
Solving the Bethe-Salpeter equation for bound states of scalar theories in Minkowski space

Kensuke Kusaka*
Department of Physics, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji-shi, Tokyo 192-03, Japan

Ken Simpson†

Department of Physics and Mathematical Physics, University of Adelaide, South Australia 5005, Australia

Anthony G. Williams‡

Department of Physics and Mathematical Physics, University of Adelaide, South Australia 5005, Australia
and Special Research Centre for the Subatomic Structure of Matter, University of Adelaide,

South Australia 5005, Australia
~Received 14 May 1997!

We apply the perturbation theory integral representation to solve for the bound state Bethe-Salpeter~BS!
vertex for anarbitrary scattering kernel, without the need for any Wick rotation. The results derived are
applicable to any scalar field theory~without derivative coupling!. It is shown that solving directly for the BS
vertex, rather than the BS amplitude, has several major advantages, notably its relative simplicity and superior
numerical accuracy. In order to illustrate the generality of the approach we obtain numerical solutions using
this formalism for a number of scattering kernels, including cases where the Wick rotation is not possible.
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I. INTRODUCTION

We present here an improved approach to the solution of
the scalar-scalar Bethe-Salpeter~BS! equation directly in
Minkowski space, utilizing the perturbation theory integral
representation~PTIR! of Nakanishi@1#. The PTIR is a gen-
eralized spectral representation forn-point Green’s functions
in quantum field theory.

This work extends and improves earlier work which ap-
plied the PTIR approach to the BS amplitude@2#. Here we
formulate a real integral equation for the BS vertex. This
considerably simplifies the expression for the kernel function
relative to those obtained for the BS amplitude@2#. In par-
ticular, some singularity structures which were present in the
kernel of the BS amplitude equation due to the constituent
particle propagators are absent in the corresponding expres-
sion for the BS vertex. Consequently, it is much simpler to
implement the problem numerically, and we therefore do not
encounter previous difficulties with residual numerical noise.
We have checked that our numerical results are in agreement
with those obtained in Euclidean space by other authors~for
example, Linden and Mitter@3#, or more recently, Nieuwen-
huis and Tjon@4,5#!. In particular, with sufficient computer
time we have seen no limit to the accuracy that can be
achieved with our formalism. We can routinely obtain four
figure accuracy on a workstation.

In this work we will deal exclusively with scalar theories.
For simplicity we will consider here bound states with equal-
mass constituents, although it is easy, and desirable in many

applications, to generalize the approach to unequal-mass
constituents.

We illustrate the BS equation for a scalar theory in Fig. 1,
whereF(p,P) is the BS amplitude,P[p11p2 is the total
four-momentum of the bound state, andp[h2p12h1p2 is
the relative four-momentum for the two scalar constituents.
We have thenM5AP2 for the bound state mass and also
h11h251, but otherwise the choice of the two positive real
numbersh1 and h2 is arbitrary. As in Ref.@2# we choose
hereh15h251/2.

The renormalized constituent scalar propagators are
D(p1,2

2 ) andK(p,q;P) is the renormalized scattering kernel.
For example, in simple ladder approximation in af2s
model we would haveK(p,q;P)5( ig)„iD s(@p2q#2)…( ig),
where Ds(p2)51/(p22ms

21 i e) and ms is the s-particle
mass. Note that the corresponding proper~i.e, one-particle
irreducible! vertex for the bound state is related to the BS
amplitude byF5( iD )( iG)( iD ).
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FIG. 1. Diagrammatic representation of the Bethe-Salpeter
equation for~a! the BS vertex (G) and ~b! the BS amplitude (F).
The fully dressed constituent particle propagator is denoted byD
andK is the scattering kernel for the constituents.
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We follow standard conventions in our definitions of
quantities,~see Refs.@6,7# and also, e.g.,@8#!. Thus the BS
equation for any scalar theory can be written as

iG~p1 ,p2!5E d4q

~2p!4
@ iD ~q1

2!#@ iG~q1 ,q2!#

3@ iD ~q2
2!#K~p,q;P!, ~1!

where similarly top1 and p2 we have definedq15h1P1q
andq25h2P2q. Equivalently in terms of the BS amplitude
we can write

D~p1
2!21F~p,P!D~p2

2!2152E d4q

~2p!4
F~q,P!K~p,q;P!

~2!

[E d4q

~2p!4i
F~q,P!I ~p,q;P!,

~3!

where the kernel function defined byI (p,q;P)
[2 iK (p,q;P) is the form typically used by Nakanishi@9#.
In ladder approximation for af2s model we see, for ex-
ample, thatI (p,q;P)5g2/@ms

22(p2q)22 i e#. In this treat-
ment we will solve the vertex version of the BS equation,
i.e., Eq.~1!, for anarbitrary scattering kernel.

II. PTIR FOR SCALAR THEORIES

In contrast to the approach in Ref.@2#, we will begin with
the Bethe-Salpeter equation for the bound-state vertex, Eq.
~1!, rather than the equivalent equation for the amplitude, Eq.
~3!, and derive a real integral equation for the BS vertex. To
do this we require spectral representations for the vertex, for
the f propagator, and for the scattering kernelI of Eq. ~1!.
The renormalizedf propagator may be written as

D~q!52S 1

m22q22 i e
1E

~m1m!2

`

da
rf~a!

a2q22 i e
D , ~4!

whererf(a) is the renormalized spectral function. Note that
rf(a)>0, ~see, e.g., Ref@6#!.

The Bethe-Salpeter amplitudeF(p,P) for the bound state
of two f particles having the total momentumP[p11p2
and relative momentump[(h2p12h1p2) can be defined as

^0uTf~x1!f~x2!uP&5e2 iP•X^0uTf~h2x!f~2h1x!uP&

5e2 iP•XE d4p

~2p!4
e2 ip•xF~p,P!,

~5!

where the fields for the scalar constituents are denoted byf,
and where we have made use of the translational invariance
of the BS amplitude. Following the conventions of Itzykson
and Zuber @7# ~e.g., pp. 481–487!, we define center-of-

momentum and relative coordinatesX[h1x11h2x2 and
x[x12x2 such that x15X1h2x, x25X2h1x, and
P•X1p•x5p1•x11p2•x2.

Equivalently to Eq.~5!, we can write

F~p,P!5eiP•XE d4xeip•x^0uTf~x1!f~x2!uP&

5E d4xeip•x^0uTf~h2x!f~2h1x!uP&. ~6!

Note that the bound states are normalized such that

^PuP8&52vP(2p)3d3(PW 82PW ), where vP[(PW 21M2)1/2

with M the bound state mass. For a positive energy bound
state we must haveP25M2, 0,P2<(2m)2, and P0.0.
The normalization condition for the BS amplitude is given
by

E d4p

~2p!4E d4q

~2p!4
F̄~q,P!

]

]Pm
$D21~p1

2!D21~p2
2!

3~2p!4d4~p2q!1K~p,q;P!%F~p,P!52iPm,
~7!

where the conjugate BS amplitudeF̄(p,P) is defined by

F̄~p,P!5e2 iP•XE d4xe2 ip•x^PuTf†~x1!f†~x2!u0&

5E d4xe2 ip•x^PuTf†~h2x!f†~2h1x!u0&. ~8!

