a, z;a,2), (C2)
whereK is the function
w2 A N 5 |k (@ 20 E
’Cn (a,Z;a,Z)E% ng 0 dy _chh(yvg) Kn (a!Z;aIZ;'y’g)l
9 (C22

- . 11/( b\ 4 (= 1 [ g'(zyH\" !
K (a,z;a,z;y, E:—(——) —_j dy’ — ’
n (a « Y f) a” |b| 2 a y (y/)/+l a h/(yr)

—g'(z,y) Yy'(y'—a)1¥G'(zyy") )
o — - a|.

01=[G(z:y ) -z 0[1FG'(z:y' )]0 —
; {£[G(z;y")—z]} o[ (zy)]( vy h(y) 152
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Note that we have made a shift of variable frgnto y’. The quantitiegy’,h’, andG’ are the same as their unprimed
counterparts, except that tgedependence of these functions has been transformed accordirgyto=y +a. Note also that
we indicate explicitly the dependence K)ﬁ/] on the scattering kernel parametéﬁsé‘}. For the remainder we will omit these
additional labels for brevity.

In order to implement this kernel numerically, we must perform the derivative with respgamd simplify the resultant
expression, as well as transforming those integration variables with semi-infinite or infinite ranges to variables which have a
finite range. We begin by performing the derivative, which splits the kernel into two pieces, one of which contaids a
function. After this differentiation, we have

1 1

!

n—-2
) 2 6[+(G'—2)]0(1FG’ )0(&—%

I

!

y'(y'—a) 1¥G’
h’ 1%z

— 9 _y'(y'-a)15G’
h’ h’ 17z ¢

,\n—1
@ +(a_—%) > 0(=(G'—2)]6(17G") 4| a

The piece containing thé function may be integrated ovgf in a relatively straightforward manner, simply by rewriting
the & function in terms ofy’. The argument of thé function is quadratic iry’:

argument [A-(Z;2,2)y'2+B+(a,z;a,2)y' +C(a, 2)]. (C29

cy’ — b?/4
The 6 function is therefore

2 '

1 h'(y;
8| = o (Asy P+ Bey +C) | = 3 o)
y

— 5y’ ~y)0[D+(a, z,e,2)], (C25
c r_b2/4 =1 vD- (a Z, aZ) (y Y [ (a/ : ]

WhereD;EB§—4A;C, and they; are the roots of the quadratic, i.e.,

-B.—\VD; , —B.+\D:

Yi:T, Y2 2A_

(C26)

The casen=2 is of particular interest to us, and so we will restrict ourselves to this case from now on. Dropping the prime
ony, then=2 kernel function may be written as

1 (7 5+ _ 11 b ‘ * 1 1 . 2 . VY
anz(a,Z,a,Z)—?m —E EI: Ja dyy/+1¢9 _Cy— b2/4[A:(Z,a,Z)y +Bs(a,z;a,2)y+C(a,2)]

N af[D5 (a Z,a,z2)]

5|

1¥-2(cz—f)/b 1  a¥[— (b/2)z+€] 1)

\/D (a,2;a,2) | 1+z y|/+l 1+z yi/
fwd 5 J 1. —2(cz—f) +( b )
x| dy (y—yi) y=a| " b —z|yt|\az—| —z+e
1 _—2(cz—1) b
X 0 y—a 1¥ b y—ax —§z+e , (C27

where

D, (@ 70,2 =B (@, 710,2) - 4A.(Z10,2)C(a,2),

T —2(cz=H)\%|P2 1+2(cz—f)b
H(Zag=m =l —— | |t

P2 a¥[— (b/l2)z+e]
B- (aZaz) yv— Ca— (a+c)m’+[a+c—4d— 22(cz f)]—— 157 a
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2
a+ m2—(1—?)P— (C29
yak

b2
C(a,z)=z

For the purposes of numerical solution we now make successive transformations of the integration yaffiasieo
y=1J, and then fromy to Y=(b%4)y. The first transformation serves to render the range of integration finite, while the
second ensures that we do not encounter any difficulties in the kernel function in thle-lirfif which can occur, for example,
in the separable kernel case. The kernel function after these transformations becomes

S (W - 2 2
szmadYY/*la[—(E;Y2+§IY+KI)]+ aa[,_D+(a_’Z'a’Z)]E [(b—IEO)i
0 VD-(a,z;a,z) =1Ll 4 Yi

