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The symmetry-preserving nature of the operator cutoff regularization and its analogy with the invariant
Slavnov regularization are demonstrated at one loop order for pure Yang-Mills theory. The presence of
momentum cutoff scales in our regularization offers a direct application of the Wilson-Kadanoff renormaliza-
tion group to the theory. In particular, via the Schwinger-Dyson self-consistency argument, the one-loop
perturbative equation is dressed into a nonlinear renormalization group evolution equation which takes into
consideration the contributions of higher dimensional operators and provides a systematic way of exploring the
influence of these operators as the strong coupling, infrared limit is approached.@S0556-2821~97!04920-5#
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I. INTRODUCTION

An important technical issue in quantum field theory is
regularization, the removal of divergences which arise from
incorporating the effects of quantum fluctuations. Examples
of the most frequently encountered prescriptions in perturba-
tive calculations include the sharp momentum cutoff, dimen-
sional regularization@1#, z function regularization@2#, Pauli-
Villars procedure@3#, and the proper-time regularization@4#.
Although numerous regularization schemes are available for
making the theory finite and well defined, it is crucial that
the chosen procedure preserves all the symmetries of the
original theory. For example, when considering gauge theo-
ries, not all of the above-mentioned prescriptions can be uti-
lized due to the symmetry constraint.

The construction of a regularization scheme that respects
gauge symmetry has proven to be a difficult task. By far, the
most popular invariant method is dimensional regularization
which is based on the analytic continuation in the number of
space-time dimension. The concept of analytic continuation,
however, was first conceived by Speeret al. in their pioneer-
ing work of analytic regularization@5#, which unfortunately,
does not preserve gauge symmetry. Even though dimen-
sional regularization is applicable to gauge theories, it re-
mains meaningful only within the context of perturbative
framework and is known to become problematic when the
system under investigation has additional symmetry proper-
ties that are dimensionality dependent~e.g., chiral symmetry
or supersymmetry!. In the alternative Slavnov regularization
@6#, both the method of higher covariant derivatives and an
additional auxiliary regulator, usually of Pauli-Villars type,
must be employed to completely regulate all the divergences.
In addition, the prescription must be exercised with caution
in certain gauges in order to reproduce the standard renor-
malization group~RG! coefficient functions for the Yang-
Mills theory @7#. Needless to say, a sharp momentum cutoff
is clearly unsuitable for gauge theories owing to its nonin-
variant nature.

When treating nonperturbative phenomena such as con-
finement in the strong-coupling regime or the high-
temperature electroweak phase transition, the constraint from
the gauge symmetry becomes even more stringent. A non-
perturbative continuum regularization program based on sto-
chastic quantization was developed by Bernet al. @8# a
decade ago. Recently, a nonlocal nonperturbative regulariza-
tion has also been employed to study QED@9#. However, the
most promising nonperturbative method has been the lattice
regularization in which the space-time is discretized. Unfor-
tunately, the regulator also has its drawback in causing the
doubling of the fermionic degrees of freedom. Thus, it would
be desirable to formulate a new invariant scheme which
complements the lattice approach.

The enormous success of the Wilson-Kadanoff renormal-
ization group@10# in analyzing the behavior of the scalar
field theory in the nonperturbative regime has recently
prompted much activity in understanding how the same tech-
nique can be implemented in gauge theories@11,12#. The
prominent feature of the Wilson-Kadanoff RG is the use of
an effective infrared~IR! cutoff which provides a systematic
separation of the large and small momentum modes; an ef-
fective low-energy theory is obtained upon integrating out
the large momentum modes that correspond to the irrelevant
microscopic details@13#. Although no divergence is encoun-
tered when imposing these cutoff scales, their presence, as
mentioned before, is in conflict with gauge or Becchi-Rouet-
Stora~BRS! symmetry, and one can only hope to restore the
symmetry in the limit when the cutoff is removed. Thus, a
gauge invariant formulation of the nonperturbative Wilson-
Kadanoff RG program would entail two essential steps:~i!
the introduction of some momentum cutoff scales without
spoiling gauge symmetry and~ii ! the derivation of the cor-
responding invariant differential RG flow equations, usually
nonlinear in nature, based on the infinitesimal variation of
the IR cutoff scale. In the present work, we demonstrate how
step ~i! can be achieved at the one loop level. Since it is
rather difficult to carry out step~ii ! rigorously, we address
how the one-loop result can help generate nonperturbative
RG evolution equation.

To achieve the first step, we apply the operator cutoff
regularization@14,15#. The novel feature of this prescription

*Electronic address: senben@phy.ccu.edu.tw
†Present address.

PHYSICAL REVIEW D 15 OCTOBER 1997VOLUME 56, NUMBER 8

560556-2821/97/56~8!/5008~26!/$10.00 5008 © 1997 The American Physical Society



is that it resembles the conventional momentum cutoff regu-
lator, yet preserves gauge symmetry despite the presence of
an IR scale. In the operator cutoff formalism, the one-loop
contribution to the effective action is written as

Troc~ lnH2 lnH0!52E
0

` ds

s
rk

~d!~L,s!Tr~e2Hs2e2H0s!,

~1.1!

whereH is an arbitrary fluctuation operator governing the
quadratic fluctuations of the fields andH0 its corresponding
limit of zero background field. The subscript oc implies that
the trace sum is to be operator cutoff regularized using the
d-dimensional smearing functionrk

(d)(s,L) which contains
both the ultraviolet~UV! cutoff L and the IR cutoffk. Since
the usual one-loop quantum correction is obtained by evalu-
ating a Gaussian integral which corresponds to solving for
the eigenvalues of the fluctuation operator, the role of
rk

(d)(s,L) can also been seen as to provide an upper and
lower cutoff on the eigenvalues. We requirerk

(d)(s,L) to
satisfy the following conditions:~1! rk

(d)(s50,L)50, i.e., it
must vanish sufficiently fast nears50 to eliminate the un-
wanted UV divergence;~2! rk50

(d) (s→`,L)51 since the
physics in the IR (s;`) regime is to remain unmodified;
and~3! rk5L

(d) (s,L)50 so that the one-loop correction to the
effective action vanishes at the UV cutoff. In addition, we
have

rk50
~d! ~s,L→`!51, ~1.2!

which reduces the operator cutoff regularization to the origi-
nal Schwinger’s proper-time formalism@4#

Tr~ lnH2 lnH0!52E
0

` ds

s
Tr~e2Hs2e2H0s!. ~1.3!

Thus, the operator cutoff may be regarded as a special case
of proper-time regularization whose invariant nature is based
on the transfer of the space-time singularity into a singularity
in s which is independent of gauge transformation. In fact,
various other prescriptions such as sharp proper-time cutoff,
point-splitting method, Pauli-Villars regulator, operator cut-
off, dimensional regularization, andz function regularization
all belong to the generalized class of proper time and can be
represented by a suitably chosen smearing function@16#.

The presence of an arbitrary IR scalek scale makes the
operator cutoff regularization an ideal candidate for examin-
ing the RG flow of the theory using the Wilson-Kadanoff
approach, with the procedure of blocking transformation@17#
being taken over by the smearing functionrk

(d)(s,L). Once
an IR cutoff is introduced, the corresponding RG equation
can be obtained by varying the cutoff infinitesimally. For
scalar theory, it suffices to employ a sharp momentum cutoff
and the RG improved equation for the blocked potential
Uk(F) takes on the following form~see the form in Appen-
dix A!:

k]kUk~F!52SdkdlnS k21Uk9~F!

k21Uk9~0!
D ,

Sd5
2

~4p!d/2G~d/2!
. ~1.4!

One can readily verify@15# that when choosing the smearing
function to be of the form

rk
~d!~s,L!5r~d!~L2s!2r~d!~k2s!5

2sd/2

G~d/2!
E

k

L

dzzd21e2z2s

5
2sd/2

SdG~d/2!
E

z

8
e2z2s5

1

G~d/2!
GFd

2
;k2s,L2sG ,

~1.5!

with

E
z
5E ddz

~2p!d , E
z

8
5SdE

k

L

dz zd21, ~1.6!

the same sharp momentum cutoff RG equation is obtained.
As for coefficients such as the wave function renormalization
constantZk that are associated with the higher order~cova-
riant! derivative terms,rk

(d)(s,L) corresponds to a smooth
regulator.

While the Wilson-Kadanoff RG equation can be easily
obtained in the operator cutoff formalism for the scalar
theory, it turns out to be a notorious difficult task for gauge
theories due to the symmetry constraint. In fact, all the at-
tempts made so far have either broken the symmetry or have
lead to difficulties such as the dependence of the blocked
action on two gauge fields: a classical average and a back-
ground@12#. Because of the difficulty in providing a rigorous
derivation of an evolution equation which manifestly pre-
serves gauge symmetry, we propose in this paper a more
modest alternative. The methodology we adopt here is to first
apply the operator cutoff prescription to regularize the one-
loop contribution of the non-Abelian Yang-Mills theory@18#.
A linear differential flow equation is then obtained by an
infinitesimal variation of the IR cutoff fromk to k2Dk.
Albeit gauge symmetry is completely preserved, the equation
only incorporates the perturbative one-loop contribution. As
an improvement, we use the Schwinger-Dyson self-
consistency argument and turn the equation into a nonlinear
RG evolution equation which can provide a resummation
over the higher order nonoverlapping loop diagrams. As
demonstrated by Wegner and Houghton@19#, since the
higher loop contributions are suppressed by additional pow-
ers ofDk, the equation which is based on the one-loop func-
tional form may be regarded as being ‘‘exact.’’ Indeed, RG
equations obtained in this manner have been used for explor-
ing the critical behavior of scalar field theories and other
nonperturbative phenomena with enormous success. In par-
ticular, the three-dimensional exponents extracted from this
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approach agree remarkably well with that ofe expansion
@20#. Thus, despite the fact that our nonlinear RG equation
for gauge theories cannot be derived from the first principle,
we believe that its solution can offer important insights into
the nonperturbative nature of gauge theories in the IR re-
gime.

The organization of the paper is as follows. In Sec. II, we
review the essential features of the operator cutoff regular-
ization and illustrate how it can be used in conjunction with
covariant derivative expansion. An analogy between our for-
malism and the Slavnov regularization is drawn. We also
show how the smearing function can be modified to provide
a faster convergence. In Sec. III we construct the operator
cutoff effective Lagrangian which reproduces the effective
propagators. Details of the perturbative computation of the
non-Abelian Yang-Mills blocked action in the covariant
background method are given in Sec. IV. We illustrate how
the symmetry is spoiled when the theory is expanded in
power series of the background fieldĀm

a which is a nonin-
variant quantity. The RG pattern of the blocked action is
investigated in Sec. V. Working in Feynman gauge,a51,
we demonstrate how operator cutoff regularization com-
pletely regularizes the one-loop divergences and leads to the
correctb function which governs the evolution of the gauge
coupling constant. In Sec. VI we apply the operator cutoff
prescription to examine the SU~2! Yang-Mills theory in a
constant chromomagnetic field configuration. Since the
theory develops an imaginary part which signals instability
of the vacuum as the momentum scale falls belowAgB, we
choose the IR cutoff to be such thatk2.gB, thereby elimi-
nating the difficulties associated with an unstable vacuum.
Our analysis shows that if only the real part of the potential
is considered, the existence of the ‘‘Savvidy vacuum’’ is
intimately linked to the existence of a nontrivial fixed point
in the chromomagnetic field background. Our search for such
a fixed point gives a negative result. Section VII is reserved
for summary and discussions. In Appendix A we provide the
details of calculating the blocked potentials forlf4 theory
and scalar electrodynamics ind54 using operator cutoff
regularization. In Appendix B, we compare and contrast
various prescriptions that belong to the generalized class of
proper-time regularization. In particular, we show how di-
mensional regularization can be modified to incorporate cut-
off scales. The connection between momentum regulator and
dimensional regularization is readily established in our ‘‘di-
mensional cutoff’’ scheme. Momentum cutoff scales can
also be brought into thez function regularization in a similar
manner.

II. OPERATOR CUTOFF REGULARIZATION

As mentioned in the Introduction, operator cutoff regular-
ization not only allows us to bypass the complications of
dealing with divergences, it also encompasses the features of
momentum space blocking transformation in a symmetry-
preserving manner. With the smearing functionrk

(d)(s,L)
given in Eq.~1.5!, the operator cutoff regularized propagator
and the one-loop contribution of the blocked action become,
respectively,

1

HnU
oc

5
1

G~n!
E

0

`

ds sn21rk
~d!~s,L!e2Hs

5
1

Hn

2G~n1d/2!

dG~n!G~d/2! H S L2

H D d/2

3FS d

2
,

d

2
1n,11

d

2
;2

L2

H D2S k2

HD d/2

3FS d

2
,

d

2
1n,11

d

2
;2

k2

HD J , ~2.1!

and

Troc~ lnH2 lnH0!52E
0

` ds

s
rk

~d!~s,L!Tr~e2Hs2e2H0s!

