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We compute explicitly Chern-Simons-type terms induced by fermions coupled to external non-Abelian
gauge fields in metric nonlinear models in three dimensions. We investigate the supersymmetric models
defined on general Riemannian andhika manifolds. The diagrammatic calculation is performed by means of
the interaction picture Dyson-Wick perturbation thedi$0556-282(97)01516-9

PACS numbgs): 11.10.Kk, 11.10.L.m, 12.60.Jv

[. INTRODUCTION gorithm [13] to generate the pertinent Feynman graphs to
calculate them perturbatively.

Since the seminal work of Deser, Jackiw, and Templeton The paper is organized as follows. In Sec. Il we start with
[1] the study of models in three-dimensional space-time hathe three-dimensionalV=1 supersymmetric nonlineas
received considerable attentip2—10]. In that work the au- model defined on a general Riemannian manifold and then
thors studied the gauge vector and gravity models angve show how a Chern-Simons-type term induced by fermi-
showed that a topological term, the Chern-Simons termons coupled to external non-Abelian gauge fields can arise.
arises leading a large number of special and interesting fedd/e also compute it by means of the above mentioned tech-
tures such as a massive gauge field and dynamical gravitpique. In Sec. Il we consider th&=2 supersymmetric ex-
More recently the interest in studying models formulated intension of the previous model, that is, a model defined on a
this space-time has been motivated by their promising conKahler manifold and, by applying the same procedure as
nection to the fractional quantum Hall effect and to high-before, we compute a Chern-Simons-type term generated by
temperature superconductivify6—8]. In fact, the Chern- the fermions. Section IV contains our conclusions.

Simons term can affect the spin and statistics of charged

particles and a fermion-boson transmutation takes fdlate Il. CHERN-SIMONS-TYPE TERM

In this context nonlineas- models have played an important IN THE N=1 SUPERSYMMETRIC ¢ MODEL

role. For instance, th€©(3) or its CP variant without or ) . )

with a Chern-Simons terrfi] and, recently, a S®) quan- The model we shall begin to consider here is the three-

tum nonlinears sigma mode[11] have been very useful in dimensiona_b modelldefined on a general Riemannian mani-
describing physical properties of superconducting materialgold M with metric tensor g;;(®*), where @, for
Also, when defined on a Riemannian manifold with a metrick=1, - . . ., are a set of coordinates on this manifold taken
tensor g;; . But now in another context, they have beent0 befunctions ok”, »=0,1,2, and¥,, a=1,2, where the
proven to be very useful. Indeed, such models have begtter form a two-component Majorana anticommuting
examined in two and three dimensions and it has been agPinor. This model is invariant undev=1 supersymmetry
gued that they can describe the effective low energy of strin@nd can be described by the action

and membrane theorigd2—-15. However, the issue con-

cerning generated Chern-Simons terms by fermions and their L

calculations, which has been investigated in other models by _ _f 3y A2 00.. (B D Db

several methodgl,5], has not been considered yet in general St 4i d*xd6g, (®T)DHDPY, @)
metric nonlinearc models.

As a matter of fact, such terms can be included in a par- .
ticular model by hand with an adjustable coefficient, or bywhere D, is the supercovariant derivativeD ,=d/d 6
the existence of a fermion. Nevertheless, we consider the-i(4/6),, and®' a scalar superfield whose expansion in
latter case much more natural and investigate here the situgerms of the component fields' (the scalar fields ' (the
tion in which we couple supersymmetric fermions to externalMajorana spinor which are the fermionic partiemnd F'
gauge fields so that a so-called induced Chern-Simons-typghe auxiliary fields, in the Majorana represention for the
term can arise. The main goal of this work, therefore, is tomatrices, is given by
show how such terms can be generated in these models and
how to compute them. We do that by using the covariant

background field method combined with the Dyson-Wick al- o — 1—
d'=¢'(x)+ 01/;'(x)+§60F'(x). 2

