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The symmetry-preserving nature of the operator cutoff regularization and its analogy with the invariant
Slavnov regularization are demonstrated at one loop order for pure Yang-Mills theory. The presence of
momentum cutoff scales in our regularization offers a direct application of the Wilson-Kadanoff renormaliza-
tion group to the theory. In particular, via the Schwinger-Dyson self-consistency argument, the one-loop
perturbative equation is dressed into a nonlinear renormalization group evolution equation which takes into
consideration the contributions of higher dimensional operators and provides a systematic way of exploring the
influence of these operators as the strong coupling, infrared limit is approdSt#&56-282(97)04920-5

PACS numbgs): 11.10.Gh, 11.15.Bt

I. INTRODUCTION When treating nonperturbative phenomena such as con-
finement in the strong-coupling regime or the high-
An important technical issue in quantum field theory istemperature electroweak phase transition, the constraint from
regularization, the removal of divergences which arise fronthe gauge symmetry becomes even more stringent. A non-
incorporating the effects of quantum fluctuations. Examplegperturbative continuum regularization program based on sto-
of the most frequently encountered prescriptions in perturbaghastic quantization was developed by Berhal. [8] a
tive calculations include the sharp momentum cutoff, dimendecade ago. Recently, a nonlocal nonperturbative regulariza-
sional regularizatiofl], ¢ function regularizatio2], Pauli-  tion has also been employed to study QEQ However, the
Villars procedurd 3], and the proper-time regularizatip]. most promising nonperturbative method has been the lattice
Although numerous regularization schemes are available faegularization in which the space-time is discretized. Unfor-
making the theory finite and well defined, it is crucial thattunately, the regulator also has its drawback in causing the
the chosen procedure preserves all the symmetries of thdoubling of the fermionic degrees of freedom. Thus, it would
original theory. For example, when considering gauge theobe desirable to formulate a new invariant scheme which
ries, not all of the above-mentioned prescriptions can be uticomplements the lattice approach.
lized due to the symmetry constraint. The enormous success of the Wilson-Kadanoff renormal-
The construction of a regularization scheme that respectgation group[10] in analyzing the behavior of the scalar
gauge symmetry has proven to be a difficult task. By far, thdield theory in the nonperturbative regime has recently
most popular invariant method is dimensional regularizatiorprompted much activity in understanding how the same tech-
which is based on the analytic continuation in the number ohique can be implemented in gauge theofi#$,12. The
space-time dimension. The concept of analytic continuationprominent feature of the Wilson-Kadanoff RG is the use of
however, was first conceived by Spestral.in their pioneer-  an effective infraredIR) cutoff which provides a systematic
ing work of analytic regularizatiofs], which unfortunately, separation of the large and small momentum modes; an ef-
does not preserve gauge symmetry. Even though dimerective low-energy theory is obtained upon integrating out
sional regularization is applicable to gauge theories, it rethe large momentum modes that correspond to the irrelevant
mains meaningful only within the context of perturbative microscopic detail§13]. Although no divergence is encoun-
framework and is known to become problematic when theered when imposing these cutoff scales, their presence, as
system under investigation has additional symmetry propementioned before, is in conflict with gauge or Becchi-Rouet-
ties that are dimensionality dependéety., chiral symmetry  Stora(BRS) symmetry, and one can only hope to restore the
or supersymmetpy In the alternative Slavnov regularization symmetry in the limit when the cutoff is removed. Thus, a
[6], both the method of higher covariant derivatives and argauge invariant formulation of the nonperturbative Wilson-
additional auxiliary regulator, usually of Pauli-Villars type, Kadanoff RG program would entail two essential stefps:
must be employed to completely regulate all the divergenceshe introduction of some momentum cutoff scales without
In addition, the prescription must be exercised with cautiorspoiling gauge symmetry an@) the derivation of the cor-
in certain gauges in order to reproduce the standard renoresponding invariant differential RG flow equations, usually
malization group(RG) coefficient functions for the Yang- nonlinear in nature, based on the infinitesimal variation of
Mills theory [7]. Needless to say, a sharp momentum cutoffthe IR cutoff scale. In the present work, we demonstrate how
is clearly unsuitable for gauge theories owing to its nonin-step (i) can be achieved at the one loop level. Since it is
variant nature. rather difficult to carry out stei) rigorously, we address
how the one-loop result can help generate nonperturbative
RG evolution equation.
*Electronic address: senben@phy.ccu.edu.tw To achieve the first step, we apply the operator cutoff
"Present address. regularization14,15. The novel feature of this prescription
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is that it resembles the conventional momentum cutoff regu- K2+ Up(D)
lator, yet preserves gauge symmetry despite the presence of kU (@)= —Sygk%In W(O)
an IR scale. In the operator cutoff formalism, the one-loop
contribution to the effective action is written as 5
S0= AT (dl2) (1.9

© ds
_ - _ —= (d) —Hs__ a—Hos
TrodInH=Ino) Jo s Pk (A,s)Tr(e e, One can readily verify15] that when choosing the smearing
(1.2 function to be of the form

whereH is an arbitrary fluctuation operator governing the 2542 rp ,
quadratic fluctuations of the fields afd, its corresponding  pi”(s,A)=p@(A2s)— p'@(k?s) = a2) dz#A le s
limit of zero background field. The subscript oc implies that T( K
the trace sum is to be operator cutoff regularized using the
d-dimensional smearing functiop(®(s,A) which contains o2 o 1 d , .,
both the ultraviolefUV) cutoff A and the IR cutofk. Since - sI(dr2) J; € TTran [l 7:k's,A%s
the usual one-loop quantum correction is obtained by evalu-
ating a Gaussian integral which corresponds to solving for (1.5
the eigenvalues of the fluctuation operator, the role of '
pi9(s,A) can also been seen as to provide an upper and
lower cutoff on the eigenvalues. We requipg”’(s,A) to  with
satisfy the following conditions(1) p{¥(s=0,A)=0, i.e., it
must vanish sufficiently fast near=0 to eliminate the un-
wanted UV divergence(2) p(d) (s—o,A)=1 since the f f dd f -5 f dz #-1,
physics in the IR §~o) regime is to remain unmodified,; ( d z
and(3) p\@,(s,A)=0 so that the one-loop correction to the
effective action vanishes at the UV cutoff. In addition, we the same sharp momentum cutoff RG equation is obtained.
have As for coefficients such as the wave function renormalization
constantZ, that are associated with the higher ordeova-
riant) derivative termsp{%(s,A) corresponds to a smooth
regulator.
While the Wilson-Kadanoff RG equation can be easily
which reduces the operator cutoff regularization to the origi-obtained in the operator cutoff formalism for the scalar
theorles due to the symmetry constraint. In fact, all the at-
g tempts made so far have either broken the symmetry or have
* ds _ _ lead to difficulties such as the dependence of the blocked
Tr(InH=InHo) = - fo s Tr(e™"—e 7). (1.3 action on two gauge fields: a classical average and a back-
ground[12]. Because of the difficulty in providing a rigorous
derivation of an evolution equation which manifestly pre-
Thus, the operator cutoff may be regarded as a special caserves gauge symmetry, we propose in this paper a more
of proper-time regularization whose invariant nature is base¢éodest alternative. The methodology we adopt here is to first
on the transfer of the space-time singularity into a singularityapply the operator cutoff prescription to regularize the one-
in s which is independent of gauge transformation. In factloop contribution of the non-Abelian Yang-Mills theof¥8].
various other prescriptions such as sharp proper-time cutoff linear differential flow equation is then obtained by an
point-splitting method, Pauli-Villars regulator, operator cut- infinitesimal variation of the IR cutoff fromk to k— Ak.
off, dimensional regularization, antfunction regularization  Albeit gauge symmetry is completely preserved, the equation
all belong to the generalized class of proper time and can benly incorporates the perturbative one-loop contribution. As
represented by a suitably chosen smearing fundtiéh an improvement, we use the Schwinger-Dyson self-
The presence of an arbitrary IR scdlescale makes the consistency argument and turn the equation into a nonlinear
operator cutoff regularization an ideal candidate for examinRG evolution equation which can provide a resummation
ing the RG flow of the theory using the Wilson-Kadanoff over the higher order nonoverlapping loop diagrams. As
approach, with the procedure of blocking transformafibfi ~ demonstrated by Wegner and Houghtpt9], since the
being taken over by the smearing functipﬁ)(s,A). Once higher loop contributions are suppressed by additional pow-
an IR cutoff is introduced, the corresponding RG equatiorers of Ak, the equation which is based on the one-loop func-
can be obtained by varying the cutoff infinitesimally. For tional form may be regarded as being “exact.” Indeed, RG
scalar theory, it suffices to employ a sharp momentum cutoféquations obtained in this manner have been used for explor-
and the RG improved equation for the blocked potentialing the critical behavior of scalar field theories and other
U (®d) takes on the following fornisee the form in Appen- nonperturbative phenomena with enormous success. In par-
dix A): ticular, the three-dimensional exponents extracted from this