52
2

d
TrH S L2

H D d/2

FS d

2
,

d

2
,11

d

2
;2

L2

H D
2S L2

H0
D d/2

FS d

2
,

d

2
,11

d

2
;2

L2

H0
D

2S k2

HD d/2

FS d

2
,

d

2
,11

d

2
;2

k2

HD
1S k2

H0
D d/2

FS d

2
,

d

2
,11

d

2
;2

k2

H0
D J ,

~2.2!

where

F~a,b,c;b!5B21~b,c2b!E
0

1

dx xb21~12x!c2b21

3~12bx!2a ~Rec.Reb.0! ~2.3!

is the hypergeometric function symmetric under the ex-
change betweena andb, and

B~x,y!5
G~x!G~y!

G~x1y!

5E
0

1

dttx21~12t !y21 ~Rex,Rey.0! ~2.4!

is the Eulerb function. For n51 and 2, Eq.~2.1! gives,
respectively,

1

HU
oc

5E
0

`

dsrk
~d!~s,L!e2Hs

5
1

H H S L2

H1L2D d/2

2S k2

H1k2D d/2J , ~2.5!

and
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1

H2U
oc

5E
0

`

dssrk
~d!~s,L!e2Hs

5
1

H2 H S L2

H1L2D d/2F11
d

2

H
H1L2G

2S k2

H1k2D d/2F11
d

2

H
H1k2G J . ~2.6!

Considerd54, where

rk
~4!~s,L!5~11k2s!e2k2s2~11L2s!e2L2s. ~2.7!

We have

1

HU
oc

5
1

H1k22
1

H1L22
L2

~H1L2!2 1
k2

~H1k2!2 ,

~2.8!

and

Troc~ lnH2 lnH0!5TrH lnF H1k2

H01k2

H01L2

H1L2 G
2

L2~H2H0!

~H1L2!~H01L2!

1
k2~H2H0!

~H1k2!~H01k2!J , ~2.9!

which shows thatL may be interpreted as the mass of some
ghost particles. This interpretation follows from the relative
negative sign in the modified propagator. Equivalently, one
may also say that the effect of the extraL-dependent terms is
to make the theory superrenormalizable by incorporating
higher order derivative terms. For example, Eq.~2.8! implies
that the kinetic term in the scalar theory is to be modified as

2
1

2
f]2f→

1

2
fF2]21

2

L2 ~2]2!21
1

L4 ~2]2!3Gf.

~2.10!

On the other hand, the IR scalek may be thought of as an
additional mass which makes an overall shift on the mass
parameterm2→meff

2 5m21k2. Thus, the scalek is useful not
only for the purpose of studying RG, but can also be em-
ployed as an IR regulator for the theory containing massless
modes.

Our operator cutoff scheme actually resembles the invari-
ant Slavnov regularization which involves both the higher
covariant derivative method and a secondary Pauli-Villars
regulator. The analogy can be readily seen from Eqs.~2.8!
and ~2.9!, where we see how it changes the propagator and
the fluctuation operators; namely, the modification on the
former is similar to that of the higher covariant derivative
method, and the latter to the Pauli-Villars regularization. In
other words, both ingredients of the Slavnov regularization
are encapsulated by a single smearing functionrk

(d)(s,L) in
the operator cutoff prescription. Moreover, as we shall dem-
onstrate later, the presence of cutoff scales in the proper-time
integration is not only guaranteed to give finite results, but
also lead to the correct RG coefficient functions. In the case

when stronger divergences are encountered, one may choose
the smearing function to be of the form

rk
~d,m!~s,L!5

2sm1d/2

SdG~m1d/2!
E

z

8
~z2!me2z2s

5
1

G~m1d/2!
GFm1

d

2
;k2s,L2sG ,

~2.11!

where rk
(d,0)(s,L)5rk

(d)(s,L), and obtain a faster conver-
gence@15#. The connection betweenrk

(d,m)(s,L) and the mo-
mentum regularization can be seen from

E
p

8 ~p2!m

~p21a!n 5
1

G~n!
E

0

`

ds sn21e2asE
p

8
~p2!me2p2s

5
G~m1d/2!

~4p!d/2G~d/2!G~n!

3E
0

`

ds sn212m2d/2e2asrk
~d,m!~s,L!.

~2.12!

Before examining Yang-Mills theory, we first consider
the following covariant fluctuation kernel:

H52D21m21Y~x!, ~2.13!

whereDm is the covariant derivative for the gauge group,m2

the mass for the scalar field interacting with the gauge field
Am

a (x), and Y(x) a matrix-valued function ofx describing
the interaction between the scalar particles. The indexa runs
over the dimension of the gauge~color! group. One may also
write Y5YaTa, where theTa’s are the anti-Hermitian gen-
erators of the gauge group satisfying

@Ta,Tb#5 f abcTc, tr~TaTb!52
1

2
dab, ~2.14!

with f abc being the structure constants and tr the summation
over only the internal indices. In the fundamental SU(N)
representation, we have

Ta5 Hsa/2i , a51, . . . ,3, n52,
la/2i , A51, . . . ,8, N53, ~2.15!

wheresa and la are, respectively, the Pauli and the Gell-
Mann matrices. When operating onY with the covariant de-
rivative, we have

Dm
abY5~gab]m2g fabcAm

c !Y, ~2.16!

or DmY5]mY1@Am ,Y#, where Am5gAm
a Ta and g is the

renormalized coupling constant.
The unregularized one-loop contribution to the effective

action is
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S̃~1!5
1

2
Tr~ lnH2 lnH0!

52
1

2 E
x
E

0

` ds

s
tr^xu~e2Hs2e2H0s!ux&,

E
x
5E ddx, ~2.17!

where the diagonal part of the ‘‘heat kernel’’ is written as

h~s;x,x!5^xue2Hsux&5E
p
^xup&e2Hxs^pux&

5E
p
e2 ipxe2Hxseipx5E

p
e2~p222ip•D1Hx!s1

5E
p
e2~p21m2!se~2ip•D1D22Y!s1, E

p
5E ddp

~2p!d .

~2.18!

The above expression is derived by employing the plane
wave basisup& with ^xup&5e2 ipx and the commutation re-
lations @16,21#

@Dm ,eipx#5eipxipm , @Hx ,eipx#5eipx~p222ip•D !.
~2.19!

The factor1 indicates that the operatorDm acts on the iden-
tity. Splitting thes integral into two partss.s0 ands,s0 ,
for the latter region one can use the Baker-Campbell-
Hausdorf formulas to expand the operators in the exponential
in a power series ofs:

h~s;x,x!5e2~m21Y!sE
p
e2p2sH 11D2s1

D4

2
s22

@D2,Y#

2
s2

2
2p2

d FD2s21
1

3
~@@D2,Dm#,Dm#

13Dm@D2,Dm#13D42@D2,Y#

2@Dm ,Y#Dm!s3G1
2~p2!2

3d~d12!
@D41~DmDn!2

1DmD2Dm#s41•••J 1, ~2.20!

where we have used the O(d)-invariant property of the mo-
mentum integrals

E
p
pm1

pm2
•••pm2m

e2p2s5
Tm1m2•••m2m

m G~d/2!

2mG~m1d/2!
E

p
~p2!me2p2s

5
Tm1m2•••m2m

m

~4ps!d/2~2s!m , ~2.21!

Tm1m2•••m2m

m 5dm1 ,m2
•••dm2m21 ,m2m

1permutations.

~2.22!

The approximation, often referred to as the Seeley-DeWitt
expansion@22#, allows us to parametrize the theory with
symmetry-preserving local operators. Since the singularity
arising from taking the space-time trace is transferred to the
proper-time integration, we insert the regulating smearing
functionrk

(d)(s,L) into Eq.~2.20! and obtain the correspond-
ing ‘‘blocked’’ heat kernel

hk~s;x,x!5
e2~m21Y!s

~4ps!d/2 rk
~d!~s,L!H 11

1

12
@FmnFmn

22~D2Y!#s21O~s3!J , ~2.23!

which is in agreement with the result found in@21# for
rk

(d)(s,L)51. Gauge symmetry is easily seen to be pre-
served by noting thathk(s;x,x) consists of gauge invariant
quantities only. Had we used momentum cutoff regulariza-
tion instead, there would be contribution from noninvariant
operators D2, DmYDm , YD2, D4, and DmD2Dm @15#.
Higher order invariant contributions to Eq.~2.23! can also be
included, and the details can be found in@16#.

III. OPERATOR CUTOFF YANG-MILLS LAGRANGIAN

In this section, we apply the formalism discussed earlier
to the Yang-Mill theory. For simplicity, we neglect the mat-
ter fields and consider the pure Yang-Mills Lagrangian

LL5
ZL

21

4
Gmn

a Gmn
a , ~3.1!

whereZL is the bareL-dependent wave function renormal-
ization constant. The field strengthGmn

a is given by

Gmn
a 5]mAn

a2]nAm
a 1g fabcAm

b An
c ~3.2!

or

Gmn5gGmn
a Ta5]mAn2]nAm1@Am ,An# ~3.3!

in the matrix-valued representation. To set up the Wilson-
Kadanoff RG formalism, the conventional approach is to first
go to the momentum space and divide the modes into

Am
a ~p!5H Ām

a ~p!, 0<p<k,

jm
a ~p!, k,p,L,

~3.4!

whereĀm
a andjm

a are, respectively, the slowly varying back-
ground and the fast-fluctuating fields. The difficulty associ-
ated with such a sharp separation is that it inherently breaks
gauge symmetry. On the other hand, in the symmetry-
preserving operator cutoff prescription,rk

(d)(s,L) generally
corresponds to a smooth regulator with no sharp boundary
between the modes. Thus, our interpretation ofk as the IR
scale is only approximate.

In the next step of RG, we integrate out the irrelevant
short-distance~fast-fluctuating! modes j having momenta
betweenk andL and obtain a low-energy effective blocked
action which depends only on the slowly varying back-
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ground fieldsĀ with momenta belowk. In the background
field formalism@23#, one introduces

LGF5
1

2a
@Dm~Ā!Am

a #2 ~3.5!

and

LFPG5x†D2~Ā!x, ~3.6!

as the desired gauge-fixing condition and the Faddeev-Popov
ghost term, respectively. Adding up the above, the Lagrang-
ian takes on the form

L~Ām1jm ,x̃†1h†,x̃1h!

5LL1LGF1LFPG5
ZL

21

4
Fmn

a Fmn
a 1

1

2
jm

a

3F2ZL
21D2~Ā!gmn1S ZL

212
1

a DDm~Ā!Dn~Ā!Gab

jn
b

2ZL
21g facbjm

a Fmn
c jn

b1x̃†aD2~Ā!abx̃b

1h†aD2~Ā!abhb1dL~Ām ,jm!, ~3.7!

whereFmn
a 5Gmn

a (Ā) denotes the background field strength,
and h† and h are the fast-fluctuating modes for the ghost
fields having momenta betweenk and L. The higher order
self-interaction is represented by

dL~Ām ,jm!5ZL
21Fg fabc~Dm~Ā!jn!ajm

b jn
c

1
1

4
g2f abcf adejm

b jn
cjm

d jn
eG1••• . ~3.8!

Notice thatL is now invariant under the simultaneous BRS
transformations ofAm

a , x, andx†. The partition function can
be written as

Z5E D@Am#D@x#D@x†#e2S@ Ām1jm , x̃†1h†, x̃1h#

5E D@Ā#D@ x̃#D@ x̃†#e2 S̃k@ Ām , x̃†, x̃ #, ~3.9!

where

e2 S̃k@ Ām , x̃†, x̃ #5E D@jm#D@h#D@h†#e2S@ Ām1jm , x̃†1h†, x̃1h#.

~3.10!