*Present address: Instituto de”@das, Escola Federal de Engen- Therefore the actiofil) can be alternatively written in terms
haria de ItajubaC.P. 50, Itajuba MG 37500-000, Brazil. Elec- of component fields by substituting the above relation back

tronic address: farnezio@cpd.efei.br into it, integrating over the Grassmann variabldy means
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of the standard rules of Berezin integration, and eliminating , gy 5
the auxiliary fields. Doing so, we get + R0 ¢'d, @' EE]+ Ej d°xgij(¢)
1 3 i g e j o J o, j k, /|
=5 | A 9ij($)9, ' 0" +ig;;(¢) ' y*D .y XL y" o ' + 'y Tid 0 ¢ ] 4
1 By
+ g R (B9 |, () We notice that because of tigg (¢) in the kinetic terms,

the above expansion is not yet in a useable standard form
to obtain Feynman rules for the quantum fields. However,

where @#lﬁ)jzﬁﬂlﬁj+FL|5ﬂ¢kwl, Ffa being the usual we can deal with it moving to tangent spacksbeled by the

Christoffel symbol andR;j,, the curvature tensor of the Latin ipdigesa,b,c, e ’hz on the manifold by introducing a
manifold. vielbeine(¢) such thae'e;, = g,J , and the spm connection

Several remarks on Eq3) are now in order. First, one Sat'SfY'”g the relation Djef=ef;=d;ef+w{"(e)ey;—
can notice that it contains as its bosonic sector the usudli€¢=0, that is, &?°= bJV €] __ebjﬂe +ebjrkek
purely bosonic metric nonlineasr model. Second, even Therefore, we can defing =¢€l,& and YA (x)=ely'(x) so
though it is renormalizable in three dimensions within thethat, D“ga M+ e and  DHyYP=tyR+
large N expansion approach, it is not in the Dyson power-w?b&f‘cp JP.
counting sense. However, it has been recently examined in Now we can define the operat@r‘;bz wiabé'ﬂcpi which
the covariant background field formalism and proved to beransforms as an S@J Yang-Mills gauge potential under
renormalizable at least in one-loop order in a more generdbcal tangent frame rotations in the manifold. This procedure
sense in which the geometry of classical action changes duen leads to the action
to quantum correctiongl5]. In this paper we are going to
deal with perturbative calculations only up to this level,
where physical information can be extracted. Y i j
Let us now consider how a Chern-Simons-type term carP( @+ T Y) = EJ' d°xgij(¢)d*¢'d,
be induced by the fermions of our modé),(3). To extract L
and compute it in the effective action we must calculate the ; -
one-loop amplitudes. We shall begin this calculation by ap- + Ej d*X[DH£%D £+ Riapjd* @' 9,0  £2¢]
plying the covariant background field meth¢d3]. This )
method is a powerful computational tool of the effective ac- ! 3.rTa b, 7a. unab b
tion in quantSm field theorF{)/lG—la. Indeed, it allows us to * Ej ALY 0y PRy ALY ®
compute radiative corrections in a manifestly covariant way
preserving the symmetries of the model under consideration
[18]. For the present model it is already knojr2,13,15,1T  The last term in this expression will be denoted &y, the
and consists in splitting the fielg' into a classicalback-  fermionic action, and the others I84, corresponding to the
ground field ¢' and a quantum fieldr'. A further step is  bosonic part. Hence, the one-loop fermion effects may be
then taken conS|der|ng as a function of a new covariant viewed as equivalent to those of the $(gauge theory in
quantum field¢' in terms of which the expansion in the Rie- which the fermions are coupled to external gauge fields.
mann normal coordinate systdt®] is defined. The fermion  Therefore, we are going to consider the induced Chern-
field ¢/, also transformed to normal coordinates, may be conSimons term in this gauge theory. It should be noticed that
sidered as only a quantum field so that there is nahe linear term has been discarded in this expansion. Indeed,
background-quantum splitting for anticommuting variables.it vanishes if we use the equation of motion @fand, be-
This can be justified since we are just interested in the quarsides, it only contributes to a field redefinition.
tal effect of the fermions introduced supersymmetrically in  We are now able to compute the Feynman propagators for
Egs.(1).(3). the quantum fields and perform the calculation of the one-
Therefore, by applying the above technique, we arrive afoop contribution of the effective action. The method which
the expansion for the actiof8), which, for a one-loop cal- we shall employ to generate one-loop Feynman graphs will
culation, is all we needwe refer to[13] for details: be the interaction picture Dyson-Wick perturbation theory in
which the de Witt functional16] is written in a convenient
way to generate the diagrammatic algorithm. For example, in
10 . o J. our case the one-loop graphs are generated by writing
S+ m,4)= EJ d°xgij (@) 0" ¢'d, Q[ ¢]=(0]€'Snt&¥110), with S, including all terms of Eq.
(5) after extracting the propagators. In fact, in this approach

