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Dynamical generation of extended objects in 41+ 1)-dimensional chiral field theory:
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We analyze the (% 1)-dimensional Nambu—Jona-LasinidJL) model nonperturbatively. In addition to its
simple ground-state saddle points, the effective action of this model has a rich collection of nontrivial saddle
points in which the composite fields(x) =(y) and 7(x) = (i ysy) form static space-dependent configu-
rations because of nontrivial dynamics. These configurations may be viewed as one-dimensional chiral
“bags.” We start our analysis of such configurations by asking what kind of initially sfaticx),7(x)}
background configurations will remain so under fermionic back reaction. By simply looking at the asymptotic
spatial behavior of the expectation value of the fermion number current we show, independently of the large-
N limit, that a necessary condition for this situation to occur is {ledtx),7(x)} give rise to a reflectionless
Dirac operator. We provide an explicit formula for the diagonal resolvent of the Dirac operator in a reflec-
tionless{a(x),m(x)} background which produces a prescribed number of bound states. We analyze in detail
the cases of a single as well as two bound states. We explicitly check that these reflectionless backgrounds may
be tuned such that the lar@é-saddle-point condition is satisfied. Thus, in the case of the NJL model,
reflectionlessness is also sufficient to assure the time independence of the background. In our view, these facts
make our work conceptually simpler than the previous work of Shei and of Dashen, Hasslacher, and Neveu
which were based on the inverse scattering formalism. Our method of finding such nontrivial static configu-
rations may be applied to other {11)-dimensional field theorie§S0556-282(97)00620-6

PACS numbgs): 11.10.Lm, 11.10.Kk, 11.15.Pg, 71.27a

. INTRODUCTION Ya—Uaphy, UeSUN);,

Over the last 30 years or so, physicists have gradually -
learned about the behavior of quantum field theory in the ha—€ Y,
nonperturbative regime. In (#.1)-dimensional spacetime,
some models are exactly soluijte]. Another important ap- and
proach involves the largl- expansion 2]. In particular, in
the mid-1970s. Dashen, Hasslacher, and Nd@wsed the e
inverse scattering methdd] to determine the spectrum of Pa— €7 4. (1.2
the Gross-Neveu mod¢b]. Recently, one of us developed
an alternative method, based on the Gel'fand—Dikii equation e rewrite Eq.(1.1) as
[6], to study the same problefii] as well as other problems
[8]. As will be explained below, we feel that this method has n
certain advantages over the inverse scattering method. _ 230 i p_ ; T 2,2
In this paper we study the (@1)-dimensional S d X( lio=(otimys)ly 29° ("m0,
Nambu—Jona-LasintdNJL) model[9] which is a renormal- (1.3
izable field theory defined by the actiph,10]

N ) whereo(x) andw(x) are the scalar and pseudoscalar auxil-
D — iary fields, respectivel§,which are both of mass dimension
= Vata one. These fields are singlets under SQi®U(1), but

transform as a vector under the axial transformation in Eq.

N 2 1.2): ly,
—(321 wavswa) “ gy (1P namely

otiysm—e 2vP(o+iygm). (1.9

N 2
—, g
S=f dzxi azl Yol i+ >

describing N self-interacting massless Dirac fermions
Ya (a=1,... N). This action is invariant under S

®U()@U(1)x: namely, under Thus, the partition function associated with E#.3) is

*Electronic address: joshua@itp.ucsb.edu °From this point to the end of this paper flavor indices are sup-
This model is also dubbed in the literature as the “chiral Gross-pressed. Thusy#y should be understood aE}_, Yt . Simi-
Neveu model” as well as the “multiflavor Thirring model.” larly yI' ¢ stands forEg‘zlwaF s, Wherel'=1,ys.
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— ) — ) sionless couplinggzR for the dynamical mass scate repre-
Z:f Do DDy Dy eXF{' f dzx( Ylid—(o+imys) ]y sents the well-known phenomenon of dimensional transmu-
tation.

The vacuum manifold of Eq.1.3) is therefore a circle
=m in the o,7 plane, and the equivalent vacua are param-
etrized by the chiral anglé=arctang/o). Therefore, small
Integrating over the Grassmannian variables leadsZto fluctuations of the Dirac fields around the vacuum manifold
= [DoDm exp{iSe{ o,7]} where the bare effective action is develop dynamica|chira| massm exp(6ys).

Note in passing that the massless fluctuation® afong
the vacuum manifold decouple from the spectrlii] so
that the axial W1) symmetry does not break dynamically in
. . . this two-dimensional modégf2].

—IN Trin[id= (o +imys)]. (1.6 Nontrivial excitations of the vacuum, on the other hand,

and the trace is taken over both functional and Dirac indices?® described semiclassically by lafyesaddle points of the
This theory has been studied in the limit- with Ng?2 ~ Path integral over Eq(1.1) at which o and 7 develop

held fixed[S]. In this limit Eq. (1.5 is governed by saddle SPacetime-dependent expectation vall3,14. These ex-
points of Eq.(1.6) and the small fluctuations around them. P&ctation values are the spacetime-dependent solution of Eq.
The most general saddle-point condition reads (1.7). Saddle points of this type are important also in discuss-
ing the large-order behavi$i5,16 of the 1N expansion of
the path integral over Edq1.1).

} (1.9

= 2 2
292(0' +7°)

1
Se{ o ] =— 2—92 f d?x(o?+ 72)

8Sest a(X,t) < 1 > Shei[17] has studied the saddle points of the NJL model
=- +iN ] ( X, t|————— Xt by applying the inverse scattering method following Dashen
Sa(x,t 2 o+ y applying : g me g
o(x) g 0= (o+imys) et al. [3]. These saddle points describe sectors of @dl)
=0, that include scattering states of ti@ynamically massive
fermions in Eq.(1.1), as well as a rich collection of bound
OSett w(X,t) 1 states thereof.
smxt) 92 =N tr] ys{ Xt m X,t These bound states result from the strong infrared inter-

actions, which polarize the vacuum inhomogeneously, caus-
=0. (1.7 ing the composite scalayy and pseudoscalag)ysy fields
to form finite action spacetime-dependent condensates.
In particular, the nonperturbative vacuum of Efj.1) is  These condensates are stable because of the binding energy
governed by the simplest largé-saddle points of the path released by the trapped fermions and therefore cannot form
integral associated with it, where the composite scalar operawithout such binding. This description agrees with the gen-
tor i and the pseudoscalar operato#ysys develop eral physical picture drawn ifl8]. We may regard these
spacetime-independent expectation values. condensates as one dimensional chiral ja§s2Q that trap
These saddle points are extrema of the effective potentidhe original fermiong*“quarks”) into stable finite action ex-
V. associated with Eq1.3), namely, the value of Sz for  tended entitieg“hadrons”).
spacetime-independent s configurations per unit time per In this paper we develop further the method[ 8], ap-
unit length. The effective potentidly+ depends only on the plying it to the NJL model(1.1) as an alternative to the
combinationp?= o?+ 72 as a result of chiral symmetry,  inverse scattering investigations [ii7]. We focus on static
has a minimum as a function pfat p=m=0 that is fixed by  extended configurations providing explicit expressions for
the (bare gap equation5] the profiles of these objects and calculate their masses. Our
analysis of these static saddle points is based on an explicit
representation we find for the diagonal resolvent of the Dirac

) d’k 1 operator in as(x),m(x) background which produces a pre-
—m+iNg trf 2mik=m =0 (1.8 scribed number of bound states. This explicit construction of

the diagonal resolvent can actually be carried out for finite
. . ) N. It is based on elementary Sturm-Liouville theory as well
which yields the dynamical mass as on simple dimensional analysis. All our manipulations
involve the space-dependent scalar and pseudoscalar conden-
) sates directly. In our view, these facts make the method pre-
m=Ae" NI (), (1.9  sented here simpler than inverse scattering calculations pre-
viously employed in this problem because we do not need to
Here A is an ultraviolet cutoff. The masen must be a work with the scattering data and the so-called trace identi-
renormalization-group invariant. Thus, the model is asymp+ies that relate them to the space-dependent condensates. Our
totically free. We can get rid of the cutoff at the price of
introducing an arbitrary renormalization scale The renor-

malized couplinddr(#) and the cutofi-dependent bare cou- 3Note that the axial (I) symmetry in Eq.1.2) protects the fer-