By substituting Eq.~3.7! into Eq.~3.10! and dropping higher
order fluctuating terms, the operator cutoff regularized
blocked action up to the one-loop order reads

S̃k@Ā,x̃†,x̃ #5
ZL

21

4 E
x
Fmn

a Fmn
a 1

1

2
Troc@ ln KĀ2 ln K0#

2Troc@ lnOĀ2 lnO0#1x̃†aD2~Ā!abx̃b,

~3.11!

where, by the help of

Dm
ab~Ā!Dn

bc~Ā!2Dn
ab~Ā!Dm

bc~Ā!5g fabcFmn
b , ~3.12!

the gauge and the ghost kernels become

K
mn,Ā

ab
5

]2S

]Am
a ~x!]An

b~y!
U

Ā, x̃†5 x̃50

5H 2FD2gmn2S 12
1

a DDmDnGab

12g fabcFmn
c J d4~x2y! ~3.13!

and

O
Ā

ab
52

]2S

]x†a]xbU
Ā, x̃†5 x̃50

52D2~Ā!abd4~x2y!,

~3.14!

respectively. In the above, the covariant derivatives are un-
derstood to be defined atĀ. Within the accuracy of the one-
loop approximation, we also setZL

21 in Kmn
ab to unity. Here

Troc denotes the trace sum over the~operator cutoff regular-
ized! space-time, Lorentz indices, as well as the color indices
and tr is for the latter two only. When no confusion arises,
internal indices shall be suppressed for brevity.

The fluctuation operator~3.13! in momentum space can
be written as

Kmn,0
ab 5p2dabS Tmn1

1

a
LmnD , ~3.15!

where

Tmn5gmn2
pmpn

p2 , Lmn5
pmpn

p2 , ~3.16!

with (Tmn)25Tmn and (Lmn)25Lmn . The propagator, de-
fined as the inverse ofKmn,0

ab , is

dmn
ab5

dab

p2 ~Tmn1aLmn!. ~3.17!

Similarly, for the ghost propagator, one has

Dab5
dab

p2 . ~3.18!

Using Eqs.~2.8! and~2.9! and settingk50, we now have the
operator cutoff regularized propagators~denoted with a tilde!

dmn
ab→d̃mn

ab5
dab

p2 ~a1Tmn1a2Lmn! ~3.19!

and

Dab→D̃ab5a1

dab

p2 , ~3.20!

where
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a15S 11
p2

L2D 22

, a25S 11
1

a

p2

L2D 22

. ~3.21!

This choice also leads to a ‘‘factorization’’ of the propaga-
tors. We also see that in the Feynman gauge wherea51, the
gauge field propagator simplifies todmn

ab5a1dabgmn /p2. In
addition, the original propagators are recovered in the limit
L→`.

What is the form of the effective Lagrangian which repro-
duces these effective propagators? Certainly the original
gauge sector must be changed to

LL→L̃L5
ZL

21

4
Gmn

a S 12
D2~Ā!

L2 D 2

Gmn
a . ~3.22!

Similarly, one may show that

LGF→L̃GF5
1

2a
@Dm~Ā!Am

a #S 12
1

a

D2~Ā!

L2 D 2

@Dm~Ā!Am
a #,

~3.23!

and

LFPG→L̃FPG5x†S 12
D2~Ā!

L2 D 2

D2~Ā!x. ~3.24!

Adding these all up, the operator cutoff regularized Lagrang-
ian becomes

LL
oc5

ZL
21

4
Gmn

a S 12
D2~Ā!

L2 D 2

Gmn
a 1

1

2a
@Dm~Ā!Am

a #

3S 12
1

a

D2~Ā!

L2 D 2

@Dm~Ā!Am
a #1x†S 12

D2~Ā!

L2 D 2

3D2~Ā!x. ~3.25!

One may verify thatLeff indeed yields the desired propaga-
tors d̃mn

ab and D̃ab given in Eqs.~3.19! and ~3.20!, and the
original symmetry is fully preserved.

In the largep limits, both d̃mn
ab and D̃ab behave as 1/p6,

which makes the theory superrenormalizable. However, the
regularization is only partial and the one-loop divergences
remain unregularized, as can be seen from the power count-
ing of the superficial degree of divergencevL @7#:

vL5424~L21!2EA2
7

2
Eg , ~3.26!

where L, EA , and Eg are the numbers of loops, external
gauge field lines, and external ghost field lines, respectively.
A complete removal of the one-loop divergences would re-
quire an auxiliary regulator which was taken to be Pauli-
Villars by Slavnov@6#. The infinities in the Pauli-Villars pro-
cedure are controlled by modifying the one-loop contribution
as ~see Appendix B!:

TrlnS HH0
D→TrpvlnS HH0

D5TrlnF S H1k2

H01k2D SH01L2

H1L2 D G ,
~3.27!

which, apart from some higher-order contributions, is pre-
cisely what one obtains in Eq.~2.9! using the operator cutoff
regularization. In fact, it is possible to chooserk

(d)(s,L)
which completely simulates the Pauli-Villars. Thus, operator
cutoff regularization encompasses both features of higher co-
variant derivative method and the Pauli-Villars. The freedom
to chooserk

(d)(s,L) makes it a more general invariant pre-
scription as that by Slavnov.

IV. PERTURBATIVE EXPANSIONS

Since the Yang-Mills blocked action is generally a com-
plicated object even at the one-loop level, an approximate
solution exists only in certain energy regime. The renown
property of asymptotic freedom in the large momentum limit
allows for the smalls expansion of the heat kernel. However,
to preserve gauge symmetry, the expansion should be carried
out in a manner such that all the coefficients consist of
gauge-invariant quantities only. This is achieved by employ-
ing the Schwinger-DeWitt covariant derivative expansion
method@24#. On the other hand, a noncovariant prescription
such as expanding the theory in power series of the nonin-
variant background fieldĀ is incompatible with gauge sym-
metry. Below we describe both methods and illustrate how
the symmetry is violated by the latter.

A. Covariant derivative expansion

To approximate the one-loop blocked action in Eq.~3.11!
using covariant derivative expansion, we apply the proce-
dures outlined in Sec. II. The details have been worked out
by D’yakonovet al. in @25#, and we recapitulate here to elu-
cidate its connection with the operator cutoff regularization.

For the ghost kernel, one has

Troc lnSOĀ

O0
D

52E
x
E

0

` ds

s
rk

~d!~s,L!tr^xu~e2OĀs2e2O0s!ux&

52E
x
E

0

` ds

s
rk

~d!~s,L!tr

3E
p
e2p2s(

n51

`
sn

n!
~2ip•D1D2!n1

52
1

12~4p!d/2 E
x
E

0

`

dss12d/2rk
~d!

3~s,L!trH @Dm ,Dn#21
s

15
@26O11O214O313O4

13O5#1O~s2!J , ~4.1!

where
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O15@Dm ,Dn#@Dn ,Dr#@Dr ,Dm#,

O25@Dm ,@Dm ,Dn##@Dr ,@Dr ,Dn##,

O35@Dm ,@Dn ,Dr##@Dm ,@Dn ,Dr##,

O45@Dm ,†Dm ,@Dn ,Dr#‡#@Dn ,Dr#,

O55@Dn ,Dr#@Dm ,†Dm ,@Dn ,Dr#‡#. ~4.2!

Noting that @Dm ,Dn#ab5g facbFmn
c and f abcf abd

5dcdC2(G) where C2(G) is a Casimir operator with
C2(G)5N for G5SU(N), the trace over the internal indices
can now be summed and one obtains

tr@Dm ,Dn#@Dm ,Dn#52C2~G!F2 ,

trO152
C2~G!

2
F3 , trO252C2~G!I3 ,

trO352trO452trO552C2~G!~gF32I3!, ~4.3!

where

F25g2Fmn
a Fmn

a ,

F35g3f abcFmn
a Fnr

b Frm
c ,

I35g2~Dm
abFmn

b !~Dr
acFrn

c !, ~4.4!

are the leading-order local gauge-invariant operators. Notice
that I3 is identically zero ifFmn

b satisfies the classical equa-
tion of motion Dm

abFmn
b 50. Substituting the above expres-

sions into Eq.~4.1! gives

Troc lnSOĀ

O0
D5

C2~G!

12~4p!d/2 E
x
E

0

`

ds s12d/2rk
~d!~s,L!

3HF21
1

15
~F323I3!s1O~s2!J .

~4.5!

Repeating the same procedure for the gauge kernel, we have

Troc lnSKĀ

K0
D52

C2~G!

3~4p!d/2 E
x
E

0

`

ds s12d/2rk
~d!~s,L!

3H 5F22
1

15
~F3127I3!s1O~s2!J .

~4.6!

Thus, the one-loop contribution toS̃k can be written as

S̃k
~1!52

C2~G!

12~4p!d/2 E
x
E

0

`

ds s12d/2rk
~d!~s,L!

3H 11F22
1

15
~F3157I3!s1O~s2!J . ~4.7!

For d54, thes integration can be carried out using

E
0

`

ds snrk
~4!~s,L!

5H ~n12!G~n11!~k22~n11!2L22~n11!!, n>0,

lnS L2

k2 D , n521,

~4.8!

and the invariant blocked action up to the one-loop order can
be written asS̃k5*xL̃k , where the effective blocked La-
grangian reads

L̃k5
1

4g2 FZL
212

11g2C2~G!

48p2 lnS L2

k2 D GF21
C2~G!

1440p2

1

k2

3~F3157I3!1x̃†aD2~Ā!abx̃b1•••

5
Zk

21

4g2 F21
C2~G!

1440p2

1

k2 ~F3157I3!1x̃†aD2~Ā!abx̃b

1••• , ~4.9!

with

Zk
215ZL

212
11g2C2~G!

48p2 lnS L2

k2 D
511

11g2C2~G!

48p2 lnS k2

m2D . ~4.10!

Notice that the logarithmic divergence associated withF2 is
now cancelled by setting

ZL
21511

11g2C2~G!

48p2 lnS L2

m2D . ~4.11!

Several comments are in order. First of all, since the gauge
fields are massless, the renormalization condition is defined
at an off-shell subtraction pointm̃5m/p, i.e.,gk5m5g. The
effective blocked Lagrangian obtained in Eq.~4.9! is com-
pletely local, with the higher dimensional invariant operators
being suppressed by at leastk2 in the largek limit. In fact,
our local approximation is analogous to the inverse mass
expansion considered in@16#. Equation ~4.9! can also be
compared with the low-energy blocked Lagrangian of the
scalar theory in powers of derivatives

L̃k5 (
n50

`

Zk
~2n!~F!~]mF!~2n!5Uk~F!1

Zk~F!

2
~]mF!2

1Yk
1~F!~]mF!41Yk

2~F!~F]2F!2

1Yk
3~F!F2~]m]nF!~]m]nF!1O~]6!, ~4.12!

with an important distinction that the latter is applicable only
in the smallk limit.

B. Noncovariant expansion

Instead of using the covariant derivative expansion which
allows us to approximate Eqs.~3.13! and~3.14! with gauge-
invariant operators, let us inquire what happens when the
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expansion parameter is the background fieldĀm
a which is a

noninvariant quantity. Following the perturbative formalism
developed in@4# and working in momentum space where
]m→ ipm , Eqs.~3.13! and ~3.14! can be rewritten as@26#

Kmn
ab5H 2FD2gmn2S 12

1

a DDmDnGab

12g fabcFmn
c J d4~x2y!

→gmn@p2dab2 ig f acb~p•Āc1Āc
•p!

2g2f amcf clbĀl
mĀl

l #12g fabcFmn
c 2S 12

1

a D
3@pmpndab2 ig f acb~pmĀn

c1Ām
c pn!

2g2f amcf clbĀm
mĀn

l #, ~4.13!

and

Oab52~D2!abd4~x2y!→p2dab2 ig f acb~p•Āc1Āc
•p!

2g2f amcf clbĀl
mĀl

l . ~4.14!

By splitting the kernel asH5H01HI whereHI accounts for
the interactions, an approximation in powers ofHI can be
obtained as

Tr~e2Hs!5Tr~e2H0s!1E
0

`

dl Tr~HIe
2~H01lHI !s!

5TrH e2H0s1~2s!e2H0sHI

1
~2s!2

2 E
0

1

du1e2~12u1!H0sHIe
2u1H0sHI

1
~2s!3

3 E
0

1

du1u1E
0

1

du2

3e2~12u1!H0sHIe
2u1~12u2!H0sHIe

2u1u2H0sHI

1•••J . ~4.15!

Applying the above expansion formula to Eqs.~4.13! and
~4.14! and keeping only the terms which are quadratic inĀ
gives

Tr~e2Oabs!5TrdabH e2p2s2se2p2s~2g2f amcf clbĀl
mĀl

l !

1
s2

2 E
0

1

due~12u!p2s@2 ig f acl~p•Āc1Āc
•p!#

3e2up2s@2 ig f lmb~p•Ām1Ām
•p!#1•••J ,

~4.16!
and, in Feynman gauge wherea51,

Tr~e2Kmn
abs!5TrdabH gmne2p2s2se2p2s

3~2g2f amcf clbgmnĀl
mĀl

l !

1
s2

2 E
0

1

du e~12u!p2s

3@2 ig f aclgmr~p•Āc1Āc
•p!