A. PTIR for scattering kernel

The scattering kernelI (p,q;P)[2 iK (p,q;P) describes
the processff→ff, wherep andq are the initial and final
relative momenta, respectively. It is given by the infinite
series of Feynman diagrams which are two-particle irreduc-
ible with respect to the initial and final pairs of constituentf
particles. For purely scalar theories without derivative cou-
pling we have the formal expression for the full renormalized
scattering kernel@1#

I ~p,q;P!5E
0

`

dgE
V

djWH rst~g,jW !

g2F(
i 51

4

j iqi
21j5s1j6tG2 i e

1
r tu~g,jW !

g2F(
i 51

4

j iqi
21j5t1j6uG2 i e

1
rus~g,jW !

g2F(
i 51

4

j iqi
21j5u1j6sG2 i e J , ~9!

whereqi
2 is the four-momentum squared carried byf i ands,

t, andu are the usual Mandelstam variables. The symbolV
denotes the integral region of j i such that
V[$j i u 0<j i<1, (j i51(i 51, . . . ,6)%. The scattering ker-
nel PTIR can be rewritten in a more compact form as
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I ~p,q;P!5(
ch

E
0

`

dgE
V

djW
rch~g,jW !

g2~achq
21bchp•q1cchp

21dchP
21echq•P1 f chp•P!2 i e

, ~10!

where the subscript ch indicates which channel we are deal-
ing with ~eitherst, tu, or us), and$ach, . . . ,f ch% are linear
combinations of thej i ~see Appendix B!.

For more general theories involving, e.g., fermions and/or
derivative couplings, the numerator of Eq.~9! will also con-
tain momenta in general. Work is in progress to extend the
formalism to include cases, such as derivative coupling and
fermions, where momentum dependence exists in the nu-
merator.

To illustrate our approach we will present here results for
three choices of kernel.

~a! Scalar-scalar ladder model with massive scalar ex-
change: The simplet-channel one-s-exchange kernel is
given by

I ~p,q;P!5
g2

ms
22~p2q!22 i e

. ~11!

The BS equation with this kernel together with the perturba-
tive constituent particle propagatorD0 is often referred to as
the ‘‘scalar-scalar ladder model’’@9#. Note that the kernel
weight function is proportional tog2 for this simple case.

~b! Dressed ladder model: In this instance we dress the
propagator of the exchangeds of case~a!. The kernel then
consists of the pole term as above, plus a piece which in-
volves an integration~starting at a threshold of 4m2) over a
mass parameterg.

~c! Generalized kernel: A sum of the one-s-exchange ker-
nel Eq. ~11! and a generalized kernel with fixed kernel pa-
rameter sets$g ( i ),jW ( i )%. After the Wick rotation this kernel
becomes complex due to thep•P and q•P terms, so that
solving the BS amplitude as a function of Euclidean relative
momentum would be very difficult in this case.

The Wick rotated BS equation for cases~a! and ~b! has
been studied numerically@3#. We use the previous numerical
results for these kernels as a check of our new technique and
numerical calculations.

B. PTIR for BS vertex

As in Ref.@2#, we will use the form of thes-wave (l 50)
BS vertex

G~p,P!5E
0

`

daE
21

1

dz

3
rn~a,z!

@m21a2~p21zp•P1 P2/4!2 i e#n
, ~12!

with the boundary condition for the weight function

lim
a→`

rn~a,z!

an21
50 , ~13!

required to render thea integral finite. A partial integration
of Eq. ~12! with respect toa will serve to demonstrate that
the positive integern is a dummy parameter, since it follows
from such a step that weight functions associated with suc-
cessive values ofn are connected by the relation

rn11~a,z!5nE
0

a

da8rn~a8,z!. ~14!

Note that the larger the dummy integer parametern, the
smoother the corresponding weight function. This is a par-
ticularly useful observation since we have a numerical solu-
tion of the BS equation in mind.

Using the same arguments as outlined in@2#, it can be
shown that the vertex PTIR for bound states with nonzero
angular momentuml in an arbitrary frame of reference is

G [ l ,l z]~p,P!5Y
l

l z~p8W !E
0

`

daE
21

1

dz

3
rn

[ l ]~a,z!

@m21a2~p21zp•P1P2/4!2 i e#n
,

~15!

where P is an arbitrary timelike four-vector withP25M2

and p85L21(P)p. The Lorentz transformationL(P) con-
nects P and the bound-state rest frame four-vector
P85(M ,0W ), i.e, P5L(P)P8. The quantityY

l

l z(p8W ) is the
solid harmonic of orderl , and may be written in the form
up8W u l Y

l

l z( p̂8), whereY
l

l z is the ordinary spherical harmonic

of order l , p̂8[p8W /up8W u, and wherep8W is the three-vector
relative momentum in the bound state rest frame. It is rela-
tively straightforward to appreciate why Eq.~15! must be the
correct form for a scalar bound state with angular momentum
l . It follows from the self-reproducing property of the solid
harmonics@see Eq.~C6! in Appendix C# and from the fact
that in the bound state rest framep8W is the only available
three-vector.

In the following sections we will study the BS equation
Eq. ~1! in an arbitrary frame in terms of this integral repre-
sentation. Note that the dummy parametern can always be
taken sufficiently large such that the loop-momentum inte-
gral of the BS equation, Eq.~1!, converges for anyl for
which a bound state exists.

Before proceeding, we should address the issue of so-
called ghost states. A bound state whose BS amplitude
F(p,P) and equivalent vertexG(p,P) are antisymmetric
under the transformationP•p→2P•p with fixed p2 andP2

has a negative norm and is called a ‘‘ghost’’@9#. This sym-
metry corresponds to the onez̄→2 z̄ in PTIR form. We do
not consider such states herein, as they are unphysical.
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III. BS EQUATION FOR THE WEIGHT FUNCTION

In this section we will reformulate the BS equation Eq.
~1! as an integral equation in terms of the weight functions.
This is the central result of this paper. We will very briefly
describe the procedure, and state our main results; the details
of the derivation may be found in Appendix C, as may defi-
nitions of the kernel and associated functions.

We proceed by combining, using Feynman parametriza-
tion, the integral representations for the scattering kernel and
vertex with the bare propagators for the constituentf par-
ticles. The procedure can easily be generalized to include
dressed constituent propagators if desired, but we do not ex-
ercise this option here, for the sake of simplicity. After using
the PTIR representations for the BS kernel and vertex@i.e.,
Eqs.~10! and~15!# in the right-hand side of the BS equation
~Eq. ~1!!, and after performing Feynman parametrization for
the right-hand side, the BS equation can be written as

G [ l ,l z]~p,P!5Y
l

l zE
2`

`

dāE
21

1

d z̄
1

@F~ ā , z̄ ;p,P!2 i e#n

3E
0

`

daE
21

1

dz
rn

[ l ]~a,z!

an

3 ān@l totKn
[ l ]~ ā , z̄ ;a,z!#, ~16!

whereF(a,z;p,P)[m21a2(q21zp•P1 1
4 P2) is a conve-

nient shorthand notation. We have defined an ‘‘eigenvalue’’
l[g2/(4p)2, which we will use in our numerical work~see
Appendix A!. This has simply been factored out of the scat-
tering kernel for convenience and for ease of comparison
with other calculations in the ladder limit. The total kernel
function totKn

[ l ] is defined in Appendix C@see Eqs.~C21!
and~C22!# and its structure is discussed in Appendix D with
particular attention paid to any potential singularities.