. N2 NG
pling are then related throughe™ "N (M) = ;.= 7NGR(L)  igng from developing a mass term to any order in perturbation
in a convention whereNgﬁ(m)=1/7r. Trading the dimen- theory.
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method of finding such nontrivial static configurations may This paper is organized as follows: In Sec. Il we prove
be applied to other two-dimensional field theories. that the static condensate$x) and 7(x) in Eq. (1.3) must

It is worth mentioning at this point that the NJL model be such that the resulting Dirac operator is reflectionless. Our
(1.1) is completely integrable for any number of flavbi. proof of this strong restriction on the Dirac operator involves
Its spectrum and completely factoriz&matrix were deter- basic field theoretic arguments and has nothing to do with
mined in a series of papef&1] by a Bethe ansatz diagonal- the largeN approximation. We next show in Sec. Ill that if
ization of the Hamiltonian for any numbeét of flavors. The  we fix in advance the number of bound states in the spectrum
largeN spectrum obtained here as well ad 7] is consis-  of the reflectionless Dirac operator, then simple dimensional
tent with the exact solution d21]. Note, however, that the analysis determines the diagonal resolvent of this operator
largeN analysis in this paper concerns only dynamics of theexplicitly in terms of the background fields and their deriva-
interactions between fermions and extended objects. We dives. We then construct the resolvent assuming the back-
not address issues like scattering of one extended object ground fields support a single bound state in Sec. IV A. We
another, which is discussed in the exact analysig24fl. are able to determine the profile of the background fields up
Consistency of our approximate larjeresults and the exact to a finite number of parameters: the relative chiral rotation
results of{ 21] reassures us of the validity of our calculations. of the two vacua at the two ends of the one-dimensional

Rather than treating nontrivial excitations as abstract vecspace and the bound state energies. In Sec. IV B we provide
tors in Hilbert space, which is inevitable [81], our analysis partial analysis of the case of two bound states. We stress
draws almost a “mechanical” picture of how “hadrons” again that our construction of these background fields has
arise in the NJL model. This description of “hadron” for- nothing to do with the larg& approximation.
mation as a result of inhomogeneous polarizations of the We determine these parameters in Secs. VA and V B.
vacuum due to strong infrared interactions may have somerom the topological considerations [@5] (and indepen-
restricted similarity to dynamics of QCD in the real world. dently of the largeN approximation we can determine the
Furthermore, our resolvent method is potentially applicableelative chiral rotation of the asymptotic vacua as being pro-
for nonintegrable models in#41 dimensions. In contrast, portional to the number of fermions trapped in the bound
Bethe ansatz and factorizat®ematrix techniques are limited states. In order to determine the bound-state energies we
in principle to 1+1 dimensions because of the Coleman-have to impose the largd-saddle-point conditions.

Mandula theoreni22], whereas largé& saddle-point tech- Some technical details are left to two appendices. In Ap-
niques may provide powerful tools in analysis of more real-pendix A we derive the spatial asymptotic behavior of the
istic higher dimensional field theori¢23]. static Dirac operator Green'’s function. In order to make our
If we set w(x) in Eqg. (1.3 to be identically zero, we paper self-contained we derive the Gel'fand—Dikii equation
recover the Gross-Neveu model, defined by in Appendix B.
— o? IIl. ABSENCE OF REFLECTIONS IN THE DIRAC
SGN:j dzx[ Ylid—oly— 52}- (1.10 OPERATOR WITH STATIC BACKGROUND FIELDS

As we explained in the Introduction, we are interested in
In spite of their similarities, these two field theories areStatic space-dependent solutions of the extremum condition

quite different, as is well known from the field-theoretic lit- N Set- TO this end we need to invert the Dirac operator
erature of the 1970s. The crucial difference is that the Gross-
Neveu model possesses a discrete symmetry— o, rather D=id—[o(x)+im(x)ys] (2.9
than the continuous symmet($.2) in the NJL model stud-
ied here. This discrete symmetry is dynamically broken byin a given background of static field configurationgx) and
the nonperturbative vacuum, and thus there is a kink solutiorr(x). In particular, we have to find the diagonal resolvent of
[24,3,7, the so-called Callan-Coleman-Gross-Z&&CG2)  Eq.(2.1) in that background. The extremum condition S
kink o(x)=m tanhfny), interpolating betweentm at x= relates this resolvent, which in principle is a complicated and
+oo, respectively. Therefore, topology ensures the stabilitygenerally unknown functional of(x), #(x) and of their
of these kinks. The kink may bind any numbesN of  derivatives, too(x) and 7 (x) themselves. This complicated
fermions in its single zero energy bound state, without af+elation is the source of all difficulties that arise in any at-
fecting its mass, because its stability is guaranteed by topotempt to solve the model under consideration. It turns out,
ogy already. however, that basic field theoretic considerations, that are
In contrast, the NJL model, with its continuous symmetry,unrelated to the extremum condition, imply that Eg.1)
does not have a topologically stable soliton solution. Themust be reflectionless. This spectral property of @dl) sets
solitons arising in the NJL model and studied in this paperather powerful restrictions on the static background fields
can only be stabilized by binding fermions. They are stabler(x) and (x) which are allowed dynamically. In the next
not due to topology, but to dynamics. section we show how this special property of EB.1) al-
lows us to write explicit expressions for the resolvent in
some restrictive cases, that are interesting enough from a
“For N=1 a simple Fierz transformation shows that Efj1) is  physical point of view.
simply the massless Thirring model, which is a conformal quantum Inverting Eqg.(2.1) has nothing to do with the largs-
field theory having no mass gap. A mass gap appears dynamicalgpproximation, and consequently our results in this section
only for N=2. are valid for any value oN.
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Here o(x) and w(x) are our static background field con- which in turn satisfy the second-order partial differential
figurations, for which we assume asymptotic behavior dic-equations
tated by simple physical considerations. The overall energy
deposited in any relevant stati 7 configuration must be

finite. Therefore, these fields must approach constant vacuum Ab(X,y) 5 . )
asymptotic values, while their derivatives vanish asymptoti- —dx ot m(x) + o(X)F7(X)—0o'(X)~w
cally. Then the axial (L) symmetry implies that

o(X)7'(x)| b(x,y)

=d(x—y),
w+m7(X) | o+ 7(X)
ol m2,
X— + oo
_ _ IxC(X,Y) 2 2, 2

wherem is the dynamically generated mass, and therefore — Oy ———|+| (X)) + T(X)+ o' (X)—w
we arrive at the asymptotic boundary conditionsdaand : w=7(X)

o(x)m' (X)| c(x,y)

_ Thus,b(x,y) and —c(x,y) are simply the Green’s func-
T —— msing., 7 ——0, (220 tions of the corresponding second order Sturm-Liouville op-
X e X erators in Eq(2.6),

where 6. are the asymptotic chiral alignment angles. Only
the differenced, — 6_ is meaningful, of course, and hence- O(x—Y)bo(X)b1(y) + Oy —x)b,(y)b4(X)
forth we use the axial symmetry to seét =0, such thato b(x,y)= W :
(—©)=m andw(—=)=0. We also omit the subscript from b
0, and denote it simply by from now on. It is in the
background of such fields that we wish to invé2tl).