22g faclFmr
c ~Ā!#e2up2s@2 ig f lmbgrn~p•Ām

1Ām
•p!22g flmbFrn

m ~Ā!#1•••J . ~4.17!

Although the above expressions are no longer gauge invari-
ant, let us proceed and see how the symmetry can be recov-
ered.

Concentrating on thed54 case and inserting a complete
orthonormal set of momentum statesup& satisfying

E
p
up&^pu51, ^pup8&5~2p!4d4~p2p8!,

^xup&5eip•x, ^puAmup8&5Am~p2p8!, ~4.18!

we obtain

Tr E
0

1

du e2~12u!p2s~p•Āc1Āc
•p!e2up2s~p•Āc1Āc

•p!

5tr E
0

1

duE
p,q

e2@~12u!p21uq2#s~p1q!m~p1q!n

3Ām
c ~p2q!Ān

c~q2p!

5
1

16p2s2 tr E
0

1

duE
p
Ām

c ~p!Ān
c~2p!e2u~12u!p2s

3F2gmn

s
1~2u21!2pmpnG . ~4.19!

The above expression is arrived at by first shifting the vari-
ablep→p1q followed by q→q2(12u)p, and theq inte-
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gration using O~4! invariance. Regularizing the integral withrk
(4)(s,L) in the operator cutoff formalism then gives

TroclnO5
g2C2~G!

16p2 E
p
Ām

c ~p!Ān
c~2p!H gmnE

0

` ds

s2 rk
~4!~s,L!2

1

2 E
0

` ds

s
rk

~4!~s,L!

3E
0

1

du e2u~12u!p2sF2gmn

s
1~2u21!2pmpnG J

5
g2C2~G!

32p2 E
p
Fmn

a ~p!Fmn
a ~2p!E

0

` ds

s2 rk
~4!~s,L!

1

p2 H 12
Ap

ps1/2 e2p2s/4ErfiS ps1/2

2 D J , ~4.20!

where Erfi(x)5(2/Ap)*0
xdt et2, and we have used the approximation

1

2
Fmn

c ~p!Fmn
c ~2p!5~p2gmn2pmpn!Ām

c ~p!Ān
c~2p!1••• . ~4.21!

The substitution can be justified by noting that the differences are of higher order inĀ. Similarly, the gauge field contribution
reads

TroclnK5
g2C2~G!

4p2 E
p
Ām

c ~p!Ān
c~2p!gmnE

0

` ds

s2 rk
~4!~s,L!2

1

2
Tr E

0

`

ds srk
~4!~s,L!

3S E
0

1

du e2~12u!p2sdab$2 ig f acl@~p•Āc1Āc
•p!gmr22iF mr

c #%

3e2up2s$2 ig f lmb@~p•Ām1Ām
•p!grn22iF rn

m #% D
54 Troc ln O~Ā!2

g2C2~G!

8p2 E
p
Fmr

c ~p!Fmr
c ~2p!E

0

1

duE
0

` ds

s
rk

~4!~s,L!e2u~12u!p2s

5
g2C2~G!

8p2 E
p
Fmn

a ~p!Fmn
a ~2p!E

0

` ds

s
rk

~4!~s,L!H 12S 11
1

p2sD Ap

ps1/2 e2p2s/4 ErfiS ps1/2

2 D J . ~4.22!

Adding up these terms, the perturbative Yang-Mills blocked
action becomes

S̃k5
ZL

21

4 E
p
Fmn

a Fmn
a 1

1

2
TroclnK~Ā!2TroclnO~Ā!

5
1

4 E
p
Z̃k

21~p!Fmn
a ~p!Fmn

a ~2p!, ~4.23!

where

Z̃k
21~p!5ZL

211
g2C2~G!

8p2 E
0

` ds

s
rk

~4!~s,L!

3H 1

p2s
2S 21

1

p2sD Ap

ps1/2 e2p2s/4 ErfiS ps1/2

2 D J .

~4.24!

Here it becomes apparent that the singularities arising from
evaluating the space-time trace is being transformed into di-
vergences in thes integral and can be readily regulated by
rk

(4)(s,L). Once more, this illustrates the importance of re-
taining thes integration till the end in order not to break

gauge symmetry during the course of regularization@15#.
However, the appearance of the integral function
Erfi(ps1/2/2) not only forbids thes integral to be completed,
but is also indicative of nonlocality, as can be seen from the
p dependence in the argument.

Since the theory is dominated by local operators in the
high-energy regime, one must recover the standard perturba-
tive RG coefficient functions from Eq.~4.24! in that limit.
By making use of the relation

E
0

1

du e2u~12u!p2s5
Ap

ps1/2 e2p2s/4 ErfiS ps1/2

2 D ,

~4.25!

and exchanging the order of integrations betweenu and s,
Eq. ~4.24! can be rewritten as

Z̃k
21~p!5ZL

212
g2C2~G!

48p2 H 11 lnS L̃2

k̃2 D 24~L̃22 k̃2!

2~8L̃4122L̃2111! f ~L̃!

1~8k̃4122k̃2111! f ~ k̃!J , ~4.26!
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whereZL
21 is given by Eq.~4.11!, L̃5L/p, k̃5k/p and

f ~x!5
1

A4x211
lnS A4x21121

A4x21111
D→H 2

1

2x2 , x→`,

ln~x2!, x→0.
~4.27!

In the limit L̃→`, the expression simplifies to

Z̃k
21512

g2C2~G!

48p2 H 11 lnS m̃2

k̃2 D 1
31

3
14k̃2

1~8k̃4122k̃2111! f ~ k̃!J 5Zk
211dZ̃k

-1,

~4.28!

whereZk
21 is the same as that derived in Eq.~4.10! using

covariant expansion, and

dZ̃k
2152

g2C2~G!

48p2 F31

3
14k̃21~8k̃4122k̃2111! f ~ k̃!G ,

~4.29!

represents the additional nonlocal contribution. The appear-
ance of theL2-dependent contributions in Eq.~4.26! is a
consequence of using a noninvariant regularization. How-
ever, in the limitL→`, the quadratic divergences cancel
each other. From consideringZk

21 alone, one also recognizes
the familiar factor of211g2C2(G)/48p2 associated with the
lnk2 term, with 210g2C2(G)/48p2 coming from the gauge
kernel TroclnK/2 and2g2C2(G)/48p2 from the ghost sector
TroclnO.

In passing, we remark that the presence of nonlocality is
generally characteristic of low-energy effective theories irre-
spective of how it is regularized. Equation~4.29! contains a
nonlocal sectordZ̃k

21 due to the use of the noninvariant ex-
pansion parameterĀ. This can be contrasted with the method
of covariant derivative expansion in which the blocked ac-
tion is parametrized by local gauge-invariant operators.
However, in the largek̃ limit, dZ̃k

21 becomes identically
zero and the nonlocal effect completely disappears. This is
not to say that nonlocal operators are incompatible with
gauge invariance. In fact, the Wilson loops commonly en-
countered in lattice gauge theories are nonlocal invariant op-
erators.

V. RENORMALIZATION GROUP EQUATIONS

A. Coupling constant and the wave function renormalization

We now examine the RG flow pattern of the Yang-Mills
blocked action derived in the last section. Let us first focus
on the result obtained from the noncovariant expansion. In
the large k limit where dZ̃k

21 vanishes, by using the
Slavnov-Taylor identities,Zk

21 can be related to the coupling
constant renormalization by

ZL
21gL

2 5Zk
21gk

25g2, ~5.1!

with gL being the cutoff-dependent bare coupling constant.
This implies the following running behavior forgk :

1

gk
2 5
Zk

21

g2 5
1

g2 1
11C2~G!

48p2 lnS k2

m2D . ~5.2!

At k5L and k5m, gk readily reduces togL and the off-
shell renormalizedg, respectively. The interpolation is ex-
pected from perturbation theory. Similarly, the one-loopb
function reads

b~gk!5k
]gk

]k
52

11C2~G!

48p2 gk
3, ~5.3!

exhibiting the well-known property of asymptotic freedom.
From Eq.~5.1!, one also obtains

g~gk!5k
] lnZk

]k
5

2b~gk!

gk
52

11C2~G!

24p2 gk
2. ~5.4!

While the contribution fromd Z̃k
21 is vanishingly small in the

largek limit, the contribution it generates in general cannot
be neglected in the smallk regime wheregk becomes large.
Thus, if we consider not justZk

21 but Z̃k
21, we then have the

following nonlocal running coupling constant~denoted with
a tilde!:

1

g̃
k̃

2 5
Z̃k

21

g2 5
1

g22
C2~G!

48p2 F11 lnS m2

k2 D1
31

3
14k̃2

1~8k̃4122k̃2111! f ~ k̃!G , ~5.5!

which implies

b̃~ g̃ k̃ ,k̃!5 k̃
]g̃ k̃

] k̃
5

C2~G!

8p2
g̃

k̃

3 k̃2

4k̃211

3$2314k̃212k̃2~514k̃2! f ~ k̃!%. ~5.6!

The above flow equation illustrates how nonlocality ing̃ k̃ is
developed ask decreases. Notice that the expression inside
the braces is always negative, as required by asymptotic free-
dom. In the largek̃ regime, however, Eqs.~5.5! and ~5.6!
reduce to the usual perturbative results~5.2! and ~5.3!, re-
spectively. On the other hand, in the covariant derivative
expansion approach, nonlocal effect is completely absent and
only Eq. ~5.3! is obtained. It remains an interesting issue to
explore how the nonperturbative, strong-coupling physics in
the low-energy regime is influenced by nonlocal operators.

We comment that in calculating the RG coefficient func-
tions using either covariant or noncovariant expansion in the
operator cutoff formalism, no unphysical contributions arise
to modify the expected results. This is in accord with the
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observation that the Slavnov regularization which combines
the method of higher covariant derivatives and Pauli-Villars
regularization is a consistent prescription when working in
the covariant background gauge withaÞ0 @27#.

B. Blocked action—noninvariant approach

In probing the RG evolution of the blocked action, a naive
differentiation of Eq.~4.23! yields

k]kS̃k5
1

4 E
p
S k

]Z̃k
21

]k
DFmn

a ~p!Fmn
a ~2p!. ~5.7!

From Eqs.~4.28! and ~5.5!, one immediately sees that Eq.
~5.7! is equivalent to theb̃ function ~5.6! which governs the
flow of g̃ k̃ . The result is to be expected on the ground that
g̃ k̃ is the only free relevant parameter we have in the theory,
apart from Z̃k which can be related tog̃ k̃ by the Slavnov-
Taylor identity. This also justifies the truncation of the back-
ground fieldĀ beyond quadratic order in our noninvariant
consideration of the evaluation ofS̃k .

How can we improve Eq.~5.7! so that it takes into ac-
count higher dimensional operators as well? We first turn to
the simplest momentum cutoff regularization which can pro-
vide valuable insights into the structure of the Wilson-
Kadanoff RG flow equation despite its gauge-noninvariant
nature. A straightforward differentiation of Eq.~3.11! with
respect to the IR cutoffk gives

k]S̃k5
1

2
k]k$Tr8@ lnK

mn,Ā

ab
2 lnKmn,0

ab #

22 Tr8@ lnO
Ā

ab
2 ln O0

ab#%

5
1

2
tr k]kE

x
E

p

8H lnSKĀ

K0
D

mn

ab

~]a→]a1 ipa!

22 lnSOĀ

O0
D ab

~]a→]a1 ipa!J 1

52
Sdkd

2
tr E

x
H lnS k222ik•D2D212gF

k222ik•]2]2 D
mn

ab

22 lnS k222ik•D2D2

k222ik•]2]2 D abJ 1, ~5.8!

where Tr8 implies a summation over the restricted space-
time, i.e., cutoff scales are present in the momentum integra-
tion. In going beyond the simple one-loop approximation to
probe the physics near the energy scale;k in the manner of
Wilson-Kadanoff, one first divides the momentum integra-
tion volume defined betweenk and the UV cutoffL into a
large number of thin shells each having a widthDk. Lower-
ing the cutoff infinitesimally fromL→L2Dk→L22Dk
until reaching the desired scalek allows us to incorporate the
continuous feedbacks from the higher modes to the lower

ones as they get integrated over@13#. Following this pre-
scription, we obtain the following equation for the RG im-
proved actionSk

eff :

k]Sk
eff5

1

2
k]kH Tr8F lnS ]2Sk

eff

]Ãm
a ~x!]Ān

b~y!
D

Ā

2 lnS ]2Sk
eff

]Ām
a ~x!]Ān

b~y!
D

0
G

22 Tr8F lnS 2
]2Sk

eff

]x̃†a~x!]x̃b~y!
D

Ā

2 lnS 2
]2Sk

eff

]x̃†a~x!]x̃b~y!
D

0
G J 1. ~5.9!

Equation~5.9! is analogous to that derived by Reuteret al. in
@12#, and can be contrasted with the linear differential equa-
tion ~5.8! which accounts only for the one-loop contribu-
tions. It may also be regarded as a self-consistent type of
Schwinger-Dyson equation. The dressing provided by the
nonlinear differential RG equation is equivalent to summing
over all possible higher order nonoverlapping graphs such as
the daisies and the superdaisies that are frequently encoun-
tered in finite temperature theory@13#. For the effective sca-
lar theory written in Eq.~4.12!, the corresponding improved
coupled differential RG equations read

k]kUk5 f 1~Uk ,Zk ,Yk ,...!,

k]kZk5 f 2~Uk ,Zk ,Yk ,...!,

k]kYk5 f 3~Uk ,Zk ,Yk ,...!, ~5.10!

where f i are functions of the coefficients in the derivative
expansion.