FIG. 2. Solutions for the bound-state vertex weight function for thes-wave (l 50) andp-wave (l 51) cases are given in~a! and~b!,
respectively, for a variety of values for the fraction of bindingh[AP2/2m5M /2m. The exchange particle (s) mass isms5m/2 in these
solutions. It is convenient to plot the rescaled weight functionr(a,z)[r2

[ l ] (a,z)/a2 in these figures.
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Comparing Eq.~16! with Eq. ~15!, and using the unique-
ness theorem of PTIR@1#, we finally obtain the integral
equation forrn

[ l ] (a,z)

1

l

rn
[ l ]~ ā , z̄ !

ān
5E

0

`

daE
21

1

dztotKn
[ l ]~ ā , z̄ ;a,z!

rn
[ l ]~a,z!

an
.

~17!

This equation is the central result of this work. Note that in
Eq. ~17! we are solving forrn

[ l ] /an; this is for reasons of
convenience for our numerical treatment of the BS equation.

Summary. Since the weight functionsrch(g,jW ) for the
scattering kernel are real functions by their construction, the
total kernel functiontotKn

[ l ] ( ā , z̄ ;a,z) is real, so that Eq.
~17! is a real integral equation in two variablesa andz. Thus
we have transformed the BS equation, which is a singular
integral equation of complex distributions, into a real integral
equation which is frame independent. Once one solves for
the BS vertex weight function, the BS vertex and the BS
amplitude can be written down in an arbitrary frame. This is
clearly advantageous for applications of the BS amplitude to
relativistic problems.

IV. NUMERICAL RESULTS

In this section we present numerical solutions for the BS
vertex for bound states in scalar theories using Eq.~17! for
three simple choices of scattering kernel:~a! pure ladder ker-
nel with massive scalar exchange,~b! dressed ladder kernel
with pole term as in~a!, and ~c! a generalized kernel com-
bined with the pure ladder kernel of~a!.

The scattering kernel~a!, i.e., the one-s-exchange kernel
depending only ont5(p2q)2, is given by Eq.~11!. This
corresponds to choosing for the kernel in Eq.~9!, say,
r tu5rus50 and in thest channelg5ms

2 , andast5cst51,
bst522, dst5est5 f st50 @cf. Eq. ~10!#, which amounts to
choosingrst to be an appropriate product ofd functions
multiplied byg2. In the pure ladder case it is convenient~and
traditional! to factorize out the coupling constantg2 and a
factor of (4p)2, by defining the ‘‘eigenvalue’’l5g2/(4p)2

@3,10,11#. Thus it is usual to fix the bound state massP2 and
then to solve for the couplingg2, which is what we have
done here.

In general~and, for example, for the dressed ladder ker-
nel! the kernel depends on higher powers of the coupling
thang2; in such instances we update the running value ofl
in an appropriate way during the iteration process~see Ap-
pendix A!. Since the BS equation~BSE! is a homogeneous
integral equation and we are only interested at present in
extracting the coupling at fixed bound state mass, the choice
of normalization is unimportant provided that it is fixed in
some reasonable way.

The numerical solution of the vertex BSE is performed by
choosing a suitable grid ofa andz values, making an initial
guess for the vertex weight function, and then iterating the
integral equation~17! to covergence. One subtle point is that
integrable square-root singularities may occur and must be
appropriately handled numerically~see Appendixes A and D
for details!. By optimizing the choice of grid and increasing
the number of grid points it was straightforward to increase
the accuracy of the solutions to a relative error of 1 part in
104 and beyond. Further details of the numerical procedure
used are given in Appendix A.

A. Pure ladder kernel

We have solved the vertex BS equation, Eq.~17!, for a
number of bound state masses betweenP250 ~Goldstone-
like bound state! andP254m2 ~the stability threshold!. So-
lutions were obtained for orbital excitations up tol 54 with
no difficulties. We plot some examples of our solutions for
l 50 and l 51 in Fig. 2, and tabulate our results for the
‘‘eigenvalue’’ l[g2/(4p)2 in Table I. A plot of the spec-
trum for l 50, i.e., of l vs the fraction of binding
h[AP2/2m, is given in Fig. 3. All solutions presented were
obtained using as mass ofms5m/2. We have compared
our eigenvalues to those obtained in the Wick-rotated treat-
ment of Linden and Mitter@3#, and have found agreement to
better than 0.03% for moderate choices of the (a,z) grid.
This is an improvement in accuracy of at least one order of
magnitude over the results we have obtained previously for
the BS amplitude. Furthermore, much greater accuracy is
possible through an increase in the number of grid points
used in the numerical integration should it be desired for
whatever reason.

TABLE I. Comparison of the coupling strengthsl[g2/(4p)2

obtained for the ladder approximation kernel from the Euclidean
~i.e., Wick-rotated! s-wave solution (lE) and those obtained here
directly in Minkowski space (l), using a moderate grid choice for
a andz. The Wick-rotated values are from Linden and Mitter@3#.
The parameter h is the ‘‘fraction of binding,’’
h[AP2/2m5M /2m, where P25M2 and M is the mass of the
bound state~i.e., 0<h,1). The results shown here hadms5m/2
for the exchange particle (s) mass.

h lE l h lE l

0 2.5658 2.5662 0.8 1.4055 1.4056
0.2 2.4984 2.4988 0.9 1.0349 1.0350
0.4 2.2933 2.2937 0.99 0.5167 0.5168
0.6 1.9398 1.9402 0.999 0.3852 0.3853 FIG. 3. Thes-wave ~i.e., l 50) bound-state spectrum for the

ladder kernel, wherel[g2/(4p)2 and h[AP2/2m5M /2m. The
exchanged particle (s) mass is half the constituent mass,ms5m/2,
in these results. These results correspond to those in Table I.
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B. Dressed ladder kernel

For the ‘‘dressed ladder’’ case, the scattering kernel is
given by I 52 iK 5( ig)Ds( ig), whereDs is the renormal-
ized s propagator at one-loop order. This is simply the sum
of the pole term, Eq.~11!, and a continuum part, and is given
by

Ds@~p2q!2#5E
0

`

ds
rs~s!

s2~p2q!22 i e
, ~18!

where rs(s)5rpole(s)1rcont(s). rpole(s) is simply
d(s2ms

2), and it can be shown that, to one-loop order,
rcont(s) is given by the expression

rcont5lu~s24m2!As24m2

s

1

D~s!
, ~19!

whereD(s) is the function

D~s!5Fms
22s2lH 2A4m22ms

2

ms
2

arctanA ms
2

4m22ms
2

1
4~ms

22s!

ms
2 S m2

Ams
2~4m22ms

2 !
arctanA ms

2

4m22ms
2

2
1

4D 12As24m2

s
lnSAs1As24m2

2 D J G 2

1l2p2S s24m2

s D . ~20!

