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We analyze the (111)-dimensional Nambu–Jona-Lasinio~NJL! model nonperturbatively. In addition to its
simple ground-state saddle points, the effective action of this model has a rich collection of nontrivial saddle
points in which the composite fieldss(x)5^c̄c& andp(x)5^c̄ ig5c& form static space-dependent configu-
rations because of nontrivial dynamics. These configurations may be viewed as one-dimensional chiral
‘‘bags.’’ We start our analysis of such configurations by asking what kind of initially static$s(x),p(x)%
background configurations will remain so under fermionic back reaction. By simply looking at the asymptotic
spatial behavior of the expectation value of the fermion number current we show, independently of the large-
N limit, that a necessary condition for this situation to occur is that$s(x),p(x)% give rise to a reflectionless
Dirac operator. We provide an explicit formula for the diagonal resolvent of the Dirac operator in a reflec-
tionless$s(x),p(x)% background which produces a prescribed number of bound states. We analyze in detail
the cases of a single as well as two bound states. We explicitly check that these reflectionless backgrounds may
be tuned such that the large-N saddle-point condition is satisfied. Thus, in the case of the NJL model,
reflectionlessness is also sufficient to assure the time independence of the background. In our view, these facts
make our work conceptually simpler than the previous work of Shei and of Dashen, Hasslacher, and Neveu
which were based on the inverse scattering formalism. Our method of finding such nontrivial static configu-
rations may be applied to other (111)-dimensional field theories.@S0556-2821~97!00620-6#

PACS number~s!: 11.10.Lm, 11.10.Kk, 11.15.Pg, 71.27.1a

I. INTRODUCTION

Over the last 30 years or so, physicists have gradually
learned about the behavior of quantum field theory in the
nonperturbative regime. In (111)-dimensional spacetime,
some models are exactly soluble@1#. Another important ap-
proach involves the large-N expansion@2#. In particular, in
the mid-1970s. Dashen, Hasslacher, and Neveu@3# used the
inverse scattering method@4# to determine the spectrum of
the Gross-Neveu model@5#. Recently, one of us developed
an alternative method, based on the Gel’fand–Dikii equation
@6#, to study the same problem@7# as well as other problems
@8#. As will be explained below, we feel that this method has
certain advantages over the inverse scattering method.

In this paper we study the (111)-dimensional
Nambu–Jona-Lasinio1 ~NJL! model@9# which is a renormal-
izable field theory defined by the action@5,10#

S5E d2xH (
a51

N

c̄ai ]”ca1
g2

2 F S (
a51

N

c̄acaD 2

2S (
a51

N

c̄ag5caD 2G J ~1.1!

describing N self-interacting massless Dirac fermions
ca (a51, . . . ,N). This action is invariant under SU(N) f
^ U~1!^U~1!A : namely, under

ca→Uabcb , UPSU~N! f ,

ca→eiaca ,

and

ca→eig5bca . ~1.2!

We rewrite Eq.~1.1! as

S5E d2xH c̄@ i ]”2~s1 ipg5!#c2
1

2g2 ~s21p2!J ,

~1.3!

wheres(x) andp(x) are the scalar and pseudoscalar auxil-
iary fields, respectively,2 which are both of mass dimension
one. These fields are singlets under SU(N) f ^ U(1), but
transform as a vector under the axial transformation in Eq.
~1.2!: namely,

s1 ig5p→e22ig5b~s1 ig5p!. ~1.4!

Thus, the partition function associated with Eq.~1.3! is

*Electronic address: joshua@itp.ucsb.edu
1This model is also dubbed in the literature as the ‘‘chiral Gross-

Neveu model’’ as well as the ‘‘multiflavor Thirring model.’’

2From this point to the end of this paper flavor indices are sup-
pressed. Thusi c̄]”c should be understood asi (a51

N c̄ac” ca . Simi-
larly c̄Gc stands for(a51

N c̄aGca , whereG51,g5 .
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Z5E DsDpDc̄Dc expF i E d2xS c̄@ i ]”2~s1 ipg5!#c

2
1

2g2 ~s21p2! D G . ~1.5!

Integrating over the Grassmannian variables leads toZ
5*DsDp exp$iSeff@s,p#% where the bare effective action is

Seff@s,p#52
1

2g2 E d2x~s21p2!

2 iN Tr ln@ i ]”2~s1 ipg5!#. ~1.6!

and the trace is taken over both functional and Dirac indices.
This theory has been studied in the limitN→` with Ng2

held fixed@5#. In this limit Eq. ~1.5! is governed by saddle
points of Eq.~1.6! and the small fluctuations around them.
The most general saddle-point condition reads

dSeff

ds~x,t !
52

s~x,t !

g2 1 iN trF K x,tU 1

i ]”2~s1 ipg5!
Ux,t L G

50,

dSeff

dp~x,t !
52

p~x,t !

g2 2N trFg5K x,tU 1

i ]”2~s1 ipg5!
Ux,t L G

50. ~1.7!

In particular, the nonperturbative vacuum of Eq.~1.1! is
governed by the simplest large-N saddle points of the path
integral associated with it, where the composite scalar opera-
tor c̄c and the pseudoscalar operatori c̄g5c develop
spacetime-independent expectation values.

These saddle points are extrema of the effective potential
Veff associated with Eq.~1.3!, namely, the value of2Seff for
spacetime-independents,p configurations per unit time per
unit length. The effective potentialVeff depends only on the
combinationr25s21p2 as a result of chiral symmetry.Veff
has a minimum as a function ofr at r5mÞ0 that is fixed by
the ~bare! gap equation@5#

2m1 iNg2 trE d2k

~2p!2

1

k”2m
50 ~1.8!

which yields the dynamical mass

m5Le2p/Ng2~L!. ~1.9!

Here L is an ultraviolet cutoff. The massm must be a
renormalization-group invariant. Thus, the model is asymp-
totically free. We can get rid of the cutoff at the price of
introducing an arbitrary renormalization scalem. The renor-
malized couplinggR(m) and the cutoff-dependent bare cou-

pling are then related throughLe2p/Ng2(L)5me12p/NgR
2(m)

in a convention whereNgR
2(m)51/p. Trading the dimen-

sionless couplinggR
2 for the dynamical mass scalem repre-

sents the well-known phenomenon of dimensional transmu-
tation.

The vacuum manifold of Eq.~1.3! is therefore a circler
5m in the s,p plane, and the equivalent vacua are param-
etrized by the chiral angleu5arctan(p/s). Therefore, small
fluctuations of the Dirac fields around the vacuum manifold
develop dynamical3 chiral massm exp(iug5).

Note in passing that the massless fluctuations ofu along
the vacuum manifold decouple from the spectrum@11# so
that the axial U~1! symmetry does not break dynamically in
this two-dimensional model@12#.

Nontrivial excitations of the vacuum, on the other hand,
are described semiclassically by large-N saddle points of the
path integral over Eq.~1.1! at which s and p develop
spacetime-dependent expectation values@13,14#. These ex-
pectation values are the spacetime-dependent solution of Eq.
~1.7!. Saddle points of this type are important also in discuss-
ing the large-order behavior@15,16# of the 1/N expansion of
the path integral over Eq.~1.1!.

Shei @17# has studied the saddle points of the NJL model
by applying the inverse scattering method following Dashen
et al. @3#. These saddle points describe sectors of Eq.~1.1!
that include scattering states of the~dynamically massive!
fermions in Eq.~1.1!, as well as a rich collection of bound
states thereof.

These bound states result from the strong infrared inter-
actions, which polarize the vacuum inhomogeneously, caus-
ing the composite scalarc̄c and pseudoscalari c̄g5c fields
to form finite action spacetime-dependent condensates.
These condensates are stable because of the binding energy
released by the trapped fermions and therefore cannot form
without such binding. This description agrees with the gen-
eral physical picture drawn in@18#. We may regard these
condensates as one dimensional chiral bags@19,20# that trap
the original fermions~‘‘quarks’’ ! into stable finite action ex-
tended entities~‘‘hadrons’’!.