+ i

— 1/ 2\71
[7] - S R
Kn=2(a,Z,Cl’,Z) ?( b) |b|2{
2

b2
0| (—axho)Y+ 4 +7g

~ b?
—(a¥*hgp) t(az—ho)Yt(go— ZZ)

, [b%14a
v( | vy o . (C29
wherehy(z)=(-b/2)z+e, andgy(z)=(—b/2)(cz—f). The; are the roots of the quadraf, Y2+B.Y+A. , and

N _ —_P?
C.(a, z;z)=(1Iz)( a+m?—(1— 22)—),

4
U — — - 2 b
B+(a,z;a,z)=(1iz)<y—Ca—(a+c)m2+[a+c—4d—22(cz—f)]Z —la¥ —§z+e a,
— b? P2 — 2 2 _p
n . 1= 2 AV B e _
A-(z,a,2)=(152) 4(m 7 +(cz—f) 2 + 772 (cz f))a,
D.=B2-4A-C-. (C30

This is the expression which we implement numerically.where the uppel . and lower limitsY ., of the integral
Note that the support of the kernel is entirely determined byare determined by relatively complicated step functions de-
the step functions in Ec{C29)_. In general it is not possible pending on the variables, z, , andz as well as the kernel

to extract the support analytically, and so in most cases th'Barameters{y a,...fl. Itis easy to show that the upper

step must be done numerically. limit Y, is finite as long as the parametedoes not van-
ish. Since the scattering kernel with identically vanishiang
APPENDIX D: KERNEL SINGULARITIES is nothing but the constant scattering kernel in the relative
. . . momentump, we do not consider this case. Thus the Feyn-
In this section we discuss the structure of the kernel func-man parameter integral may diverge logarithmically, and this

tion K (a, z;,2) for arbitrary / with a fixed kemel pa-  only if Y, vanishes for the’=0 case. However, as is clear

rameter set+, &), i.e., for constanfy,acn,bch,Cehy - - - »fenp-  from the expressioC29), the pointY=0 is always ex-
We will in this section omit for brevity the subscript ch. cluded by the step functions, so this integral never diverges.
Since the casa=2 is of particular interest to us for numeri-  The & function term can be written as a sum of fractions

cal treatment, we discuss possible singularities of the kernetith square root factors in their denominator together with
function KL/:]Q(HCLZ), whose expression and derivation finite numerators. The square root factor comes from the
are given in Appendix C. General cases can be also con- Jacobian to change the variable of thdunction from the
sidered in a similar manner. spectral variablex to the Feynman paramet#&t. Note that

As shown in Appendix C the kernel function this situation is quite general and occurs for any angular
KIJ,(a,z,a,2) given by the Feynman parameter integral Momentum”” and dummy parameter. From the argument
consists of two terms, one containing only step functions an@f the square root, this term becomes singulax iatisfies
another containing @ function. It is convenient to make the the guadratic equation
Feynman parametgrfinite to discuss the singularities of the

kernel, and so we will discuss the structure of the kernel . ;

function based on the expressig29). a+hy(z) — _bY4Tgo(2)
. o3 . ————a—B(a,z2)—2—————C(a, 2)
The step function term is given by the integral 152 athy(z)
Yinax | p%4xgy(2)
f dyy -1, (D1) —4C(a,2) A(z)+B(a,z)+—gO(_)
Ymin a+ hO( Z)
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2 _~ —\2
+C(a,z)<b/4+—90(_z))
a¥ho(2)

=0, (D2)

wherehy(z)=(—b/2)z +e, andgo(z)=(—b/2)(cz—f).
The functionsA(z), B(«, z), andC(«, z) are

_ p2
—_f)2__
+(cz—f) R

o bZ 2
=— | mi— —
A(2z) 4(m 7
B(a,z)=y—ca—(a+c)m?
_ p2
+[a+c—4d—22(cz—f)]f,

5085

_ p2

Cla,z)=a+m?—(1— zz)P—.

7 (D3)

Thus the kernel function diverges as a square root if(B8)
possesses a simple root. On the other hand, the kernel func-
tion diverges linearly if Eq(D2) admits a double root. Since

C(a, z)>0 for any bound state, a double root occurs only if
the terms in the second set of parentheses cancel. In this
case, however, the residue of this pdlimear singularity
vanishes, so that thé function term stays finite as a whole.

To summarize: the kernel functidtl),(«, z;@,2) for a
fixed kernel parameter sg¥,acn,ben, - - - ,fenp CONtains only
integrable square root singularities at the boundary of its
support, which if appropriately treated numerically present
no difficulties.
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