In this paper we use the Majorana representatiéh

O(x—y)Ca(x)Cq(y)+ O(y—X)Ca(y)Cy(X)

=0,, y'=io3, andy’= —y%y'=0, for y matrices. In this cxy) == W,
representation Eq2.1) becomes (2.7
g I Hereb,(x) andb,(x) are the Jost functions of the first equa-
x— 7 to=lm tion in Eq.(2.6) and
D= (2.3 o
iw—imT dy—0

_ by(x)b}(x)~by(x)by(x)

Inverting Eq.(2.3) is achieved by solving b= 0
w—+ (X

(2.9

(—ax—a(x) —iw—iw(x))(a(x,y) b(x,y))

iw—im(x)  oy—o(X) is their Wronskian. The latter is independentxpfsinceb,

andb, share a common value of the spectral parameter
Similarly, ¢, ¢, are the Jost functions of the second equa-
=—i18(x—y) (2.4 tion in Eq. (2.6) and W, is their Wronskian. We leave the
precise definition of these Jost functions in terms of their
for the Green'’s function of Eq2.3) in a given background spatial asymptotic behavior to Appendix A, where we also
a(x), m(x). By dimensional analysis, we see that the quan-derive the spatial asymptotic behavior of the static Dirac op-
tities a, b, ¢, andd are dimensionless. erator Green'’s function. Substituting EQ.7) into Eq. (2.5
The diagonal elementa(x,y) and d(x,y) in Eq. (2.4  we obtain the appropriate expressions fa(x,y) and
may be expressed in term of the off-diagonal elements as d(x,y), which we do not write explicitly.
We define the diagonal resolve(|iD ~|x) symmetri-

c(x,y) d(xy)

cally as
i[dx—o(x)]c(x,y)
a(x,y)= pr—— , -
51t is useful however to note, that despite thegoperation in Eq.
) (2.5, neither a(x,y) nor d(x,y) contain pieces proportional to
d(x,y)= i[xt+a(x)]b(x,y) (2.5 8(x—Yy). Such pieces cancel one another due to the symmetry of

w+ m(X) Eq. (2.7 underx«y.
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A(x)  B(x)
(x|=iD ~*|x)=
C(x) D(x)
1 a(x,y)ta(y,x) b(x,y)+b(y,x)
=5 lim (2.9
ol ey te(yx)  doay)+dy. )
|
HereA(x) throughD (x) stand for the entries of the diagonal d A(X) B(x)
resolvent, which following Egs(2.5 and (2.7) have the N[ 22 yH (2.13
compact representatidn 2m C(x) D(x)
b1(x)by(X) i [dxt20(X)]B(x) Therefore, we find from Eq(2.12 that the asymptotic be-
X)= w, (x)= 2 o+ 7(X) ' havior of the current matrix elements is
. (o (x),m(X)[j% o(x),7(x)) —— 0
Clx)=— c1(X)C2(X) A(x)—'— [dx—20(X)]C(X) X o
B W, ' 2 w—1(X) '
(2_10) and
A simplifying observation is that the two linear operators (a(x), m(X)|j Y (%), m(x)) ~ Nj do R(k)e?kXsgrx,
on the left-hand side of the equatio(®.6) transform one X+ 2
into the other under a simultaneous sign flaf o/(x) and (2.19

w(X). Thereforec(o,7)=—b(—0o,— ), and, in particular,
where we used the fact thdi(dw/27)(w/k)f(k)=0 be-
C(o,m)=—B(—0,— ), (2.11  causek(w) is an even function of.

Thus, an arbitrary static backgrouwndx), 7(x) induces
space-dependent fermion currents that do not decay fast
enough ag— * oo, unlessR(k)=0. Clearly, we cannot have
such currents in our static problem and we conclude that as
far as the field theory(1.3) is concerned, the fields(x),

(X) must be such that the Sturm-Liouville operators in Eqg.
(2.6) and therefore the Dirac operat@.3) are reflectionless.
The absence of reflections emerges here from basic prin-

and thus all four entries of the diagonal resolvéh®) may
be expressed in terms 8f(x).

The spatial asymptotic behavior of EQ.9) is derived in
Appendix A and given by EqA6). A more compact form of
that result is

. 1+ R(k)e2kX . :
(X|-iD7Yx) ~ T T[iysm(X)—o(x)—1°w]  Ciples of field theory, and not merely as a lafgesaddle-
X— 00 2k point condition, as if3,17]. Indeed, reflectionlessness of Eq.
2ikl (2.3) must hold whatever the value ®f is. Therefore, the
" R(k)e ! sgnx 2.12 fact that reflectionlessness of HQ.3) appeared i3,17] as

2 a saddle-point condition in the inverse scattering formalism

simply indicates consistency of the larfyeapproximation in

wherek= JwZ—m? andR(K) is the reflection coefficient of analyzing space-dependent condensatie(s), 7(x). The
the first equation in Eq(2.6). absence of reflections also restores asymptotic translational

Note that foro?>m?, i.e., in the continuum part of the invariance. What we mean by this statement is that if
spectrum of Eq(2.3), the piece of the resolvef2.12) thatis  R(k)=O0 then Eq.(2.12 is simply the result of inverting Eqg.
proportional toR(k) oscillates persistently as a function of (2.3 in Fourier space with constant asymptotic background
x. This observation has a far reaching result that we now2-2, namely,
derive. Consider the expectation value of fermionic vector

current operatof* in the statico(x), m(x) backgroun8 imcosy  w+msing

1

iD=
_ =Dk 2ym’—w? \ —y+msind  imcosd |
(a(x),m(X)|j*|a(x),7(x)) (2.19

which therefore yields the asymptotic behavior of E29)
®A, B, C, andD are obviously functions oé as well. For nota-  for properly chosen chiral alignment angles. Note that in the

tional simplicity we suppress their explicit dependence. absence of reflections, E(.12) attains its asymptotic value
"This is merely a reflection of the fact that coupling the fermions(2.15 by simply following the asymptotic behavior of(x)
to 7ys does not respect charge conjugation invariance. and of w(x), which are the exclusive sources of any

8In the following it is enough to discuss only the vector current, asymptoticx dependence of the resolvent. This expression
because the axial curreff=e*"j, . (2.15 has cuts in the complex plane stemming from scat-
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tering states of fermions of mass. These cuts must obvi- moment entertain ourselves with the assumption R{&) in
ously persist inA, B, C, andD away from the asymptotic Eq.(2.17) is arbitrary and see how the absence of reflections
region, and we make use of this fact in the next section. appears as a saddle-point condition. Thus, for extremal con-
We used the asymptotic matrix elemern&13 of the figurations, asx— *«, o(x) cancels off both sides of the
vector current operator in the background of statifx), first equation in Eq(2.17) andw(x) cancels off both sides of
(X) to establish the absence of reflections in the static Dirathe other equation. This leaves us with a common dispersion
operator. We can now make use of this result to examine itgitegral:
general dynamical implications on matrix elements of other '
interesting operators, namely, the scala¥ and pseudosca- 1 _f dw 1+R(k)e?kX
lar iysi density operators. Their matrix elements in the Ng> | 2= k '
background ofo(x),m(x) are
q It turns out[see Eq.(5.3 below] that the integral over the
- _ do —] first x-independent term on the right-hand side cancels pre-
(o), 7l or(x),m(x)) = NJ 2 tr{xliD ~}x) cisely the constant term on the left-hand side. This is simply
a reformulation of Eq(1.8) in Minkowski space. Therefore,

and the remainingx-dependent integral must vanish for any
— (large |x|. It follows then, thatR(k) must vanish. Thus ab-
(a(X), m(X)| i ysp o(x), (X)) sence of reflections appears here as a saddle-point require-
do ment, in a rather simple elegant manner, without ever invok-
= —Nf oy trli ys(x|iD ~x)]. (2.16 ing the inverse scattering transform. The whole purpose of

this section is to prove that one cannot consider static reflec-
Therefore, from Eq(2.12 their asymptotic behavior is sim- tionful backgrounds to begin with, and thus the emergence of
ply absence of reflef:tlons as a saddle-point (_;o.ndltlon is simply a
L successful consistency check for the validity of the lakge-
(a(X),7(X)|gp| o (X), (X)) approximation applied to space-dependent condensates.