1 i i all the vacuum diagrams are obtained simply computing all
+ 2f d°xgij(¢)9*¢'D . possible Wick contractions involving the quantum fields
1 and ¢®. The propagators are extracted from the quadratic
. T terms in these fields in Ed5). The bosonic and fermionic
* 2[ d™1gij(¢)D*ED ¢ ones are, respectively,
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3

i ik(x— 3 i@ upab b
S | axomiyaziilo), ©)

= 5*PA(x—y),

©TE0 £ |0)= 5 [

f APy (O| T (WA A% 42 (x) (45" Ay ) ()10,

_ d®k i(y*k,+m) (10)
0l T42(x b 0 :5abf fad e|k(xfy)
(0| Ty2(x) ¥(y)|0) S chTi—
— 5% (x—y). ) f d*xdy 2O TL(* ¥ AL Y™) (X) (Y A ) (y)
In the above expressions we have assumed that a term such o
as X (y5y* A9 (2)]]0). (1D
S“:mf d3xd209ij(<b)¢)id)i 7) Upon contracting they and moving to momentum space, we
2i have to calculate several integrals. The first contribution,

nas been incorporated in BQ) and also expanded in normal (2TCSRTCE0 2 1 CEENE BT B B TN et that
coordinates to combine with the kinetic terms leading to a ' going

massive theory are really important: the vacuum polarization and triangle
; . . b graphs.
Since we are mtergsted only in grgphs V\Aﬁ external Therefore, we have to calculate
legs and internal fermion lines there is no need to study the
whole action(5). Actually, the bosonic interaction part does 3
not obviously lead to any contribution to the Chern-Simons H’”zJ d>k ] 745w (K) y*Se(k+ p)]
term. Moreover, as can be seen in Rdf] its linear diver- pol (2m)3 Y Yor Pl
gence is canceled by adding a counterterm which, according
to Friedan’s interpretatiofil2], requires a change in the ini- K
tial geometry due to renormalization. Also, it vanishes for M_yp:f “ v i
Ricci-flat manifolds. So we have nothing to worry about in i (277)3”[7/ Se(k)y"Se(k+p)
the bosonic sector of our model. The Chern-Simons term is
really derived from the fermionic integrabe in Eq. (5) X yPSe(k+p+a)]. 12
which is given by

Explicitly,
S :EJ d3X[F(I ) _m) a+_a ,uAab b 8
F=5 YEOL MY YRYEALYR] (8)

’”_f d3k [y yPK,+m) y*((K+p)7y,+m)]
(

Gathering together all this information we have the follow- P ) (2m)® (K2=m?)[(k+p)2—m?]
ing objects to consider: 13