C. Blocked action—invariant operator cutoff approach

Although we now have an RG improved equation~5.9!, it
is obtained by imposing a momentum cutoff that manifestly
breaks gauge symmetry. Let us see how a similar equation
can be obtained in the operator cutoff prescription.

In the operator cutoff approach, one observes that thek
dependence is contained entirely in the regulating smearing
function rk

(d)(s,L). Therefore, after differentiating the
blocked action with respect tok, and replacingS̃k andSk

eff in
the spirit of Schwinger-Dyson, one arrives at

k]kSk
eff52

1

2
Tr E

0

` ds

s
k

]rk
~d!~s,L!

]k

3H expS 2
]2Sk

eff

]Ām
a ]Ān

b
•sD

Ā

2expS 2
]2Sk

eff

]Ām
a ]Ān

b
•sD

0

22FexpS ]2Sk
eff

]x̃†a]x̃b
•sD

Ā

2expS ]2Sk
eff

]x̃†a]x̃b
•sD

0
G J 1,

~5.11!
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which again takes on the form of a nonlinear partial differ-
ential equation. This is the RG improved equation which
governs the flow of the theory. As we mentioned in the In-
troduction, Eq.~5.11! cannot be rigorously justified from first
principles; instead, it is based on a prescription~of the
Schwinger-Dyson type! which has been successful in de-
scribing many nonperturbative field theories. In spite of this,
the remarkable feature of our RG equation is that it incorpo-
rates contributions from higher order operators and allows
for numerical or analytical approximation in the IR limit.

If one approximates Eq.~5.11! by expanding the inte-
grand in power ofs and keeping only contributions up to
O(Ā2), the flow would then reduce to the usualb function
shown in Eq.~5.3!. However, treatings as a small expansion
parameter corresponds to exploring the high-energy regime
of the theory and it is not surprising after all that the short-
distance property of asymptotic freedom is easily recovered
from perturbative approximations. However, if one is inter-
ested in the IR behavior of the theory, it would be desirable
to incorporate as much higher order effect as possible. Actu-
ally a completes integration of Eq.~5.11! can be done and
one obtains

k]kSk
eff5TrH F 1̂mn

ab1
1

k2 S ]2Sk
eff

]Ām
a ]Ān

bD
Ā
G2d/2

2F 1̂mn
ab1

1

k2 S ]2Sk
eff

]Ām
a ]Ān

bD
0
G2d/2

22F dab1
1

k2 S ]2Sk
eff

]x̃†a]x̃bD
Ā
G2d/2

12F dab1
1

k2 S ]2Sk
eff

]x̃†a]x̃bD
0
G2d/2J 1, ~5.12!

where 1̂mn
ab is the unit matrix in the Lorentz and color space.

The role played by higher dimensional operators at the en-
ergy scalek can now be elucidated by solving Eq.~5.12!
explicitly; nonlocal effects too are taken into consideration
by this nonlinear partial differential equation. In fact, the two
equations~5.12! and ~5.9! are structurally quite similar as
can be demonstrated using the simple scalar theory ind
54:

k4 TrF S k21p21V9~F!

k2 D 22

2S k21p2

k2 D 22G1
5k4E

x
E

p
$@k21p21V9~F!#222~k21p2!22%

52
k4

16p2 lnS k21V9~F!

k2 D
5k]kE

p

8 lnS p21V9~F!

p2 D
5k]k Tr8$ ln@2]21V9~F!#2 ln~2]2!%1. ~5.13!

In the largek regime, Eq.~5.12! can be expanded in Taylor
series as

k]kSk
eff5Tr (

n50

`

~21!n~n11!
1

k2n F S ]2Sk
eff

]Ām
a ]Ān

bD
Ā

n

22S ]2Sk
eff

]x̃†a]x̃bD
Ā

n G1••• , ~5.14!

for d54, and the theory is characterized by the leading order
local gauge-invariant operators. On the other hand, ask→0,
we have

k]kSk
eff5kdTrF S ]2Sk

eff

]Ām
a ]Ān

bD
Ā

2d/2

22S ]2Sk
eff

]x̃†a]x̃bD
Ā

2d/2G1••• ,

~5.15!

which is manifestly nonlocal. The above expression may be
compared with

k]kUk~F!52SdkdF lnUk91
k2

Uk9
2

1

2 S k2

Uk9
D 2

1•••G ,
~5.16!

which is the expansion of Eq.~1.4! for scalar theory in the
small k limit.

VI. CONSTANT CHROMOMAGNETIC FIELD

Enormous efforts have been devoted to the study of the
vacuum structure of SU~2! gauge theory in a constant chro-
momagnetic background since the pioneering work of Mat-
inyan and Savvidy@28#. With the help of Eq.~5.12!, we now
explore the RG evolution associated with this configuration.

For simplicity, we choose the background to be a constant
chromomagnetic fieldB in the ẑ direction produced by

Ām
a 5da3dm2Bx, ~6.1!

with

Fmn
a Fmn

a 52B2. ~6.2!

An alternative choiceĀm
a 5 1

2 Bda3(xdm22ydm1) has also
been used in@29#. Working in the background gauge, the
eigenvalues for the kernelsK andO can be obtained by a
diagonalization in the color space, which then reduces the
equation of motion into a harmonic oscillator equation and
yields the Landau energy levels labeled byn, where
n50,1,2, . . . @30,31#. Thus, the Yang-Mills blocked poten-
tial can be written as

Uk~B!;E dp

2p (
n50

`

(
Sz561

3Ap21k212gBS n1
1

2D22gBSz, ~6.3!

where Sz is the ẑ component of the gluon spin along the
direction of the chromomagnetic field, and the factor 2 in
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BW •SW comes from the gyromagnetic ratiogL52 for the gluon
fields. Since gluons are massless vector particles,Sz50 is an
unphysical degree of freedom and the associated contribution
will be cancelled by the Faddeev-Popov ghost@31#. For n
50 andSz51, we notice thatUk becomes complex below
certain momentum scale. The unstable mode gives an imagi-
nary contribution to the blocked potential and signals an in-
stability for the vacuum. To stabilize the theory, we therefore
choose the IR scalek to be such thatk2.gB.

Using

E dp

2p
Ap21E25E d2p

~2p!2 ln~p21E2!, ~6.4!

which holds up to anE-independent constant, the trace sum
in the operator cutoff formalism may be represented as

Troc5V
gB

2p
rk

~2!~s,L!E d2p

~2p!2 (
n

, ~6.5!

whereV is the space-time volume. Taking into account the
multiplicity factors for the eigenvalues, it follows from Eq.
~5.12! that the RG equation for the theory reads

k]kUk5
k2gB

2p
22E d2p

~2p!2 H F 1

p21k22gB
2

1

p21k2G
13F 1

p21k21gB
2

1

p21k2G
14(

n51

` F 1

p21k21~2n11!gB
2

1

p21k2G
22(

n50

` F 1

p21k21~2n11!gB
2

1

p21k2G J
52

k2gB

4p2 H lnS k22gB

k2 D13 lnS k21gB

k2 D
14(

n51

`

lnS k21~2n11!gB

k2 D
22(

n50

`

lnS k21~2n11!gB

k2 D J , ~6.6!

where the overall factor of 2 accounts for the color charge
degeneracy in the SU~2! gauge group. While the last term in
the first braces represents the contribution from the Faddeev-
Popov ghost kernel, the first term is due to the mode which
becomes unstable fork2,gB. Notice that the multiplicity
factors for the eigenvaluesgB and (2n11)gB for n.1
were incorrect in@30#; the correct factors should be 3 and 4,
respectively. The reason is because of the negligence of the
unphysical Sz50 sector which yields eigenvalues (2n
11)gB for n50,1, . . . . As explained before, this mode
must be considered fully in the presence of Faddeev-Popov
ghosts.

Using Eq.~5.1! and

Zk
215

]Uk

]F 5
1

B

]Uk

]B
, ~6.7!

the b function can be rewritten as

b~gk ,t!5k]kgk52
g

2
Zk

3/2k]kZk
2152gZk

3/2k]kS ]Uk

]B2D
52

gZk
3/2

2B

]

]B
~k]kUk!

5
gk

3

8p2t H ln~12t!13 ln~11t!

14(
n51

`

ln@11~2n11!t#

22(
n50

`

ln@11~2n11!t#2tF 1

12t
2

3

11t

24(
n51

`
~2n11!

11~2n11!t
12(

n50

`
~2n11!

11~2n11!tG J ,

~6.8!

wheret5gB/k2. In the presence ofB field which defines
another characteristic length scale, one naturally would ex-
pect theb function to depend not only ongk , but also on the
dimensionless parametert. With the help of the Euler for-
mula @31#

(
n50

`

hS n1
1

2D5E
0

`

dxh~x!2
1

24
h8~x!U

0

`

1••• , h~`!50,

~6.9!

the b function reads

b~gk ,t!5
gk

3

8p2t H ln~12t!2 ln~11t!1
t

3
2

t

6
1•••

2tF 1

12t
1

1

11t
2

1

3
1

1

6
1••• G J , ~6.10!

which in the limit of largek or vanishingt, gives

b~gk!52
gk

3

4p2 H 11
2

3
1

1

6J 52
11gk

3

24p2 , ~6.11!

in complete agreement with that obtained from Eq.~5.3! for
SU~2!. Notice that the contributions to theb function from
the ‘‘unstable mode’’~the first term! and the ghost kernel
~the third term! are, respectively,2gk

3/4p2 and 2gk
3/24p2,

in accord with the analyses of Nielsen and Olsen@31#.
We mentioned before that two multiplicity factors used in

@30# were incorrect due to the negligence of the unphysical
Sz50 sector albeit the correctb function was given. The
way it was obtained is as follows. The original expression
which makes no reference of the unphysical sectorSz50
actually gives
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bM~gk!52
gk

3

4p2 H 11
3

4
1

1

6J 52
23gk

3

48p2 , ~6.12!

instead of Eq.~6.11!. Removing the contribution from the
would-be unstable mode entirely by the subtraction

E d2p

~2p!2 ln~p21gB!2E
p2.gB

d2p

~2p!2 ln~p22gB!,

~6.13!

followed by the substitution

E ds

s
5 lns→2 lnS m2

gBD ~6.14!

in the proper-time representation withm being some appro-
priate renormalization point then leads to the correct result

bM~gk!→2
gk

3

4p2 H 01
3

4
1

1

6J 252
11gk

3

24p2 . ~6.15!

In other words, eliminating the contribution from the
would-be unstable mode completely followed by multiplying
the extra factor of 2 as appeared on the right-hand side of Eq.
~6.14! is how the expectedb function was arrived at in@30#.

Taking into account the imaginary contribution in thep2

,gB region, the complete complex effective potential reads

U~B!5
B2

2
1

11g2

48p2 B2F lnS gB

m2D2
1

2G2 i
g2B2

8p2 ,

~6.16!

upon imposing the renormalization condition@28#

]~ReU !

]F U
m̃2

51, ~6.17!

with F5B2/2 being the gauge-invariant quantity of the
theory. The condition is readily fulfilled by choosingm̃4

52g2F.
The arbitrary scalem and the IR cutoffk arising from the

operator cutoff regularization can be related to each other by
noting that while

m]m~ReU !52
11g2B2

24p2 , ~6.18!

one has

k]kUk52
k2gB

4p2 H lnS k22gB

k21gBD
12(

n50

`

lnS k21~2n11!gB

k2 D J
→

11g2B2

24p2 1
1

6p2

g4B4

k4 1••• ~6.19!

in the largek limit. This implies that we must havem]m[
2k]k , i.e., the two scales run in the opposite manner. This
connection can also be seen from

1

gk
2 5

1

g2 1
11

24p2 lnS k2

m2D ~6.20!

given in Eq.~5.2! and

1

gm
2 5

1

g2 1
11

24p2 lnS gB

m2D . ~6.21!