2ik|x Ill. THE DIAGONAL RESOLVENT FOR A FIXED
~ — No(x)f g_: %)ell NUMBER OF BOUND STATES
o The requirement that the static Dirac operat@r3) be
and reflectionless is by itself quite restrictive, since most
. o(x),7(x) configurations will not lead to a reflectionless
(a(X),m(X)| i ysih| a(X),m(X)) static Dirac operator. Construction of explicit expressions for
the resolvent in terms af(x),(x) and their derivatives is a
2ikx| formidable task even under such severe restrictions on these
d_"’ 1+R(k)e (2.17 fields. We now show how to accomplish such a construction
2m k ' ' at the price of posing further restrictions eotfx) and m(x)
in function space. However, even under these further restric-
Clearly, in the absence of reflections, the asymptatide-  tions the results we obtain are still quite interesting from a
pendence of these matrix elements follows the profiles ophysical point of view.
o(x) and 7(x), respectively. Otherwise, iR(k) #0, these In the following we concentrate on tH&(x) component
matrix elements will have further powerlike decayxrsu-  of Eq. (2.9). The other entries in Eq2.9) may be deduced
perimposed on these profiles, which is not related directly tdrom B(x) through Egs(2.10 and(2.11).
the typical length scales appearingdfx) and in7(x). We Our starting point here is the observation that one can
close this section by investigating implications of E2.17)  derive from the representation B{(x) in Eq. (2.10 a func-
for extremal background configurations. For such configurational identity in the form of a differential equation relating
tions the matrix element of the scalar density is equal tdB(x) to o(x) and 7(x) without ever knowing the explicit
—o(x)/g? and that of the pseudoscalar density is equal tdform of the Jost function®,(x) and b,(x). We leave the
—(x)/g?. Such background fields must obviously corre-details of derivation to Appendix B, where we show that the
spond to a reflectionless Dirac operator, but let us for thédentity mentioned above is

~ —Nm(x

X— F oo

1 d,B(X) 4 B(x) ) a(X)m'(X)
Ix w+m(x) X o+ m(X) ]_ w+7(X) (ax o+ m(X) ] c()*+ 7(X)°~ 0’ ()~ w*+ o+ m(X)
2B !
- ﬁ Oy O'(X)2+ W(X)Z—U,(X)-i- O;l())j_)—:(i))() =0 (3.)
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with a similar expression fo€(x) in which o— —o, m—  exp{w?—m?x). But such a combination is ruled out as we
— that we do not write down explicitly. elaborated in the previous section, by the requirement that
Here we denote derivatives with respectXceither by  the Dirac operator be reflectionless. The factdr2) then
primes or by partial derivatives. This equation is a linearexhausts all allowed singularities B{x) in the complexw
form of what is referred to in the mathematical literature asplane. Recall further thaB(x) is a dimensionless quantity,
the “Gel'fand-Dikii” identity [6]. This identity merely re- and thus the negative dimension of thedependent factor
flects the fact thaB(x) is the diagonal resolvent of the (3.2 must be balanced by a polynomial of degreel in w
Strum-Liouville operator discussed above and sets no restrigwith x-dependent coefficientsof mass dimensiom+1:
tions ono(x) and (X). namely*!
If we were able to solve Eq.3.1) for B(x) in a closed
form for any static configuration of(x),7(x), we would

then be able to expregx|iD ~!|x) in terms of the latter B(x,0)= Bri1(X)@" 4+ +By(X) @+ Bo(X)
fields and their derivatives, and therefore to integrate Eq. ' Im?— I _ (0 — wy)

(1.7) back to find an expression for the effective acti@rb) (3.3
explicitly in terms ofa(x) and(x). Invoking at that point
Lorentz invariance of Eq(1.6) we would then actually be
able to write down the full effective action for spacetime-
dependentr and . Note, moreover, that in principle such a —k. . ) ) . ) ) o
procedure would yield an exact expression for the effective 1he main point here is that simple dimensional analysis in
action, regardless of what is. qon!unctlon with the prescribed analytic propertiesBgi)
Unfortunately, deriving such an expression &ifx) isa X itS » dependence completely, up t+1 unknown
difficult task, and thus we set ourselves a simpler goal in thiound-state energies, and+2 unknown functions of
paper, by determining the desired expressionBx) with o(x),m(X) _and their derivatives. These functions are by no
o(x),7(x) restricted to a specific sectors in the space of allM&ans arbitrary. They have to be such that B3 and the
possible static configurations. To specify these sectors cof€sulting expression fdZ(x) are indeed the resolvents of the
sider the Dirac equation associated with E2.1), D =0. appropriate Sturm-Liouville operators_. These expressions for
For a given configuration of(x),m(x) (such thatD is re- B_(x_) .and(':(x) must be therefore subjgcteq to t_he Gel'fand—
flectionless, this equation hasm bound states at energies DiKil identity (3.1) and the corresponding identity f@(x).
w1,....0, as well as scattering states. A given sector is then SubstitutingB(x) into Eq.(3.1) we obtain an equation of
defined by specifying the number of bound states the Dirad® form
equation has.
As we saw aboveB(x) must have a cut in the plane Q) (w,x)/[w+ m(x)]*=0, (3.9
with branch points ato=*=m. If in addition to scattering
states o(x),7(x) support n bound states at energies
®1,...,0 (which must all lie in the real intervakm<w  WhereQ{¥s(w,x) is a polynomial of degrea+5 in w with
<m) thert® the correspondin® must contain a simple pole X-dependent coefficients that are linear combinations of the
for each of these bound states. Theref@gs) must contain functions B, (x) and their first three derivatives. Note that

The mass dimension oBy(x)(k=0,...n+1) is n+1

the purelyw-dependent factor because of the linearity and homogeneity of E81), the
purely w-dependent denominator of E@.3) with its explicit
1 dependence on the bound-state energies drops out from Eqg.
(3.2 (3.4). This is actually the main advantdgef working with
Vm? = w?TI{_ (0= @) the linear form of the Gel'fand—Dikii identity rather than
with its nonlinear form(B10) [7].
of mass dimensior-n—1. Any other singularityB(x) may Setting to zero each of the-dependent coefficients in

have in the complew plane cannot be directly related to the QI('IE)5 we obtain an overdetermined systemrof 6 linear

spectrum of the Dirac operator, and therefore must invelve differential equations in the+ 2 functionsB,(x). Usingn

dependence as well. Based on our discussion in Appendix A+ 2 of the equations we fix all the functiom(x) in terms

the only possible combination that mixes these variables igf (x),(x) and their derivatives, up to+2 integration
constantd, . These integration constants are completely de-
termined once we enforce on the resulting expression for

9The effect of scattering states &{x) is rigidly fixed by spatial
asymptotics, as Eq2.15 indicates, so only bound states are used
to specify such a sector. one may argue that Eq3.3) should be further multiplied by a
%The Gross-Neveu mod¢b,3,7] is a theory of Majorandreal dimensionless bounded functidéfiw/m). However, such a function
fermions. Therefore, its spectrum is invariant under charge conjumust be entire, otherwise it will change the prescribed singularity
gation, i.e., it is symmetric undes— — w. Thus, in that case the properties ofB(x), but the only bounded entire functions are con-
bound states are paired symmetrically aroundt0 and B(x) is stant.
really a function ofw?. The chiral NJL model on the other hand is  *?The nonlinear version of the Gel'fand—Dikii identit8) [or
a theory of Dirac(comple® fermions, charge conjugation symme- Eq. (B10)] contains further information about the normalization of
try of the spectrum is broken by thefield and bound states are not B(x), but the latter may be readily determined from the asymptotic
paired. behavior(2.15 of B(x).
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B(x) the asymptotic behavid2.2) and(2.15. The integra- 0
tion constants, turn out to be polynomials im? and the 7(X)=—[o(x)—m]cot 5. (3.6)
bound-state energias .