(1.6

p&o(s,A—0)=1, (1.2)
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approach agree remarkably well with that efexpansion 1
[20]. Thus, despite the fact that our nonlinear RG equation 7 T J ds g 1p (s, A)e "t
for gauge theories cannot be derived from the first principle, oc
we believe that its solution can offer important insights into 1 2I'(n+d/2) ([A?\9?
the nonperturbative nature of gauge theories in the IR re- —@m {(W)
gime.
The organization of the paper is as follows. In Sec. II, we d d d A% (K392
review the essential features of the operator cutoff regular- xF 2 §+n,1+ 5 W) N (ﬂ)
ization and illustrate how it can be used in conjunction with )
covariant derivative expansion. An analogy between our for- < E 9 9+ n 1+ E,_ k_)] 2.1)
malism and the Slavnov regularization is drawn. We also 2’2 772" H)) '

show how the smearing function can be modified to provide

a faster convergence. In Sec. Ill we construct the operato"?‘n

cutoff effective Lagrangian which reproduces the effective = ds

propagators. Details of the perturbative computation of the Tro(InH—InHy) = —f — p(kd)(s,A)Tr(e*HS— e Hos)

non-Abelian Yang-Mills blocked action in the covariant 0 S

background method are given in Sec. IV. We illustrate how 2 A2\92 (4 ¢ d A2

the symmetry is spoiled when the theory is expanded in = Tr(( ) F(—, =1+ —;——)
: . A . d H 2’2" 2" H

power series of the background fi which is a nonin-

variant quantity. The RG pattern of the blocked action is A? d’2 d A?
investigated in Sec. V. Working in Feynman gauges 1, H_o 1+ E;_ 70
we demonstrate how operator cutoff regularization com-

pletely regularizes the one-loop divergences and leads to the k?

correctB function which governs the evolution of the gauge \H

coupling constant. In Sec. VI we apply the operator cutoff
prescription to examine the $2) Yang-Mills theory in a
constant chromomagnetic field configuration. Since the
theory develops an imaginary part which signals instability
of the vacuum as the momentum scale falls beldyB, we
choose the IR cutoff to be such thet>gB, thereby elimi-
nating the difficulties associated with an unstable vacuumynere
Our analysis shows that if only the real part of the potential
is considered, the existence of the “Savvidy vacuum” is
intimately linked to the existence of a nontrivial fixed point _ 1 _ b1

in the chromomagnetic field background. Our search for such  F(a,b,¢;8)=B""(b,c— b)J'0 dx X~ 1(1—x)

a fixed point gives a negative result. Section VIl is reserved

for summary and discussions. In Appendix A we provide the X(1-B8x)"? (Rec>Reb>0) 2.3
details of calculating the blocked potentials fop* theory

and scalar electrodynamics th=4 using operator cutoff

regularization. In Appendix B, we compare and contrastS the hypergeometric function symmetric under the ex-
various prescriptions that belong to the generalized class dhange betweea andb, and

proper-time regularization. In particular, we show how di-

mensional regularization can be modified to incorporate cut-

off scales. The connection between momentum regulator and B(x,y)= FeOr(y)

dimensional regularization is readily established in our “di- ' I'(x+y)

mensional cutoff’ scheme. Momentum cutoff scales can 1

also be brought into théfunction regularization in a similar :f dtt"Y(1-t)Y"! (Re,,Regy>0) (2.4
manner. 0

d/2 d k2
2 2'1 2" H

d

2

kz)dle(d d k2)
_70 ,

+ o 7 3
(2.2

Il. OPERATOR CUTOFE REGULARIZATION is the Eulerg function. Forn=1 and 2, Eq.(2.1) gives,
respectively,

As mentioned in the Introduction, operator cutoff regular-
ization not only allows us to bypass the complications of
dealing with divergences, it also encompasses the features of
momentum space blocking transformation in a symmetry-
preserving manner. With the smearing functipﬁ)(s,A) {

H

f dsp(d)(S,A)est

k2
\H+K2

AZ dr2
H+AJ

given in Eq.(1.5), the operator cutoff regularized propagator
and the one-loop contribution of the blocked action become,
respectively, and

di2
} : (2.9
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1 o § when stronger divergences are encountered, one may choose
72 = fo dsopy’(s,A)e” " the smearing function to be of the form
oc
di2 ,
:i A_Z o 1+ EL p(d,m)(s A):L f (ZZ)me*zzs
H? [\ H+A? 2 H+ A2 ko Sih(m+di2) J,
k2 d/2 L d H . ~ 1 . d _k2 A2
“\Hre) [Yraaael) 2.6 T Timrdz) | 2KSATS)
Considerd=4, where (211

pW(s,A)=(1+K3s)e Ks—(1+A25)e A%, (2.7 where p{®9(s,A)=p{@(s,A), and obtain a faster conver-
gencd 15]. The connection betwegri™(s,A) and the mo-

We have mentum regularization can be seen from
1 1 1 A? k? (p?m 1 e ,
H,, HHKR HEA? (H+ AP (R KO f —zp—=—J ds§—1e-a5f (p?)Me P’
oc p (p +a)" T'(n) Jo p
(2.9
and _ I'(m+d/2)
(47)9°T (d/2)T'(n)
| | ol H+K? Ho+ A2
TrodINH=InHo) =Tr Nl 37 i@ v AZ X j ds g1 md2gmaspdm(g o),
0
A (H-H
o AT (2.12
(H+A%)(Ho+A?)
K3(H—H,) Before examining Yang-Mills theory, we first consider
+ _ . . X )
(H+k2)(Ho+k2)}’ (2.9 the following covariant fluctuation kernel:
which shows that\ may be interpreted as the mass of some H=—D%+pu+Y(x), (2.13

ghost particles. This interpretation follows from the relative
negative sign in the modified propagator. Equivalently, onewhereD , is the covariant derivative for the gauge growp,
may also say that the effect of the extredependent terms is the mass for the scalar field interacting with the gauge field
to make the theory superrenormalizable by incorporatingo\i(x), and Y(x) a matrix-valued function ok describing
higher order derivative terms. For example, E38) implies  the interaction between the scalar particles. The iralexns
that the kinetic term in the scalar theory is to be modified agver the dimension of the gaugeolor) group. One may also

1 1 5 1 write Y=Y2T?, where theT?'s are f[he anti-Hermitian gen-

-5 b p— 5 b — P+ X (—3?2)2+ < (— 23| . erators of the gauge group satisfying

(2.10

On the other hand, the IR scadtemay be thought of as an
additional mass which makes an overall shift on the mass
parametenu®— u2e=u2+k2 Thus, the scald is useful not  with f2°¢ being the structure constants and tr the summation
only for the purpose of studying RG, but can also be em-over only the internal indices. In the fundamental S(
ployed as an IR regulator for the theory containing masslesgepresentation, we have

1
[TETO]= 20T, (T*T")=—5 6%, (219

modes.
Our operator cutoff scheme actually resembles the invari- a?2i, a=1,...,3,n=2,
ant Slavnov regularization which involves both the higher T*=1yami A=1 8 N=3 (219

covariant derivative method and a secondary Pauli-Villars
regulator. The analogy can be readily seen from E2s) where o® and \? are, respectively, the Pauli and the Gell-

and (2.9, where we see how it changes the propagator an . ! . .
the fluctuation operators; namely, the modification on theﬂ./Iann matrices. When operating afhwith the covariant de-

former is similar to that of the higher covariant derivative fivative, we have

method, and the latter to the Pauli-Villars regularization. In ab ab abenc

other words, both ingredients of the Slavnov regularization D, Y=(9"d,—gf*™A))Y, (2.19
are encapsulated by a single smearing funcﬁﬁ?x(s,/\) in

the operator cutoff prescription. Moreover, as we shall demor D, Y=4,Y+[A,,Y], whereA, = gA/‘iTa1 and g is the
onstrate later, the presence of cutoff scales in the proper-timenormalized coupling constant.

integration is not only guaranteed to give finite results, but The unregularized one-loop contribution to the effective
also lead to the correct RG coefficient functions. In the caseaction is
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~1 The approximation, often referred to as the Seeley-DeWitt
s ):E Tr(InH—InH) expansion[22], allows us to parametrize the theory with
symmetry-preserving local operators. Since the singularity

1 » ds s s arising from _taking the space_—time trace is tran'sferred to .the
Y LL ?tr<x|(e —e "0%)[x), proper-time integration, we insert the regulating smearing
functionp(?(s,A) into Eq.(2.20 and obtain the correspond-
ing “blocked” heat kernel
f = f d’x, (2.17 ,
X e*(,u, +Y)s 1
hi(SiX,X) = ——a (S A 1+ 5 [FL.F L,
where the diagonal part of the “heat kernel” is written as (4s) 12
2 2 3
n(sixx)=(xle 1) [ (xlpye"5(plx) 2070154005 229
p

which is in agreement with the result found j21] for

=f e‘ipxe‘Hxse‘p’EJe‘(pz‘Zip'D+Hx>51 p(¥(s,A)=1. Gauge symmetry is easily seen to be pre-
P p served by noting thalh,(s;X,Xx) consists of gauge invariant
_ d’p guantities only. Had we used momentum cutoff regulariza-
:j e~ (P*+u?)sg(2ip-D+D*-Y)s] f :J ——.  tion instead, there would be contribution from noninvariant
P p J (2™ operatorsD?, D,YD,, YD?, D* and D,D2D, [15].