We readily see that whilek2 represents the general IR cutoff
~squared! for the theory in the operator cutoff formalism, in
the discussion of a constant chromomagnetic field, the role
of IR scale is taken over bygB. Thus, the perturbative large
momentum regionk2/m2@1 corresponds to the intense field
limit gB/m2@1. By replacing then right-hand side of Eq.
~6.19! with the correspondingk-dependent running param-
eters, the RG evolution equation forUk becomes

k]kUk52
2b~gk!

gk
UkS 11

8gk
2

11

Uk

k4 D 1••• . ~6.22!

Solving this differential equation by retaining only the lead-
ing order contribution, we have the following RG improved
blocked potential:

lnUk522E dk

k

b~gk!

gk
, ~6.23!

which is similar to that obtained in@28#. However, it only
takes into consideration the effect theF5B2/2 term. In order
to explore the influence of the higher order operators, one
must solve Eq.~6.22! completely without truncation.

We emphasize that the above perturbative treatments are
limited to the regime wherek is large and the theory is
asymptotically free. Continuing to evolve the system to a
lower k will result in a complicated blocked action which
invalidates perturbation theory. Furthermore, in the IR region
wheret is large, Eq.~6.22! is no longer a good approxima-
tion. Serious difficulties are encountered fort.1 whereb
function becomes complex. The source of the singularity is
undoubtedly due to the unstable mode which becomes un-
suppressed fork<AgB (t>1). In @28#, Savvidy considered
only the real part of the one-loop potential given in Eq.
~6.18! and obtained a nontrivial minimumBm

gBm

m2 5e224p2/11g2
, ~6.24!

which has a maximum value of 0.6053 atg2548p2/11.
Since the conditiongBm /m2,1 is just like k2,m2 in the
operator~momentum! cutoff case, one naturally would argue
that such a configuration is unreliable since it lies in the deep
IR regime where perturbation is known to break down.
Moreover, the running of the momentum in the RG trajec-
tory is generally restricted to be between the UV cutoff and
m, where one defines the physical renormalized coupling
constant. Further complication arising from the persistence
of the unstable mode in the IR region then lead Maianiet al.
@30# to argue that the problem associated with unstable con-
figurations can only be treated nonperturbatively. On the
other hand, lattice calculations seem to support the formation
of such chromomagnetic condensate@29,32#.
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Let us examine the physical consequence if a nontrivial
vacuum state should exist. From Eq.~6.8!, we find that a
minimum of the potentialB0 must satisfy

05gk]kS ]Uk

]B D
B0

522Zk
23/2B0•k]kgk

522Zk
23/2B0b~gk ,t0!, ~6.25!

where t05gB0 /k2. While B050 trivially satisfies the re-
quirement, a nontrivial configurationB0Þ0 necessarily im-
pliesb(gk ,t0)50, i.e.,gk(t0) is a fixed point of the theory.
Thus, the existence of a nontrivial vacuum state in the pres-
ence of a background chromomagnetic fieldB is intimately
related to the existence of a nontrivial fixed point, and to
locate such a fixed point generally would require a nonper-
turbative prescription to track the evolution of the coupling
constant. In analogy to the Schwinger-Dyson self-consistent
procedure, we replaceg on the right-hand side of Eq.~6.8!
by gk and obtain

b~gk ,tk!5k]kgk5
gk

3

8p2tk
H lnS 12tk

11tk
D12(

n50

`

ln@11~2n

11!tk#2tkF 1

12tk
1

1

11tk

22(
n50

`
~2n11!

11~2n11!tk
G J , ~6.26!

wheretk5gkB/k2. In the above, since the expression inside
the braces has the formF(tk)5 f (tk)1tkf 8(tk), with

f ~tk!5 lnS 12tk

11tk
D12(

n50

`

ln@11~2n11!tk#,

~6.27!

one may readily identify the solution toF(tk)50, or equiva-
lently, f (tk)50, as a fixed point of the theory. Forf (tk) to
vanish, one must have

0512~12tk
2!~113tk!

2~115tk!
2•••

512~12tk
2!)

n51

`

@11~2n11!tk#
2. ~6.28!

Besidestk50, one may readily verify that there is a second
solution located neartk51. However, sincetk51 is pre-
cisely the scale at which the imaginary contribution begins to
set in, it is not legitimate to associate this with a fixed point.
The absence of any other nontrivial fixed point when consid-
ering only the real sector ofUk seems to cast doubts on the
existence of the Savvidy state. To investigate the full
vacuum structure, the dynamics of the unstable mode must
be taken into account.

VII. SUMMARY AND DISCUSSIONS

In this paper we demonstrate the invariant nature of the
operator cutoff regularization whose regulating smearing
function rk

(d)(s,L) simulates a momentum cutoff and is
reminiscent to the invariant Slavnov regularization which in-
volves both the method higher covariant derivatives and the
Pauli-Villars. We also construct an RG equation based on the
Schwinger-Dyson self-consistency argument which, albeit
not completely rigorous, has been applied to scalar theory
with remarkable success. In the covariant background for-
malism with a51, the resulting RG coefficient functions
completely agree with the expected values, and no inconsis-
tency is found. It would be interesting to see how the regu-
larization can be carried out for an arbitrarya.

From the RG equation~5.12!, we see that the blocked
actionSk

eff provides a smooth interpolation between the bare
action defined atk5L and the effective action at an arbitrary
scalek. In particular, in the largek limit where only the
leading order gauge-invariant operator is kept, Eq.~5.12! re-
produces the standardb function. On the other hand, ask is
lowered, contributions from the higher dimensional operators
that are generated in the course of blocking continue to pile
up and are also accounted for by our RG prescription. There-
fore, Eq. ~5.12! allows us to probe the theory down to a
smallerk regime compared with perturbation. Even though
the complicated nonlinear partial differential RG equation
seems to make the analytical form for the low-energy
blocked action rather hopeless, its numerical solution may
nevertheless provide a consistent check for the nonperturba-
tive lattice method. For the simplest SU~2! theory in the
presence of a static chromomagnetic field considered in Sec.
V, a complete solution to the RG flow equation may yield
additional insights on the role of the unstable mode. It may
even help resolve the longstanding issue of the reliability of
the energetically more favored ground state found in@28#.
For realistic theories, the effects of matter fields too must be
considered. Operator cutoff regularization is an ideal regula-
tor for chiral theories since it is performed directly ind
space-time dimensions, and no ambiguity in the definition of
g5 arises. The generalization of this regularizing scheme to
higher loops would also be helpful for computing Feynman
graphs. Work along these directions is now in progress.
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APPENDIX A: SCALAR FIELD THEORY

In this appendix, we give the details of how blocked po-
tentials for scalar field theory are computed using operator
cutoff formalism. To be definite, the calculations will be car-
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ried out ind54 dimensions. Consider for simplicity the fol-
lowing bare Lagrangian:

L5
1

2
~]mf!21V~f!. ~A1!

In the presence of a slowly varying background fieldF(x)
whose Fourier modes are constrained by an upper cutoff
scalek, by integrating out the fast-fluctuating modes, the
one-loop contribution to the low-energy blocked potential is
given by

Uk
~1!~F!52

1

2 E
0

` ds

s
rk

~4!~s,L!

3E
p
e2p2s~e2V9~F!s2e2V9~0!s!

52
1

32p2 E
0

` ds

s2 rk
~4!~s,L!~e2V9~F!s2e2V9~0!s!.

~A2!

Notice that the scales set by momentum regularization are
now taken over byrk

(4)(s,L). As shown in@15#, smearing
function of the form

rk
~4!~s,L!5@12~11L2s!e2L2s#2@12~11k2s!e2k2s#

5r~L2s!2r~k2s! ~A3!

is equivalent to imposing sharp momentum cutoffs. That is,
inserting Eq.~A3! into ~A2! leads to the cutoff expression

Uk
~1!~F!5

1

2 E
p

8 lnS p21V9~F!

p21V9~0! D
5

1

64p2 H ~L22k2!@V9~F!2V9~0!#

1L4lnS L21V9~F!

L21V9~0! D2k4lnS k21V9~F!

k21V9~0! D
2V9~F!2lnS L21V9~F!

k21V9~F! D1•••J , ~A4!

up to someF-independent constant. Taking thelf4 theory
as an example, the blocked potential up to the one-loop order
becomes

Uk~F!5V~F!2
1

2 E
p
E

0

` ds

s
rk

~4!~s,L!e2~p21m2!s

3~e2lF2s/221!

5
1

2 Fm21
l

32p2 S L21m2 ln
m2

L2D2
l

64p2 k2GF2

1
1

4! Fl1
3l2

32p2 S 11 ln
m2

L2D GF4

1
1

64p2 F S m21
l

2
F2D 2

2k4G lnS k21m21lF2/2

m2 D

5
m2

2
F2F12

l

64p2 S 11
k2

m2D G1
l

4!
F4S 12

9l

64p2D
1

1

64p2 F S m21
l

2
F2D 2

2k4G
3 lnS 11

k21m21lF2/2

m2 D , ~A5!

where the renormalized parameters can be related to the
cutoff-dependent bare quantities by

m25mL
2 1

l

32p2 S L21m2ln
m2

L2D ,

l5lL1
3l2

32p2 S 11 ln
m2

L2D . ~A6!

It is easily seen that in the limitk50, Eq.~A5! reduces to the
usual effective potential obtained in@33#. For this theory, the
improved RG equation reads

k]kUk~F!52
k4

16p2 lnS k21Uk9~F!

k21Uk9~0!
D , ~A7!

which is a nonlinear differential equation that takes into ac-
count the coupling between the high and the low momentum
modes.

The results obtained above can be readily extended to
scalar electrodynamics. The Lagrangian is given by

LSQED52
1

4
FmnFmn2

1

2a
~]mAm!21u~]m1 ie0Am!f~x!u2

1
mL

2

2
f~x!†f~x!1

lL

6
@f~x!†f~x!#2, ~A8!

whereFmn5]mAn2]nAm and a is the gauge-fixing param-
eter. The complex fieldf(x) may be rewritten in terms of
real fieldsf1 and f2 as @f1(x)1 if2(x)#/&. Considering
the special case whereAc50 andFa5Fda,1 with F being
the constant background configuration, the blocked potential
in the Landau gauge witha50 becomes

Uk
~1!~F!52

1

32p2 E
0

` ds

s3 $e2m2s@~11k2s!e2k2s2~1

1L2s!e2L2s#@~e2lF2s/221!1~e2lF2s/221!#

13@12~11L2s!e2L2s#~e2e0
2F2s21!%. ~A9!

Even though blocking is performed only for the scalar fields,
it can be implemented in a similar fashion for gauge fields as
well. Notice that the extra factor of three in the photon loop
contribution arises from the trace of the propagator in the
Landau gauge. We also comment that the form ofUk(F) is
generally gauge dependent although physical quantities must
be gauge independent@34#.

The theory, however, is plagued by IR singularity due to
the presence of massless photons. The problem could be
avoided if blocking is also done for the gauge fields, i.e.,
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using rk
(4)(s,L) instead of rk50

(4) (s,L). The conventional
regularization scheme is an off-shell subtraction condition
for the coupling constant@33#

l5
]4Uk~F!

]F4 U
F5M ,k50

, ~A10!

which, in the language of operator cutoff, is equivalent to
using the following coupling constant counterterm@35#:

dl5
1

32p2 E
0

` ds

s
@12~11L2s!e2L2s#

3H l2e2~m21lM2/2!s~326lM2s1l2M4s2!

1
l2

81
e2~m21lM2/6!s~27218lM2s1l2M4s2!

112e0
4e2e0

2M2s~3212e0
2M2s14e0

4M4s2!J
52

1

64p2 H 20

3
l21

4l3M2~lM219m2!

81~m21lM2/6!2

1
4l3M2~lM213m2!

~m21lM2/2!2 124e0
4F1113 lnS M2

L2 D G
1

2l2

3
lnS m21lM2/6

L2 D16l2lnS m21lM2/2

L2 D J .

~A11!