At this stage we are left, independently f with four In this way we reduce the problem into finding the single
nonlinear differential equations i(x) and m(x). function o(x). Condition(3.6) is an external supplement to

A similar analysis applies fo€(x), leading to an equa- the coupled differential equations fer(x) and m(x) stem-
tion of the formQ{?5(w,x)=0, where following Eq(2.11)  ming from the Gelfand—Dikii equation. We thus have to
QP (w,0(x), 7(x))=—QPF)s(w, — o(x),— m(x)). Setting make sure that the resulting solution fe¢x) and Eq.(3.6)
the firstn+2 coefficients ianﬁ)5(w,x) to zero we verify  are indeed solutions of these coupled differential equations.
that C(x) is related toB(x) as in Eq.(2.11), but that the We now provide the details of such calculations in the
remaining four equations fos(x) and w(x) are different case of a single bound state, as well as partial results con-
from their counterparts associated wBlix) as the explicit ~cerning two bound states.
relation betweerQ(<); and Q') suggests. We are thus left
with an overdetermined set of eight nonlinear differential IV. EXTENDED OBJECT PROFILES
equations for the two functions(x) and m(x). Observing
that Q{9s+Q®). is odd (even in o and 7, we note that
these eight equations are equivalent to breaking each of the In this case Eq(3.3) becomes
four remaining equations associated wil(x) into a part 5
even ino and 7 and a part odd inr and 7 and setting each B(x)= B2(X) 0+ By(X) w+ Bg(X)
of these parts to zero separately. (0—w1) JmZ=? '
Mathematical consistency of our analysis requires that the
six most complicated equations of the total eight be redunghere the single bound-state energywis. Then setting to
dant relative to the remaining two equations, because Wgerg the coefficients ofs® through »* in the degree six
have only two unknown functiongr(x) and m(x). This re-  polynomial (3.4), we find
qguirement must be fulfilled, because otherwise we are com-
pelled to deduce that there can be efx) and #(x) con- B,(X)=b,, Bi(x)=bym(x)+b;
figurations for which the Dirac equatiod#=0 has
preciselyn bound states, witm=0,1,2 ..., which is pre- and
sumably an erroneous conclusion.
Thereforea(x) and 7(x) are uniquely determined from b, ) ,
the two independent equations given the asymptotic bound-  Bo(X) =D1m(x)+ == [o(x) + 7%(x) — 0" (X) ]+ by,
ary conditiong2.2) they satisfy. This leaves only the bound- (4.2
state energies undetermined, but the latter cannot be deter-
mined by the resolvent identity, which does not really carewhere b,, b;, and b, are integration constants. We then
what their values are. These energies are determined by inimpose the asymptotic boundary conditions
posing the saddle-point conditiori$.7), i.e., by dynamical
aspects of the model under investigation. 1
In the preceding paragraphs we laid down the mathemati- B(x) (
cal aspects of our analysis. We now add to these a symmetry xozn 2ymP— o
argument which will simplify our solution of the differential )
equations foro(x) and m(x) a great deal. The two nonre- © fix the latter,
dundant coupled differential equations foXx) and m(x)
allow us to eliminate one of these functions in terms of the b,==, by=-—
other. We choose to elimindter(x) in terms ofo(x):

A. A single bound state

4.9

w+m sind-.)

m
bo=— 4.3

and therefore

To(X)=Gol0a(X)], (3.9
%) o+ 7(X) N a?(X) + w2(X) — o’ (X) —m?

where «a is a global chiral alignment angle. This relation is 2ym’— w* 4w w) M’ —
clearly covariant under axial rotations— «+ A «, because (4.9
o(x) and7(x) transform as the two components of a vector . . ,
under U(1), as Eq.(1.4) shows. We expect E43.5) to be a Relation(2.11) then immediately leads to
linear relation. Imposing the boundary conditiof&s2) we
have cix) w—m(X)  o?(X)+7(X)+ o’ (X)—m?

2V —0? M- wy) M- o2

4.
BCoefficients of the various terms in these equations are also 49
polynomials inm? and the bound-state energies. Having the coefficients ab® throughw* in the degree six
e prefer to eliminater(x) in terms ofa(x) because the latter polynomial (3.4) set to zero, we are left with a cubic poly-
never vanishes identically. nomial
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1 6
4(94([m2—772(x)—az(x)]w(x)—wla'(x)Jr 5 w"(x)) w;tan5<0. (4.10

Hoi[ 72 () + ()] = o () 7' (x) + o' () m(x)} Substituting the expressioiid.9) into Eq. (4.4) one finds

that the resultind3(x) is indeed a solution of the correspond-

X3+ ing Gel'fand—Dikii equation3.1), verifying the consistency
0 4.6 of our solution. Our result$4.9) for o(x) and 7(x) agree

' ' with those of[17]. They have the profile of an extended
where the ellipsis stands for lower powers af The cubic ~ Objéct, @ lump or a chiral “bag,” of size of the order
(4.6) has to be set to zero identically, producing eightC0l(#/2)/w, centered around an arbitrary poiy. Note that
coupled differential equations ir(x) and 7(x) as we dis- the profiles in Eq(4.9) satisfy
cussed above. The simplest equation of these is obtained by
setting to zero the part of the® coefficient in Eq.(4.6) that
is even ino and 7, namely,

p2(X) = a%(x) + w(X)

2 2 _ ’ ’ —
a0+ 02X ]~ ()7 (X) + 0 () 7(X)}=0 R

0
wltan E (X_ Xo)

which we immediately integrate into (4.10)

w[ T(X)+ (X)) —m?]=o(X) 7' (X) — o’ (X) 7(X). Thus, as expected by construction, this configuration inter-
(4.7) polates between two different vacuaat =». As X in-
creases from—o, the vacuum configuration becomes dis-

H(_ere we _have uged the boundary cond|t|_(6252) to de- . torted. The distortion reaches its maximum at the location of
termine the integration constant. The next simplest equauoghe “bag,” where m?— p2(xo) =m2sirf(62) and then re
1 O - -

EOt():laIGr;?ga?%ssigzl?nto ;re]:(rjo thaen%agtoo;rﬁb% coefficientin  |5ves back into the other vacuum statexatee. The arbi-

q. &9t g antm, abl ' rariness ofx, is, of course, a manifestation of translational
Following our general discussion we solve the system o nvariance

coupled equationg3.6) and (4.7), which leads to '

B. Two bound states
(4.8 In this case Eq(3.3) becomes

d
dx

1
o(X)—m

20tan(02) 2w,
o(X)—m  msing’

Solving Eq.(4.8) we find
B3(X) w3+ B,(X) 0%+ By (X) @+ Bo(X)
m sing tan 6/2) B(x)= — (4.12

(0= w)(w—wy)) VM —w
1+exd 2w tan(0/2)(x—Xg) ]’

o(X)=m-—

m siné where the bound-state energies argand w,. [Obviously,
m(X)= 1+exf 2w tan 6/2)(x—Xg) ]’ (4.9 B(x) in this subsection should not be confused with its coun-
terpart in the previous subsectidin this case the polyno-
where we have chosen the integration constpatametrized mial (3.4) is of degree seven iw. Following the procedure
by Xg) such thair(x) and(x) would be free of poles. Note outlined in Sec. Il we find after imposing the boundary con-

that the boundary conditions &t +< require ditions (2.2 that
o+ m(X) [d2(X)+ 72(X)— o' (X) —MZ][7(X) + 0 — w1 — wy] 7"(X)—=20(X) 7' (X)
BOO= m°— w? 4(w—w)(w— wy) VM — w? 8(w—w1)(w—wy) m—w?’ 413
Then, from Eq.(2.11 we find that
o—m(X) [d?(X)+7%(X)+ o' (X)—mZ][— 7(X)+ w— w;— ;] 7"(X)+20(X) 7' (X)
C(x)=— - — . (4.19
2m’— w? 4(w—w)(w— wy) VM — w? 8(w—wq)(w— wy) yM?— w?
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Note that if we setw;+ w,=0 and w(x)=0 the resol- nomial in  which we do not write down explicitly. This
vents (4.13 and (4.14), and therefore the whole spectrum, polynomial must vanish identically, producing eight coupled
become invariant undes— — w, and we obtain the equation differential equations ino(x) and 7(x) as we discussed
appropriate to the Gross-Neveu model. above. The simplest equation of these is obtained by setting