In this paper we develop further the method of@7,8#, ap-
plying it to the NJL model~1.1! as an alternative to the
inverse scattering investigations in@17#. We focus on static
extended configurations providing explicit expressions for
the profiles of these objects and calculate their masses. Our
analysis of these static saddle points is based on an explicit
representation we find for the diagonal resolvent of the Dirac
operator in as(x),p(x) background which produces a pre-
scribed number of bound states. This explicit construction of
the diagonal resolvent can actually be carried out for finite
N. It is based on elementary Sturm-Liouville theory as well
as on simple dimensional analysis. All our manipulations
involve the space-dependent scalar and pseudoscalar conden-
sates directly. In our view, these facts make the method pre-
sented here simpler than inverse scattering calculations pre-
viously employed in this problem because we do not need to
work with the scattering data and the so-called trace identi-
ties that relate them to the space-dependent condensates. Our

3Note that the axial U~1! symmetry in Eq.~1.2! protects the fer-
mions from developing a mass term to any order in perturbation
theory.
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method of finding such nontrivial static configurations may
be applied to other two-dimensional field theories.

It is worth mentioning at this point that the NJL model
~1.1! is completely integrable for any number of flavors4 N.
Its spectrum and completely factorizedS matrix were deter-
mined in a series of papers@21# by a Bethe ansatz diagonal-
ization of the Hamiltonian for any numberN of flavors. The
large-N spectrum obtained here as well as in@17# is consis-
tent with the exact solution of@21#. Note, however, that the
large-N analysis in this paper concerns only dynamics of the
interactions between fermions and extended objects. We do
not address issues like scattering of one extended object on
another, which is discussed in the exact analysis of@21#.
Consistency of our approximate large-N results and the exact
results of@21# reassures us of the validity of our calculations.

Rather than treating nontrivial excitations as abstract vec-
tors in Hilbert space, which is inevitable in@21#, our analysis
draws almost a ‘‘mechanical’’ picture of how ‘‘hadrons’’
arise in the NJL model. This description of ‘‘hadron’’ for-
mation as a result of inhomogeneous polarizations of the
vacuum due to strong infrared interactions may have some
restricted similarity to dynamics of QCD in the real world.
Furthermore, our resolvent method is potentially applicable
for nonintegrable models in 111 dimensions. In contrast,
Bethe ansatz and factorizableS-matrix techniques are limited
in principle to 111 dimensions because of the Coleman-
Mandula theorem@22#, whereas large-N saddle-point tech-
niques may provide powerful tools in analysis of more real-
istic higher dimensional field theories@23#.

If we set p(x) in Eq. ~1.3! to be identically zero, we
recover the Gross-Neveu model, defined by

SGN5E d2xH c̄@ i ]”2s#c2
s2

2g2J . ~1.10!

In spite of their similarities, these two field theories are
quite different, as is well known from the field-theoretic lit-
erature of the 1970s. The crucial difference is that the Gross-
Neveu model possesses a discrete symmetry,s→2s, rather
than the continuous symmetry~1.2! in the NJL model stud-
ied here. This discrete symmetry is dynamically broken by
the nonperturbative vacuum, and thus there is a kink solution
@24,3,7#, the so-called Callan-Coleman-Gross-Zee~CCGZ!
kink s(x)5m tanh(mx), interpolating between6m at x5
6`, respectively. Therefore, topology ensures the stability
of these kinks. The kink may bind any numbern<N of
fermions in its single zero energy bound state, without af-
fecting its mass, because its stability is guaranteed by topol-
ogy already.

In contrast, the NJL model, with its continuous symmetry,
does not have a topologically stable soliton solution. The
solitons arising in the NJL model and studied in this paper
can only be stabilized by binding fermions. They are stable
not due to topology, but to dynamics.

This paper is organized as follows: In Sec. II we prove
that the static condensatess(x) andp(x) in Eq. ~1.3! must
be such that the resulting Dirac operator is reflectionless. Our
proof of this strong restriction on the Dirac operator involves
basic field theoretic arguments and has nothing to do with
the large-N approximation. We next show in Sec. III that if
we fix in advance the number of bound states in the spectrum
of the reflectionless Dirac operator, then simple dimensional
analysis determines the diagonal resolvent of this operator
explicitly in terms of the background fields and their deriva-
tives. We then construct the resolvent assuming the back-
ground fields support a single bound state in Sec. IV A. We
are able to determine the profile of the background fields up
to a finite number of parameters: the relative chiral rotation
of the two vacua at the two ends of the one-dimensional
space and the bound state energies. In Sec. IV B we provide
partial analysis of the case of two bound states. We stress
again that our construction of these background fields has
nothing to do with the large-N approximation.

We determine these parameters in Secs. V A and V B.
From the topological considerations in@25# ~and indepen-
dently of the large-N approximation! we can determine the
relative chiral rotation of the asymptotic vacua as being pro-
portional to the number of fermions trapped in the bound
states. In order to determine the bound-state energies we
have to impose the large-N saddle-point conditions.

Some technical details are left to two appendices. In Ap-
pendix A we derive the spatial asymptotic behavior of the
static Dirac operator Green’s function. In order to make our
paper self-contained we derive the Gel’fand–Dikii equation
in Appendix B.

II. ABSENCE OF REFLECTIONS IN THE DIRAC
OPERATOR WITH STATIC BACKGROUND FIELDS

As we explained in the Introduction, we are interested in
static space-dependent solutions of the extremum condition
on Seff . To this end we need to invert the Dirac operator

D5 i ]”2@s~x!1 ip~x!g5# ~2.1!

in a given background of static field configurationss(x) and
p(x). In particular, we have to find the diagonal resolvent of
Eq. ~2.1! in that background. The extremum condition onSeff
relates this resolvent, which in principle is a complicated and
generally unknown functional ofs(x), p(x) and of their
derivatives, tos(x) andp(x) themselves. This complicated
relation is the source of all difficulties that arise in any at-
tempt to solve the model under consideration. It turns out,
however, that basic field theoretic considerations, that are
unrelated to the extremum condition, imply that Eq.~2.1!
must be reflectionless. This spectral property of Eq.~2.1! sets
rather powerful restrictions on the static background fields
s(x) andp(x) which are allowed dynamically. In the next
section we show how this special property of Eq.~2.1! al-
lows us to write explicit expressions for the resolvent in
some restrictive cases, that are interesting enough from a
physical point of view.

Inverting Eq. ~2.1! has nothing to do with the large-N
approximation, and consequently our results in this section
are valid for any value ofN.

4For N51 a simple Fierz transformation shows that Eq.~1.1! is
simply the massless Thirring model, which is a conformal quantum
field theory having no mass gap. A mass gap appears dynamically
only for N>2.
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Heres(x) andp(x) are our static background field con-
figurations, for which we assume asymptotic behavior dic-
tated by simple physical considerations. The overall energy
deposited in any relevant statics, p configuration must be
finite. Therefore, these fields must approach constant vacuum
asymptotic values, while their derivatives vanish asymptoti-
cally. Then the axial U~1! symmetry implies that

s21p2 ——→
x→6`

m2,

wherem is the dynamically generated mass, and therefore
we arrive at the asymptotic boundary conditions fors andp:

s ——→
x→6`

m cosu6 , s8 ——→
x→6`

0,

p ——→
x→6`

m sinu6 , p8 ——→
x→6`

0, ~2.2!

whereu6 are the asymptotic chiral alignment angles. Only
the differenceu12u2 is meaningful, of course, and hence-
forth we use the axial symmetry to setu250, such thats
(2`)5m andp(2`)50. We also omit the subscript from
u1 and denote it simply byu from now on. It is in the
background of such fields that we wish to invert~2.1!.

In this paper we use the Majorana representationg0

5s2 , g15 is3 , andg552g0g15s1 for g matrices. In this
representation Eq.~2.1! becomes

D5S 2]x2s 2 iv2 ip

iv2 ip ]x2s
D . ~2.3!

Inverting Eq.~2.3! is achieved by solving

S 2]x2s~x! 2 iv2 ip~x!

iv2 ip~x! ]x2s~x!
D S a~x,y! b~x,y!

c~x,y! d~x,y!
D

52 i1d~x2y! ~2.4!

for the Green’s function of Eq.~2.3! in a given background
s(x), p(x). By dimensional analysis, we see that the quan-
tities a, b, c, andd are dimensionless.