After removing theL dependence, the blocked potential be-
comes

Uk~F!5
m2

2
F21

l

4!
F41

1

64p2 H 2
2l

3
~k21m2!F2

2
5l2

12
F41F S m21

l

2
F2D 2

2k4G
3 lnS k21m21lF2/2

m2 D1F S m21
l

6
F2D 2

2k4G
3 lnS k21m21lF2/6

m2 D1
l2

4
F4lnS m2

m21lM2/2D
1

l2

36
F4lnS m2

m21lM2/6D
2

l3M2

6
F4F lM219m2

81~m21lM2/6!2 1
lM213m2

~m21lM2/2!2G
13e0

4F4F lnS F2

M2D2
25

6 G J , ~A12!

which for m25k250 reduces to

Uk50~F!5
l

4!
F41

F4

64p2 S 5

18
l213e0

4D F lnS F2

M2D2
25

6 G .
~A13!

The theory in this limit shows spontaneous symmetry break-
ing driven by radiative corrections@33#. Once more, the
symmetry-preserving nature of the operator cutoff formalism
is seen from the absence of cutoff scales in thep integration.

APPENDIX B: GENERALIZED PROPER-TIME CLASS

Numerous regularization schemes can all be shown to be-
long to the generalized class of proper time since they can be
represented by a suitable definition of smearing function. A
detailed discussion can be found in@16#. However, for com-
pleteness and comparative purpose, we recapitulate here
various examples and examine how they modify the propa-
gator and the corresponding one-loop kernel. We also show
how cutoff scales can be implemented in dimensional regu-
larization as well asz function regularization. The ‘‘hybrid’’
prescriptions of dimensional cutoff andz function cutoff al-
lows us to establish a direct connection with the momentum
regularization. To be specific, we apply each of these tech-
niques to regularize the divergences encountered in the com-
putation of the two- and the four-point vertex functions for
H5p21m2 in d54.

~1! Operator cutoff. Ford54, the smearing function be-
comes

rk
~4!~s,L!5~11k2s!e2k2s2~11L2s!e2L2s

5~e2k2s2e2L2s!1s~k2e2k2s2L2e2L2s!,

~B1!

which leads to the following regularized propagator and one-
loop kernel:

1

HnU
oc

5
1

G~n!
E

0

`

ds sn21@~11k2s!e2k2s

2~11L2s!e2L2s#e2Hs

5
1

~H1k2!n2
1

~H1L2!n 1
nk2

~H1k2!n11

2
nL2

~H1L2!n11 , ~B2!

and

TroclnS HH0
D5TrH lnF H1k2

H01k2

H01L2

H1L2 G
2

L2~H2H0!

~H1L2!~H01L2!
1

k2~H2H0!

~H1k2!~H01k2!J .

~B3!

As demonstrated in Sec. II, Eq.~B1! simulates a sharp cutoff
at the level of blocked potential. Using Eq.~A2!, the one-
loop correction to the two- and four-point vertex functions
for scalar theory can be written as

dGoc
~2!5

]2Uk
~1!

]F2 U
F50

5
l

32p2 E
0

` ds

s2 rk
~4!~s,L!e2m2s,

~B4!
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and

dGoc
~4!5

]4Uk
~1!

]F4 U
F50

52
3l2

32p2 E
0

` ds

s
rk

~4!~s,L!e2m2s,

~B5!

which for k50 become

dGoc
~2!5

l

2 E
p

1

p21m2 S L2

p21m21L2D 2

5
l

32p2 E
0

` ds

s2 rk50
~4! ~s,L!e2m2s

5
l

32p2 FL22m2lnS L21m2

m2 D G , ~B6!

and

dGoc
~4!52

3l2

2 E
p

1

~p21m2!2 S L2

p21m21L2D 2

3F11
2~p21m2!

p21m21L2G
52

3l2

32p2 E
0

` ds

s
rk50

~4! ~s,L!e2m2s

52
3l2

32p2 F lnS L21m2

m2 D2
L2

m21L2G . ~B7!

On the other hand, using the momentum cutoff procedure,
one also has

dGL
~2!5

l

2 E
p

L 1

p21m2 5
l

32p2 FL22m2lnS L21m2

m2 D G ,
~B8!

and

dGL
~4!52

3l2

2 E
p

L 1

~p21m2!2

52
3l2

32p2 F lnS L21m2

m2 D2
L2

m21L2G . ~B9!

~2! Pauli-Villars. The conventional Pauli-Villars scheme
can be parametrized in the proper-time representation by tak-
ing the smearing function to be

rk
pv~s,L!5(

i
~aie

2ki
2s2bie

2L i
2s!, ~B10!

where L i are the masses of some ghost states, andki the
extra masses added to the spectra. To render the theory finite,
the coefficientsai andbi as well asi , the number of ghost
terms, are appropriately chosen. The physical limit, however,
corresponds to takingL i→` and ki→0 since L i and ki
control, respectively, the divergent behaviors of the theory in
the UV and the IR regimes. Equation~B10! implies

1

HnU
pv

5(
i

1

G~n!
E

0

`

ds sn21~aie
2ki

2s2bie
2L i

2s!e2Hs

5(
i

F ai

~H1ki
2!n2

bi

~H1L i
2!nG , ~B11!

and

Trpv lnS HH0
D52(

i
E

0

` ds

s
~aie

2ki
2s2bie

2L i
2s!

3Tr~e2Hs2e2H0s!

5Tr (
i

lnF S H1ki
2

H01ki
2D aiSH01L i

2

H1L i
2 D biG .

~B12!

The similarity between the operator cutoff and the Pauli-
Villars is now apparent. By choosingai5bi5 i 51, we no-
tice that the two smearing functions differ from one another
only by a higher order correction.

In computingdGpv
(2) using the Pauli-Villars regulator, it is

necessary to introduce two ghost terms since the integral in
Eq. ~B8! is quadratically divergent. Thus, we write@36#

1

p21m2U
pv

5
1

p21m22
b1

p21m21L1
22

b2

p21m21L2
2

5
f ~p2,m2,L1

2,L2
2!

~p21m2!~p21m21L1
2!~p21m21L2

2!
,

~B13!

where

f ~p2,m2,L1
2,L2

2!

5~12b12b2!p41@2~12b12b2!m2

1~12b1!L2
21~12b2!L1

2#p21m2@~12b1!L2
2

1~12b2!L1
2#1L1

2L2
2, ~B14!

and demand that

1

p21m2U
pv

→
1

p6 , as p2→`. ~B15!

The condition is satisfied if

b11b22150, ~12b2!L1
21~12b1!L2

250, ~B16!

which implies

b15
L2

2

L2
22L1

2 , b252
L1

2

L2
22L1

2 . ~B17!

The correction to the two-point function can now be obtained
as
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dGpv
~2!5

l

2 E
p

1

p21m2U
pv

5
l

2 E
p

L1
2L2

2

~p21m2!~p21m21L1
2!~p21m21L2

2!

→
l

2 E
p

1

p21m2 S L2

p21m21L2D 2

5
l

32p2 FL22m2lnS L21m2

m2 D G ~L1 ,L2→L!,

~B18!

which is in agreement with Eq.~B8!. As for dGpv
(4) , since it is

logarithmically divergent, only one ghost term is sufficient
and we obtain

dGpv
~4!52

3l2

2 E
p

1

~p21m2!2U
pv

52
3l2

2 E
p
F 1

~p21m2!2

2
1

~p21m21L2!2G52
3l2

32p2 lnS L21m2

m2 D .

~B19!

~3! Proper-time cutoff. Since divergences generated from
taking the trace in space-time are transferred into singulari-
ties in the proper-time integration, one may regularize the
theory by a direct truncation of the integration regime~s! to
avoid singularity. For example, we may simply take the
smearing function to be a sharp proper-time cutoff:

rk
pc~s,L!5QS s2

1

L2DQS 1

k22sD . ~B20!

In this manner, we have

1

HnU
pc

5
1

G~n!
E

0

`

ds sn21QS s2
1

L2DQS 1

k22sDe2Hs

5
1

G~n!
E

1/L2

1/k2

ds sn21e2Hs

5
1

Hn

1

G~n! S GFn,0,
H
k2G2GFn,0,

H
L2G D ~B21!

and

Trpc lnS HH0
D52E

1/L2

1/k2 ds

s
Tr~e2Hs2e2H0s!

5Tr$2Ei~2H/k2!1Ei~2H0 /k2!

1Ei~2H/L2!2Ei~2H0 /L2!%

5Tr lnS HH0
D1••• , ~B22!

where we have employed the asymptotic forms of the
exponential-integral function

Ei~2s0!52E
s0

` ds

s
e2s

55 lns01g1 (
n51

`
~2s0!n

n!n
~s0→01!,

2
e2s0

s0
~s0→`!.

~B23!

Correspondingly, we have

dGpc
~2!5

l

2 E
p

e2~p21m2!/L2

p21m2

5
l

32p2 FL2e2m2/L2
1m2EiS 2

m2

L2D G
5

l

32p2 FL22m2 lnS L2

m2D G1••• , ~B24!

and

dGpc
~4!52

3l2

2 E
p

e2~p21m2!/L2

~p21m2!2 F11
p21m2

L2 G
52

3l2

32p2 F2S 12
2m2

L2 2
2m4

L4 DEiS 2
m2

L2D
12S 11

m2

L2De2m2/L2G
52

3l2

32p2 lnS L2

m2D1••• . ~B25!

~4! Point-splitting. One may also choose the smearing
function to be of the form

rk
ps~s,L!5e21/L2s2e21/k2s, ~B26!

which corresponds to the so-called point-splitting regulariza-
tion scheme. This smearing function yields

1

HnU
ps

5
1

G~n!
E

0

`

ds sn21~e21/L2s2e21/k2s!e2Hs

5
1

Hn

2

G~n! F S HL2D n/2

KnS 2H1/2

L D2SHk2D n/2

KnS 2H1/2

k D G
5

1

Hn 1••• , ~B27!

and
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Trps lnS HH0
D52E

0

` ds

s
~e21/L2s2e21/k2s!

3Tr~e2Hs2e2H0s!

52 TrFK0S 2H0
1/2

L D 2K0S 2H1/2

L D
2K0S 2H0

1/2

k D 1K0S 2H1/2

k D G
5Tr lnS HH0

D1••• , ~B28!

where we have expanded the modified Bessel function as-
ymptotically as@37#

Kn~x!;Ap

2x
e2xF11

~4n2212!

1!8x
1

~4n2212!~4n2232!

2!~8x!2

1••• G ~x→`!, ~B29!

and

Kn~x!;H 2n21~n21!!x2n1••• n>1,

2 ln
x

2
2g n50.

~x→01!.

~B30!

The two- and four-point functions in this scheme are

dGps
~2!5

l

2 E
p

1

p21m2U
ps

5
l

2 E
0

`

dy e2y2m2/L2yE
p

e2p2/L2y

p21m2

5
l

32p2 E
0

`

dy e2y2m2/L2yFL2y1m2em2/L2y

3EiS 2
m2

L2yD G
'

lm2

32p2 H 2K2S 2m

L D1E
0

`

dy e2y lnS m2

L2yD J
5

l

32p2 FL22m2lnS L21m2

m2 D G1••• , ~B31!

and

dGps
~4!52

3l2

2 E
p

1

~p21m2!2U
ps

52
3l2

2 E
0

`

dy ye2y2m2/L2yE
p

e2p2/L2y

~p21m2!2

5
3l2

32p2 E
0

`

dy ye2y2m2/L2yH 11S 11
m2

L2yDem2/L2y

3EiS 2
m2

L2yD J
52

3l2

32p2 lnS L21m2

m2 D1••• . ~B32!

We remark that the four smearing functions presented so
far in a certain sense can all be viewed as a special case of
the generalized momentum regularization in which the regu-
larized integral for an arbitrary momentum-dependent func-
tion f (p) is written as

E
b~k!

a~L!

dp f~p!, ~B33!

wherea(L) andb(k) are arbitrary functions of the cutoffsL
and k, respectively. This is readily seen by noting that the
prescriptions presented previously can be related to the gen-
eralized momentum regularization via

rk
reg~s,L!E

p
e2p2s5

1

~4ps!d/2 rk
reg~s,L!5E

p

8
e2p2s

5SdE
b~k!

a~L!

dp pd21e2p2s, ~B34!

or

rk
reg~s,L!5

2sd/2

G~d/2!
E

b~k!

a~L!

dp pd21e2p2s. ~B35!

For example, in thed54 Pauli-Villars case, we have

rk
pv~s,L!5e2k2s2e2L2s52s2E

b~k!

a~L!

dp p3e2p2s

5@11b2~k!s#e2b2~k!s

2@11a2~L!s#e2a2~L!s, ~B36!

wherea(L) obeys the transcendental equation

e2L2s5@11a2~L!s#e2a2~L!s. ~B37!

The IR cutoff functionb(k) can be obtained in a similar
manner.