Note that the use of Eq.~18! introduces an extra integration
~over the mass parameters). We performed this numerically
using Gaussian quadrature; 10 to 15 quadrature points ins
provide solutions of satisfactory accuracy.

We have solved Eq.~17! for the dressed ladder kernel
above, with the pole being situated atms5m, for various
values of the bound state mass squaredP2. As for the pure
ladder case above, solutions have been obtained up tol 54.

For example, ours-wave (l 50) eigenvalue forP253.24m2

and for the exchange particle pole atms5m is l51.516 for
a grid of 80341 and isl51.518 for a grid of 150391. The
corresponding Linden and Mitter value islE51.518. Even
with a relatively coarse grid high accuracies result. Similarly,
we have found for other values ofP2 that an accuracy of
0.3% or better is routinely attained, even with the use of the
coarse 80341 grid. As the above results demonstrate higher
accuracy is easily obtained at the cost of more CPU time.

We plot the rescaled weight functionr2
[0] /a2 for the case

P250.04m2 in Fig. 4 for purposes of comparison with the
corresponding ladder case. We have chosen this value ofP2

since a smaller bound-state mass corresponds to tighter bind-
ing and hence larger coupling, which should enhance the
effect of this one-loop self-energy insertion. We see that the
shape of the weight function is not qualitatively very differ-
ent from the ladder case.

C. Generalized kernel

This particular example of a ‘‘generalized’’ kernel is an
instance of a scattering kernel for which Euclidean space
solution is not possible. We have solved the BS equation for
this case, in particular for a sum of the pure ladder kernel as
described above and two randomly chosen nonladder terms,
each with a weight of 0.25l, and with the fixed parameter
sets~in the st channel!

$g,ast ,bst ,cst ,dst ,est , f st%5~1!$2.25m2,0.47261150181,20.29743163287,0.58277042955,0.28282145969,

20.23965580016,0.32196629047%,

~2!$2.25m2,0.47261150181,0.29743163287,0.58277042955,0.28282145969,

20.23965580016,20.32196629047%. ~21!

FIG. 4. Rescaled weight functionr(a,z)[r2
[0] (a,z)/a2 for the

dressed ladder kernel with pole atms
25m2, and a bound-state mass

of h[AP2/2m50.1.
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The parameters$ast , . . . ,f st% were obtained from a set of
values$j1 , . . . ,j6% produced by a random number generator
~see Appendix B!. This was done to emphasize that our tech-
nique produces well-behaved solutions for anarbitrary ker-
nel. We have had little difficulty obtaining noise-free solu-
tions for this kernel for orbital excitations up tol 54.

This kernel yields an s-wave eigenvalue of
l[g2/(4p)251.3569 forP251.44m2, cf. the ladder value
of l51.9402 for the same bound state mass. We therefore
find, as before@2#, that the additions to the pure ladder kernel
have enhanced the binding, i.e., they are attractive. This is of
course to be expected in a scalar theory and was also ob-
served in Refs.@4,5#. Not only is the eigenvalue lower, but
additional structure is present in the vertex weight function
~see Fig. 5!. In contrast to the solutions obtained for the BS
amplitude in the previous work@2#, we find that there is no
numerical noise in the vertex weight function. If one com-
pares the general kernel example solution in Fig. 5 with the
ladder solution for the same bound-state mass~see Fig. 2!, it
is readily apparent that there is some additional structure
superimposed upon the weight function, due to the addition
of the generalized kernel terms.

V. SUMMARY AND CONCLUSIONS

We have derived a real integral equation for the weight
function of the scalar-scalar Bethe-Salpeter~BS! vertex from
the BS equation for scalar theories without derivative cou-
pling. This was achieved using the perturbation theory inte-
gral representation~PTIR!, which is an extension of the spec-
tral representation for two-point Green’s functions, for both
the scattering kernel@Eq. ~9!# and the BS vertex itself@Eq.
~15!#. The uniqueness theorem of the PTIR and the appropri-
ate application of Feynman parametrization then led to the
central result of the paper given in Eq.~17!.

We have demonstrated that Eq.~17! is numerically trac-
table for several simple kernels, including a randomly chosen
case where it is not possible to write the kernel as a sum of
ordinary Feynman diagrams. Our results for both the pure
and dressed ladder kernels are in excellent agreement with
the results obtained previously in the Wick-rotated approach.
The agreement for the pure ladder kernel is even better than
in Ref. @2#, vindicating our decision to solve here the vertex

equation rather than the amplitude equation. We obtained an
accuracy in all of our results of approximately 1 in 104 with
modest (a,z)-grid choices on a workstation. This can be
improved by using finer grids and larger computers as de-
sired.

Further applications1 of our formalism are currently being
investigated, particularly the crossed ladder and separable
kernels. These will not only provide yet another test of our
implementation of the method, as Euclidean space results are
also available for these cases, but also will provide us with
an opportunity to solve a problem featuring more realistic
scattering kernels.

It is also important to consider how the PTIR can be ex-
tended to include fermions and derivative coupling, so that
we have a covariant framework within which to study, for
example, mesons in QCD using a coupled Bethe-Salpeter–
Dyson-Schwinger equation approach. This would require us
to incorporate confinement into the PTIR, which at this stage
remains another important and interesting challenge.
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APPENDIX A: ALGORITHM

Here we detail the algorithm used in our numerical stud-
ies of the integral equation

1

l

rn
[ l ]~ ā , z̄ !

ān
5E

0

`

daE
21

1

dz
rn

[ l ]~a,z!

an
totKn

[ l ]~ ā , z̄ ;a,z;l!,

~A1!

where we have explicitly shown the coupling dependence of
the kernel function. We have defined here an ‘‘eigenvalue’’
l[g2/(4p)2. Our rationale for this is as follows. For a
given scattering kernel the integral equation~A1! may be
solved for the bound state massP25M2. However, the de-
pendence of the kernel functiontotKn

[ l ] ( ā , z̄ ;a,z) on the
bound state massP2 is highly nonlinear and complicated. It
is therefore convenient and traditional to instead solve the
equation for the couplingg2, which appears in the weight
function rch(g,jW ) for the scattering kernel, with a fixed
bound state massP2. We first fix the bound state massP2

and regard the integral equation~A1! as an ‘‘eigenvalue’’
problem. The ‘‘eigenvalue’’ is then introduced by factorizing
the coupling constantg2 from the scattering kernel weight

1Those interested in applications of this technique may request a
copy of the computer code from A.G.W. at the given e-mail ad-
dress.

FIG. 5. Rescaled weight functionr(a,z)[r2
[0] (a,z)/a2 for a

random choice of generalized kernel as described in the text.
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function rch(g,jW ). In this convention, the kernel function
totKn

[ l ] ( ā , z̄ ;a,z;l) becomes a power series inl starting
from order 1 for a perturbative scattering kernel.

Strictly speaking, the integral equation~A1! is not an ‘‘ei-
genvalue’’ equation, since the kernel function itself contains
l in the general~i.e., nonladder! case. We thus solve the
equation by iteration rather than applying methods for eigen-
systems. With an appropriate initial guess for the weight
function rn

[ l ] (a,z) for the BS vertex and the coupling con-
stantl we generate the new weight function by evaluating
the right-hand side of the integral equation~A1!. The ‘‘ei-
genvalue’’l associated with the weight function is extracted
by imposing an appropriate normalization condition which
we will discuss later. This generated weight function and its
‘‘eigenvalue’’ are used as inputs and we obtain updated val-
ues, which ought to be closer to the solution than the input
values, by evaluating the integral. We repeat this cycle until
both the ‘‘eigenvalue’’ and the weight function converge.