The diagonal elementsa(x,y) and d(x,y) in Eq. ~2.4!
may be expressed in term of the off-diagonal elements as

a~x,y!5
i @]x2s~x!#c~x,y!

v2p~x!
,

d~x,y!5
i @]x1s~x!#b~x,y!

v1p~x!
~2.5!

which in turn satisfy the second-order partial differential
equations

2]xF ]xb~x,y!

v1p~x!G1Fs~x!21p~x!22s8~x!2v2

1
s~x!p8~x!

v1p~x! G b~x,y!

v1p~x!
5d~x2y!,

2]xF ]xc~x,y!

v2p~x!G1Fs~x!21p~x!21s8~x!2v2

1
s~x!p8~x!

v2p~x! G c~x,y!

v2p~x!
52d~x2y!. ~2.6!

Thus,b(x,y) and2c(x,y) are simply the Green’s func-
tions of the corresponding second order Sturm-Liouville op-
erators in Eq.~2.6!,

b~x,y!5
u~x2y!b2~x!b1~y!1u~y2x!b2~y!b1~x!

Wb
,

c~x,y!52
u~x2y!c2~x!c1~y!1u~y2x!c2~y!c1~x!

Wc
.

~2.7!

Hereb1(x) andb2(x) are the Jost functions of the first equa-
tion in Eq. ~2.6! and

Wb5
b2~x!b18~x!2b1~x!b28~x!

v1p~x!
~2.8!

is their Wronskian. The latter is independent ofx, sinceb1
andb2 share a common value of the spectral parameterv2.
Similarly, c1 , c2 are the Jost functions of the second equa-
tion in Eq. ~2.6! and Wc is their Wronskian. We leave the
precise definition of these Jost functions in terms of their
spatial asymptotic behavior to Appendix A, where we also
derive the spatial asymptotic behavior of the static Dirac op-
erator Green’s function. Substituting Eq.~2.7! into Eq. ~2.5!
we obtain the appropriate expressions fora(x,y) and
d(x,y), which we do not write explicitly.5

We define the diagonal resolvent^xu iD 21ux& symmetri-
cally as

5It is useful however to note, that despite the]x operation in Eq.
~2.5!, neither a(x,y) nor d(x,y) contain pieces proportional to
d(x2y). Such pieces cancel one another due to the symmetry of
Eq. ~2.7! underx↔y.
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^xu2 iD 21ux&[S A~x! B~x!

C~x! D~x!
D

5
1

2
lim

e→01
S a~x,y!1a~y,x! b~x,y!1b~y,x!

c~x,y!1c~y,x! d~x,y!1d~y,x!
D

y5x1e

. ~2.9!

HereA(x) throughD(x) stand for the entries of the diagonal
resolvent, which following Eqs.~2.5! and ~2.7! have the
compact representation6

B~x!5
b1~x!b2~x!

Wb
, D~x!5

i

2

@]x12s~x!#B~x!

v1p~x!
,

C~x!52
c1~x!c2~x!

Wc
, A~x!5

i

2

@]x22s~x!#C~x!

v2p~x!
.

~2.10!

A simplifying observation is that the two linear operators
on the left-hand side of the equations~2.6! transform one
into the other under a simultaneous sign flip7 of s(x) and
p(x). Thereforec(s,p)52b(2s,2p), and, in particular,

C~s,p!52B~2s,2p!, ~2.11!

and thus all four entries of the diagonal resolvent~2.9! may
be expressed in terms ofB(x).

The spatial asymptotic behavior of Eq.~2.9! is derived in
Appendix A and given by Eq.~A6!. A more compact form of
that result is

^xu2 iD 21ux& ;
x→6`

11R~k!e2ikuxu

2k
@ ig5p~x!2s~x!2g0v#

1
R~k!e2ikuxu

2
g1 sgnx, ~2.12!

wherek5Av22m2 andR(k) is the reflection coefficient of
the first equation in Eq.~2.6!.

Note that forv2.m2, i.e., in the continuum part of the
spectrum of Eq.~2.3!, the piece of the resolvent~2.12! that is
proportional toR(k) oscillates persistently as a function of
x. This observation has a far reaching result that we now
derive. Consider the expectation value of fermionic vector
current operatorj m in the statics(x), p(x) background8

^s~x!,p~x!u j mus~x!,p~x!&

5NE dv

2p
trF gmS A~x! B~x!

C~x! D~x!
D G . ~2.13!

Therefore, we find from Eq.~2.12! that the asymptotic be-
havior of the current matrix elements is

^s~x!,p~x!u j 0us~x!,p~x!& ——→
x→6`

0

and

^s~x!,p~x!u j 1us~x!,p~x!& ;
x→6`

NE dv

2p
R~k!e2ikuxusgnx,

~2.14!

where we used the fact that*(dv/2p)(v/k) f (k)50 be-
causek(v) is an even function ofv.

Thus, an arbitrary static backgrounds(x), p(x) induces
space-dependent fermion currents that do not decay fast
enough asx→6`, unlessR(k)[0. Clearly, we cannot have
such currents in our static problem and we conclude that as
far as the field theory~1.3! is concerned, the fieldss(x),
p(x) must be such that the Sturm-Liouville operators in Eq.
~2.6! and therefore the Dirac operator~2.3! are reflectionless.

The absence of reflections emerges here from basic prin-
ciples of field theory, and not merely as a large-N saddle-
point condition, as in@3,17#. Indeed, reflectionlessness of Eq.
~2.3! must hold whatever the value ofN is. Therefore, the
fact that reflectionlessness of Eq.~2.3! appeared in@3,17# as
a saddle-point condition in the inverse scattering formalism
simply indicates consistency of the large-N approximation in
analyzing space-dependent condensationss(x), p(x). The
absence of reflections also restores asymptotic translational
invariance. What we mean by this statement is that if
R(k)[0 then Eq.~2.12! is simply the result of inverting Eq.
~2.3! in Fourier space with constant asymptotic background
~2.2!, namely,

^xu2 iD 21ux&5
1

2Am22v2 S im cosu v1m sinu

2v1m sinu im cosu
D ,

~2.15!

which therefore yields the asymptotic behavior of Eq.~2.9!
for properly chosen chiral alignment angles. Note that in the
absence of reflections, Eq.~2.12! attains its asymptotic value
~2.15! by simply following the asymptotic behavior ofs(x)
and of p(x), which are the exclusive sources of any
asymptoticx dependence of the resolvent. This expression
~2.15! has cuts in the complexv plane stemming from scat-

6A, B, C, andD are obviously functions ofv as well. For nota-
tional simplicity we suppress their explicitv dependence.

7This is merely a reflection of the fact that coupling the fermions
to pg5 does not respect charge conjugation invariance.

8In the following it is enough to discuss only the vector current,
because the axial currentj 5

m5emn j n .
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tering states of fermions of massm. These cuts must obvi-
ously persist inA, B, C, andD away from the asymptotic
region, and we make use of this fact in the next section.

We used the asymptotic matrix elements~2.13! of the
vector current operator in the background of statics(x),
p(x) to establish the absence of reflections in the static Dirac
operator. We can now make use of this result to examine its
general dynamical implications on matrix elements of other
interesting operators, namely, the scalarc̄c and pseudosca-
lar c̄ ig5c density operators. Their matrix elements in the
background ofs(x),p(x) are

^s~x!,p~x!uc̄cus~x!,p~x!&52NE dv

2p
tr^xu iD 21ux&

and

^s~x!,p~x!uc̄ ig5cus~x!,p~x!&

52NE dv

2p
tr@ ig5^xu iD 21ux&#. ~2.16!

Therefore, from Eq.~2.12! their asymptotic behavior is sim-
ply

^s~x!,p~x!uc̄cus~x!,p~x!&

;
x→6`

2Ns~x!E dv

2p

11R~k!e2ikuxu

k

and

^s~x!,p~x!uc̄ ig5cus~x!,p~x!&

;
x→6`

2Np~x!E dv

2p

11R~k!e2ikuxu

k
. ~2.17!

Clearly, in the absence of reflections, the asymptoticx de-
pendence of these matrix elements follows the profiles of
s(x) and p(x), respectively. Otherwise, ifR(k)Þ0, these
matrix elements will have further powerlike decay inx su-
perimposed on these profiles, which is not related directly to
the typical length scales appearing ins(x) and inp(x). We
close this section by investigating implications of Eq.~2.17!
for extremal background configurations. For such configura-
tions the matrix element of the scalar density is equal to
2s(x)/g2 and that of the pseudoscalar density is equal to
2p(x)/g2. Such background fields must obviously corre-
spond to a reflectionless Dirac operator, but let us for the

moment entertain ourselves with the assumption thatR(k) in
Eq. ~2.17! is arbitrary and see how the absence of reflections
appears as a saddle-point condition. Thus, for extremal con-
figurations, asx→6`, s(x) cancels off both sides of the
first equation in Eq.~2.17! andp(x) cancels off both sides of
the other equation. This leaves us with a common dispersion
integral:

1

Ng2 5E dv

2p

11R~k!e2ikuxu

k
.