~5a! Dimensional regularization. One can also show that
dimensional regularization falls into the generalized class of
proper-time by taking the smearing function to be

re~s!5~4ps!e/2, ~B38!
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which follows from integrating thez variable ind2e dimen-
sion without imposing the cutoffs, i.e.,

rk
~d!~s,L!5

2sd/2

SdG~d/2!
E

z

8
e2z2s

→
2sd/2

SdG~d/2!
E dd2ez

~2p!d2e e2z2s5~4ps!e/2.

~B39!

Sincez can be regarded as the momentum variablep, the
feature of dimensional regularization is completely encapsu-
lated.

We comment that an alternative approach akin to dimen-
sional regularization is the method of analytic regularization.
The manner in which the theory is regulated is to increase
the power of the propagator byẽ/2, e.g., (p21m2)21→(p2

1m2)2(11 ẽ /2), thereby decreasing the power of divergence.
In the proper-time formulation, it is equivalent to choosing

r̃ ẽ ~s!5
2s~d2 ẽ !/2

Sd2 ẽ G@~d2 ẽ !/2#
E ddz

~2p!d e2z2s5~4ps!2 ẽ /2,

~B40!

where the original space dimension ofz is kept. It is inter-
esting to notice the relative negative sign betweene in di-
mensional regularization andẽ in the analytic regularization.
While both dimensional and analytic regularizations give the
same results at the one loop level, the latter is known to
violate BRS symmetry at higher loop order. In other words,
upon inverting the propagator given by the analytic regular-
ization to obtain the kernel, one finds that the regularized
theory is no longer BRS invariant. The details can be found
in @5#.

Equation~B38! suggests

1

HnU
e

5
~4p!e/2

G~n!
E

0

`

ds se/21n21e2Hs

5
G~n1e/2!

G~n!
~4p!e/2H2~n1e/2!, ~B41!

and

TrelnS HH0
D52~4p!e/2E

0

`

ds s211e/2Tr~e2Hs2e2H0s!

52~4p!e/2G~e/2!Tr~H2e/22H0
2e/2!. ~B42!

The corrections to the two- and four-point functions are,
respectively,

dGe
~2!5

l

2 E
p

1

p21m2U
e

5
l

2
~4p!e/2E

0

`

ds se/2e2m2sE
p
e2p2s

5
l

2~4p!22e/2 ~m2!12e/2G~211e/2!

5
l

32p2 F2
2m2

e
2m2lnS 4p

m2 D G1••• , ~B43!

and

dGe
~4!52

3l2

2 E
p

1

~p21m2!2U
e

52
3l2

2~4p!22e/2 ~m2!2e/2G~e/2!

52
3l2

32p2 F2

e
1 lnS 4p

m2 D G1••• , ~B44!

where we have used@38#

G~2n1e/2!5
~21!n

n! F2

e
1S 11

1

2
1•••1

1

n
2g D1O~e!G .

~B45!

The divergences now appear as poles fore50 and 2 since

G~211e/2!5
1

~211e/2!~e/2!
G~11e/2!. ~B46!

These poles can be mapped onto the divergent expressions
obtained by using the momentum cutoffs.

~5b! Dimensional cutoff regularization. The most direct
way to establish the connection between dimensional regu-
larization and the momentum cutoff regulator is by means of
the ‘‘dimensional cutoff regularization’’ defined by

re8~s,L!5re~s!rk
~d!~s,L!5

~4p!e/2

SdG~d/s!
s~d1e!/2E

z

8
e2z2s,

~B47!

which is simply the product of the two smearing functions
taken from each scheme ind dimension. The modified
propagator and kernel in thise8 scheme read

1

HnU
e8

5
1

G~n!
E

0

`

ds sn21rk
~d!~s,L!e2Hs

5
1

Hn

2~4p!e/2G~n1d/2!

dG~n!G~d/2!

3H S L2

H D d/2

FS d

2
,

d1e

2
1n,11

d

2
;2

L2

H D
2S k2

HD d/2

FS d

2
,

d1e

2
1n,11

d

2
;2

k2

HD J ,

~B48!

and
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Tre8 lnS HH0
D52E

0

` ds

s
rk

~d!~s,L!Tr~e2Hs2e2H0s!

52
2~4p!e/2

d
TrH S L2

H D d/2

3FS d

2
,

d1e

2
,11

d

2
;2

L2

H D2S L2

H0
D d/2

3FS d

2
,

d1e

2
,11

d

2
;2

L2

H0
D

2S k2

HD d/2

FS d

2
,

d1e

2
,11

d

2
;2

k2

HD
1S k2

H0
D d/2

FS d

2
,

d1e

2
,11

d

2
;2

k2

H0
D J .

~B49!

Equations~B43! and ~B44! are now modified as

dGe8
~2!

5
l

2 E
p

1

p21m2U
e8

5
l

2
~4p!e/2E

0

`

ds se/2@12~1

1L2s!e2L2s#e2m2sE
p
e2p2s

5
l

2

G~211e/2!

~4p!22e/2 H ~m2!12e/22
eL2/21m2

~L21m2!e/2J ,

~B50!

and

dGe8
~4!

52
3l2

2 E
p

1

~p21m2!2U
e8

52
3l2

2

G~e/2!

~4p!22e/2

3H ~m2!2e/22
~11e/2!L21m2

~L21m2!11e/2 J . ~B51!

To recover the cutoff results, we take the limite→0 first and
obtain

dGe8
~2!

52
lm2

16p2 H F1

e
2

1

2
ln 4pm2G2F1

e
1

L2

2m2

2
1

2
ln 4p~L21m2!G J 1O~e!

5
l

32p2 FL22m2lnS L21m2

m2 D G1O~e!, ~B52!

and

dGe8
~4!

52
3l2

32p2 S 2

e
211 ln 4p D H F12

e

2
lnm2G

2F12
e

2
ln~L21m2!1

eL2/2

L21m2G J 1•••

52
3l2

32p2 F lnS L21m2

m2 D2
L2

m21L2G1O~e!.

~B53!

The above equations explicitly demonstrate how with this
hybrid dimensional cutoff regulator, the 1/e singular term
coming from dimensional regularization and cutoff regular-
ization cancels each other and gives back theL dependence
of the cutoff theory shown in Eqs.~B8! and ~B9!. On the
other hand, taking the limitL→` beforee→0 allows us to
recover the usual dimensional regularization scheme. In
other words, depending on the order in which the limits
L→` ande→0 are taken, different regularization schemes
are actually achieved.

~6a! z-function regularization.z-function regularization
has been discussed extensively by Elizaldeet al. @39# and in
the context of operator regularization by McKeonet al. @26#.

In the z-function regularization, the logarithm of an op-
erator is represented by

lnH52 lim
t→0

d

dt
H2t. ~B54!

Noting that

1

Ht 5
1

G~ t ! E0

`

ds st21e2Hs, ~B55!

one may define thez function as

z~ t !5
1

G~ t ! E0

`

ds st21Tr e2Hs, ~B56!

which implies

detH5exp@Tr lnH#5expH Tr lim
t→0

F2
d

dt
H2tG J

5expF2 lim
t→0

d

dt
z~ t !G . ~B57!

The equivalent ofz-function regularization in the proper-
time formulation can be obtained by choosing the smearing
function

r t
z~s!5 lim

t→0

d

dt

1

G~ t !
st, ~B58!

which gives
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1

HnU
z

5 lim
t→0

d

dt H 1

G~ t !G~n!
E

0

`

ds sn1t21e2HsJ
5 lim

t→0

d

dt H G~n1t !

G~n!G~ t !
H2~n1t !J

5 lim
t→0

H G~n1t !

G~n!G~ t !
H2~n1t !@c~n1t !2c~ t !2 lnH#J

5
1

Hn lim
t→0

H G~n1t !

G~n!G~ t11!
H2t

3F11tS (
l 51

n21
1

t1 l
2 lnHD G J→ 1

Hn , ~B59!

and

TrzlnS HH0
D52 lim

t→0

d

dt H 1

G~ t ! E0

`

ds st21Tr~e2Hs2e2H0s!J
5TrF2 lim

t→0

d

dt
~H2t2H0

2t!G5Tr lnS HH0
D ,

~B60!

where we have used@40#

c~x!5
G8~x!

G~x!
~B61!

and

c~n1t !5c~ t !5 (
l 50

n21
1

t1 l
. ~B62!

~6b! z-function cutoff regularization. In an analogous
manner to the dimensional cutoff regularization scheme, one
can introduce cutoff scales to thez-function cutoff regular-
ization as well. This again can be done with the product of
two smearing functions:

r t,k
z,~d!~s,L!5r t

z~s!rk
~d!~s,L!5 lim

t→0

d

dt

1

G~ t !
strk

~d!~s,L!.

~B63!

To show that the samerk
(d)(s,L) obtained in Eq.~1.5! can

be used to reproduce the momentum cutoff structure, we
consider again the simple scalar theory. In thisz-function
cutoff formalism, the one-loop correction toUk is written as
remove theL dependence. On the other hand, ifL is first
sent to infinity before thes integration, one arrives at

Uk
~1!~F!5

1

2 E
p

8 lnS p21V9~F!

p21V9~0! D
→2

1

2~4p!d/2 lim
t→0

d

dt H 1

G~ t ! E0

`

ds st212d/2

3rk
~d!~s,L!~e2V9~F!s2e2V9~0!s!J . ~B64!

By demanding that Eq.~B64! yields the same differential
flow equation forUk as that obtained from momentum cutoff
regularization, we are led to

lim
t→0

d

dt H 1

G~ t ! E0

`

ds st212d/2S k
]rk

~d!~s,L!

]k D ~e2V9~F!s

2e2V9~0!s!J
52

2kd

G~d/2!
E

0

` ds

s
e2k2s~e2V9~F!s2e2V9~0!s!.

~B65!

One can then verify by direct substitution that the above
expression is indeed satisfied by the smearing function given
in Eq. ~1.5!. Thus the samerk

(d)(s,L) can be used to bring
the momentum cutoffs intoz-function regularization al-
though this may seem redundant since no divergence is en-
countered in this prescription. Nevertheless, by retaining the
cutoff scales, the flow pattern of the theory may be explored
in a lucid manner.

As an explicit demonstration ofz function cutoff regular-
ization, we compute the one-loop contribution of the blocked
potential ind54 and obtain

Uk
~1!~F!52

1

32p2 lim
t→0

d

dt H 1

G~ t ! E0

`

ds st23@~11k2s!e2k2s

2~11L2s!e2L2s#~e2V9~F!s2e2V9~0!s!J
52

1

32p2 lim
t→0

d

dt H 1

~ t21!~ t22!
$@k21V9~F!#22t

2@L21V9~F!#22t%1
1

t21
$k2@k21V9~F!#12t

2L2@L21V9~F!#12t%1•••J
5

1

64p2 H V9~F!~L22k2!1L4lnS 11
V9~F!

L2 D
2k4 lnS 11

V9~F!

k2 D1V9~F!2lnS k21V9~F!

L21V9~F! D J
1••• . ~B66!
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Here we see that by keeping the UV cutoffL finite when
integrating overs, counterterms have to be introduced to
remove theL dependence. On the other hand, ifL is first
sent to infinity before thes integration, one arrives at

Uk
~1!~F!52

1

32p2 lim
t→0

d

dt H 1

G~ t ! E0

`

ds st23~11k2s!

3e2k2s~e2V9~F!s2e2V9~0!s!J
52

1

32p2 lim
t→0

d

dt H @k21V9~F!#22t

~ t21!~ t22!

1
k2@k21V9~F!#12t

t21
1•••J

52
1

64p2 H k2V9~F!1
3

2
V9~F!2

1@k42V9~F!2# lnS k21V9~F!

k2 D J 1••• ,

~B67!

which is precisely the finite one-loop contribution of the
blocked potential. It is interesting to note that taking the limit
L→` before and after thes integration actually yields dif-
ferent results. In fact, the two limits correspond to two dif-
ferent regularization procedures. The connection between the
z-function cutoff formalism and the momentum cutoff regu-
larization can actually be established by the following inte-
gral transformation:

Uk
~1!~F!52

1

32p2 lim
t→0

d

dt H 1

G~ t ! E0

`

ds st23rk
~d!~s,L!~e2V9~F!s2e2V9~0!s!J

→2
1

2 E
z

8 lim
t→0

d

dt H 1

G~ t !E0

`

ds st21e2z2s~e2V9~F!s2e2V9~0!s!J
52

1

2 E
z

8
lim
t→0

d

dt H 1

@z21V9~F!# t2
1

@z21V9~0!# tJ
5

1

2 E
z

8 lnS z21V9~F!

z21V9~0! D . ~B68!

In other words, equality with cutoff regularization can be obtained by keeping thez integration till the end and interpretingz
as the momentum scalep.
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