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We compute explicitly Chern-Simons-type terms induced by fermions coupled to external non-Abelian
gauge fields in metric nonlinears models in three dimensions. We investigate the supersymmetric models
defined on general Riemannian and Ka¨hler manifolds. The diagrammatic calculation is performed by means of
the interaction picture Dyson-Wick perturbation theory.@S0556-2821~97!01516-6#
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I. INTRODUCTION

Since the seminal work of Deser, Jackiw, and Templeton
@1# the study of models in three-dimensional space-time has
received considerable attention@2–10#. In that work the au-
thors studied the gauge vector and gravity models and
showed that a topological term, the Chern-Simons term,
arises leading a large number of special and interesting fea-
tures such as a massive gauge field and dynamical gravity.
More recently the interest in studying models formulated in
this space-time has been motivated by their promising con-
nection to the fractional quantum Hall effect and to high-
temperature superconductivity@6–8#. In fact, the Chern-
Simons term can affect the spin and statistics of charged
particles and a fermion-boson transmutation takes place@7#.
In this context nonlinears models have played an important
role. For instance, theO(3) or its CP1 variant without or
with a Chern-Simons term@7# and, recently, a SO~5! quan-
tum nonlinears sigma model@11# have been very useful in
describing physical properties of superconducting materials.
Also, when defined on a Riemannian manifold with a metric
tensor gi j . But now in another context, they have been
proven to be very useful. Indeed, such models have been
examined in two and three dimensions and it has been ar-
gued that they can describe the effective low energy of string
and membrane theories@12–15#. However, the issue con-
cerning generated Chern-Simons terms by fermions and their
calculations, which has been investigated in other models by
several methods@1,5#, has not been considered yet in general
metric nonlinears models.

As a matter of fact, such terms can be included in a par-
ticular model by hand with an adjustable coefficient, or by
the existence of a fermion. Nevertheless, we consider the
latter case much more natural and investigate here the situa-
tion in which we couple supersymmetric fermions to external
gauge fields so that a so-called induced Chern-Simons-type
term can arise. The main goal of this work, therefore, is to
show how such terms can be generated in these models and
how to compute them. We do that by using the covariant
background field method combined with the Dyson-Wick al-

gorithm @13# to generate the pertinent Feynman graphs to
calculate them perturbatively.

The paper is organized as follows. In Sec. II we start with
the three-dimensionalN51 supersymmetric nonlinears
model defined on a general Riemannian manifold and then
we show how a Chern-Simons-type term induced by fermi-
ons coupled to external non-Abelian gauge fields can arise.
We also compute it by means of the above mentioned tech-
nique. In Sec. III we consider theN52 supersymmetric ex-
tension of the previous model, that is, a model defined on a
Kähler manifold and, by applying the same procedure as
before, we compute a Chern-Simons-type term generated by
the fermions. Section IV contains our conclusions.

II. CHERN-SIMONS-TYPE TERM
IN THE N51 SUPERSYMMETRIC s MODEL

The model we shall begin to consider here is the three-
dimensionals model defined on a general Riemannian mani-
fold M with metric tensor gi j (F

k), where Fk, for
k51, . . . ,n, are a set of coordinates on this manifold taken
to be functions ofxm, m50,1,2, andua , a51,2, where the
latter form a two-component Majorana anticommuting
spinor. This model is invariant underN51 supersymmetry
and can be described by the action

S@F#5
1

4i E d3xd2ugi j ~Fk!DF iDF j , ~1!

where Da is the supercovariant derivative,Da5]/] ū a

2i (]” /u)a , and F i a scalar superfield whose expansion in
terms of the component fieldsf i ~the scalar fields!, c i ~the
Majorana spinor which are the fermionic partners!, and Fi

~the auxiliary fields!, in the Majorana represention for theg
matrices, is given by

F i5f i~x!1 ū c i~x!1
1

2
ū uFi~x!. ~2!