(2.18  Higher order invariant contributions to E@.23 can also be
included, and the details can be found i6].
The above expression is derived by employing the plane
wave basigp) with (x|p)=e~"" and the commutation re- ;. OPERATOR CUTOFF YANG-MILLS LAGRANGIAN
lations[16,21]
In this section, we apply the formalism discussed earlier
[D, ,eipx]:eipxipw [H,,eP*]=ePX(p2—2ip-D). to the Yang-Mill theory. For simplicity, we neglect the mat-
(2.19 ter fields and consider the pure Yang-Mills Lagrangian
The factorl indicates that the operat@, acts on the iden- Xl a ~a
tity. Splitting thes integral into two parts>s, ands<sy, EA:T (CHC e 3D
for the latter region one can use the Baker-Campbell-
Hausdorf fOI’mu|aS to eXpand the Operators in the exponenti%hereZA is the bareA_dependent wave function renorma'_

in a power series o§: ization constant. The field streng@f‘w is given by
4 2
h(s;x,x)=e‘(“2+Y)SJ e—p25| 1+ D%+ D7 s2— [D2,Y] s? G2,=d,A2—3d,A%+gfaPeA AS (3.2
P
or
2 D252+E([[D2 D,1.D,]
d 3 HpliPu G,,=0G;,T*=09,A,—d,A,+[A, A,] (3.3
+3D,[D?D,]+3D*~[D?Y] in the matrix-valued representation. To set up the Wilson-
2(p?)2 Kadanoff RG formalism, the conventional approach is to first
- S|+ — - [D* 2 o to the momentum space and divide the modes into
[D,,YID,)s® |+ 3d(d+2) [D*+(D,D,) 9 p
A%(p), O<ps=k,
2D b ... Ad(p)=4 * 3.4
+D,D?D,Js*+--- {1, (2.20 «(P) £(p), k<p<A, 34

where we have used the @)invariant property of the mo-  whereA? andé&;, are, respectively, the slowly varying back-
mentum integrals ground and the fast-fluctuating fields. The difficulty associ-
. ated with such a sharp separation is that it inherently breaks
j 0 D o o?s_ Tmuz"'uzmr(d/z) J (pz)me—pZS gauge _symmetry. On the other_ h_an(%,) in the symmetry-
o PuaPis Bam 27T (m+d/i2) ) preserving operator cutoff prescrlptlop_|k (s,A) generally
corresponds to a smooth regulator with no sharp boundary

TlTlﬂz"'Mz between the modes. Thus, our interpretatiork ais the IR
= m le is only approximate.
(4ms)4(25)™ (22 sea

In the next step of RG, we integrate out the irrelevant

o ) short-distance(fast-fluctuating modes ¢ having momenta
T s s = Oug g’ Opgny 1 1o T PETMULALIONS. betweerk and A and obtain a low-energy effective blocked
(2.22 action which depends only on the slowly varying back-
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ground fieldsA with momenta belowk. In the background
field formalism[23], one introduces

1 Aypa2
% [DL(AA,]

Ler= (3.5

and

Lepc=x"DAA)x, (3.6

as the desired gauge-fixing condition and the Faddeev-Popov
ghost term, respectively. Adding up the above, the Lagrang-

ian takes on the form

LA+E, X+ 9" X+7)

fl
=Lp+ Lot Lrpe=—7— 4 Fo Pt 5 52
ab
—12/ AN 1 b
X _ZA D (A)g,uv ZA - ,LL(A)DV(A) fv

_Z gfacbgﬂ ,uvg +XTaD2(A)ab~b

+ 7TaD2(A)aP P+ 5£(AM £, (3.7)

Where Fo.,=G3 (A) denotes the background field strength,
and 7' and n are the fast-fluctuating modes for the ghost
fields having momenta betwednand A. The higher order
self-interaction is represented by

SL(A,£,)=Z,Y gfP%D ,(A)E,)2E0 e

1
+ 7 PR LaE . (39

Notice thatL is now invariant under the simultaneous BRS
transformations OAZ, x, andy'. The partition function can
be written as

a f DA, ID XD x e~ SAut & X 47X )

_ f DIA]DR] D% e~ SiAu X1, (3.9

where

e SdA, XX = f DLE,]D[ 71D e SAwt&u X Tl
(3.10

By substituting Eq(3.7) into Eq.(3.10 and dropping higher
order fluctuating terms,
blocked action up to the one-loop order reads

vl

—Tr,{INOx=InO,] + X 2D 2(A) 20X,
(3.11)

"s'k[A_,;T,;]_ ij;’jﬁ Tro{In Ka=In K]

OPERATOR CUTOFF REGULARIZATION AN . . .

the operator cutoff regularized

5013
where, by the help of
D2°(A)DE(A) —D2P(A)DE(A) =g febeFd | (3.12

the gauge and the ghost kernels become

b S
v,
B A IAUY) [y
1 ab
s i

+ 29fab°F,°w] 54 (x—y) (3.13
and
3%S —
ﬂ)_ _ 2 ab
D2(A)® 5% (x—y),
A &X a&X NT_X 0

(3.19

respectively. In the above, the covariant derivatives are un-

derstood to be defined A&t Within the accuracy of the one-
loop approximation, we also sZtXl in ICZ?, to unity. Here
Tr, denotes the trace sum over té@perator cutoff regular-

ized) space-time, Lorentz indices, as well as the color indices

rand tr is for the latter two only. When no confusion arises,
internal indices shall be suppressed for brevity.

The fluctuation operatof3.13 in momentum space can
be written as

1
/Cik;,(): p25%° T, + - LM,,), (3.15
where
PPy _ Puby
T,U,V:g/.LV_#! uv = SZ ’ (316
with (T,,)?=T,, and (LW)Z— . The propagator, de-

fined as the inverse dfavo, is

b

d0=— (T, +al,,). (3.17
Similarly, for the ghost propagator, one has
b
A%P=— (3.18

p*
Using Egs.(2.8) and(2.9) and setting<= 0, we now have the
operator cutoff regularized propagatédenoted with a tilde

b
=7 (alT,uV—i_aZL/u/) (3.19

and

b
AabHAab= aq F )

(3.20

where
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2
1+ 47

-2 1 p?\? which, apart from some higher-order contributions, is pre-

a=|1+~ A—z) . (32D  cisely what one obtains in E€.9) using the operator cutoff
regularization. In fact, it is possible to choogé”(s,A)

This choice also leads to a “factorization” of the propaga- Which completely simulates the Pauli-Villars. Thus, operator

tors. We also see that in the Feynman gauge wherd, the cutoff regularization encompasses both features of higher co-

a]_:

gauge field propagator simplifies tﬁ’b—aléabgﬂ /p2. variant derivative method and the Pauli-Villars. The freedom

14 d . . .
addition, the original propagators are recovered in the limito choosep(’'(s,A) makes it a more general invariant pre-
A—oo, scription as that by Slavnov.

What is the form of the effective Lagrangian which repro-
duces these effective propagators? Certainly the original

gauge sector must be changed to IV. PERTURBATIVE EXPANSIONS
701 2(A) Since the Yang-Mills blocked action is generally a com-
LA_,EAzL GZV _) Ga (3.22 plicated object even at the one-loop level, an approximate
4 A? solution exists only in certain energy regime. The renown

property of asymptotic freedom in the large momentum limit
allows for the smalk expansion of the heat kernel. However,
2 2 to preserve gauge symmetry, the expansion should be carried
1- = ( )) [D (A_)Aa], out in a manner such that all the coefficients consist of
a A gauge-invariant quantities only. This is achieved by employ-
(3.23 ing the Schwinger-DeWitt covariant derivative expansion
method[24]. On the other hand, a noncovariant prescription
such as expanding the theory in power series of the nonin-
variant background field is incompatible with gauge sym-
) D2 (A)X- (3.24  metry. Below we describe both methods and illustrate how
the symmetry is violated by the latter.

Similarly, one may show that

_ 1 —
Ler—Ler=5 [D.(A)AT]

and

D2(A
~ D“(A)
Lepg— Lepc= X ( 1- TAZ

Adding these all up, the operator cutoff regularized Lagrang-

ian becomes A. Covariant derivative expansion
le D2(A—) 2 1 e 'To appro>.<imate the qne—loop blqcked action in E2117)
£§°=T G2 | 1- Az G? + 5. [D.(A)AZ] using covariant derivative expansion, we apply the proce-
@ dures outlined in Sec. Il. The details have been worked out
D2(A) Z(A_) 2 by D'yakonovet al. in [25], and we recapitulate here to elu-
X ( 1--— ) [D, (A)Aa]+X > ) cidate its connection with the operator cutoff regularization.
a A A For the ghost kernel, one has
XD?(A)x. (3.29 Ox
Troc | (—j
One_may verify thatC®" indeed yields the desired propaga- *" 1 0o

tors dab and AaP given in Egs.(3.19 and (3.20, and the
0r|g|nal symmetry is fully preserved.
In the largep limits, both d2" and Aab. behave as pP, J J as p<d)(s,A)tr(x|(e‘OAS—e‘005)|x>
which makes the theory superrenormalizable. However, the
regularization is only partial and the one-loop divergences
remain unregularized, as can be seen from the power count- _ f J (d)(s A)tr
ing of the superficial degree of divergeneg [7]:

7 _—
wy=4=4(L-1)-Ex— 5 Eq, (3.26 ><f e“’ZSEl n—,(2ip-D+D2)”1
p n= :

wherel, E,, and E; are the numbers of loops, external ff dsd— o2, (@)
gauge field lines, and external ghost field lines, respectively. ~—  12(4m)%2 |, |, k
A complete removal of the one-loop divergences would re-
quire an auxiliary regulator which was taken to be Pauli-
Villars by Slavnoy{6]. The infinities in the Pauli-Villars pro-
cedure are controlled by modifying the one-loop contribution
as(see Appendix B

Trl (H) T I(H)—TI
rin T Fovin i rin

S
X(s,A)tr[[D# ,D, %+ 15[ ~601+0,+405+30,

+305]+O(sz)], (4.0
H+k?
Ho+ k2

HO+A2”

H+A?
(3.29  where
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Olz[D,u'DV][DV’Dp][Dp’DM]’ Jocdsglp(k‘l)(slA)

0
02_[DM,[DM'DV]][DP'[DP,DV]], (n+2)r(n+1)(k—2(n+1)_A—2(n+1))’ n=0,
OSZ[D,u i[Dlep]][D,ur[Dv!Dp]]v

A2

—2-), n=—1,
OAI[D,uv[D,u![DV!Dp]]][Dv’Dp]! k

(4.9
OSI[DV!Dp][D,u. "[D,LLY[DV7Dp]]]' (42) . . .
and the invariant blocked action up to the one-loop order can