Setting to zero the coefficients af” throughw® in the  to zero the part of thew® coefficient in that polynomial
degree seven polynomiéd.4), we are left with a cubic poly- which unlike the previous case, is now oddarand ;

20 {4(w1+ wy)[ w2(X) + a?(X) — m?]mr(x) + 6[ 2(X) + 02(X) Jo (X) + 2(2w1w,— MP) o (X)
—2(w1t+wy)7" (X)—a"(x)}=0. (4.19
As in the previous case, this is a complete derivative which we readily integrate into

A4(wq+ wo)[ 2(X) + a?(X) — m?]ar(X) + 6] m2(X) + 02(X) o' (X) + 2(2w1wp,— M?) 0 (X) — 2( w1+ wp) 7" (X) — ¢ (X) = 0.

(4.1

Here we have used the boundary conditi¢22) to determine the integration constant. Note that @dL6) is of third order
in derivatives and cubic, whereas its single bound-state counté¥p@ris only first order in derivatives and quadratic.

The next simplest equation is obtained by setting to zero the part asttmefficient in the cubic polynomial that is even
in o and 7

20,{2(m? = 2w10x)[72(X) + a2(X)] =3[ 7%(X) + 02 (X) [+ 4w+ w) [o () 7' () = ' (X) m(X) ]}

+A[ m(X) 7" (X) + o(X) " (x)]=0, (4.17)

and so on. The allowed values of,w;,w,,... must then be determined
Following our general discussion we have to solve theby the saddle-point conditioflL.7). It is this dynamical fea-
system of coupled equation&.6) and (4.16 which is ture that we can analyze only in the laryelimit.
equivalent to For static background fields the general saddle-point con-
dition (1.7) assumes the simpler form

2N w1+ wy)[4my>+2(1+N2)y3—y"]

+ 04T+ 0y0,)y+6mY? 700 +Ng2 [ 52 [ +D(x)1=0.

+2(\2+1)y3—y"}=0, (4.18

where\ = — cot(#/2) andy(x) = o(x) —m. We have not suc- o[ do
ceeded in solving this nonlinear ordinary differential equa- m(X)+iNg f o [B(x)+C(x)]=0. CRY
tion in closed form.

V. THE SADDLE-POINT CONDITIONS In Sec. V A we impose this condition on the explicit single
bound-state background we found in the previous section
and calculate the mass of such “bags.” The two-bound-state
case is discussed in Sec. V B.

Derivation of the explicit expressions of(x) and (x)
does not involve the saddle-point equatidfs?). Rather, it
tells us independently of the largé-approximation that
o(x) and w(x) must have the form given in Ed4.9) in
order for the associated Dirac operator to be reflectionless
and to have a single bound state at a prescribed enerdgy
addition to scattering states. Thus, for the solutiér9) we Substituting Eqs.(4.4)_and (4.5) into the saddle-point
have yet to determine the values®f and 6 allowed by the equationg(5.1) we obtairt®
saddle-point condition. More generally, our discussion in
Sec. Il will lead us to theo(x) and 7(Xx) configurations
which correspond to reflectionless Dirac operators with a 19 the following formula we omit explicix dependence of the
prescribed number of bound states at some prescribed engields. The numbertr also appears in the formula, but only in the
gies wy,w,,... in addition to scattering states. As empha- combinationdw/27. Therefore, there is no longer danger of con-
sized earlier, this result is independent of the lakyémit. fusing the fieldw(x) and the numbetr.

A. A single bound state
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o _’_'fA do 1 {4 3+2( r—9 ) 2+2 ( 2 2 2) ’ 1 "
— +i — ow 7' —2w0)w o(oc-—m—mM)—wm' — 5 0" |w
Ng ~A 27 4\m’— 0 (0— w)(w?— ) ! ! 2
—2772(77'—2w10')}=0,
T +.JA do 270—2w;7m— 0’ 0 52
— i — =0. :
Ng -A 27 2\m?— 0¥ (w—w;)

These equations are dispersion relations among the varFhus,F (o, ) vanishes for the configuratiori4.9) provided
ousx-dependent parts and, . Clearly, both dispersion inte-
grals in Eq.(5.2 are logarithmically divergent im\, but 2_ m2cod 0
subtracting each of the integrals once we can get rid of these @1=Mco 2/ (5.6
divergences. The required subtractions are actually already
built in Eq. (5.2). In order to see this consider tligare gap  which sets an interesting relation between the bound-state

equation(1.8) in Minkowski space. This equation is equiva- energy and the chiral alignment angle of the vacuum at

lent to the(logarithmically divergentdispersion relatiof? X— +o. This relation actually leavegthe only free param-
eter in the problem with respect to which we have to extrem-
i A do 1 ize the action. Conditio4.10 then picks out one branch of
W)z e 09 s
We still have to determine; and 6 separately. Now the
If we now replace each of the N coefficients in Eq. ;ggdle—pomt condition simply boils down to the single equa-

(5.2 by the integral on the right-hand side of E§.3) [7],
the divergent parts of each pair of integrals cancel and Eq.

do 1
52 b = — =
(5.2) become (@) JC > m(w_wl) 0. (5.7

d_w 7T’+[w/(w2—772)]F(0',77)_

The contour integral in Eq(5.7) is most conveniently

c2m VM — 0 (0= w;) calculated by deforming the contodrinto the contourC’
shown in Fig. 2. The “hairpin” wing ofC’ picks up the
do o’ contribution of the filled Fermi sea, and the little circle
L 27 Jm ol ooy =0, (5.4 around the simple pole ai=w; is the contribution of fer-

mions populating the bound state of the “bag.”
Assuming that the “bag” traps fermions in that state,

where and recalling that each state in the Fermi sea continuum ac-
1 commodatedN fermions, we see that E¢5.7) becomes
F(o,m)=0(c?+ Wz—mz)—wlﬂ"—z " (5.9
w1)=——— | — arctam/ — ——1|=0.
andC is the contour in the complex plane depicted in Fig. VP —wf L7 m-w; N 5.9
1 .