It turns out @see Eq.~5.3! below# that the integral over the
first x-independent term on the right-hand side cancels pre-
cisely the constant term on the left-hand side. This is simply
a reformulation of Eq.~1.8! in Minkowski space. Therefore,
the remainingx-dependent integral must vanish for any
~large! uxu. It follows then, thatR(k) must vanish. Thus ab-
sence of reflections appears here as a saddle-point require-
ment, in a rather simple elegant manner, without ever invok-
ing the inverse scattering transform. The whole purpose of
this section is to prove that one cannot consider static reflec-
tionful backgrounds to begin with, and thus the emergence of
absence of reflections as a saddle-point condition is simply a
successful consistency check for the validity of the large-N
approximation applied to space-dependent condensates.

III. THE DIAGONAL RESOLVENT FOR A FIXED
NUMBER OF BOUND STATES

The requirement that the static Dirac operator~2.3! be
reflectionless is by itself quite restrictive, since most
s(x),p(x) configurations will not lead to a reflectionless
static Dirac operator. Construction of explicit expressions for
the resolvent in terms ofs(x),p(x) and their derivatives is a
formidable task even under such severe restrictions on these
fields. We now show how to accomplish such a construction
at the price of posing further restrictions ons(x) andp(x)
in function space. However, even under these further restric-
tions the results we obtain are still quite interesting from a
physical point of view.

In the following we concentrate on theB(x) component
of Eq. ~2.9!. The other entries in Eq.~2.9! may be deduced
from B(x) through Eqs.~2.10! and ~2.11!.

Our starting point here is the observation that one can
derive from the representation ofB(x) in Eq. ~2.10! a func-
tional identity in the form of a differential equation relating
B(x) to s(x) and p(x) without ever knowing the explicit
form of the Jost functionsb1(x) and b2(x). We leave the
details of derivation to Appendix B, where we show that the
identity mentioned above is

]xH 1

v1p~x!
]xF ]xB~x!

]1p~x!G J 2
4

v1p~x! H ]xF B~x!

v1p~x!G J Fs~x!21p~x!22s8~x!2v21
s~x!p8~x!

v1p~x! G
2

2B~x!

@v1p~x!#2 ]xFs~x!21p~x!22s8~x!1
s~x!p8~x!

v1p~x! G[0 ~3.1!
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with a similar expression forC(x) in which s→2s, p→
2p that we do not write down explicitly.

Here we denote derivatives with respect tox either by
primes or by partial derivatives. This equation is a linear
form of what is referred to in the mathematical literature as
the ‘‘Gel’fand–Dikii’’ identity @6#. This identity merely re-
flects the fact thatB(x) is the diagonal resolvent of the
Strum-Liouville operator discussed above and sets no restric-
tions ons(x) andp(x).

If we were able to solve Eq.~3.1! for B(x) in a closed
form for any static configuration ofs(x),p(x), we would
then be able to expresŝxu iD 21ux& in terms of the latter
fields and their derivatives, and therefore to integrate Eq.
~1.7! back to find an expression for the effective action~1.6!
explicitly in terms ofs(x) andp(x). Invoking at that point
Lorentz invariance of Eq.~1.6! we would then actually be
able to write down the full effective action for spacetime-
dependents andp. Note, moreover, that in principle such a
procedure would yield an exact expression for the effective
action, regardless of whatN is.

Unfortunately, deriving such an expression forB(x) is a
difficult task, and thus we set ourselves a simpler goal in this
paper, by determining the desired expression forB(x) with
s(x),p(x) restricted to a specific sectors in the space of all
possible static configurations. To specify these sectors con-
sider the Dirac equation associated with Eq.~2.1!, Dc50.
For a given configuration ofs(x),p(x) ~such thatD is re-
flectionless!, this equation hasn bound states at energies
v1 ,...,vn as well as scattering states. A given sector is then
defined by specifying the number of bound states the Dirac
equation has.9

As we saw above,B(x) must have a cut in thev plane
with branch points atv56m. If in addition to scattering
states s(x),p(x) support n bound states at energies
v1 ,...,vn ~which must all lie in the real interval2m,v
,m! then10 the correspondingB must contain a simple pole
for each of these bound states. Therefore,B(x) must contain
the purelyv-dependent factor

1

Am22v2Pk51
n ~v2vk!

~3.2!

of mass dimension2n21. Any other singularityB(x) may
have in the complexv plane cannot be directly related to the
spectrum of the Dirac operator, and therefore must involvex
dependence as well. Based on our discussion in Appendix A,
the only possible combination that mixes these variables is

exp(iAv22m2x). But such a combination is ruled out as we
elaborated in the previous section, by the requirement that
the Dirac operator be reflectionless. The factor~3.2! then
exhausts all allowed singularities ofB(x) in the complexv
plane. Recall further thatB(x) is a dimensionless quantity,
and thus the negative dimension of thev-dependent factor
~3.2! must be balanced by a polynomial of degreen11 in v
~with x-dependent coefficients! of mass dimensionn11:
namely,11

B~x,v!5
Bn11~x!vn111•••1B1~x!v1B0~x!

Am22v2Pk51
n ~v2vk!

.

~3.3!

The mass dimension ofBk(x)(k50, . . . ,n11) is n11
2k.

The main point here is that simple dimensional analysis in
conjunction with the prescribed analytic properties ofB(x)
fix its v dependence completely, up ton11 unknown
bound-state energies, andn12 unknown functions of
s(x),p(x) and their derivatives. These functions are by no
means arbitrary. They have to be such that Eq.~3.3! and the
resulting expression forC(x) are indeed the resolvents of the
appropriate Sturm-Liouville operators. These expressions for
B(x) andC(x) must be therefore subjected to the Gel’fand–
Dikii identity ~3.1! and the corresponding identity forC(x).

SubstitutingB(x) into Eq. ~3.1! we obtain an equation of
the form

Qn15
~B! ~v,x!/@v1p~x!#4[0, ~3.4!

whereQn15
(B) (v,x) is a polynomial of degreen15 in v with

x-dependent coefficients that are linear combinations of the
functions Bk(x) and their first three derivatives. Note that
because of the linearity and homogeneity of Eq.~3.1!, the
purelyv-dependent denominator of Eq.~3.3! with its explicit
dependence on the bound-state energies drops out from Eq.
~3.4!. This is actually the main advantage12 of working with
the linear form of the Gel’fand–Dikii identity rather than
with its nonlinear form~B10! @7#.

Setting to zero each of thex-dependent coefficients in
Qn15

(B) we obtain an overdetermined system ofn16 linear
differential equations in then12 functionsBk(x). Using n
12 of the equations we fix all the functionsBk(x) in terms
of s(x),p(x) and their derivatives, up ton12 integration
constantsbk . These integration constants are completely de-
termined once we enforce on the resulting expression for

9The effect of scattering states onB(x) is rigidly fixed by spatial
asymptotics, as Eq.~2.15! indicates, so only bound states are used
to specify such a sector.

10The Gross-Neveu model@5,3,7# is a theory of Majorana~real!
fermions. Therefore, its spectrum is invariant under charge conju-
gation, i.e., it is symmetric underv→2v. Thus, in that case the
bound states are paired symmetrically aroundv50 and B(x) is
really a function ofv2. The chiral NJL model on the other hand is
a theory of Dirac~complex! fermions, charge conjugation symme-
try of the spectrum is broken by thep field and bound states are not
paired.

11One may argue that Eq.~3.3! should be further multiplied by a
dimensionless bounded functionf (v/m). However, such a function
must be entire, otherwise it will change the prescribed singularity
properties ofB(x), but the only bounded entire functions are con-
stant.