Noting that [D,,D,]*°=gf®*F¢, and a2  pe written asS.=/,L,, where the effective blocked La-
= 6°IC,(G) where C,(G) is a Casimir operator with grangian reads
C,(G)=N for G=SU(N), the trace over the internal indices

can now be summed and one obtains 7 _1 2-1_ 11g°C,(G) n A? ot Cy(G) 1
KTag? [N 48r° k?)]72" 14407 k*
tr[D,u.vDV][Dp.iDV]:_CZ(G)J:Zv _ _
X (Fa+57L3) + X 2D2(A)3NP+ - -
trO;=— C2(2G) F3, O;=—Cy(G)Is, _ ! Fot Cy(G) 1 ot 577+ 3 1aD2(A)abh
- 492 2 14407T2 k2 ( 3 3) X ( ) X
tI’O3= —tI’O4= _trO5= 2C2(G)(gf3_:[3), (43) 4o , (49)
where with
F=0%F5 F,, . o, 119°CxG) [A?
Zk :ZA — W In EZ
f3:ggfabCFZVF5pF;pﬂ
. 119°Cy(G) (K
Z3:92(D?LbFI?LV)(D2CFZV)’ (4.9 =1+ W In F . (4.10

are the leading-order local gauge-invariant operators. Noticflotice that the logarithmic divergence associated fishis
thatZ; is identically zero ifFfw satisfies the classical equa- now cancelled by setting
tion of motion D2°F? =0. Substituting the above expres-

sions into Eq.(4.1) gives _1 . 11g°Cy(G) [ A?
Zyt=1t =g In| 2. (4.11)
Oa Ca(G) ” —d/2,(d)
Troc In 0ol ~ 1204m) 72 foo ds s~ %pi(s,A) Several comments are in order. First of all, since the gauge
fields are massless, the renormalization condition is defined
1 ) at an off-shell subtraction poii= u/p, i.e.,0k=,=9. The
X| Fat 15 (F3=3L5)s+0(s) 1. effective blocked Lagrangian obtained in Hg.9) is com-

pletely local, with the higher dimensional invariant operators

(4.5 being suppressed by at leagtin the largek limit. In fact,
Repeating the same procedure for the gauge kernel, we hajs Ioc_al appro>_<imatior_1 is analogo_us to the inverse mass
' expansion considered ifl6]. Equation(4.9) can also be

compared with the low-energy blocked Lagrangian of the

Troc |n<K—:) =— % J fwds s-92p (s, A) scalar theory in powers of derivatives
Ko 3(4m)™° JxJo
=S Z(®)
1 - (2n) (2n)— K 2
X[S}‘Z— = (}"3+2713)s+0(sz)]. L= 2, ZE(@)(0,) N =U @)+ =5 (9,D)
(4.6 +Yi(@)(3,P)*+ Yi(P) (P P)>?
~ 3 2 6
Thus, the one-loop contribution §, can be written as +Y(@)P(9,0,8)(9,9,P)+0(3"), (4.12

_ C,(G) o with an important distinction that the latter is applicable only
SH=— 12(2 ) f f ds & 9P (s,A) in the smallk limit.
™ xJO0

B. Noncovariant expansion

X Instead of using the covariant derivative expansion which

allows us to approximate Eq€.13 and(3.14 with gauge-
For d=4, thes integration can be carried out using invariant operators, let us inquire what happens when the

1
11F,— 15 (F3+57I5)s+ 0(52)] . @
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expansion parameter is the background fiﬁﬁjwhich is a _ oabs b o ps 2 o e amee clb T
noninvariant quantity. Following the perturbative formalism 17(€ )=Tro™ e P S—se P3(—g faMIPATA))
developed in[4] and working in momentum space where

d,—~ip,, Egs.(3.13 and(3.14 can be rewritten ag26]

s? (1 -
* 2 | dudr ot —igrep At A% p))

1
b_
/ij—[ —[ngw—<1— ;) D,D,

X e UPS[ —igfimb(p. AT+ AT )]+t
+ ngabCF;V] s (x—y)

4.1
ngv[pzyb—igfa‘?b(pEJrﬁ. ) and, in Feynman gauge whese=1, “.19
- 1 Tr(e’citls)zTréab{ 0.8 P's_ggp’s
_ ngamechA)\mAl)\] + ngach;:w_ ( 1— E)

o X(_ngamchIbgﬂyA_TA_l)\)
X[p,p,5*°—igfa(p,A+ASp,)

s? (1 2
L - 1-u)p“s
_ngamcfdbA,TAly], (4.13 + 2 fodue(

X[—igflg,,(p-A°+AC:p)
and
—2g RS, (A)]e P ~igf™g,,(p- A"
0= — (D)5 (x—y) - p28*P—igf*(p- A+ A% p)

— +A™. p)—2gfMPEM (A)]+ - | 4.1
_ngamecleQ’lA;\. (414) p) g py( )] ( 7}

Although the above expressions are no longer gauge invari-

By splitting the kernel ast{="{,+ 1, whereH, accounts for - ant, let us proceed and see how the symmetry can be recov-
the interactions, an approximation in powers’f can be  gred.

obtained as Concentrating on thd=4 case and inserting a complete
orthonormal set of momentum statigy satisfying

Tr(e ") =Tr(e MoS) + fmd)\ Tr(H,e” (Mot rH)s)
0 fp|p><p|=1, (plp")=(2m)*s*(p—p’),

=Tr[e”03+(—s)e”OSH| (x|p)=€P*, (plALp)=A.(p—p'), (418
we obtain
(—s)? fldu e~ (1-UDHospy a—UrHosEy 1 , — — ,  — —
2 Jo 1t : : Tr fo du e 17WPS(p. A+ AC. p)e  UP"S(p. A+ AC. p)
(_5)3 1 1 1 2 2
+ 3 fodululfodUZ =tr JoduJ e_[(l_u)p +uq ]S(p+q)ﬂ(p+q)y
p.q
X e—(l—Ul)HoSHle—Ul(l—Uz)HosHle—UlUZH()SHI X AZ( p_ q)A?/(q - p)
= —12 7 tr J1dUJE(p)E(_P)e_U(1_U)pZS
" v
29,
X T”+(2u—1)2pMpV . (4.19

Applying the above expansion formula to Edd4.13 and

(4.14 and keeping only the terms which are quadratidin The above expression is arrived at by first shifting the vari-
gives ablep—p+q followed by g—q—(1—u)p, and theq inte-
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gration using @) invariance. Regularizing the integral wiﬂﬁ“)(s,A) in the operator cutoff formalism then gives

2
0°Cy(G) [— — = ds @) 1 (=ds @
Trocln(szpr;(p)Ai(—p) g’”fo 2 Pk (SJ\)—EL 5 Pr(SA)

|

2C G 1/2
:—g 32275_2 ) fFa (p)Fa (- p)f (4)(SA p [1 p\/?;ge P S/4Erf|<pz )], (4.20

29,y
— +(2u=1)%p,p,

1 2
xf du e U(t-wes
0

where Erfié<)=(2/\/;)f6dt e‘z, and we have used the approximation

1 -
5 P PFL(=P) = (%G, = PuP)AL(PIAL(—P) +--- . (4.21)

The substitution can be justified by noting that the differences are of higher orEIS'rmilarly, the gauge field contribution
reads

G) [— — = ds 1 (=
Trodnk= —22— pAZ(p)Ai(—p)QWJO gzpf(4)(5,A)—§Tr fo ds 9V(s,A)

1 -
j du e_<1_u)p255ab{—igfaC|[(p-Ac+AC~ p)g,u,p_ZiF:Lp]}
0

><eUPZS{—igf'mb[(p-ﬁWﬁp>9pv—2‘F2"v]})

=4 Try In O(A)— 2( ) fFC (p )|:C (— p)f duf —p(4)(SA —u(1-u)p?s

2C G 1 gl/2
2( ) f o S) pijr g PS4 Erfl(pT)}. 4.22

o (= p)f < Pi >(sA>[

Adding up these terms, the perturbative Yang-Mills blockedgauge symmetry during the course of regularizatics].

action becomes However, the appearance of the integral function
N Erfi(psY2/2) not only forbids thes integral to be completed,
~ A a a1 — — but is also indicative of nonlocality, as can be seen from the
=4 f FuvFunt 5 TrodnNK(A) = TrodnO(A) p dependence in the argument.

Since the theory is dominated by local operators in the
1 (~, a a high-energy regime, one must recover the standard perturba-
2z LZK (PIFL(PIFLL(—P), (423 tive RG coefficient functions from Eq4.24) in that limit.
By making use of the relation

where 2
1 —u(1-u)pPs_ \/; Sy psl
(G) ds du e E’ie Erfi |
~_ _ 2 O
Zy l(P):ZAl+ J’ pi(s,A) (4.25
1 1\ o pst/2 and exchanging the order of integrations betweeands,
X 0% 2 % p?’i e PS4 Erfil o - Eg. (4.24 can be rewritten as
(4.24 - A2 _—
Zil(p)=ZX1— C2(0) 1110 = | —4(A*=k?)