Therefore the action~1! can be alternatively written in terms
of component fields by substituting the above relation back
into it, integrating over the Grassmann variableu by means
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of the standard rules of Berezin integration, and eliminating
the auxiliary fields. Doing so, we get

S5
1

2E d3xFgi j ~f!]mf i]mf j1 igi j ~f!c̄ igmDmc j

1
1

6
Ri jkl ~ c̄ ick!~ c̄ jc l !G , ~3!

where (Dmc) j5]mc j1Gkl
j ]mfkc l , Gkl

j being the usual
Christoffel symbol andRi jkl , the curvature tensor of the
manifold.

Several remarks on Eq.~3! are now in order. First, one
can notice that it contains as its bosonic sector the usual
purely bosonic metric nonlinears model. Second, even
though it is renormalizable in three dimensions within the
large N expansion approach, it is not in the Dyson power-
counting sense. However, it has been recently examined in
the covariant background field formalism and proved to be
renormalizable at least in one-loop order in a more general
sense in which the geometry of classical action changes due
to quantum corrections@15#. In this paper we are going to
deal with perturbative calculations only up to this level,
where physical information can be extracted.

Let us now consider how a Chern-Simons-type term can
be induced by the fermions of our model~1!,~3!. To extract
and compute it in the effective action we must calculate the
one-loop amplitudes. We shall begin this calculation by ap-
plying the covariant background field method@13#. This
method is a powerful computational tool of the effective ac-
tion in quantum field theory@16–18#. Indeed, it allows us to
compute radiative corrections in a manifestly covariant way
preserving the symmetries of the model under consideration
@18#. For the present model it is already known@12,13,15,17#
and consists in splitting the fieldf i into a classical~back-
ground! field w i and a quantum fieldp i . A further step is
then taken consideringp i as a function of a new covariant
quantum fieldj i in terms of which the expansion in the Rie-
mann normal coordinate system@19# is defined. The fermion
field c i , also transformed to normal coordinates, may be con-
sidered as only a quantum field so that there is no
background-quantum splitting for anticommuting variables.
This can be justified since we are just interested in the quan-
tal effect of the fermions introduced supersymmetrically in
Eqs.~1!,~3!.

Therefore, by applying the above technique, we arrive at
the expansion for the action~3!, which, for a one-loop cal-
culation, is all we need~we refer to@13# for details!:

S~w1p,c!5
1

2E d3xgi j ~w!]mw i]mw j

1
1

2E d3xgi j ~w!]mw iDmj i

1
1

2E d3x@gi j ~w!Dmj iDmj j

1Rikl j ]
mw i]mw jjkj l ] 1

i

2E d3xgi j ~w!

3@ c̄ igm]mc j1 c̄ igmGkl
j ]mwkc l #. ~4!

We notice that because of thegi j (w) in the kinetic terms,
the above expansion is not yet in a useable standard form
to obtain Feynman rules for the quantum fields. However,
we can deal with it moving to tangent spaces~labeled by the
Latin indicesa,b,c, . . . ,h) on the manifold by introducing a
vielbeinei

a(w) such thatei
aeja5gi j , and the spin connection

satisfying the relation Diej
a[ej ; i

a 5] iej
a1v i

ab(e)eb j2

G j i
k ek

a50, that is, v i
ab52eb j¹ iej

a52eb j] iej
a1eb jG i j

k ek
a .

Therefore, we can definej i5ea
i ja and ca(x)5ei

ac i(x) so
that, Dmja5]mja1v i

ab]mw ijb and Dmca5]mca1

v i
ab]mw icb.
Now we can define the operatorAm

ab[v i
ab]mw i which

transforms as an SO(n) Yang-Mills gauge potential under
local tangent frame rotations in the manifold. This procedure
then leads to the action

S~w1p,c!5
1

2E d3xgi j ~w!]mw i]mw j

1
1

2E d3x@DmjaDmjb1Riab j]
mw i]mw jjajb#

1
i

2E d3x@ c̄agm]mcb1 c̄agmAm
abcb#. ~5!

The last term in this expression will be denoted bySF , the
fermionic action, and the others bySB , corresponding to the
bosonic part. Hence, the one-loop fermion effects may be
viewed as equivalent to those of the SO(n) gauge theory in
which the fermions are coupled to external gauge fields.
Therefore, we are going to consider the induced Chern-
Simons term in this gauge theory. It should be noticed that
the linear term has been discarded in this expansion. Indeed,
it vanishes if we use the equation of motion ofw and, be-
sides, it only contributes to a field redefinition.