Expression(5.5) is the residue of th&-dependent poles at
w=*m(X) in the first equation in Eq(5.4). The quantiza-
tion condition(5.4) on w4 cannot bex dependent. Therefore

The solution of this equation yields the quantization con-
dition

Eq. (6.5 must vanish as a consistency requirement. nar
Substituting’ Eq. (4.9) in Eq. (5.5 we find that w=m cos( W) (5.9
F(x)= M sech| wix tanf [ cosge ™ @1x tan6/2) in agreement with17].
2 2 It follows from Egs.(4.9), (4.10, and(5.6) that
0
X tan 0/2) 2 2 e 2n
+e“1 ](a)l m CO§ 2) o= — I (51@

that is, the relative chiral rotation of the vacua ate is
6To see this equivalence simply perforfoontoud integration ~ proportional to the number of fermions trapped in the
over spatial momentum first. “bag,” as one should expect due to the fact that the fermion
"Here we have set,=0 for simplicity. number current in a soliton background can be determined in
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continuum states appear as the two cuts along the real axis witfp- 7

branch points at- m (wiggly lines), and the bound state is the pole

at w1 .

some cases by topological considerati¢@5]. Note from
Eq.(5.10, that in the largeN limit, 6 (and thereforev,) take

1 aS m(n 0\ 6
( smz. (5.13

NTa 2 \NT 27

The zeros of Eq(5.13 are extremal points o§(6). The

on nontrivial values only when the number of the trappedzero of the factor linear i in Eq. (5.13 coincides with Eq.

fermions scales as a finite fraction Nf

(5.10 we deduced from the saddle-point conditi@n8). The

As we already mentioned in the Introduction, “bags” other zeros of Eq(5.13 are 6,=27k, ke Z, and it is clear
formed in the NJL model are not stable because of topologyfrom Eq. (4.9 that they do not correspond to extended ob-
They are stabilized by releasing binding energy of the fermijects at all*® We therefore discard them, and concentrate on
ons trapped in them. To see this more explicitly, we calculatehe extremum given by Ed5.10.

now the mass of the “bag” corresponding to Ed4.9),

(5.9, and (5.10. The effective actior(1.6) for background
fields (4.9 is an ordinary function of the chiral angte'® Let

us denote this action per unit time I18(6)/T. Then, from
Egs.(2.9 and(5.3) we find

1 &S_ dxdw io(X) do(X)
h—a—f 2n || ez AP ag
| m(x) dm(X)
+1 m—(B‘l‘C) W} (511)

Then as in our analysis of the saddle-point conditiahich
is simply the condition fordS/98=0) we use Eqgs(4.4),
(4.5), (2.10, and the fact that Eq5.5) vanishes to find

10S [ dxdw dyo(X)dym(X)— dymm(X)deo(X)
— — =]
T a6 2m 2(w— ) yMm?— w?

Then, Eq.(3.6) leads to the factorized expression

14S f ix
T a0 4S|r12(0/2) X(e—m)o’

xf d—w ! , (5.12
¢ 27 (w— ) M — ?

Integrating Eq(5.13 with respect tod we finally find

-1
NTms(e)

n 6

277

0 9
COS-— —SIn =«

5~ - Siny. (5.19

Note that Eq.(5.14) is not manifestly periodic ird because
the Pauli exclusion principle limit® to be between 0 and
21r.

The mass of a “bag” containing fermions in a single
bound state is given by the ener§yf6)=—S(6)/T evalu-
ated at the appropriate chiral angi®10. We thus find that
this mass is simply

Nm  zn
M,=—sin—
a

N (5.19

in accordance withl7,21]. It is easy to check that E¢5.15
is a minimum ofE(#) for 0<n/N<1. These “bags” are
stable because

. m(nNyt+ny) TN, mn,
Sin T<SII’]T+SI N (5.16

for n;+n, less tharN, such that a “bag” withn; +n, fer-
mions cannot decay into two “bags” each containing a
lower number of fermions.

Entrapment of a small number of fermions cannot distort
the homogeneous vacuum considerably, so we expect that
M, will be roughly the mass ofi free massive fermions for

where(’ is the contour in Fig. 2. The space integral is im- n<N. As a matter of fact we used this expectation to fix the
mediate and is essentially fixed by the boundary conditionsntegration constant in Eq5.14. For n<N we haveM,,

(2.2). The spectral integral is given by the left-hand side of —nm{1— }(7n/N)2+ -

Eq. (5.8, but with a generiaw; given by w;=m cos(@/2).

Here we have chosen the particular branch of &) that
contains all the extremal values af;. Putting everything
together we finally arrive at

18Recall thatw, is a function ofg and not a free parameter.

-], so the binding energy released,

1%Note from Eq.(5.11) that every solution of the saddle-point
equationg5.1) yields an extrema$(6). The converse, however, is
not true. Clearly, only extrema &( ) associated with the saddle-
point equationg5.1) are related to masses of stable extended ob-
jects.



5062 JOSHUA FEINBERG AND A. ZEE 56

1
N . (5.17 K(0',7T)=—0'(0'2+772—m2)+(w1+w2)77’+§(T”

B g

nm ( wn> 2
is indeed very small. However, as the number of fermions

trapped in the “bag” approached, M, vanishes and the L(o,m)=(w1+wy)
fermions release practically all their rest m&as as binding

energy, to achieve maximum stabilifyl8]. In a weakly

coupled field theory containing solitons, the mass of these
extended objects is a measure af?l/the inverse square of

the coupling constant. Here we havg4# N. It is amusing and
to speculate that these maximally stable massless solitons
may teach us something about the strong-coupling regime of

o(o?+m°—m?) — > a”

o’ + w2 —m?

2

"

+wiwyt o |7+ e

1
M(o,m)=—m(o’+ 72— m?)—(w;+w,) 7' + = 7.

the NJL model. 2

Note from Eq.(5.10 that the soliton twists all the way (5.19
around as the number of fermions approaddesn this case _ _
w;——m, and the pole the resolvent hasat w, pinches Note thatK(a,m) differs from —F(o,m) in Eq. (5.9

the branch pointo=—m at the edge of the filled Dirac sea. ONly by the additional ternw,m’. The expressioh (o, ) is

One may wonder whether this enhanced singularity is ahe residue of thec-dependent poles ab= = m(x) in the
mathematical artifact, as the bound state simply tries tdi"'St equation in Eq.(5.18. The quantization conditions
plunge into the filled Dirac sea. But this is clearly not the (5:18 on 1 and w, cannot bex dependent. Therefore
case. Indeedy; is occupied byN fermions(in a flavor sin- L(o,7) must vamsh as a con§|stency requirement. As we do
glet). Their common spinor wave function must still be part N0t have the explicit expressions e{x) and m(x), we as-

of the discrete spectrum of the Dirac operator, because th@ime from now on thatt indeed vanishes. This is the only
highest lying state of the sea at= —m is already occupied €xtra assumption we make. Then, for the case in which the
by a flavor singlet made dfi fermions, sharing a continuum Pag” traps n, fermions inw; andn, fermions inw,, Eq.
spinor wave function, and therefore Pauli's exclusion prin-(5-18 boils down to the simple conditions

ciple protects the bound state from “dissolving” into the

con (@) =1(02)=0, (5.20
wherel (o) is given in Eq.(5.8). Therefore,
B. Two bound states
We concluded Sec. IV B short of an explicit solution of ©=m cos( nl_w) wp=m Cos(nz_w (5.21)
Eqg. (4.18, namely, short of an explicit expression for the N N

two bound-state background fieldgx) and #(x). In the hich dentical i inale bound |
following we make the eminently reasonable assumption thaf/hich are identical in form to single bound-state energy lev-
such a background exists, and pursue our analysis of i Is. From the general considerations[25] we expect that

saddle-point condition as far as we can without having jtgne chiral angled will be proportional to the total number of
explicit form in hand. fermions trapped by the “bag,” so E¢5.10 must now read

As in the previous subsection, we substitute Egsl3 27(ny+ny)

and (4.14 into the saddle-point equatior($.1). We then g=— —————. (5.22
make use of Eq(5.3) to eliminate the ultraviolet logarithmic N
divergences and to write the saddle-point conditions as The soliton mass is clearly a function of and of the chiral
do | io(x) angle 6. However, if a “bag” with two bound states is dis-
f — | ———(A+D) tinguishable from a “bag” with a single bound statehich
¢ 2 | \Jm?— ? contains the same number of fermigrhen this mass must

depend om; andn, separately, and not only on their sum
:if do K+ o{l/[o?—72(x)]} through 6.

" 27 2Vm?—m?(w— wy)(0— w,)

VI. CONCLUSION
and ) )
We have studied nonperturbatively the emergence of fer-

do m(X) mion bags in the (% 1)-dimensional Nambu—Jona-Lasinio
f = | ———=—(B+0C) model(focusing on static bagsThese bags are stable due to
¢ 2m | m?— o? dynamics and not because of topological reasons: as they
, bind fermions they release binding energy. The more fermi-
:f d_w M+wo'(x) (5.18 ons the bag bind, the more stable it becomes, which is a
¢ 27 2\m—mi(w—w)(w—w,) salient feature of bag models in any number of dimensions.