The normalization condition for the BS vertex or equiva-
lent BS amplitude in momentum space is well known and
involves the derivative of the scattering kernel with respect
to the bound state four-momentumP @see Eq.~7! in Sec. II#.
When the scattering kernel depends on the total momentum
P, the normalization condition is the integral over two rela-
tive momenta; one for the BS vertex and the other for the
conjugate one. The corresponding normalization condition in
PTIR form is written as the four-dimensional integral over
spectral parametersa and z. Imposing a condition that in-
volves such a multidimensional integral in the iteration cycle
makes the calculation less accurate and time consuming. We
shall rather use a suitable normalization condition for the
weight functionrn

[ l ] (a,z) during the iteration. The physical
normalization condition~7! may be imposed by appropri-
ately rescaling the obtained solution. Of course, the value of
l[g2/(4p)2 is unaffected by the choice of normalization of
the vertex weight function.

Since we are considering bound states whose constituents
are of equal massm, we expect that a physically reasonable
scattering kernelI (p,q;P) will give a kernel function
Kn

[ l ] ( ā , z̄ ;a,z;l) symmetric under the transformation

z̄→2 z̄ . The weight functionrn
[ l ] (a,z) is then either sym-

metric or antisymmetric inz→2z. For a symmetric solution
the following normalization is convenient:

E
0

`

daE
21

1

dz
rn

[ l ]~a,z!

an
51, ~A2!

provided that the integral does not identically vanish. From
Eq. ~C21!, the kernel function is given by the difference of
two terms, viz.Kn

[ l ] ( ā , z̄ ;0,0;l)2Kn
[ l ] ( ā , z̄ ;a,z;l). With

the normalization condition~A2! the integral equation~A1!
can be written as an inhomogeneous one:

1

l

rn
[ l ]~ ā , z̄ !

ān
5Kn

[ l ]~ ā , z̄ ;0,0;l!2E
0

`

daE
21

1

dz

rn
[ l ]~a,z!

an
Kn

[ l ]~ ā , z̄ ;a,z;l!. ~A3!

On the other hand, the integral of the weight function overa
and z for an antisymmetric solution vanishes identically.
Then the integral equation~A1! is written as

1

l

rn
[ l ]~ ā , z̄ !

ān
52E

0

`

daE
21

1

dz
rn

[ l ]~a,z!

an
Kn

[ l ]~ ā , z̄ ;a,z;l!.

~A4!

As discussed in the main text, the bound state whose BS
amplitudeF(p,P) and equivalent vertexG(p,P) are anti-
symmetric under the transformationP•p→2P•p with fixed
p2 andP2 has a negative norm and is called a ‘‘ghost’’@9#.
This symmetry corresponds to the onez̄→2 z̄ in PTIR
form. Thus a bound state whose weight function is antisym-
metric in z reflection and which satisfies the homogeneous
integral equation~A4! is a ‘‘ghost’’ state. We hereafter con-
centrate on the ‘‘normal’’ solutions, namely,z-symmetric
ones, and on the integral equation~A3!.

It can be shown that the inhomogeneous term vanish un-
less ā.a th , wherea th is the threshold of the weight func-
tion depending on the value ofz̄ for a given scattering ker-
nel. For a one-s exchange kernel with the massm, the
threshold can be written as

a th~ z̄ !5F S m22~12 z̄2!
P2

4 D 1/2

1mG2

2S m22~12 z̄2!
P2

4 D . ~A5!

This threshold determines the support of the weight function
r or equivalentlyw for the normal solution. Although we
cannot write the threshold in a simple form such as Eq.~A5!
for general scattering kernels, we can extract it numerically
by analyzing the inhomogeneous term. On the other hand,
the kernel functionKn

[ l ] ( ā , z̄ ;a,z;l) has the support prop-

erty for a givenā , z̄ , andz that it vanishes unlessa is less
than some valueamax. For the case of a one-s exchange
kernel it is given by

amax~ ā , z̄ ,z!5H F ā1S m22~12 z̄2!
P2

4 D 1/2

2mG2

2S m22~12 z̄2!
P2

4 D J 17z

17 z̄
, for z̄:z.

~A6!

As in the case ofamin the analytic form of the upper limit
amax is unknown, so we extract the corresponding upper
limit numerically for general scattering kernels. Writing
these limits of the integral explicitly the integral equation we
use is then
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1

l

rn
[ l ]~ ā , z̄ !

ān
5Kn

[ l ]~ ā , z̄ ;0,0;l!

2E
21

1

dzE
a th~z!

amax~ ā , z̄ ,z!
da

rn
[ l ]~a,z!

an

3Kn
[ l ]~ ā , z̄ ;a,z;l!. ~A7!

We evaluate the integral overa andz in the RHS of Eq.
~A7! as follows. Recall that the kernel function
Kn

[ l ] ( ā , z̄ ;a,z;l) is given by the integral

Kn
[ l ]~ ā , z̄ ;a,z;l![(

ch
E

V
djWE

0

`

dgF 1

g2
rch~g,jW !G

3Kn
[ l ]~ ā , z̄ ;a,z;g,jW !. ~A8!

We thus start by replacing the integrations over Feynman
parametersjW and the spectral variableg by summations over
discretized variables. Secondly, we map the semidefinite
range ofaP@0,̀ ) to the finite oneyP@0,1#:

a5a01C
y

12y
, ~A9!

wherea0 andC are some constants which should be chosen
such that the weight function is largest around the mapped

variabley;1/2. We then discretise bothy ~equivalentlya)
andz and prepare the initial weight function on this grid. For
each cycle of the iteration we perform the integral as follows.

We first evaluate thea integral for a given point in theā and

z̄ plane and on thez grid. For each value of the discretized

jW and g we extract the support of the the kernel function

Kn
[ l ] ( ā , z̄ ;a,z;l). We then divide the integral range

@a th(z),amax( ā , z̄ ,z)# into subranges according to the sup-

port of the kernel function with discretizedjW andg. As dis-

cussed in Appendix D the kernel functionKn
[ l ] ( ā , z̄ ;a,z;l)

may diverge as an integrable square root singularity at the
boundary of the support. While this is always the case for the
ones exchange kernel, the kernel may take a finite value in
general. We thus choose an appropriate integration method
to perform the integration overa for each subrange. The
weight function at arbitrarya is evaluated by interpolating
the values ofr on the grid. We perform thea integral in this
way for each grid point ofz and the integral overz is per-
formed by interpolating these values. With this careful treat-
ment of integrable square root singularities we need not in-
troduce any regularization or cutoff parameters. Furthermore,
this method allows us to choose theā and z̄ grid for the
newly generated weight function independent of thea andz
grid. We optimize the ‘‘new’’ grid by analyzing the shape of
the ‘‘old’’ weight function used in the RHS of Eq.~A7!. the
eigenvalue is evaluated using the normalization condition
~A2!.