W:f d®k tr{y*(y*Ka+ M)y’ T(k+p) 7y, + m]y’[(k+p+a) y, + m]}

" (2m)® (K2—m?)[(k+p)2—m2][(k+p+q)2—m] (19

Before proceeding with our calculation we should firsttegrals contain linear and logarithmic divergences and thus
note that in three-dimensional space-time, the spinor struanust be regularized. To do that, we introduce a heavy Pauli-
ture is the same as that in the two-dimensional one and th¥illars regulator field with mas$/ and use the same regu-
Dirac matrices are 22 obeying the relations larization prescription as in Refs[4,10, that is,
{y*,y"}=279"", CyMC‘1= —y;, C=—CT, y"9"'=0""  Su[A]l— S A]l—limy_..Se[ A,M]. Following this proce-
—ie""Py,, wheren*"=(+——) is the metric tensorC is  dure, the above mentioned divergences are eliminated in a
the charge conjugation matrix, aret”” is the Levi-Civita  gauge-invariant way and we get a finite result. As matter of
tensor which is totally antisymmetric. An explicit represen-fact, to extract the Chern-Simons-type term from EdS)
tation satisfying the above is°=o02, y'=io!, y?*=io?  and(14) we are going to consider only those terms which
where o' are the Pauli matrices. Notice that ng appears involve a product of an odd number ¢f matrices and also
here. have a proportionality factor afi/|m|. In other words, we

The integrals(13) and (14) may be separated into two shall investigate only terms which have the Levi-Civita ten-
main contributions: one arising from a product of an evensor structure and are finite as— .
number ofy matrices and another one which can lead to a Upon evaluating the trace over the Dirac matrices, using
Chern-Simons-type term. We notice, however, that these inthe Feynman parametrization, we can write down the Chern-
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Simons part of the regulated vacuum polarization and th‘?horphm and antiholomorhic coordinates and ¢'= ¢I

three-vertex tensors as i,i =1, --,n, respectively, restricted to be a Hermitian, sati-
fies the Kéler condition

IT&g=ip(p?,m?)e***p,, (15)
TT£2P = (2, m?) e (16) hGij (b, ¢) =30k ( b, d),
where TGiT(b b)) =Tkl b, ). (2D)
The action of this model in its component form can be writ-
1 1 d 1 M
,u(pz,mz):——mf @ = ten as
47" Jo J=a(1-a)p?+m? 47 M| 1 o -
17 S= Ef d°x| 9i7($)d,¢' " ¢ +igiT(d) X' v*D ux’
that, by elementary integration, becomes 1
1M am — +5Rﬁ<ﬂ(xixk)(x"x')}- (22
m?) = ——=arctam\/ — | . (18
P, am|M[ V—p? 4mzl The covariant background method works well as in the

previous case and for the one-loop calculation all we need is
Notice that this generated Chern-Simons-type term does
not have a simple form. However, for massless fields, it is
due to the regulator magddl only and its action may be
written as

S= f BX[Riz5 (¢, @), b Il E3EP— A 2pE% s

+AZKAZ*C§b§C+ X2y 9, xa— Mx®xa

C v, b .3
Sef‘ﬁ:A] |M |f dsXEﬂ P F/J,VApab 3 ,uabA CApC ’ +|Xa’y#AM§)Xb]. (23)

19 . . : "
(19 Notice that in the above action all the quantities have already

where the gauge field strengBf’, is formed from the po- moved to tangent space aWCﬂb 0d,¢' is a potential-
tential Aab like field which transforms as a gauge connectlon under the
For masswe fermions, for a small momentum behaviortangent frame.
we can also have an ordinary Chern-Simons coefficient. This model is also one-loop renormalizable, at least in
In this case, the tensors are expanded aroprdd and Friedan’s sensg21], and for our purpose we are going to
we get the same expression as in EtP) but now with a  concentrate on the fermionic part of E3). From now on
regularization-dependent constant given hy=M/|M| the calculation follows the same steps as in the previous
—m/|m| instead ofM/|M|. For instance, it =0, the Chern- ~ Section. So using the Dyson-Wick diagrammatic algorithm,
Simons-type term vanishes. in which we make all possible Wick contractions involving
The action(19) closely resembles the Chern-Simons ac-the quantum fieldsy, we find the following objects to calcu-
tion for a Yang-Mills theory. Indeed, to be more precise, welate:
have been treating from the very beginning, the fieﬁﬁ in