In this paper we developed further the method 8],
where(" is a contour similar to the contod¥ in Fig. 2 that  applying it to Eq.(1.1) as an alternative to the inverse scat-
encircles the additional pole at, as well, andK(x), L(x), tering investigations if17]. Our method is based on elemen-
andM(x) are given by tary Sturm-Liouville theory as well as on simple dimensional
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analysis. Moreover, at all stages of our analysis we deal witli2.3) reside in the domain|w|<m, where k(w)=
the space-dependent condensatés) and 7(x) directly. In +im?— w?=+ik(w) is purely imaginary and lies in the
our view, these facts make the method presented here sinapper half plane.
pler than inverse scattering calculations previously employed The Jost functiond®, andb, alluded to in Sec. Il form a
in this problem because we do not need to work with theparticular pair of linearly independent solution of the homo-
scattering data and the so-called trace identities that relaigeneous equation mentioned above, specified by their
them to the space-dependent condensates. asymptotic behavior. Let the asymptotic amplitude® k)

It is important to stress that the analysis in Secs. [I-IV hagr=1,2) in Eq. (A1) be M,. ,N,. . The asymptotic form
nothing to do with the largét limit and is also independent (A1) of b;(x) has by definitionM;_ =0, and that ofb,(x)
of dynamics. It is a purely mathematical construction of thehasN,, =0. One may summarize our definitions fof and
diagonal resolvent of the Dirac operator in a given reflectiont, | by saying thab, corresponds to a one-dimensional scat-
less static backgrounat(x) and m(x) with a given number tering situation where the source is-atc emitting waves to

of bound states. _ _ the left (the termN;, e '¥*) and thatb, corresponds to a
Also, given the number of fermions trapped in the bag.one-dimensional scattering situation where the source is at
the total chiral angled=[arctanr(x)/o(x))]-.. [see EQ. —o emitting waves to the rightthe termM,_e'*). Note

(3.9] is fixed by topological consideratiothe Goldstone- also that outside the continuurby(x) decays to the left
Wilczek relation, Eq(5.10], which holds for any value of while b,(x) decays to the right. With these definitions the
N. Wronskian(2.8) becomes

Dynamical considerations enter only in Sec. V, where we
determine the dependence of the bound-state energies
w1,w,,... and thanass of the bag on the dynamical fermion

massm and the chiral angled by imposing the largéy W, (+ )= —2ik M2y Niy
saddle-point conditions. w+m(+)
It would be interesting to extend the resolvent method N
. A . . . 2-N1-
presented here to analyze effectively one-dimensional static = _—Jjk —— —
condensates in quantum field theories in higher spatial di- w+ (=)
mensions. — Wy (o). (A3)
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APPENDIX A A(X)=— % {[o(x)—ik sgn]R(k)e?*X + & (x)},

In this appendix we provide precise definitions of the Jost
functionsb, throughc, in terms of their spatial asymptotic
behavior and derive the spatial asymptotic behavior of the

static Dirac operator Green’s function. o+ m(X) 2ikx|
We concentrate for the moment on the first equation in B(x)= —2ik [1+R(k)e™],
Eq. (2.6). The boundary condition&.2) lead to the follow-
ing simple spatial asymptotic behavior: -
w— (X .
_ 2ik|x|
[_(9)2<+m2_w2]b(X):O C(X) —2|k [1+ R(k)e ],

of the homogeneous part of that equation. Thus, solutions of

i i ' 1 _
that homogeneous equation assume the generic asymptotic D(x)= — - {[o(x)+ik sgrx]R(k)ez'k'X|+a(x)}

form
(A4)
M, ek +N,e K x—+ asx— *«, where
b(X,@)~ 1\ gkep N g k¢ x o (AD)
My, Ny
R(k)= = A5
where (k) Np, M, (A5)
kK(w)=+ Jw’—m-. (A2)

is the reflection coefficient of the Sturm-Liouville operator in
On the realw axis k(w) is real for |w|>m, which corre- the first equation in Eq2.6). The diagonal resolvent of the
sponds to scattering states of Ef.3). Bound states of Eq. Dirac operator is therefore
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i i o (X) o+m(x)) iR(k)eZXX [io(x)+k sgm -+ m(X)
(X|=iD7YX) —— =— . —_— . . (AB)
vt 2K\ —w+m(X) io(X) 2k —w+ 7(X) io(x)—k sgrx
|
APPENDIX B We then use EqgB3) and(B4) to show that
Consider the Sturm-Liouville problem
Yp_pR+1 Yy pR -1
A . == ) (B5)
—[POY ()] +[V(X) —Ep(x)]h(x)=0, —o<x<z, Yo 2PR o 2PR
(B1) Finally, using Egs(B1) and (B5) we find
We assume that the “metricp(x) does not vanish any- (PR )21
where and that the weight functigin(x) is positive every- (pR')' =2(V—Ep)R+ p—. (B6)
where.E is a complex number, called the spectral parameter. 2pR

As in our discussion in the main text and in the previous nd
appendix, leti;(x) be the Jost function which decays as
x— —o for values of E below the continuum threshold.
Similarly, let #,(x) be the Jost function which decays as [p(pR")'T'=[2p(V—Ep)R] +2p(V—Ep)R’. (B7)
Xx— +oo. Then, the Green’s function of the operator in Eg.
(B1) is Note that the nonlinearity of EqB6) in R has disap-

peared after one more differentiation with respeckto
Multiplying Eq. (B6) through by R we find
_ 0= Y) () a(y) + 00y —X) oY) $1(X)

G(x,y) W

82) —2pR(pR’)'+(pR')?+4pR*(V—pE)=1 (BY)
where which is the Gel'fand—-Dikii equatiofi6]. Equation(B7) is
the linear form of the Gel'fand—Dikii equation we use in the
text[Eq. (3.1].
W= p(x)[ ¢h2(X) 1 (X) = ¢h1(X) ¢r5(X) ] (B3) The quantities corresponding to the discussion of the

. . _ _ Dirac operator in the text are
is the (x-independent Wronskian of these two functions.

Note that Eq.(B2) decays(at a rate dictated by the Jost
functiong as either one of its argument diverges in absolute
value, holding the other one finite, as longE&sloes not hit P(X)=p(x)= ot m(X)’ E=o
one of the eigenvalues of the Sturm-Liouville operator.
As in the main text the diagonal resolverR(x) and
=G(x,X) is defined as

2

Voo 2 i, OO0
1 ) ¢1(X)¢2(X) (X)_ w+7T(X) O'(X) ’7T(X) o (X) w+7T(X)
R(x)zz Ilrr:)[G(x,x+ €)+G(X+ E’X)]:T' (B9)
(B4) The Gel'fand—Dikii equatior{B8) then reads
|
B(x) 3,B(X) a,B(x) 12 [ 2B(x) ]? , a(X) 7' (X)
Cotm(x) Notm(x)] | o+m(X) o+ m(X) o0)* w0 =g (X)_w2+a)+—ﬂ'(X) =1 (B1O

Strictly speaking, Sturm-Liouville theory requires tipgk) = p(X) = 1] w + 7(x)]>0. Our solution forr(x) turns out to be
bounded, so all formulas are val&posteriorifor large positivew. Such a restriction ow, though mathematically required,
is unphysical.

Note, however, that because of the relati@rll), we may viewC(x) as a continuation oB(x) to large negativew.

An important application of the Gel'fand—Dikii identitig87) and (B8) is that they generate an asymptotic expan$&in
of R in negative odd powers of E. The explicitw (and thereforeE) dependence of our specifip(x), p(x), andV(x)
complicates this expansion.
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