We are now able to compute the Feynman propagators for
the quantum fields and perform the calculation of the one-
loop contribution of the effective action. The method which
we shall employ to generate one-loop Feynman graphs will
be the interaction picture Dyson-Wick perturbation theory in
which the de Witt functional@16# is written in a convenient
way to generate the diagrammatic algorithm. For example, in
our case the one-loop graphs are generated by writing
V@w#5^0ueiSint[ j,c] u0&, with Sint including all terms of Eq.
~5! after extracting the propagators. In fact, in this approach
all the vacuum diagrams are obtained simply computing all
possible Wick contractions involving the quantum fieldsja

and ca. The propagators are extracted from the quadratic
terms in these fields in Eq.~5!. The bosonic and fermionic
ones are, respectively,
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^0uTja~x!jb~y!u0&5dabE d3k

~2p!3

i

~k22m2!
eik~x2y!

5dabD~x2y!,

^0uTca~x!c̄b~y!u0&5dabE d3k

~2p!3

i ~gmkm1m!

~k22m2!
eik~x2y!

5dabSF~x2y!. ~6!

In the above expressions we have assumed that a term such
as

Sm5
m

2i E d3xd2ugi j ~F!F iF j ~7!

has been incorporated in Eq.~1! and also expanded in normal
coordinates to combine with the kinetic terms leading to a
massive theory.

Since we are interested only in graphs withAm
ab external

legs and internal fermion lines there is no need to study the
whole action~5!. Actually, the bosonic interaction part does
not obviously lead to any contribution to the Chern-Simons
term. Moreover, as can be seen in Ref.@15# its linear diver-
gence is canceled by adding a counterterm which, according
to Friedan’s interpretation@12#, requires a change in the ini-
tial geometry due to renormalization. Also, it vanishes for
Ricci-flat manifolds. So we have nothing to worry about in
the bosonic sector of our model. The Chern-Simons term is
really derived from the fermionic integralSF in Eq. ~5!
which is given by

SF5
1

2E d3x@ c̄a~ igm]m2m!ca1 c̄agmAm
abcb#. ~8!

Gathering together all this information we have the follow-
ing objects to consider:

E d3x^0uT@~ c̄agmAm
abcb!~x!u0&, ~9!

E d3xd3y^0uT@~ c̄agmAm
abcb!~x!~ c̄ cgnAn

cdcd!~y!#u0&,

~10!

E d3xd3yd3z^0uT@~ c̄agmAm
abcb!~x!~ c̄ cgnAn

cdcd!~y!

3~ c̄egrAr
e fc f !~z!] u0&. ~11!

Upon contracting thec and moving to momentum space, we
have to calculate several integrals. The first contribution,
corresponding to the tadpole graph, as is easy to verify, is
canceled. So we are going to concentrate on those ones that
are really important: the vacuum polarization and triangle
graphs.

Therefore, we have to calculate

Ppol
mn5E d3k

~2p!3
tr@gmSF~k!gnSF~k1p!#,

P tri
mnr5E d3k

~2p!3
tr@gmSF~k!gnSF~k1p!

3grSF~k1p1q!#. ~12!

Explicitly,

Ppol
mn5E d3k

~2p!3

tr@gmgrkr1m!gn~~k1p!sgs1m!]

~k22m2!@~k1p!22m2#
,

~13!

P tri
mn5E d3k

~2p!3

tr$gm~gaka1m!gn@~k1p!sgs1m#gr@~k1p1q!lgl1m#%

~k22m2!@~k1p!22m2#@~k1p1q!22m#
. ~14!

Before proceeding with our calculation we should first
note that in three-dimensional space-time, the spinor struc-
ture is the same as that in the two-dimensional one and the
Dirac matrices are 232 obeying the relations
$gm,gn%52hmn, CgmC2152gm

T , C52CT, gmgn5gmn

2i emnrgr , wherehmn5(122) is the metric tensor,C is
the charge conjugation matrix, andemnr is the Levi-Civita
tensor which is totally antisymmetric. An explicit represen-
tation satisfying the above isg05s3, g15 is1, g25 is2,
wheres i are the Pauli matrices. Notice that nog5 appears
here.