12The nonlinear version of the Gel’fand–Dikii identity~B8! @or
Eq. ~B10!# contains further information about the normalization of
B(x), but the latter may be readily determined from the asymptotic
behavior~2.15! of B(x).
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B(x) the asymptotic behavior~2.2! and ~2.15!. The integra-
tion constantsbk turn out to be polynomials inm2 and the
bound-state energiesvk .

At this stage we are left, independently ofn, with four
nonlinear differential equations ins(x) andp(x).13

A similar analysis applies forC(x), leading to an equa-
tion of the formQn15

(C) (v,x)[0, where following Eq.~2.11!
Qn15

(C)
„v,s(x),p(x)…52Qn15

(B)
„v,2s(x),2p(x)…. Setting

the first n12 coefficients inQn15
(C) (v,x) to zero we verify

that C(x) is related toB(x) as in Eq.~2.11!, but that the
remaining four equations fors(x) and p(x) are different
from their counterparts associated withB(x) as the explicit
relation betweenQn15

(C) andQn15
(B) suggests. We are thus left

with an overdetermined set of eight nonlinear differential
equations for the two functionss(x) and p(x). Observing
that Qn15

(C) 6Qn15
(B) is odd ~even! in s and p, we note that

these eight equations are equivalent to breaking each of the
four remaining equations associated withB(x) into a part
even ins andp and a part odd ins andp and setting each
of these parts to zero separately.

Mathematical consistency of our analysis requires that the
six most complicated equations of the total eight be redun-
dant relative to the remaining two equations, because we
have only two unknown functions,s(x) andp(x). This re-
quirement must be fulfilled, because otherwise we are com-
pelled to deduce that there can be nos(x) and p(x) con-
figurations for which the Dirac equationDc50 has
preciselyn bound states, withn50,1,2, . . . , which is pre-
sumably an erroneous conclusion.

Therefores(x) and p(x) are uniquely determined from
the two independent equations given the asymptotic bound-
ary conditions~2.2! they satisfy. This leaves only the bound-
state energies undetermined, but the latter cannot be deter-
mined by the resolvent identity, which does not really care
what their values are. These energies are determined by im-
posing the saddle-point conditions~1.7!, i.e., by dynamical
aspects of the model under investigation.

In the preceding paragraphs we laid down the mathemati-
cal aspects of our analysis. We now add to these a symmetry
argument which will simplify our solution of the differential
equations fors(x) and p(x) a great deal. The two nonre-
dundant coupled differential equations fors(x) and p(x)
allow us to eliminate one of these functions in terms of the
other. We choose to eliminate14 p(x) in terms ofs(x):

pa~x!5Ga@sa~x!#, ~3.5!

wherea is a global chiral alignment angle. This relation is
clearly covariant under axial rotationsa→a1Da, because
s(x) andp(x) transform as the two components of a vector
under U(1)A as Eq.~1.4! shows. We expect Eq.~3.5! to be a
linear relation. Imposing the boundary conditions~2.2! we
have

p~x!52@s~x!2m#cot
u

2
. ~3.6!

In this way we reduce the problem into finding the single
function s(x). Condition~3.6! is an external supplement to
the coupled differential equations fors(x) and p(x) stem-
ming from the Gel’fand–Dikii equation. We thus have to
make sure that the resulting solution fors(x) and Eq.~3.6!
are indeed solutions of these coupled differential equations.

We now provide the details of such calculations in the
case of a single bound state, as well as partial results con-
cerning two bound states.

IV. EXTENDED OBJECT PROFILES

A. A single bound state

In this case Eq.~3.3! becomes

B~x!5
B2~x!v21B1~x!v1B0~x!

~v2v1!Am22v2
, ~4.1!

where the single bound-state energy isv1 . Then setting to
zero the coefficients ofv6 through v4 in the degree six
polynomial ~3.4!, we find

B2~x!5b2 , B1~x!5b2p~x!1b1

and

B0~x!5b1p~x!1
b2

2
@s2~x!1p2~x!2s8~x!#1b0 ,

~4.2!

where b2 , b1 , and b0 are integration constants. We then
impose the asymptotic boundary conditions

B~x! ——→
x→6`

1

2Am22v2
~v1m sinu6!

to fix the latter,

b25
1

2
, b152

v1

2
, b052

m2

4
~4.3!

and therefore

B~x!5
v1p~x!

2Am22v2
1

s2~x!1p2~x!2s8~x!2m2

4~v2v1!Am22v2
.

~4.4!

Relation~2.11! then immediately leads to

C~x!52
v2p~x!

2Am22v2
2

s2~x!1p2~x!1s8~x!2m2

4~v2v1!Am22v2
.

~4.5!

Having the coefficients ofv6 throughv4 in the degree six
polynomial ~3.4! set to zero, we are left with a cubic poly-
nomial

13Coefficients of the various terms in these equations are also
polynomials inm2 and the bound-state energiesvk .

14We prefer to eliminatep(x) in terms ofs(x) because the latter
never vanishes identically.
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4]xF S @m22p2~x!2s2~x!#p~x!2v1s8~x!1
1

2
p9~x! D

1$v1@p2~x!1s2~x!#2s~x!p8~x!1s8~x!p~x!%G
3v31•••

[0, ~4.6!

where the ellipsis stands for lower powers ofv. The cubic
~4.6! has to be set to zero identically, producing eight
coupled differential equations ins(x) and p(x) as we dis-
cussed above. The simplest equation of these is obtained by
setting to zero the part of thev3 coefficient in Eq.~4.6! that
is even ins andp, namely,

]x$v1@p2~x!1s2~x!#2s~x!p8~x!1s8~x!p~x!%50

which we immediately integrate into

v1@p2~x!1s2~x!2m2#5s~x!p8~x!2s8~x!p~x!.
~4.7!

Here we have used the boundary conditions~2.2! to de-
termine the integration constant. The next simplest equation
is obtained by setting to zero the part of thev3 coefficient in
Eq. ~4.6! that is odd ins andp, and so on.

Following our general discussion we solve the system of
coupled equations~3.6! and ~4.7!, which leads to

d

dx F 1

s~x!2mG2
2v1tan~u/2!

s~x!2m
5

2v1

m sinu
. ~4.8!

Solving Eq.~4.8! we find

s~x!5m2
m sinu tan~u/2!

11exp@2v1tan~u/2!~x2x0!#
,

p~x!5
m sinu

11exp@2v1tan~u/2!~x2x0!#
, ~4.9!

where we have chosen the integration constant~parametrized
by x0! such thats(x) andp(x) would be free of poles. Note
that the boundary conditions atx→1` require

v1tan
u

2
,0. ~4.10!

Substituting the expressions~4.9! into Eq. ~4.4! one finds
that the resultingB(x) is indeed a solution of the correspond-
ing Gel’fand–Dikii equation~3.1!, verifying the consistency
of our solution. Our results~4.9! for s(x) and p(x) agree
with those of @17#. They have the profile of an extended
object, a lump or a chiral ‘‘bag,’’ of size of the order
cot(u/2)/v1 centered around an arbitrary pointx0 . Note that
the profiles in Eq.~4.9! satisfy

r2~x!5s2~x!1p2~x!

5m22m2sin2~u/2!sech2Fv1tan
u

2
~x2x0!G .

~4.11!

Thus, as expected by construction, this configuration inter-
polates between two different vacua atx56`. As x in-
creases from2`, the vacuum configuration becomes dis-
torted. The distortion reaches its maximum at the location of
the ‘‘bag,’’ where m22r2(x0)5m2sin2(u/2) and then re-
laxes back into the other vacuum state atx5`. The arbi-
trariness ofx0 is, of course, a manifestation of translational
invariance.

B. Two bound states

In this case Eq.~3.3! becomes

B~x!5
B3~x!v31B2~x!v21B1~x!v1B0~x!

~v2v1!~v2v2!Am22v2
~4.12!

where the bound-state energies arev1 andv2 . @Obviously,
B(x) in this subsection should not be confused with its coun-
terpart in the previous subsection.# In this case the polyno-
mial ~3.4! is of degree seven inv. Following the procedure
outlined in Sec. III we find after imposing the boundary con-
ditions ~2.2! that

B~x!5
v1p~x!

2Am22v2
1

@s2~x!1p2~x!2s8~x!2m2#@p~x!1v2v12v2#

4~v2v1!~v2v2!Am22v2
2

p9~x!22s~x!p8~x!

8~v2v1!~v2v2!Am22v2
. ~4.13!