APPENDIX B: PTIR FOR SCATTERING KERNEL

In this appendix we list the dimensionless coefficients$ach,bch,cch, . . . ,f ch% in Eq. ~10! for different channels
$ch%5$st%,$tu%,$us% in terms of the Feynman parametersj i defined in Eq.~9!.

st tu us

ach j11j21j6 j11j21j51j6 j11j21j5

bch 22j6 2(j62j5) 2j5

cch j31j41j6 j31j41j51j6 j31j41j5

dch
1
4 (j11j21j31j4)1j5

1
4 (j11j21j31j4) 1

4 (j11j21j31j4)1j6

ech j12j2 j12j2 j12j2

f ch j32j4 j32j4 j32j4

Beginning with the above definitions for the scattering

kernel parameters in terms of the Feynman parametersjW , and
noting that( i 51

6 j i51, it is possible to prove the following
relations between the kernel parameters, for all three chan-
nels:

ac2
b2

4
>0,

U f 6
b

2 U<c,

Ua f2
eb

2 U<ac2
b2

4
. ~B1!

APPENDIX C: KERNEL FUNCTION

In this appendix we detail our derivation of the real inte-
gral equation for the BS vertex. We begin with the PTIR
form of the bound-state vertex@10#

G [ l ,l z]~q,P!5Y
l

l z~L21~P!q!E
0

`

daE
21

1

dz

3
rn

[ l ]~a,z!

@F~a,z;q,P!2 i e#n
. ~C1!

In Eq. ~C1!, Y
l

l z@L21(P)q# is the solid harmonic for a

56 5079SOLVING THE BETHE-SALPETER EQUATION FOR . . .



bound state with angular momentum quantum numbersl

and l z , rn
[ l ] (a,z) is the PTIR weight function for the

bound-state vertex function, andn is a dummy parameter.
The functionF is given by

F~a,z;q,P!5a1
11z

2 Fm22S q1
1

2
PD 2G

1
12z

2 Fm22S 2q1
1

2
PD 2G

5a1m22S q21zq•P1
1

4
P2D . ~C2!

We proceed by substituting this form of the vertex into
the vertex BSE, Eq.~1!, and combining the various factors

on the right-hand side of the resultant equation~bare propa-
gators, scattering kernel and vertex PTIR! using Feynman
parametrization. We first combine the bare propagators for
the scalar constituents with the denominator of the vertex
PTIR:

DS q1
1

2
PDDS 2q1

1

2
PD 1

@F~a,z;q,P!2 i e#n

5
1

2

G~n12!

G~n!G~2!
E

21

1

dhE
0

1

dttn21~12t !

3
1

$F@ ta,tz1~12t !h;q,P#2 i e%n12
. ~C3!

We now combine the factor 1/@F(•••)#n12 from the inte-
grand with the denominator of the PTIR for the scattering
kernel @see Eq.~10!#. After some algebra this yields

1

g2~aq21bp•q1cp21dP21eq•P1 f p•P!2 i e

1

@F~ ta,tz1~12t !h;q,P!2 i e#n12

5
G~n13!

G~1!G~n12!
E

0

1

dx
xn11

~12x!n13

1

~y1a!n13

3
1

†$@c~y1a!2 ~b2/4!#/~y1a!2%F82$q1 @bp1„e1@ tz1~12t !h#y…P#/2~a1y!%22 i e‡

n13
, ~C4!

where

F8[F@A„ta,tz1~12t !h;y…,Z„tz1~12t !h;y…;p,P#,

A~a,z;y![
1

c~y1a!2 b2/4
F H a1m22~12z2!

P2

4 J ~y1a!21H g2~a1c!m22aa1@a1c24d12z~e2az!#
P2

4 J
3~y1a!1

b2

4 H m22X12S 22~az2e!

b D 2CP2

4 J G ,
Z~z;y![

f ~y1a!2~b/2!~e1yz!

c~y1a!2b2/4
, ~C5!

y[
x

12x
.

Note that the parameters$a, . . . ,f % do not explicitly have the subscript ch attached to them in this instance@cf. Appendix
B and Eq.~9!#, for the sake of brevity. We will also, for the time being, omit for brevity the sum over channelsst, tu, us in
the kernel function.

Having combined all factors on the right hand side, we are now in a position to perform the integral over the loop
momentumq. To do so, we must utilize the property of the solid harmonics

E d3qF~qW 2!Y
l

l z~qW 1pW !5Y
l

l z~pW !E d3qF~qW 2!, ~C6!

whereF is a sufficiently rapidly decreasing function which gives a finite integral@10#. Also note thatL21(P) boosts the
four-vectorP to rest, i.e.,L21(P)P5(AP2,0W ), and that the solid harmonics are functions purely of the three-vector part of
their argument, i.e.,Y

l

l z(p)5upW u l Y
l

l z( p̂) ~herep̂5pW /upW u). Bearing this in mind, we obtain for the loop integral
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E d4q

~2p!4i

Y
l

l z~L21~P!q!

@M̃22$q1 @bp1~e1zy!#P/2~a1y!%22 i e#n13
5S 2

b

2D l 1

~a1y! l

G~n11!

~4p!2G~n13!

Y
l

l z~L21~P!p!

~M̃22 i e!n11
, ~C7!

whereM̃2 is simply that part of the denominator of Eq.~C4! that does not depend at all on the four-momentumq.
Ignoring integrations over weight functions for the moment, we have, after performing the loop momentum integral, the

result

E d4q

~2p!4i
I ~p,q;P!DS q1

1

2
PDDS 2q1

1

2
PD Y l

l z@L21~P!q#

@F~a,z;q,P!2 i e#n

5
1

~4p!2

1

2
2

b

2
l

G~n11!

G~n!
E

21

1

dhE
0

1

dttn21~12t !E
0

1

dx
1

~12x!2

yn11

~y1a! l

~y1a!n21

@c~y1a!2 b2/4#n11

3
Y

l

l z~L21~P!p!

$F@A„ta,tz1~12t !h;y…,Z„tz1~12t !h;y…;p,P#2 i e%n11
. ~C8!

In order to obtain a real integral equation involving only weight functions, it is necessary to recast the last factor in Eq.~C8!
in a form similar to that found in the vertex PTIR, Eq.~C1!. To proceed we therefore insert the trivial integral

E
21

1

d z̄d@ z̄2Z„tz1~12t !h;y!…] 51 ~C9!

into the right-hand side of Eq.~C8!, and eliminate the integration overt by rewriting thed function in terms oft. We are
permitted to do this because the functionZ is bounded between21 and 1. That this is true is easily seen by observing thatZ
is monotonic in the variabley, with yP@0,̀ ), and then by taking the limitsy→0 andy→`. The former limit gives

Z~z;y→0!5
a f2 eb/2

ac2 b2/4
, ~C10!

and so from the third inequality in Eq.~B1! we have thatuZ(z;y→0)u<1. The second limit gives

Z~z;y→`!5
f 2 ~b/2! z

c
, ~C11!

which allows us to use the second inequality in Eq.~B1! to conclude thatuZ(z;y→`)u<1, given that Eq.~C11! is monotonic
in z. SinceuZu<1 in these two limits,Z must be bounded between21 and 1 for allyP@0,̀ ).