The integrals~13! and ~14! may be separated into two
main contributions: one arising from a product of an even
number ofg matrices and another one which can lead to a
Chern-Simons-type term. We notice, however, that these in-

tegrals contain linear and logarithmic divergences and thus
must be regularized. To do that, we introduce a heavy Pauli-
Villars regulator field with massM and use the same regu-
larization prescription as in Refs.@4,10#, that is,
Seff@A#→Seff@A#2 limM→`Seff@A,M #. Following this proce-
dure, the above mentioned divergences are eliminated in a
gauge-invariant way and we get a finite result. As matter of
fact, to extract the Chern-Simons-type term from Eqs.~13!
and ~14! we are going to consider only those terms which
involve a product of an odd number ofg matrices and also
have a proportionality factor ofm/umu. In other words, we
shall investigate only terms which have the Levi-Civita ten-
sor structure and are finite asm→`.

Upon evaluating the trace over the Dirac matrices, using
the Feynman parametrization, we can write down the Chern-
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Simons part of the regulated vacuum polarization and the
three-vertex tensors as

PCS
mn5 im~p2,m2!emnrpr , ~15!

PCS
mnr5m~p2,m2!emnr, ~16!

where

m~p2,m2!52
1

4p
mE

0

1 da

A2a~12a!p21m2
1

1

4p

M

uM u
,

~17!

that, by elementary integration, becomes

m~p2,m2!5
1

4pF M

uM u
2

2m

A2p2
arctanA2p2

4m2G . ~18!

Notice that this generated Chern-Simons-type term does
not have a simple form. However, for massless fields, it is
due to the regulator massM only and its action may be
written as

Seff
CS@A#5

1

16p

M

uM u E d3xemnrFFmn
abArab2

2

3
AmabAn

bcArc
a G ,
~19!

where the gauge field strengthFmn
ab is formed from the po-

tential Am
ab .

For massive fermions, for a small momentum behavior,
we can also have an ordinary Chern-Simons coefficient.
In this case, the tensors are expanded aroundp50 and
we get the same expression as in Eq.~19! but now with a
regularization-dependent constant given by«5M /uM u
2m/umu instead ofM /uM u. For instance, if«50, the Chern-
Simons-type term vanishes.

The action~19! closely resembles the Chern-Simons ac-
tion for a Yang-Mills theory. Indeed, to be more precise, we
have been treating from the very beginning, the fieldAm

ab in
our model as a non-Abelian one.

III. THE CHERN-SIMONS TERM
IN THE KÄ HLERIAN MODEL

Now we are going to apply the previous technique to
show how a Chern-Simons-type term can also be generated
in the model~1! extended to accommodateN52 supersym-
metry. As we have already seen, in three dimensions and
N51, any Riemannian manifold can occur as target space.
However, in this space-time, according to Zumino’s theorem
@20#, N52 supersymmetry induces a complex structure and
the manifold is Ka¨hlerian. In other words, the bosonic model
given by the action

E d3xgi j̄ ~f,f̄ !]mf i]mf̄ ~20!

has aN52 supersymmetric extension, withn complex
spinor fields, if and only if the mentric tensorgi j̄ (f,f̄) of
its target space which is a complex manifoldM with holo-

morphic and antiholomorhic coordinatesf and f̄ i5f ī ,
i , ī 51,•••,n, respectively, restricted to be a Hermitian, sati-
fies the Kähler condition

]kgi j̄ ~f,f̄ !5] igk j̄ ~f,f̄ !,

] k̄gi j̄ ~f,f̄ !5] j̄ gi k̄ ~f,f̄ !. ~21!

The action of this model in its component form can be writ-
ten as

S5
1

2E d3xFgi j̄ ~f!]mf i]mf̄ j1 igi j̄ ~f! x̄ igmDmx j

1
1

6
Rī k j̄ l~ x̄ ixk!~ x̄ jx l !G . ~22!

The covariant background method works well as in the
previous case and for the one-loop calculation all we need is

S5E d3x@Ri ā b j̄ ~w,w̄ !]mf i]mf j̄ j ājb2Am ābj ā↔]mjb

1Am b̄
ā

Aāc
m

j b̄jc1 i x̄ agm]mxa2mx̄ axa

1 i x̄ agmAm ābxb#. ~23!