Here it becomes apparent that the singularities arising from 48m° k
evaluating the space-time trace is being transformed into di- —(8K4+22K2+11)f(K)

vergences in the integral and can be readily regulated by
p{¥(s,A). Once more, this illustrates the importance of re-

taining thes integration till the end in order not to break +(8KA+ 2K2+11)F (K) ¢, (4.26)
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wherezxl is given by Eq.(4.11), X:A/p, K= k/p and with g, being the cutoff-dependent bare coupling constant.
This implies the following running behavior fay, :
1
\/ 2 — —— —
—=—=—+——=—>—1In| —]|. .
VA2 +1 VA2+1+1 gi " g2 4872 P

In(x?), x—0.
(4.2
L~ ) o At k=A andk=u, g, readily reduces t@, and the off-
In the limit A—c°, the expression simplifies to shell renormalizedy, respectively. The interpolation is ex-
pected from perturbation theory. Similarly, the one-lg8p

= ’Co(G w2\ 31~ function reads
Zoo1 SO A 2 e
4872 k?) 3
Ik 11C,(G)
AL o2 > 1, 31 B(gk):kW:_Wg% (5.3
+(8K 4 22K2+ 11 f(K) | = Z 1+ 6FL, -

(4.289 exhibiting the well-known property of asymptotic freedom.
From Eq.(5.1), one also obtains

where Z, ! is the same as that derived in E@.10 using

covariant expansion, and dInZ, 2B(gy 11C,(G) ,

(g =K oK » = sa.2 9k (5.4

31 ~ ~ — _
§+4k2+(8k4+22<2+ 11)f(k)},
(4.29 While the contribution fromS'Z,Zl is vanishingly small in the
largek limit, the contribution it generates in general cannot
represents the additional nonlocal contribution. The appeae neglected in the smakl regime whereg, becomes large.
ance of theA?-dependent contributions in E¢4.26) is a  Thus, if we consider not just, * butZ, %, we then have the

consequence of using a noninvariant regularization. Howfollowing nonlocal running coupling constatdenoted with
ever, in the limitA—c, the quadratic divergences cancel g tilde):

each other. From considerirgj * alone, one also recognizes

g°Cy(G)

0Z ==

the familiar factor of— 119°C,(G)/48#2 associated with the ~ )
Ink? term, with —10g°C,(G)/48%? coming from the gauge 1_Z&_1 GO {1 |n(’u“_ T 3—1+4ﬂk‘2
kernel TgdnK/2 and— g%C,(G)/48=2 from the ghost sector aﬁk 9° g° 48r° k)" 3
TrodnO.

In passing, we remark that the presence of nonlocality is +(8'IZ4+22?2+ 11)f('l§')} 5.5
generally characteristic of low-energy effective theories irre- ' :

spective of how it is regularized. Equati¢.29 contains a
nonlocal sectoBZ, ! due to the use of the noninvariant ex-

pansion parameték. This can be contrasted with the method

of covariant derivative expansion in which the blocked ac-

tion is parametrized by local gauge-invariant operators. ~ o~
However, in the largek limit, 52,(’1 becomes identically
zero and the nonlocal effect completely disappears. This is o o
not to say that nonlocal operators are incompatible with X {—3+4k2+2k?3(5+4k>)f(k)}. (5.6
gauge invariance. In fact, the Wilson loops commonly en-

countered in lattice gauge theories are nonlocal invariant o
erators.

which implies

JGr  CoG) 5 K
K 8n? it

Fihe above flow equation illustrates how nonlocalitygip is
developed a% decreases. Notice that the expression inside
the braces is always negative, as required by asymptotic free-
V. RENORMALIZATION GROUP EQUATIONS dom. In the largek regime, however, Eqg5.5 and (5.6)
reduce to the usual perturbative resuis2) and (5.3), re-
] _ spectively. On the other hand, in the covariant derivative
We now examine the RG flow pattern of the Yang-Mills expansion approach, nonlocal effect is completely absent and
blocked action der_ived in the last section.. Let us first_focusomy Eq. (5.3 is obtained. It remains an interesting issue to
on the result obtained from the noncovariant expansion. '%xplore how the nonperturbative, strong-coupling physics in
the large k limit where 82, ' vanishes, by using the the low-energy regime is influenced by nonlocal operators.
Slavnov-Taylor identities.;:’k_l can be related to the coupling We comment that in calculating the RG coefficient func-
constant renormalization by tions using either covariant or noncovariant expansion in the
1 1o o operator cutoff formalism, no unphysical contributions arise
Zy"90= 2 "9i=9% (5.)  to modify the expected results. This is in accord with the

A. Coupling constant and the wave function renormalization
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observation that the Slavnov regularization which combine®nes as they get integrated oVdr3]. Following this pre-
the method of higher covariant derivatives and Pauli-Villarsscription, we obtain the following equation for the RG im-
regularization is a consistent prescription when working inproved actiorsﬁﬁ:

the covariant background gauge witt¥# 0 [27].

1 (92 eff
. o koSt==ka,{ Tr'| In| —=———— Sk—
B. Blocked action—noninvariant approach 2 5AZ(X)5AB(V) ~
In probing the RG evolution of the blocked action, a naive > ceff
differentiation of Eq.(4.23 yields Y 33_
I S IRLVIAY)
@37 | [k S| FLmrLep. 62 ot
—2Tr|In| — ~tar o ~brn
. . X ()XY 5
From Egs.(4.28 and (5.5, one immediately sees that Eq.
(5.7) is equivalent to the3 function (5.6) which governs the (9233ff
flow of g5 . The result is to be expected on the ground that =Nl = — = (5.9
O is the only free relevant parameter we have in the theory, IX(X)ax"(y) /)

Equation(5.9) is analogous to that derived by Reuétral. in

apart from'Zk which can be related tgy by the Slavnov- . . . ;
Taylor identity. This also justifies the truncation of the back—[.lz]’ and can be contrasted with the linear differential equa-

d fieldA b q drati der i ) ) t'uon (5.8 which accounts only for the one-loop contribu-
ground ne eyonad quadralic_order in our noninvarnant i, - ¢ may also be regarded as a self-consistent type of

consideration of the evaluation & . _ _ Schwinger-Dyson equation. The dressing provided by the
How can we improve Eq(5.7) so that it takes into ac- popjinear differential RG equation is equivalent to summing
count higher dimensional operators as well”? We first tumn Qyer all possible higher order nonoverlapping graphs such as
the simplest momentum cutoff regularization which can prohe gajsies and the superdaisies that are frequently encoun-
vide valuable insights into the structure of the Wilson-tered in finite temperature theofg3]. For the effective sca-

Kadanoff RG flow equation despite its gauge-noninvarianigy theory written in Eq(4.12, the corresponding improved
nature. A straightforward differentiation of E8.11) with  coypled differential RG equations read

respect to the IR cutofk gives
ko U= f1(U,Z, Yio--0),

-~ 1
kaagzzkadTW[ijj;=4nn;jd

k&ka=f2(Uk,Zk,Yk,...),
_ZTr,[an%)_ln Ogb]} kﬁkYk=f3(Uk,Zk,Yk,...), (51@
where f; are functions of the coefficients in the derivative

1 (KA _ expansion.
=_tr kﬁkf f Inf—] (d,—d,+ip,)
2 Jp| VKol ,,

C. Blocked action—invariant operator cutoff approach

is obtained by imposing a momentum cutoff that manifestly
breaks gauge symmetry. Let us see how a similar equation
can be obtained in the operator cutoff prescription.
Sqk? f[ (k2—2ik- D-D?+ ZgF)ab In the operator cutoff approach, one observes thatkthe
n
X

Ox1 2 Although we now have an RG improved equatiérb), it
—2In<g) (aa—>aa+ipa)]l
0

KC—2ik-d— 32 depe.ndencg is contained entirely in the -regulat.ing smearing
function p{”(s,A). Therefore, after differentiating the
blocked action with respect g and replacings, andSg™ in

(5.9 the spirit of Schwinger-Dyson, one arrives at

mv

_2|n<

k2—2ik-D—D?\ab
kZ—2ik-9— 92 '

g el =ds, ()
where Tf implies a summation over the restricted space- S =~ 5 Tr — K

) . : . 0 s ak
time, i.e., cutoff scales are present in the momentum integra-
tion. In going beyond the simple one-loop approximation to azsﬁﬁ azsﬁﬁ
probe the physics near the energy scalein the manner of X S| —exp ——— 'S

— IA° A

A w 0
ing the cutoff infinitesimally fromA— A —Ak— A —2Ak axtaaxP S| a’j('Taé,}b.S =
until reaching the desired scadteallows us to incorporate the A 0

Wilson-Kadanoff, one first divides the momentum integra-
continuous feedbacks from the higher modes to the lower (5.11)

_ aA_ZaA_B .
tion volume defined betweek and the UV cutoffA into a > ceff
large number of thin shells each having a widtk. Lower- —Z{exp( I*Sy
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which again takes on the form of a nonlinear partial differ-In the largek regime, Eq.5.12 can be expanded in Taylor
ential equation. This is the RG improved equation whichseries as
governs the flow of the theory. As we mentioned in the In-

troduction, Eq(5.11) cannot be rigorously justified from first off_ azsﬁﬁ "
principles; instead, it is based on a prescriptif the koS =Tr E (=1)"(n+1) — an TAaaAD|
Schwinger-Dyson typewhich has been successful in de- rOwl A
scribing many nonperturbative field theories. In spite of this, oceff \ N

the remarkable feature of our RG equation is that it incorpo- 9”S¢ (5.14
rates contributions from higher order operators and allows ax2axP " ' '

for numerical or analytical approximation in the IR limit.