- i 3 “a.upab_b
our model as a non-Abelian one. f d X<0|T[(Xa7"A2 x°)(x)|0), (24)
lll. THE CHERN-SIMONS TERM I I
IN THE KA HLERIAN MODEL f d3x Py (0| TL(xPy*AZ°X) () (x Sy AL X (y)]]0),
Now we are going to apply the previous technique to (25)
show how a Chern-Simons-type term can also be generated B -
in the model(1) extended to accommodaté=2 supersym- dsxdsydaz<0|-|-[(XayﬂAZbXb)(X)(chyAngd)(y)

metry. As we have already seen, in three dimensions and

N=1, any Riemannian manifold can occur as target space. I

However, in this space-time, according to Zumino’s theorem X (XeyPAﬁfxpf)(z)] |0), (26)
[20], =2 supersymmetry induces a complex structure and _

the manifold is Kalerian. In other words, the bosonic model with the propagators given by(0[T£3(x)£P(y)|0y=

given by the action i6°°A(x—y) and(O[Tx* () x°(y)[0)=16°"Se(x~y).
Again, using the representation of tlrematrices given in
d3xg (. b)d b atd 20 Sec. Il, we obtain the same integrals as in E§8) and(14).
J 07 $)3,d 0" 20 We have not regarded the “tadpole” contraction since it

) _ ) vanishes. As before, to derive a Chern-Simons-type term we
has aN=2 supersymmetric extension, with complex  select only those terms which can generate it and apply the
spinor fields, if and only if the mentric tensgrj(¢#,¢) of  Pauli-Villars prescription of regularization. In the present
its target space which is a complex manifold with holo-  case we obtain
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10 d% d%p — supersymmetric models which have, as target spaces, general
ngf[A]:_gf - SAL(— KA, Z5(—p) Riemannian and Kaer manifolds, respectively. In both
(2m)° (27) cases, we have considered the supersymmetric fermions

coupled to external fields which transform as 8D{rang-

3 3
X €47Pp u(p?,m?) — i d’k d°p Mills gauge potentials under local tangent frame rotations in
P ' 24) (2m)% (2m)® the manifolds. We calculated them explicitly in the frame-
I work of the covariant background field method and by using
XAM;)(—k—p)AEC(k)AZ‘;(p)e“V’J,u(pz,mz). the interaction picture Dyson-Wick perturbation theory. In-

deed, this approach allows us to express, in a simple way, the
(27) de Witt functional from which we can obtain a diagrammatic

Naturally, if we were considering since the beginning aalgorithm and investigate the one-loop fermion effects. As

massless theory, then the magsin the propagators would one should expect, the induced Chern-Simons-type terms ob-

serve merely to separate the ultraviolet and infrared diverza'ned in the models studied here have the same structure as

gences, and thus should be put equal to zero at the end of t ose found in usual three-dimensional Yang-Mills theories.
' s a matter of fact, we have been treating from the very

calculation. In this case the Chern-Simons-type action woul
be given by beginning the fieldsA2® and A% as non-Abelian ones.
Moreover, if we express them in terms of the spin connection
o that, in turn, is a functiorfa cur) of the vielbeine{ our
results, even though containing objects refered to a Riemann-
ian target spaces, are closely analogous to those ocurring in
_ EA fAbciAa_ (28) gravity theories in three dimensiofis,22]. Finally, an inter-

37 wmab™y Tpe esting and attractive issue to be investigated is the one con-

) ] ] _cerning the topological effects of the Chern-Simons-type
The same analysis for the infrared regime can also be appliedrms found on the physics of the models studied here.
to Eq.(27) and the interesting structure of the Chern-Simons
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