Notice that in the above action all the quantities have already

moved to tangent space andAm
āb5v i

āb]mw i is a potential-
like field which transforms as a gauge connection under the
tangent frame.

This model is also one-loop renormalizable, at least in
Friedan’s sense@21#, and for our purpose we are going to
concentrate on the fermionic part of Eq.~23!. From now on
the calculation follows the same steps as in the previous
section. So using the Dyson-Wick diagrammatic algorithm,
in which we make all possible Wick contractions involving
the quantum fieldsx, we find the following objects to calcu-
late:

E d3x^0uT@~ x̄ agmAm
ābxb!~x!u0&, ~24!

E d3xd3y^0uT@~ x̄ agmAm
ābxb!~x!~ x̄ cgnAn

c̄ dxd!~y!#u0&,

~25!

E d3xd3yd3z^0uT@~ x̄ agmAm
ābxb!~x!~ x̄ cgnAn

c̄ dxd!~y!

3~ x̄ egrAr
ē fc f !~z!] u0&, ~26!

with the propagators given by^0uTja(x)j b̄(y) u0&5

ida b̄D(x2y) and ^0uTxa(x)x b̄(y)u0&5 ida b̄SF(x2y).
Again, using the representation of theg matrices given in

Sec. II, we obtain the same integrals as in Eqs.~13! and~14!.
We have not regarded the ‘‘tadpole’’ contraction since it
vanishes. As before, to derive a Chern-Simons-type term we
select only those terms which can generate it and apply the
Pauli-Villars prescription of regularization. In the present
case we obtain
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Seff
CS@A#52

1

8E d3k

~2p!3

d3p

~2p!3
Am

āb~2k!An āb~2p!

3emnrprm~p2,m2!2
1

24E d3k

~2p!3

d3p

~2p!3

3Am āb~2k2p!An
b c̄~k!Ar c̄

ā
~p!emnrm~p2,m2!.

~27!

Naturally, if we were considering since the beginning a
massless theory, then the massm in the propagators would
serve merely to separate the ultraviolet and infrared diver-
gences, and thus should be put equal to zero at the end of the
calculation. In this case the Chern-Simons-type action would
be given by

Seff
CS@A#5

1

32p

M

uM u E d3xemnrFAm
āb]nAr āb

2
1

3
Am ābAn

b c̄Ar c̄
ā G . ~28!

The same analysis for the infrared regime can also be applied
to Eq.~27! and the interesting structure of the Chern-Simons
term remains.

IV. CONCLUSION

In this paper we have shown how Chern-Simons-type
terms can be generated by fermions in general metric non-
linear s models in three space-time dimensions. We have
also suceeded in computing them in theN51 andN52

supersymmetric models which have, as target spaces, general
Riemannian and Ka¨hler manifolds, respectively. In both
cases, we have considered the supersymmetric fermions
coupled to external fields which transform as SO(n) Yang-
Mills gauge potentials under local tangent frame rotations in
the manifolds. We calculated them explicitly in the frame-
work of the covariant background field method and by using
the interaction picture Dyson-Wick perturbation theory. In-
deed, this approach allows us to express, in a simple way, the
de Witt functional from which we can obtain a diagrammatic
algorithm and investigate the one-loop fermion effects. As
one should expect, the induced Chern-Simons-type terms ob-
tained in the models studied here have the same structure as
those found in usual three-dimensional Yang-Mills theories.
As a matter of fact, we have been treating from the very

beginning the fieldsAm
ab and Am

a b̄ as non-Abelian ones.
Moreover, if we express them in terms of the spin connection
v that, in turn, is a function~a curl! of the vielbeinei

a our
results, even though containing objects refered to a Riemann-
ian target spaces, are closely analogous to those ocurring in
gravity theories in three dimensions@1,22#. Finally, an inter-
esting and attractive issue to be investigated is the one con-
cerning the topological effects of the Chern-Simons-type
terms found on the physics of the models studied here.
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