If one approximates Eq(5.11) by expanding the inte- for d=4, and the theory is characterized by the leading order
grand in power ofs and keeping only contributions up to |ocal gauge-invariant operators. On the other hank-a$,
O(A?), the flow would then reduce to the usyaffunction  we have
shown in Eq(5.3). However, treating as a small expansion

parameter corresponds to exploring the high-energy reglme g &ZS‘E” de aZSﬁﬁ de
of the theory and it is not surprising after all that the short- K ksk =kTr A2 AP | - —&..Ta{.b I
distance property of asymptotic freedom is easily recovered vl A XX

from perturbative approximations. However, if one is inter- (5.19
ested in the IR behavior of the theory, it would be desirabl
to incorporate as much higher order effect as possible. Actu
ally a completes integration of Eq.5.11) can be done and

Swhich is manifestly nonlocal. The above expression may be
compared with

one obtains K2 K2\ 2
KaU(@)=—Sekd InUp+ —— = | | ++++ |,
P di2 up 2\ug 61
kdySe= Tr[ 120+ — J (5.19
k IRLOA, which is the expansion of Eq1.4) for scalar theory in the
A 1 Pt —d/2 smallk limit.
_ 1ab+ _ "
“U K2\ 0ALAY o VI. CONSTANT CHROMOMAGNETIC FIELD
I 1 52t —dr2 Enormous efforts have been devoted to the study of the
—o| s3b4+ = S vacuum structure of S(@) gauge theory in a constant chro-
k? \ gx T2y momagnetic background since the pioneering work of Mat-
) inyan and Savvidy28]. With the help of Eq(5.12), we now
1 »s" 2 explore the RG evolution associated with this configuration.
+2| 52+ @ | otz 1, (512 For simplicity, we choose the background to be a constant
i IX x| chromomagnetic field in the z direction produced by
wherei is the unit matrix in the Lorentz and color space. AZZ 5a35MzBX, (6.1

The role played by higher dimensional operators at the en- .
ergy scalek can now be elucidated by solving E.12 with

explicitly; nonlocal effects too are taken into consideration Fa g2 _op2 6.2
by this nonlinear partial differential equation. In fact, the two pve py ’
equations(5.12 and (5.9) are structurally quite similar as

. . a — l 3 _
can be demonstrated using the simple scalar theorg in An alternative choiceA,, 2B0™(x0,,-y0,1) has also

been used if29]. Working in the background gauge, the

=4 eigenvalues for the kerneks and O can be obtained by a
5 2 m L 5 oo diagonalization in the color space, which then reduces the
K Tr[ k“+p°t+V (@)) _[Ktp } equation of motion into a harmonic oscillator equation and
k? k? yields the Landau energy levels labeled loy where

n=0,1,2 ... [30,31. Thus, the Yang-Mills blocked poten-
tial can be written as

=k4f f{[k2+p2+v”(<1>)]*2—(k2+pz)’z}
xJp

B)~
K* K2+ V(D) Uk(B) fZWn 0 5%
BT AL R
1
PP V(D) \/p2+k2+2gB n+>]-29BS, (6.3
=kakf In Y
p

where S, is the z component of the gluon spin along the
=kdy Tr'{In[— >+ V"(®)]—In(— %)} 1. (5.13 direction of the chromomagnetic field, and the factor 2 in
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B- S comes from the gyromagnetic ratip =2 for the gluon 4, U 19Uy
fields. Since gluons are massless vector parti@gs0 is an k “oF B B (6.7
unphysical degree of freedom and the associated contribution

will be cancelled by the Faddeev-Popov ghft]. Forn  the g function can be rewritten as

=0 andS,=1, we notice that), becomes complex below

certain momentum scale. The unstable mode gives an imagi- g U,
nary contribution to the blocked potential and signals an in-5(9x. 7) =kdgk=~ 5 23,2 1= —gzﬁ’zkﬁk(ﬁ)
stability for the vacuum. To stabilize the theory, we therefore

choose the IR scalk to be such thak?>gB. 9Z 3/2
USing =—- (k(?kuk)
2B B
3
f 5=V 2+E2—J —z In(p*+E?), (6.9 = %‘;T In(1—7)+3In(1+ 7)

]

which holds up to arfE-independent constant, the trace sum +42 IN[1+(2n+1)7]
n=1

in the operator cutoff formalism may be represented as

- 1 3
Tree=Q (2)(S A)f )2 2 (6.5 —ZnZO In[1+(2n+ l)T]—T{l_T— 117
where() is the space-time volume. Taking into account the _42 MJFZE M ]
multiplicity factors for the eigenvalues, it follows from Eq. a-1 1+(2n+1)7 i 1+(2n+1)7
(5.12 that the RG equation for the theory reads 6.9
k?gB d?p 1 1 where 7=gB/k?. In the presence oB field which defines
kaU K=o (2m)2 p2+k2—gB_ pZ+ K2 another characteristic length scale, one naturally would ex-
pect theB function to depend not only o, but also on the
1 1 dimensionless parameter With the help of the Euler for-
+3 02 K21 gB  pPik2 mula[31]

+42 ! ! ih —fwdh Lol h()=
P22 (2n T 1)gB  pPrie 2 M) T ], PROOmggMeo] e e
22 . . (6.9
pZ+k2+(2n+1)gB  pZ+Kk? the B function reads
_ k’gB k’>—gB . k?+gB
© 4nf k? e B(gk,r)—SWT[In In(1+r)+§—g+
- k?+(2n+1)gB 1 1 1
+42 In K2 ) = +1+7_§+6+ ] 6.19

which in the limit of largek or vanishingr, gives

_22
n=0

k?+(2n+1)gB
N——z ) , (6.6
3 3
gk 2 1] 11g;
=— 1+ 5+ - =, 6.1
where the overall factor of 2 accounts for the color charge A9 = 36 241 .17

degeneracy in the S@) gauge group. While the last term in

the first braces represents the contribution from the Faddeein complete agreement with that obtained from Ex3) for
Popov ghost kernel, the first term is due to the mode whict5U(2). Notice that the contributions to th@ function from
becomes unstable fdt?<gB. Notice that the multiplicity the “unstable mode”(the first terrr) and the ghost kernel
factors for the eigenvaluegB and (+1)gB for n>1  (the third term are, respectively;- g¥/4n? and — gg/24m2,
were incorrect i 30]; the correct factors should be 3 and 4, in accord with the analyses of Nielsen and OI§ah).
respectively. The reason is because of the negligence of the We mentioned before that two multiplicity factors used in
unphysical S,=0 sector which vyields eigenvalues (2 [30] were incorrect due to the negligence of the unphysical

+1)gB for n=0,1,... . Asexplained before, this mode S,=0 sector albeit the corregs function was given. The
must be considered fully in the presence of Faddeev-Popoway it was obtained is as follows. The original expression
ghosts. which makes no reference of the unphysical se8gr0

Using Eq.(5.1) and actually gives
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ar 3 1 2393 1_1.ou I(kZ) 6.20
= — —t —=— = n .
Pu(90=— 72\ 1T 31 5|~ 28,2 (612 g2 0? 24w\ u?

instead of Eq.(6.11). Removing the contribution from the given in Eq.(5.2) and
would-be unstable mode entirely by the subtraction
1 1 11 (gB)

—=—+——Inl=|.
2 g 9° 247w° In m?

f d*p In(p?+ B)—f P In(p?>—gB)
@ MPHOBT | o Ty P08
(6.13  We readily see that whilk? represents the general IR cutoff
(squared for the theory in the operator cutoff formalism, in
the discussion of a constant chromomagnetic field, the role
ds m2 of IR scale is taken over byB. Thus, the perturbative large
f T —Ins—2 In( _) (6.14  Momentum regiomk?/ u?>1 corresponds to the intense field
S B limit gB/m?>1. By replacing then right-hand side of Eq.
(6.19 with the correspondind-dependent running param-
eters, the RG evolution equation fof, becomes

(6.21

followed by the substitution

in the proper-time representation with being some appro-

priate renormalization point then leads to the correct result
2 892 U

11g° B(gy) k( 9k Uk

3
3 1 kO”kUkz_ a4
4+ lo=_ 11 k
o+4+6]2 522 (619

IBM(gk)‘)_ﬁZ

+--- . (6.22

Solving this differential equation by retaining only the lead-

Inother words, eliminating the contribution from the jng order contribution, we have the following RG improved
would-be unstable mode completely followed by multiplying pocked potential:

the extra factor of 2 as appeared on the right-hand side of Eq.
(6.14 is how the expecteg function was arrived at ifi30]. dk B(gy)
InU K= — Zf

K ok’

(6.23

Taking into account the imaginary contribution in the
<gB region, the complete complex effective potential reads

which is similar to that obtained ifi28]. However, it only
In(ﬁ) — E 2 takes into consideration the effect tie= B%/2 term. In order
m’) 2 CE to explore the influence of the higher order operators, one
(6.19 must solve Eq(6.22 completely without truncation.
We emphasize that the above perturbative treatments are
limited to the regime wherd is large and the theory is

B2 119

. gZBZ
UB)= 7+ 282

B? —i

upon imposing the renormalization conditif28]

asymptotically free. Continuing to evolve the system to a
d(ReU) ; : . ) .
=1, (6.17  lower k will result in a complicated blocked action which
IF g invalidates perturbation theory. Furthermore, in the IR region

. 5 . ) i . whereris large, Eq.(6.22 is no longer a good approxima-
with F=B*</2 be|_n_g the gauge-invariant quantlty_c,’fllthe tion. Serious difficulties are encountered for1 wherep
theory. The condition is readily fulfilled by choosing function becomes complex. The source of the singularity is

=29°F. undoubtedly due to the unstable mode which becomes un-

The arbitrary scalen and the IR cutofk arising from the suppressed fk<\gB (r=1). In[28], Sawidy considered
operator cutoff regularization can be related to each other b%nly the real part of the one-loop potential given in Eq.

noting that while (6.18 and obtained a nontrivial minimur@,,

119282 gB 2 2
mam(ReU)=—W, (6.18 WZm: —2474/11g , (6.24)
one has which has a maximum value of 0.6053 gf=48x2/11.
) ) Since the conditiorgB,,,/m?<1 is just like k?<u? in the
_ k“gB k*~gB operatorimomentum cutoff case, one naturally would argue
k(?kU K=" > In > p X . R ' L . y . 9
4 k“+gB that such a configuration is unreliable since it lies in the deep
" ) IR regime where perturbation is known to break down.
25 I k°+(2n+1)g B)] Moreover, the running of the momentum in the RG trajec-
oy k2 tory is generally restricted to be between the UV cutoff and
M, where one defines the physical renormalized coupling
119°8> 1 g'B* constant. Further complication arising from the persistence
o4 e k& T 6.19 o the unstable mode in the IR region then lead Maigral.
[30] to argue that the problem associated with unstable con-
in the largek limit. This implies that we must haved,,.= figurations can only be treated nonperturbatively. On the