Then, from Eq.~2.11! we find that

C~x!52
v2p~x!

2Am22v2
2

@s2~x!1p2~x!1s8~x!2m2#@2p~x!1v2v12v2#

4~v2v1!~v2v2!Am22v2
2

p9~x!12s~x!p8~x!

8~v2v1!~v2v2!Am22v2
. ~4.14!
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Note that if we setv11v250 and p(x)50 the resol-
vents ~4.13! and ~4.14!, and therefore the whole spectrum,
become invariant underv→2v, and we obtain the equation
appropriate to the Gross-Neveu model.

Setting to zero the coefficients ofv7 throughv4 in the
degree seven polynomial~3.4!, we are left with a cubic poly-

nomial in v which we do not write down explicitly. This
polynomial must vanish identically, producing eight coupled
differential equations ins(x) and p(x) as we discussed
above. The simplest equation of these is obtained by setting
to zero the part of thev3 coefficient in that polynomial
which unlike the previous case, is now odd ins andp;

2]x$4~v11v2!@p2~x!1s2~x!2m2#p~x!16@p2~x!1s2~x!#s8~x!12~2v1v22m2!s8~x!

22~v11v2!p9~x!2s-~x!%50. ~4.15!

As in the previous case, this is a complete derivative which we readily integrate into

4~v11v2!@p2~x!1s2~x!2m2#p~x!16@p2~x!1s2~x!#s8~x!12~2v1v22m2!s8~x!22~v11v2!p9~x!2s-~x!50.
~4.16!

Here we have used the boundary conditions~2.2! to determine the integration constant. Note that Eq.~4.16! is of third order
in derivatives and cubic, whereas its single bound-state counterpart~4.7! is only first order in derivatives and quadratic.

The next simplest equation is obtained by setting to zero the part of thev3 coefficient in the cubic polynomial that is even
in s andp:

2]x$2~m222v1v2!@p2~x!1s2~x!#23@p2~x!1s2~x!#214~v11v2!@s~x!p8~x!2s8~x!p~x!#%

14@p~x!p-~x!1s~x!s-~x!#50, ~4.17!

and so on.
Following our general discussion we have to solve the

system of coupled equations~3.6! and ~4.16! which is
equivalent to

2l~v11v2!@4my212~11l2!y32y9#

1]x$4~m21v1v2!y16my2

12~l211!y32y9%50, ~4.18!

wherel52cot(u/2) andy(x)5s(x)2m. We have not suc-
ceeded in solving this nonlinear ordinary differential equa-
tion in closed form.

V. THE SADDLE-POINT CONDITIONS

Derivation of the explicit expressions ofs(x) and p(x)
does not involve the saddle-point equations~1.7!. Rather, it
tells us independently of the large-N approximation that
s(x) and p(x) must have the form given in Eq.~4.9! in
order for the associated Dirac operator to be reflectionless
and to have a single bound state at a prescribed energyv1 in
addition to scattering states. Thus, for the solution~4.9! we
have yet to determine the values ofv1 andu allowed by the
saddle-point condition. More generally, our discussion in
Sec. III will lead us to thes(x) and p(x) configurations
which correspond to reflectionless Dirac operators with a
prescribed number of bound states at some prescribed ener-
gies v1 ,v2 ,... in addition to scattering states. As empha-
sized earlier, this result is independent of the large-N limit.

The allowed values ofu,v1 ,v2 ,... must then be determined
by the saddle-point condition~1.7!. It is this dynamical fea-
ture that we can analyze only in the large-N limit.

For static background fields the general saddle-point con-
dition ~1.7! assumes the simpler form

s~x!1Ng2E dv

2p
@A~x!1D~x!#50,

p~x!1 iNg2E dv

2p
@B~x!1C~x!#50. ~5.1!

In Sec. V A we impose this condition on the explicit single
bound-state background we found in the previous section
and calculate the mass of such ‘‘bags.’’ The two-bound-state
case is discussed in Sec. V B.

A. A single bound state

Substituting Eqs.~4.4! and ~4.5! into the saddle-point
equations~5.1! we obtain15

15In the following formula we omit explicitx dependence of the
fields. The numberp also appears in the formula, but only in the
combinationdv/2p. Therefore, there is no longer danger of con-
fusing the fieldp(x) and the numberp.
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s

Ng2 1 i E
2L

L dv

2p

1

4Am22v2~v2v1!~v22p2!
H 4sv312~p822v1s!v212Fs~s22p22m2!2v1p82

1

2
s9Gv

22p2~p822v1s!J 50,

p

Ng2 1 i E
2L

L dv

2p

2pv22v1p2s8

2Am22v2~v2v1!
50. ~5.2!

These equations are dispersion relations among the vari-
ousx-dependent parts andv1 . Clearly, both dispersion inte-
grals in Eq. ~5.2! are logarithmically divergent inL, but
subtracting each of the integrals once we can get rid of these
divergences. The required subtractions are actually already
built in Eq. ~5.2!. In order to see this consider the~bare! gap
equation~1.8! in Minkowski space. This equation is equiva-
lent to the~logarithmically divergent! dispersion relation16

i

Ng2 5E
2L

L dv

2p

1

Am22v21e
. ~5.3!

If we now replace each of the 1/Ng2 coefficients in Eq.
~5.2! by the integral on the right-hand side of Eq.~5.3! @7#,
the divergent parts of each pair of integrals cancel and Eq.
~5.2! become

E
C

dv

2p

p81@v/~v22p2!#F~s,p!

Am22v2~v2v1!
50,

E
C

dv

2p

s8

Am22v2~v2v1!
50, ~5.4!

where

F~s,p!5s~s21p22m2!2v1p82
1

2
s9 ~5.5!

andC is the contour in the complexv plane depicted in Fig.
1.

Expression~5.5! is the residue of thex-dependent poles at
v56p(x) in the first equation in Eq.~5.4!. The quantiza-
tion condition~5.4! on v1 cannot bex dependent. Therefore
Eq. ~5.5! must vanish as a consistency requirement.
Substituting17 Eq. ~4.9! in Eq. ~5.5! we find that

F~x!5
m tan2~u/2!

2
sech3Fv1x tan

u

2G@cosue2v1x tan~u/2!

1ev1x tan~u/2!#S v1
22m2cos2

u

2D .

Thus,F(s,p) vanishes for the configurations~4.9! provided

v1
25m2cos2S u

2D . ~5.6!

which sets an interesting relation between the bound-state
energy and the chiral alignment angle of the vacuum at
x→1`. This relation actually leavesu the only free param-
eter in the problem with respect to which we have to extrem-
ize the action. Condition~4.10! then picks out one branch of
Eq. ~5.6!.

We still have to determinev1 andu separately. Now the
saddle-point condition simply boils down to the single equa-
tion

I ~v1!5E
C

dv

2p

1

Am22v2~v2v1!
50. ~5.7!

The contour integral in Eq.~5.7! is most conveniently
calculated by deforming the contourC into the contourC8
shown in Fig. 2. The ‘‘hairpin’’ wing ofC8 picks up the
contribution of the filled Fermi sea, and the little circle
around the simple pole atv5v1 is the contribution of fer-
mions populating the bound state of the ‘‘bag.’’

Assuming that the ‘‘bag’’ trapsn fermions in that state,
and recalling that each state in the Fermi sea continuum ac-
commodatesN fermions, we see that Eq.~5.7! becomes

I ~v1!5
iN

Am22v1
2 F 2

p
arctanAm1v1

m2v1
1

n

N
21G50.

~5.8!

The solution of this equation yields the quantization con-
dition

v15m cosS np

N D ~5.9!

in agreement with@17#.
It follows from Eqs.~4.9!, ~4.10!, and~5.6! that

u52
2pn

N
, ~5.10!

that is, the relative chiral rotation of the vacua at6` is
proportional to the number of fermions trapped in the
‘‘bag,’’ as one should expect due to the fact that the fermion
number current in a soliton background can be determined in

16To see this equivalence simply perform~contour! integration
over spatial momentum first.

17Here we have setx050 for simplicity.
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some cases by topological considerations@25#. Note from
Eq. ~5.10!, that in the large-N limit, u ~and thereforev1! take
on nontrivial values only when the number of the trapped
fermions scales as a finite fraction ofN.