The insertion of this integral gives us

1

~4p!2

1

2 S 2
b

2D l U2 2

b U G~n11!

G~n!
E

21

1

d z̄E
0

1 dx

~12x!2

yn11

~y1a! l

~y1a!n21

hn11

3H u~z2G!u~G11!E
21

G

dh
h

y

z2G

~z2h!2 S G2h

z2h D n21 Y
l

l z@L21~P!p#

$F@A~ t0a,G!, z̄ ;p,P#2 i e%n11
2u~G2z!u~12G!

3E
G

1

dh
h

y

z2G

~z2h!2 S G2h

z2h D n21 Y
l

l z@L21~P!p#

$F@A~ t0a,G!, z̄ ;p,P#2 i e%n11 J , ~C12!

where we have introduced

t0[
G2h

z2h
,

G[G~ z̄ ;y![
1

y
F22~c z̄2 f !

b
~y1a!2S 2

b

2
z̄1eD G ,

~C13!

h[h~y![c~y1a!2
b2

4
.

We next make a change of variableh→ā, such that

ā5
y~y1a!

h
t0a1

g~ z̄ ;y!

h
,
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g~ z̄ ;y![A8~ z̄ !~y1a!21B8~ z̄ !~y1a!1C8~ z̄ !,

A8~ z̄ ![m22F12S 22~c z̄2 f !

b
D 2GP2

4
,

B8~ z̄ ![g2~a1c!m21@a1c24d22 z̄~c z̄2 f !#
P2

4
,

C8~ z̄ ![
b2

4
@m22~12 z̄2!#

P2

4
. ~C14!

Note that for brevity we sometimes writeg( z̄;y) asg below.
This should not be confused with the coupling strengthg,
since the meaning should be clear from the context. With this
transformation the factor in braces in Eq.~C12! becomes

H u~z2G!u~G11!E
g/h

R1a1g/h

dā
1

an

h2

y

1

@y~y1a!#n

3~hā2g!n211u~G2z!u~12G!E
g/h

R2a1g/h

dā
1

an

3
h2

y

1

@y~y1a!#n
~hā2g!n21J

3
Y

l

l z~L21~P!p!

@F~ ā , z̄ ;p,P!2 i e#n11
, ~C15!

with the functionsR6 being defined by

R6~ z̄ ,z;y![
y~y1a!

h~y!

G~ z̄ ;y!61

z61
. ~C16!

We may use the following to shift the limits of integration
of ā to (2`,`):

E
a

b

dā5E
a

`

dā2E
b

`

dā5E
2`

`

dā @u~ ā2a!2u~ ā2b!#.

~C17!

The expression~C15! then becomes

(
7

u@6~G2z!#u~17G!E
2`

`

dā
1

an

hn11

yn11~y1a!n S ā2
g

hD n21FuS ā2
g

hD2uS ā2
g

h
2R7a D G Y

l

l z@L21~P!p#

@F~ ā , z̄ ;p,P!2 i e#n11
.

~C18!

We complete our derivation of the integral equation by integrating by parts with respect toā in order to reduce the power
of 1/F(•••) from n11 to n, noting that the boundary term resultant from such an integration vanishes due to the presence of
the step functions. We therefore have, finally,

G [ l ,l z]~p,P!5Y
l

l z@L21~P!p#E
2`

`

dāE
21

1

d z̄
1

@F~ ā , z̄ ;p,P!2 i e#n E0

`

daE
21

1

dz
rn

[ l ]~a,z!

an
ān@l totKn

[ l ]~ ā , z̄ ;a,z!#.

~C19!

We may use the uniqueness theorem of PTIR@1# to obtain the equation which we will solve numerically:

1

l

rn
[ l ]~ ā , z̄ !

ān
5E

0

`

daE
21

1

dztotKn
[ l ]~ ā , z̄ ;a,z!

rn
[ l ]~a,z!

an
, ~C20!

where the full analytical expression for the kernel functiontotK can be written as

totK5Kn
[ l ]~ ā , z̄ ;0,0!2Kn

[ l ]~ ā , z̄ ;a,z!, ~C21!

whereK is the function

Kn
[ l ]~ ā , z̄ ;a,z![(

ch
E

V
djWE

0

`

dgF 1

g2
rch~g,jW !GKn

[ l ]~ ā , z̄ ;a,z;g,jW !,

~C22!

Kn
[ l ]~ ā , z̄ ;a,z;g,jW ![

1

ān

1

ubu S 2
b

2D l ]

]ā
E

a

`

dy8
1

~y8! l 11 S ā2
g8~ z̄ ,y8!

h8~y8!
D n21

(
7

u$6@G~ z̄ ;y8!2z#%u@17G8~ z̄ ;y8!#uS ā2
g8~ z̄ ,y!

h8~y8!
2

y8~y82a!

h8~y8!

17G8~ z̄ ;y8!

17z
a D .
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Note that we have made a shift of variable fromy to y8. The quantitiesg8,h8, andG8 are the same as their unprimed
counterparts, except that they dependence of these functions has been transformed according toy→y85y1a. Note also that
we indicate explicitly the dependence ofKn

[ l ] on the scattering kernel parameters$g,jW%. For the remainder we will omit these
additional labels for brevity.

In order to implement this kernel numerically, we must perform the derivative with respect toā and simplify the resultant
expression, as well as transforming those integration variables with semi-infinite or infinite ranges to variables which have a
finite range. We begin by performing theā derivative, which splits the kernel into two pieces, one of which contains ad
function. After this differentiation, we have

Kn
[ l ]~ ā , z̄ ;a,z!5

1

ān

1

ubu S 2
b

2D l E
a

`

dy8
1

~y8! l 11 H ~n21!S ā2
g8

h8
D n22

(
7

u@6~G82z!#u~17G8!uS ā2
g8

h8

2
y8~y82a!

h8

17G8

17z
a D 1S ā2

g8

h8
D n21

(
7

u@6~G82z!#u~17G8!dS ā2
g8

h8
2

y8~y82a!

h8

17G8

17z
a D J .

~C23!

The piece containing thed function may be integrated overy8 in a relatively straightforward manner, simply by rewriting
the d function in terms ofy8. The argument of thed function is quadratic iny8:

argument5
21

cy82 b2/4
@A7~ z̄ ;a,z!y821B7~ ā , z̄ ;a,z!y81C~ ā , z̄ !#. ~C24!

The d function is therefore

dS 2
1

cy82 b2/4
~A7y821B7y81C!D 5(

i 51

2 h8~yi8!

AD7~ ā , z̄ ;a,z!
d~y82yi8!u@D7~ ā , z̄ ;a,z!#, ~C25!

whereD7[B7
2 24A7C, and theyi8 are the roots of the quadratic, i.e.,

y185
2B72AD7

2A7
, y285

2B71AD7

2A7
. ~C26!