—kody, i.e., the two scales run in the opposite manner. Thither hand, lattice calculations seem to support the formation
connection can also be seen from of such chromomagnetic condensf28,32.
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Let us examine the physical consequence if a nontrivial VIl. SUMMARY AND DISCUSSIONS
vacuum state should exist. From E®.8), we find that a

minimum of the potentiaB, must satisfy In this paper we demonstrate the invariant nature of the

operator cutoff regularization whose regulating smearing
function p(d)(S,A) simulates a momentum cutoff and is
%) reminiscent to the invariant Slavnov regularization which in-
JB volves both the method higher covariant derivatives and the
Pauli-Villars. We also construct an RG equation based on the

Ozgké’k

0

=—22,3Bg- kg Schwinger-Dyson self-consistency argument which, albeit
e not completely rigorous, has been applied to scalar theory
=—22,""BoB(9k. 7o), (6.29  with remarkable success. In the covariant background for-

malism with =1, the resulting RG coefficient functions
where 7,=gB,/k?. While B,=0 trivially satisfies the re- completely agree with the expected values, and no inconsis-
quirement, a nontrivial configuratioB,#0 necessarily im- tency is found. It would be interesting to see how the regu-
plies B(gx,70) =0, i.e.,g4( 7o) is a fixed point of the theory. larization can be carried out for an arbitrasy
Thus, the existence of a nontrivial vacuum state in the pres- From the RG equatiori5.12, we see that the blocked
ence of a background chromomagnetic figlds intimately act|onSk provides a smooth interpolation between the bare
related to the existence of a nontrivial fixed point, and toaction defined at=A and the effective action at an arbitrary
locate such a fixed point generally would require a nonperscalek. In particular, in the largeék limit where only the
turbative prescription to track the evolution of the couplingleading order gauge-invariant operator is kept, L2 re-
constant. In analogy to the Schwinger-Dyson self-consisteriroduces the standagifunction. On the other hand, &sis
procedure, we replacg on the right-hand side of Eq6.8)  lowered, contributions from the higher dimensional operators
by g, and obtain that are generated in the course of blocking continue to pile
up and are also accounted for by our RG prescription. There-
fore, Eq.(5.12 allows us to probe the theory down to a
+22 In[1+(2n smallerk regime compared with perturbation. Even though
the complicated nonlinear partial differential RG equation
seems to make the analytical form for the low-energy
1 blocked action rather hopeless, its numerical solution may
—_— + L]
-7 1+ nevertheless provide a consistent check for the nonperturba-
" tive lattice method. For the simplest 8) theory in the
_22 (2n+1) ” 6.26 presence of a static chromomagnetic field considered in Sec.
n=o 1+(2n+1)7, ' V, a complete solution to the RG flow equation may yield
additional insights on the role of the unstable mode. It may
even help resolve the longstanding issue of the reliability of
the energetically more favored ground state found28].
For realistic theories, the effects of matter fields too must be
considered. Operator cutoff regularization is an ideal regula-
tor for chiral theories since it is performed directly @
+22 In[1+(2n+1) 7], space-time dimensions, and no ambiguity in the definition of
(6.27) vs arises. The generalization of this regularizing scheme to
higher loops would also be helpful for computing Feynman
graphs. Work along these directions is now in progress.

1+

gr
B9k, 7= k(?kgk=87727_k ['

+1)7’k]_7'k

wherer,=g,B/k?. In the above, since the expression inside
the braces has the forf(7) = f(7,)+ 7f'(7), with

f(r0=In| 35—

one may readily identify the solution t(7,) =0, or equiva-
lently, f(7,)=0, as a fixed point of the theory. Fé¢7,) to

vanish, one must have ACKNOWLEDGMENTS
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The absence of any other nontrivial fixed point when consid-
ering only the real sector df, seems to cast doubts on the
existence of the Savvidy state. To investigate the full In this appendix, we give the details of how blocked po-
vacuum structure, the dynamics of the unstable mode musentials for scalar field theory are computed using operator
be taken into account. cutoff formalism. To be definite, the calculations will be car-

)

APPENDIX A: SCALAR FIELD THEORY
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ried out ind=4 dimensions. Consider for simplicity the fol- u? ) Y k2 Ao, )N
lowing bare Lagrangian: =5 ®1-522 |1t i T W)
L= (3,814 V() (A1) I [T P
22 Al Ui
In the presence of a slowly varying background fidigx) K24 124 N P22
whose Fourier modes are constrained by an upper cutoff xInl 1+ ’“—2> (A5)
scalek, by integrating out the fast-fluctuating modes, the I

ne-| ntribution he low-ener lock ntial i .
one-loop contribution to the low-energy blocked potentia SWhere the renormalized parameters can be related to the

given by cutoff-dependent bare quantities by
1 (~ds
U (®)=-> f — p(s,A) o2y M o o B
2 Jo s ,L,L—,LLA+327TZ A+,u|nA2,
Xfe*pZS(e*V”((D)S_ er”(O)S) 3)\2 MZ
P )\=7\A+m 1+|HP). (AB)
1 © ds " yr
=~ 3572 f Pl pi(s,A)(e7V (Ps— g V'(0)s) It is easily seen that in the limk=0, Eq.(A5) reduces to the
0 usual effective potential obtained [i@3]. For this theory, the
(A2) improved RG equation reads
Notice that the scales set by momentum regularization are K4 k2+ Uy, (cp))

(4) i i ko Up(P)=— In I A7
now taken over by{"(s,A). As shown in[15], smearing KW P)=— 75> K21 U(0) (A7)
function of the form

@ o A2 2 which is a nonlinear differential equation that takes into ac-
pk (SA)=[1-(1+A°s)e” " *]-[1—(1+ks)e "] count the coupling between the high and the low momentum

— 20\ (L2 modes.
p(A7S)=p(K") (A3) The results obtained above can be readily extended to

is equivalent to imposing sharp momentum cutoffs. That isScalar electrodynamics. The Lagrangian is given by
inserting Eq.(A3) into (A2) leads to the cutoff expression

1 1 )
1 B 1 ’ | (p2+v”(CI))) ‘CSQED: - Z F,LLVF/.LV_ Z (&MA#)2+|((9M+|eoAM)¢(X)|2
ur= | ol G :
KA t Ay t 2
FEL B0 000+ o (60 B0 (AB)

= 542 [(Az—kz)[V”(CI))—V”(O)]

whereF ,,=d,A,—d,A, and « is the gauge-fixing param-

A%+ V"(D) . K2+ V" (D) eter. The complex fields(x) may be rewritten in terms of

A2+—V”(O)) - n(m) real fields¢, and ¢, as[ ¢,(x) +id»(x)]/v2. Considering
the special case where,=0 and®3=® 6> with ® being

+A%n

2 V'(D) the constant background configuration, the blocked potential
—V(®)%n KZ+Vvi(d)) " [ (A4) " in the Landau gauge with=0 becomes
up to somed-independent constant. Taking the* theory (1 _ 1 f* d_S —us 2y e k2s_
as an example, the blocked potential up to the one-loop order’x (P)=~ 352 0o S e (1rkse 1
becomes , , ,
+A23)87A S][(ef)db s/2__ 1)+(e7)xd> s/2__ 1)]
U(®)=V(®) -3 f f — (s, A)em (P ruds +3[1—(1+ A%s)eA’s] (e 75— 1)} (A9)
% (e—)\(I)zs/Z_ 1) Even though blocking is performed only for the scalar fields,
it can be implemented in a similar fashion for gauge fields as
1 s u? SN well. Notice that the extra factor of three in the photon loop
T | M T2 A+ ptin A2l 6472 k| contribution arises from the trace of the propagator in the
) ) Landau gauge. We also comment that the fornf®) is
+i N4 A 141 M P4 generally gauge dependent although physical quantities must
41 3277 NA2 be gauge independef84].
5 s 5 The theory, however, is plagued by IR singularity due to
n 2+£q>2 “k¢lin Ko+ u+A0</2 the presence of massless photons. The problem could be
6am? |\ 7 2 ,u7 avoided if blocking is also done for the gauge fields, i.e.,
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using p{Y(s,A) instead ofp{*y(s,A). The conventional The theory in this limit shows spontaneous symmetry break-
regularization scheme is an off-shell subtraction conditioning driven by radiative correctiong33]. Once more, the

for the coupling constariB3] symmetry-preserving nature of the operator cutoff formalism
is seen from the absence of cutoff scales inghietegration.