As we already mentioned in the Introduction, ‘‘bags’’
formed in the NJL model are not stable because of topology.
They are stabilized by releasing binding energy of the fermi-
ons trapped in them. To see this more explicitly, we calculate
now the mass of the ‘‘bag’’ corresponding to Eqs.~4.9!,
~5.9!, and ~5.10!. The effective action~1.6! for background
fields~4.9! is an ordinary function of the chiral angleu.18 Let
us denote this action per unit time byS(u)/T. Then, from
Eqs.~2.9! and ~5.3! we find

1

T

]S

]u
5E dxdv

2p H F is~x!

Am22v2
2~A1D !G ]s~x!

]u

1 i F p~x!

Am22v2
2~B1C!G ]p~x!

]u J . ~5.11!

Then as in our analysis of the saddle-point condition~which
is simply the condition for]S/]u50! we use Eqs.~4.4!,
~4.5!, ~2.10!, and the fact that Eq.~5.5! vanishes to find

1

T

]S

]u
5 i E dxdv

2p

]xs~x!]up~x!2]xp~x!]us~x!

2~v2v1!Am22v2
.

Then, Eq.~3.6! leads to the factorized expression

1

T

]S

]u
5

i

4 sin2~u/2!
E

2`

`

dx~s2m!s8

3E
C8

dv

2p

1

~v2v1!Am22v2
, ~5.12!

whereC8 is the contour in Fig. 2. The space integral is im-
mediate and is essentially fixed by the boundary conditions
~2.2!. The spectral integral is given by the left-hand side of
Eq. ~5.8!, but with a genericv1 given by v15m cos(u/2).
Here we have chosen the particular branch of Eq.~5.6! that
contains all the extremal values ofv1 . Putting everything
together we finally arrive at

1

NT

]S

]u
5

m

2 S n

N
1

u

2p D sin
u

2
. ~5.13!

The zeros of Eq.~5.13! are extremal points ofS(u). The
zero of the factor linear inu in Eq. ~5.13! coincides with Eq.
~5.10! we deduced from the saddle-point condition~5.8!. The
other zeros of Eq.~5.13! areuk52pk, kPZ, and it is clear
from Eq. ~4.9! that they do not correspond to extended ob-
jects at all.19 We therefore discard them, and concentrate on
the extremum given by Eq.~5.10!.

Integrating Eq.~5.13! with respect tou we finally find

21

NTm
S~u!5S n

N
1

u

2p D cos
u

2
2

1

p
sin

u

2
. ~5.14!

Note that Eq.~5.14! is not manifestly periodic inu because
the Pauli exclusion principle limitsu to be between 0 and
2p.

The mass of a ‘‘bag’’ containingn fermions in a single
bound state is given by the energyE(u)52S(u)/T evalu-
ated at the appropriate chiral angle~5.10!. We thus find that
this mass is simply

Mn5
Nm

p
sin

pn

N
~5.15!

in accordance with@17,21#. It is easy to check that Eq.~5.15!
is a minimum ofE(u) for 0,n/N,1. These ‘‘bags’’ are
stable because

sin
p~n11n2!

N
,sin

pn1

N
1sin

pn2

N
~5.16!

for n11n2 less thanN, such that a ‘‘bag’’ withn11n2 fer-
mions cannot decay into two ‘‘bags’’ each containing a
lower number of fermions.

Entrapment of a small number of fermions cannot distort
the homogeneous vacuum considerably, so we expect that
Mn will be roughly the mass ofn free massive fermions for
n!N. As a matter of fact we used this expectation to fix the
integration constant in Eq.~5.14!. For n!N we haveMn
;nm@12 1

6(pn/N)21•••#, so the binding energy released,

18Recall thatv1 is a function ofu and not a free parameter.

19Note from Eq. ~5.11! that every solution of the saddle-point
equations~5.1! yields an extremalS(u). The converse, however, is
not true. Clearly, only extrema ofS(u) associated with the saddle-
point equations~5.1! are related to masses of stable extended ob-
jects.

FIG. 1. The contourC in the complexv plane in Eq.~5.4!. The
continuum states appear as the two cuts along the real axis with
branch points at6m ~wiggly lines!, and the bound state is the pole
at v1 .

FIG. 2. The deformed integration contourC8 leading to Eq.
~5.7!.
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Bn;
nm

6 S pn

N D 2

1••• , ~5.17!

is indeed very small. However, as the number of fermions
trapped in the ‘‘bag’’ approachesN, Mn vanishes and the
fermions release practically all their rest massNm as binding
energy, to achieve maximum stability@18#. In a weakly
coupled field theory containing solitons, the mass of these
extended objects is a measure of 1/g2, the inverse square of
the coupling constant. Here we have 1/g25N. It is amusing
to speculate that these maximally stable massless solitons
may teach us something about the strong-coupling regime of
the NJL model.

Note from Eq.~5.10! that the soliton twists all the way
around as the number of fermions approachesN. In this case
v1→2m, and the pole the resolvent has atv5v1 pinches
the branch pointv52m at the edge of the filled Dirac sea.
One may wonder whether this enhanced singularity is a
mathematical artifact, as the bound state simply tries to
plunge into the filled Dirac sea. But this is clearly not the
case. Indeed,v1 is occupied byN fermions~in a flavor sin-
glet!. Their common spinor wave function must still be part
of the discrete spectrum of the Dirac operator, because the
highest lying state of the sea atv52m is already occupied
by a flavor singlet made ofN fermions, sharing a continuum
spinor wave function, and therefore Pauli’s exclusion prin-
ciple protects the bound state from ‘‘dissolving’’ into the
sea.

B. Two bound states

We concluded Sec. IV B short of an explicit solution of
Eq. ~4.18!, namely, short of an explicit expression for the
two bound-state background fieldss(x) and p(x). In the
following we make the eminently reasonable assumption that
such a background exists, and pursue our analysis of its
saddle-point condition as far as we can without having its
explicit form in hand.

As in the previous subsection, we substitute Eqs.~4.13!
and ~4.14! into the saddle-point equations~5.1!. We then
make use of Eq.~5.3! to eliminate the ultraviolet logarithmic
divergences and to write the saddle-point conditions as

E
C9

dv

2p F is~x!

Am22v2
2~A1D !G

5 i E
C9

dv

2p

K1v$L/@v22p2~x!#%

2Am22m2~v2v1!~v2v2!

and

E
C9

dv

2p F p~x!

Am22v2
2~B1C!G

5E
C9

dv

2p

M1vs8~x!

2Am22m2~v2v1!~v2v2!
, ~5.18!

whereC9 is a contour similar to the contourC8 in Fig. 2 that
encircles the additional pole atv2 as well, andK(x), L(x),
andM (x) are given by

K~s,p!52s~s21p22m2!1~v11v2!p81
1

2
s9

L~s,p!5~v11v2!Fs~s21p22m2!2
1

2
s9G

2S s21p22m2

2
1v1v21s2Dp81

p-
4

and

M ~s,p!52p~s21p22m2!2~v11v2!p81
1

2
p9.

~5.19!

Note that K(s,p) differs from 2F(s,p) in Eq. ~5.5!
only by the additional termv2p8. The expressionL(s,p) is
the residue of thex-dependent poles atv56p(x) in the
first equation in Eq.~5.18!. The quantization conditions
~5.18! on v1 and v2 cannot bex dependent. Therefore
L(s,p) must vanish as a consistency requirement. As we do
not have the explicit expressions ofs(x) andp(x), we as-
sume from now on thatL indeed vanishes. This is the only
extra assumption we make. Then, for the case in which the
‘‘bag’’ traps n1 fermions inv1 andn2 fermions inv2 , Eq.
~5.18! boils down to the simple conditions

I ~v1!5I ~v2!50, ~5.20!

whereI (v) is given in Eq.~5.8!. Therefore,

v15m cosS n1p

N D , v25m cosS n2p

N D ~5.21!

which are identical in form to single bound-state energy lev-
els. From the general considerations of@25# we expect that
the chiral angleu will be proportional to the total number of
fermions trapped by the ‘‘bag,’’ so Eq.~5.10! must now read

u52
2p~n11n2!

N
. ~5.22!

The soliton mass is clearly a function ofm and of the chiral
angleu. However, if a ‘‘bag’’ with two bound states is dis-
tinguishable from a ‘‘bag’’ with a single bound state~which
contains the same number of fermions!, then this mass must
depend onn1 andn2 separately, and not only on their sum
throughu.