The casen52 is of particular interest to us, and so we will restrict ourselves to this case from now on. Dropping the prime
on y, then52 kernel function may be written as

Kn52
[ l ] ~ ā , z̄ ;a,z!5

1

ā2

1

ubu S 2
b

2D l

(
7

H E
a

`

dy
1

yl 11
uS 2

1

cy2 b2/4
@A7~ z̄ ;a,z!y21B7~ ā , z̄ ;a,z!y1C~ ā , z̄ !# D

1
au@D7~ ā , z̄ ;a,z!#

AD7~ ā , z̄ ;a,z!
(
i 51

2 S 1722~c z̄2 f !/b

17z

1

yi
l 11

2
a7@2 ~b/2! z̄1e#

17z

1

yi
l D

3E
a

`

dyd~y2yi !J uH 1

y2a
F6S 22~c z̄2 f !

b
2zD y6Xaz2S 2

b

2
z̄1eD CG J

3uH 1

y2a
F S 17

22~c z̄2 f !

b
D y2a6S 2

b

2
z̄1eD G J , ~C27!

where

D7~ ā , z̄ ;a,z!5B7
2 ~ ā , z̄ ;a,z!24A7~ z̄ ;a,z!C~ ā , z̄ !,

A7~ z̄ ;a,z!5m22F12S 22~c z̄2 f !

b
D 2G P2

4
1

162~c z̄2 f !/b

17z
a,

B7~ ā , z̄ ;a,z!5g2cā2~a1c!m21@a1c24d22 z̄~c z̄2 f !#
P2

4
2

a7@2 ~b/2! z̄1e#

17z
a,
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C~ ā , z̄ !5
b2

4 S ā1m22~12 z̄2!
P2

4 D . ~C28!

For the purposes of numerical solution we now make successive transformations of the integration variabley, first to
ỹ51/y, and then fromỹ to Y5(b2/4) ỹ . The first transformation serves to render the range of integration finite, while the
second ensures that we do not encounter any difficulties in the kernel function in the limitb→0, which can occur, for example,
in the separable kernel case. The kernel function after these transformations becomes

Kn52
[ l ] ~ ā , z̄ ;a,z!5

1

ā2 S 2
2

bD l 1

ubu(7 H E
0

b2/4a
dYYl 21u@2~C̃7Y21B̃7Y1Ã7!#1

au@D̃7~ ā , z̄ ;a,z!#

AD̃7~ ā , z̄ ;a,z!
(
i 51

2 F S b2

4
7 g̃0D 1

Yi

2~a7h0!GYi
l E

0

b2/4a
dYd~Y2Yi !J uF6~az2h0!Y6S g̃02

b2

4
zD GuS ~2a6h0!Y1

b2

4
7 g̃0D , ~C29!

whereh0( z̄ )5(2b/2) z̄1e, and g̃0( z̄ )5(2b/2)(c z̄2 f ). TheYi are the roots of the quadraticC̃7Y21B̃7Y1Ã7 , and

C̃7~ ā , z̄ ;z!5~17z!S ā1m22~12 z̄2!
P2

4 D ,

B̃7~ ā , z̄ ;a,z!5~17z!S g2cā2~a1c!m21@a1c24d22 z̄~c z̄2 f !#
P2

4 D2Fa7S 2
b

2
z̄1eD Ga,

Ã7~ z̄ ;a,z!5~17z!Fb2

4 S m22
P2

4 D1~c z̄2 f !2
P2

4 G1S b2

4
7

2b

2
~c z̄2 f ! Da,

D̃75B̃7
2 24Ã7C̃7 . ~C30!

This is the expression which we implement numerically.
Note that the support of the kernel is entirely determined by
the step functions in Eq.~C29!. In general it is not possible
to extract the support analytically, and so in most cases this
step must be done numerically.

APPENDIX D: KERNEL SINGULARITIES

In this section we discuss the structure of the kernel func-
tion Kn

[ l ] ( ā , z̄ ;a,z) for arbitrary l with a fixed kernel pa-

rameter set (g,jW ), i.e., for constant$g,ach,bch,cch, . . . ,f ch%.
We will in this section omit for brevity the subscript ch.
Since the casen52 is of particular interest to us for numeri-
cal treatment, we discuss possible singularities of the kernel
function Kn52

[ l ] ( ā , z̄ ;a,z), whose expression and derivation
are given in Appendix C. Generaln cases can be also con-
sidered in a similar manner.

As shown in Appendix C the kernel function
Kn52

[ l ] ( ā , z̄ ;a,z) given by the Feynman parameter integral
consists of two terms, one containing only step functions and
another containing ad function. It is convenient to make the
Feynman parametery finite to discuss the singularities of the
kernel, and so we will discuss the structure of the kernel
function based on the expression~C29!.

The step function term is given by the integral

E
Ymin

Ymax
dYYl 21, ~D1!

where the upperYmax and lower limitsYmin of the integral
are determined by relatively complicated step functions de-

pending on the variablesā , z̄ , a, andz as well as the kernel
parameters$g, a, . . . ,f %. It is easy to show that the upper
limit Ymax is finite as long as the parametera does not van-
ish. Since the scattering kernel with identically vanishinga
is nothing but the constant scattering kernel in the relative
momentump, we do not consider this case. Thus the Feyn-
man parameter integral may diverge logarithmically, and this
only if Ymin vanishes for thel 50 case. However, as is clear
from the expression~C29!, the point Y50 is always ex-
cluded by the step functions, so this integral never diverges.

The d function term can be written as a sum of fractions
with square root factors in their denominator together with
finite numerators. The square root factor comes from the
Jacobian to change the variable of thed function from the
spectral variableā to the Feynman parameterY. Note that
this situation is quite general and occurs for any angular
momentuml and dummy parametern. From the argument
of the square root, this term becomes singular ifa satisfies
the quadratic equation

S a7h0~ z̄ !

17z
a2B~ ā , z̄ !22

b2/47 g̃0~ z̄ !

a7h0~ z̄ !
C~ ā , z̄ !D 2

24C~ ā , z̄ !FA~ z̄ !1B~ ā , z̄ !
b2/47 g̃0~ z̄ !

a7h0~ z̄ !
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1C~ ā , z̄ !S b2/47 g̃0~ z̄ !

a7h0~ z̄ !
D 2G

50, ~D2!

where h0( z̄ )5(2b/2) z̄1e, and g̃0( z̄ )5(2b/2)(c z̄2 f ).
The functionsA( z̄ ), B( ā , z̄ ), andC( ā , z̄ ) are

A~ z̄ !5
b2

4 S m22
P2

4 D1~c z̄2 f !2
P2

4
,

B~ ā , z̄ !5g2cā2~a1c!m2

1@a1c24d22 z̄~c z̄2 f !#
P2

4
,

C~ ā , z̄ !5 ā1m22~12 z̄2!
P2

4
. ~D3!

Thus the kernel function diverges as a square root if Eq.~D2!
possesses a simple root. On the other hand, the kernel func-
tion diverges linearly if Eq.~D2! admits a double root. Since

C( ā , z̄ ).0 for any bound state, a double root occurs only if
the terms in the second set of parentheses cancel. In this
case, however, the residue of this pole~linear singularity!
vanishes, so that thed function term stays finite as a whole.

To summarize: the kernel functionKn52
[ l ] ( ā , z̄ ;a,z) for a

fixed kernel parameter set$g,ach,bch, . . . ,f ch% contains only
integrable square root singularities at the boundary of its
support, which if appropriately treated numerically present
no difficulties.
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