VI. CONCLUSION

We have studied nonperturbatively the emergence of fer-
mion bags in the (111)-dimensional Nambu–Jona-Lasinio
model~focusing on static bags.! These bags are stable due to
dynamics and not because of topological reasons: as they
bind fermions they release binding energy. The more fermi-
ons the bag bind, the more stable it becomes, which is a
salient feature of bag models in any number of dimensions.

In this paper we developed further the method of@7,8#,
applying it to Eq.~1.1! as an alternative to the inverse scat-
tering investigations in@17#. Our method is based on elemen-
tary Sturm-Liouville theory as well as on simple dimensional
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analysis. Moreover, at all stages of our analysis we deal with
the space-dependent condensatess(x) andp(x) directly. In
our view, these facts make the method presented here sim-
pler than inverse scattering calculations previously employed
in this problem because we do not need to work with the
scattering data and the so-called trace identities that relate
them to the space-dependent condensates.

It is important to stress that the analysis in Secs. II–IV has
nothing to do with the large-N limit and is also independent
of dynamics. It is a purely mathematical construction of the
diagonal resolvent of the Dirac operator in a given reflection-
less static backgrounds(x) andp(x) with a given number
of bound states.

Also, given the number of fermions trapped in the bag,
the total chiral angleu5@arctan(p(x)/s(x))#2`

` @see Eq.
~3.5!# is fixed by topological considerations@the Goldstone-
Wilczek relation, Eq.~5.10!#, which holds for any value of
N.

Dynamical considerations enter only in Sec. V, where we
determine the dependence of the bound-state energies
v1 ,v2 ,... and themass of the bag on the dynamical fermion
massm and the chiral angleu by imposing the large-N
saddle-point conditions.

It would be interesting to extend the resolvent method
presented here to analyze effectively one-dimensional static
condensates in quantum field theories in higher spatial di-
mensions.
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APPENDIX A

In this appendix we provide precise definitions of the Jost
functionsb1 throughc2 in terms of their spatial asymptotic
behavior and derive the spatial asymptotic behavior of the
static Dirac operator Green’s function.

We concentrate for the moment on the first equation in
Eq. ~2.6!. The boundary conditions~2.2! lead to the follow-
ing simple spatial asymptotic behavior:

@2]x
21m22v2#b~x!50

of the homogeneous part of that equation. Thus, solutions of
that homogeneous equation assume the generic asymptotic
form

b~x,v!; H M 1eikx1N1e2 ikx,
M 2eikx1N2e2 ikx,

x→1`,
x→2`

~A1!

where

k~v!51Av22m2. ~A2!

On the realv axis k(v) is real for uvu.m, which corre-
sponds to scattering states of Eq.~2.3!. Bound states of Eq.

~2.3! reside in the domain uvu,m, where k(v)5
1 iAm22v251 ik(v) is purely imaginary and lies in the
upper half plane.

The Jost functionsb1 andb2 alluded to in Sec. II form a
particular pair of linearly independent solution of the homo-
geneous equation mentioned above, specified by their
asymptotic behavior. Let the asymptotic amplitudes ofbr(x)
(r 51,2) in Eq. ~A1! be Mr 6 ,Nr 6 . The asymptotic form
~A1! of b1(x) has by definitionM1250, and that ofb2(x)
hasN2150. One may summarize our definitions ofb1 and
b2 , by saying thatb1 corresponds to a one-dimensional scat-
tering situation where the source is at1` emitting waves to
the left ~the termN11e2 ikx! and thatb2 corresponds to a
one-dimensional scattering situation where the source is at
2` emitting waves to the right~the termM22eikx!. Note
also that outside the continuum,b1(x) decays to the left
while b2(x) decays to the right. With these definitions the
Wronskian~2.8! becomes

Wb~1`!522ik
M21N11

v1p~1`!

522ik
M22N12

v1p~2`!

5Wb~2`!. ~A3!

Therefore, it follows from Eq.~2.10! and from Eq.~2.11!
that the entriesA, B, C, and D in Eq. ~2.9! have the
asymptotic form

A~x!52
1

2k
$@s~x!2 ik sgnx#R~k!e2ikuxu1s~x!%,

B~x!5
v1p~x!

22ik
@11R~k!e2ikuxu#,

C~x!5
v2p~x!

2ik
@11R~k!e2ikuxu#,

D~x!52
1

2k
$@s~x!1 ik sgnx#R~k!e2ikuxu1s~x!%

~A4!

asx→6`, where

R~k!5
M11

N11
5

N22

M22
~A5!

is the reflection coefficient of the Sturm-Liouville operator in
the first equation in Eq.~2.6!. The diagonal resolvent of the
Dirac operator is therefore
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^xu2 iD 21ux& ——→
x→6`

i

2k S is~x! v1p~x!

2v1p~x! is~x!
D 1

iR~k!e2ikuxu

2k S is~x!1k sgnx v1p~x!

2v1p~x! is~x!2k sgnxD . ~A6!

APPENDIX B

Consider the Sturm-Liouville problem

2@p~x!c8~x!#81@V~x!2Er~x!#c~x!50, 2`,x,`.
~B1!

We assume that the ‘‘metric’’p(x) does not vanish any-
where and that the weight functionr(x) is positive every-
where.E is a complex number, called the spectral parameter.

As in our discussion in the main text and in the previous
appendix, letc1(x) be the Jost function which decays as
x→2` for values of E below the continuum threshold.
Similarly, let c2(x) be the Jost function which decays as
x→1`. Then, the Green’s function of the operator in Eq.
~B1! is

G~x,y!5
u~x2y!c2~x!c1~y!1u~y2x!c2~y!c1~x!

W
,

~B2!

where

W5p~x!@c2~x!c18~x!2c1~x!c28~x!# ~B3!

is the ~x-independent! Wronskian of these two functions.
Note that Eq.~B2! decays~at a rate dictated by the Jost
functions! as either one of its argument diverges in absolute
value, holding the other one finite, as long asE does not hit
one of the eigenvalues of the Sturm-Liouville operator.

As in the main text the diagonal resolventR(x)
5G(x,x) is defined as

R~x!5
1

2
lim
e→0

@G~x,x1e!1G~x1e,x!#5
c1~x!c2~x!

W
.

~B4!

We then use Eqs.~B3! and ~B4! to show that

c18

c1
5

pR811

2pR
,

c28

c2
5

pR821

2pR
. ~B5!

Finally, using Eqs.~B1! and ~B5! we find

~pR8!852~V2Er!R1
~pR8!221

2pR
. ~B6!

and

@p~pR8!8#85@2p~V2Er!R#812p~V2Er!R8. ~B7!

Note that the nonlinearity of Eq.~B6! in R has disap-
peared after one more differentiation with respect tox.

Multiplying Eq. ~B6! through by 2pR we find

22pR~pR8!81~pR8!214pR2~V2rE!51 ~B8!

which is the Gel’fand–Dikii equation@6#. Equation~B7! is
the linear form of the Gel’fand–Dikii equation we use in the
text @Eq. ~3.1!#.

The quantities corresponding to the discussion of the
Dirac operator in the text are

p~x!5r~x!5
1

v1p~x!
, E5v2

and

V~x!5
1

v1p~x! Fs~x!21p~x!22s8~x!1
s~x!p8~x!

v1p~x! G .
~B9!

The Gel’fand–Dikii equation~B8! then reads

22
B~x!

v1p~x!
]xF ]xB~x!

v1p~x!G1F ]xB~x!

v1p~x!G
2

1F 2B~x!

v1p~x!G
2Fs~x!21p~x!22s8~x!2v21

s~x!p8~x!

v1p~x! G51. ~B10!

Strictly speaking, Sturm-Liouville theory requires thatp(x)5r(x)51/@v1p(x)#.0. Our solution forp(x) turns out to be
bounded, so all formulas are valida posteriori for large positivev. Such a restriction onv, though mathematically required,
is unphysical.

Note, however, that because of the relation~2.11!, we may viewC(x) as a continuation ofB(x) to large negativev.
An important application of the Gel’fand–Dikii identities~B7! and~B8! is that they generate an asymptotic expansion@6#

of R in negative odd powers ofAE. The explicit v ~and thereforeE! dependence of our specificp(x), r(x), and V(x)
complicates this expansion.
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