U (P)

= W ) (A].O)

d=M,k=0

APPENDIX B: GENERALIZED PROPER-TIME CLASS

Numerous regularization schemes can all be shown to be-
g to the generalized class of proper time since they can be
represented by a suitable definition of smearing function. A
1 = ds , detailed discussion can b_e found[i6]. However, fqr com-
ON= f —[1-(1+A2s)e 9] pleteness and comparative purpose, we recapitulate here
32m” Jo s various examples and examine how they modify the propa-
gator and the corresponding one-loop kernel. We also show

which, in the language of operator cutoff, is equivalent ©0n
using the following coupling constant countertef&b]:

x| \2e~ (W2 +AM?2)S(3_ g) M 25+ \2M%s?) how cutoff scales can be implemented in dimensional regu-
larization as well ag function regularization. The “hybrid”
A2 prescriptions of dimensional cutoff aridfunction cutoff al-
+— e—(u2+AM2/G)S(27_ 18\M2s+\2M*4s?) lows us to establish a direct connection with the momentum
81 regularization. To be specific, we apply each of these tech-
s niques to regularize the divergences encountered in the com-
+12e0e*90""23(3— 12e§M25+ 4eg|v|452)] putation of the two- and the four-point vertex functions for
H=p?+u?in d=4.
~ 1 (20 2, AN3M2(AM2+92) (1) Operator cutoff. Fod=4, the smearing function be-
T 64?2 |3 81 2+ A\M2/6)2 comes
K2 _ A2
4)\3M2()\M2+3#2)+24e4 i3] Mz)} p(k4)(s,A)=(l+k23)e ks_(1+AZS)e A%s
n —
(/.L2+)\M2/2)2 0 A? :(e—kzs_ e‘AzS)+s(k2e_k25—Aze_A25),
2)\2 2+ \M?/6 24 AM2?/2
which leads to the following regularized propagator and one-
(A1l)  oop kernel:
After removing theA dependence, the blocked potential be- 1 1 Jac ot ) s
=l ==— | dss"(1+ks)e”
comes H1 T Jo [( )
2
_,u_ 2 l 4 L _2_)\ 2 2y 2 _1+AZSefAzsest
U(D) == @2+ 75 &%+ 7 — 3(k+ﬂ)<p ( ) ]
1 1 nk?
- o' u2+§¢2) — KA (H+K)T (H+AD" " (H+KH" T
K2+ w2+ N d2?/2 A —2—nA2 (B2)
xIn MT)—F[(/LZ-FECDZ) —k4} (H+ ADT T
i K2+ u2+ )\CDZ/B) . A? an % ) and
u? 4 w2+ AM22 | H | H+K? Ho+ A2
\2 2 Trodn H_o =TryIn —H0+k2 TEAZ
+ — PNl —————5=
36 (,u2+)\M2/6) A2(H—"Ho) . K2(H—Ho)
M2 L AMPOu M3, (HFAD(HoT AT © (I (oD
6 8 u?+AM?6)? ' (u?+AM?/2)? (B3)
P2\ 25 As demonstrated in Sec. Il, E(B1) simulates a sharp cutoff
+3e3®4 In| — | — — (A12 i i
€ vz "6l ) at the level of blocked potential. Using EGA\2), the one-
loop correction to the two- and four-point vertex functions
which for u2=k?=0 reduces to for scalar theory can be written as
)
A »* (5 @2\ 25 Uy A F ds i
_ 4 2 4 (2)— — = 4 s
UkzO((D)_E(D +_2647T (1—87\ +3ep/|In M2l "6l ol e ID2 |<13:0 3272 0 2 pi (s,A)e )

(Al13) (B4)
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and 1 a- K2s AZs) o Hs
—| = ds 9 Y(ae kis—bje AiS)e”
H" = T(n) f
U 3N [rds o o T
5Foc_ T :——zf —pk (s,A)e”#3 )
ad* |, 327 Jo => il B11
(B5) T (H+k2)” (H+AD") (B0
which for k=0 become and
A 1 AZ 2
(2>_ H ds
-4 st IS Y
Ho i Jo
0
, S HAKE\ & Hot AP\
I%[AZ—M%(A £ } (B6) S i) Vrear] |
™ M

(B12)

and
The similarity between the operator cutoff and the Pauli-

Sr@ 3\2 1 A2 2 \_/iIIarﬁ is Eow apparent. B)(c cho_osim%;fbi?i =1, we no-h
=" "5 2T 22| 2 22 tice that the two smearing functions differ from one another
2 Jp (PTHuT T utA only by a higher order co%rection.
2(p%+ u?) In computing&l“g%,) using the Pauli-Villars regulator, it is
X m necessary to introduce two ghost terms since the integral in
Eq. (B8) is quadratically divergent. Thus, we writ86]
32 ds ., r
:_WJ 5 Pr=o(siA)e” 1| 1 by b,
24 u? T p%+ 24w+ A5 pPHultA;
D20 (AZia2 A2 pP+u?, PPHu’ pPruPtAl pPrptrAS
BEZ ARk e L f(p2,u? A2, AD)

(PP D) (PP P+ A (PP pZH A
On the other hand, using the momentum cutoff procedure, ! 2

one also has (B13
N (AL A A2+ 2 where
5F(A2)=§f WZ@{AZ—MZM( a }
M M (BS) f(pz,Mz,Az,Ag)
and =(1-b;—by)p*+[2(1—b;—by)u?
T +(1=by) A+ (1—by) ATp*+ w[(1—by) A
MW=~ fp (pZ+ u?)? +(1-by)A2]+A2A2, (B14)
2 2, 2 2
_ 3\ In At p _ A (B9) and demand that
327° w? w’+ A%
1 1
(2) Pauli-Villars. The conventional Pauli-Villars scheme oZr 2 TP as p>—. (B15

can be parametrized in the proper-time representation by tak- pv

ing the smearing function to be
9 9 The condition is satisfied if

(s, M)=2 (ae b ), (B10) bi+b,—1=0, (1-by)A2+(1—b;)A%=0, (B16)
1

where A; are the masses of some ghost states, lanithe which implies

extra masses added to the spectra. To render the theory finite, A2 A2
the coefficients; andb; as well asi, the number of ghost by =—m? -1 (B17)
. . - 1= A2_ A2 2 2_ A2
terms, are appropriately chosen. The physical limit, however, A3—A7 A3—A7
corresponds to taking\;—o and k;—0 since A; and k;
control, respectively, the divergent behaviors of the theory inThe correction to the two-point function can now be obtained
the UV and the IR regimes. Equati¢B10) implies as
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sr2=2 f ! Ei(—so) Jm T
= i(—Sp)=— —e
v o b p2_,_[1142 0 5 s
pv
A2A2 *° —s n
:if 2. 202 21 > 2, 2 A2 Inso+y+ 2, ( ,O) (so—07),
2 Jp (P pu)(p*H u+ AT (P + pu+A3) _ =1 nin
2 2 e So
A f 1 A - (So—).
2 Jp PP+ u? | PP+ uZ+ A2 S0
\ A%+ (B23)
ZW[A2—M2|H(—2—)} (Al,A2—>A),
H Correspondingly, we have
(B18)
which is in agreement with E¢B8). As for T'(}), since itis 2 \ g~ (PPN
logarithmically divergent, only one ghost term is sufficient 15 ) 21,2
. p PTTu
and we obtain
A 2/72 ,U~2
sro- (1 :_Slf _r 22 |V T EI( A
pv 2 P (p2+M2)2 " 2 P (p2+M2)2 \ A2
1 N2 A2+ p2 :32777[/\2_“2 In ?) e (B24)
- (p2+ﬂ2+A2)2}:_ 32n? '”( z)
(B19 and
(3) Proper-time cutoff. Since divergences generated from s oo
taking the trace in space-time are transferred into singulari- ST — _ 3NZ [ e (PTHmIIA 1 P2+ u?
ties in the proper-time integration, one may regularize the pcT T o o (p%+ u?)? + A2
theory by a direct truncation of the integration regigeéo
avoid singularity. For example, we may simply take the S 2u? 2ut\ [ w?
smearing function to be a sharp proper-time cutoff: T T3 T AT AT RN T Az
1 1 ,U«2 _2A2
pR(s,A)=0|s— A—z)(@(P—s). (B20) +2{ 1+ 5je
2 2
In this manner, we have =— % In(% Foeen (B25)
1 1 % 1 1
= =—J ds 10| s—5|0| 5—s|e " . o _
H',e T'(n) Jo A k (4) Point-splitting. One may also choose the smearing
function to be of the form
1 K2
=— dsgle s
I'(n) Jua2 O
L1 " " pRI(s,A)=e A% — g7k, (B26)
:@W(F n,O,F}—I‘ n,O,PD (821) . . N .
which corresponds to the so-called point-splitting regulariza-
and tion scheme. This smearing function yields
H k2 ds
Trpc In(_):_f _Tr(eiHs_eiﬁos) i :i fw -1 —1/A25_ —1K2s\ o—HsS
Ho A2 S 7 N ) 0dsé1 (e e Ve
_ ; 2 ; 2
=Tr{—Ei(—H/k*) + Ei(—Hy/k?) 1 o N RPYRT M\ op
+Ei(—HIA?) —Ei(—Ho/A?)} =t |1az) Kol Tl Kel T
N 1
—Trnﬁ0 +ee, (B22) :ﬁJr..., (B27)

where we have employed the asymptotic forms of the
exponential-integral function and
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H = ds 2 2
o | 2 a-UA%s_ o-1K%s
Trpsln(HO) fo S (e e )

X Tr(e~ 75— e~ Hos)

=2TrK ol K 2"
=< 1Kol 71 o\ TA
2Hy? 2H"?
_KO k KO k
=Trl (H)+ (B29)
=1rin Ho s

where we have expanded the modified Bessel function as-

ymptotically as[37]

\/? ] an?-1%)  (4n*-1%)(4n*-3?)
Kn()~ V55 € 7| 1+ —Tigx 21(8%)2
+oor | (x—>), (B29)
and
2" Y n=1D)Ix "+---  n=1,
K o(X)~ X (x—=07).
—Ins— n=0
2
(B30)

The two- and four-point functions in this scheme are

A 1
5r<2>=—f
ps 2, 2
2 Jpptpu os

2702

)\ © 2,2 efp/Ay
— —y—uIA

_—f dyey wnel yf 2+ >

0 p PTTu

0
2
[ m
X Eil — E)}
Au? 2u\ (= u?
~ -~ Y In| =
3972 2K2< A )+f0 dye In(Azy
A A%+ p?
= 2— 2 N

and
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2
5I‘(4):_3Lf %
ps 2 Jp(p+uo)

3\? (= 2,22
- YAy
5 JO dyye

ps
e~ PIA%y

p (p?+u?)?

3% (= 2,02 ,uz 22
- Y- Ay | em Ay
3272 fo dyye {l+ 1+ Azy)e
2
. M
X El A—2y>]
3\?2 A%+ u? 832
- 3271_2 MZ ( )

We remark that the four smearing functions presented so
far in a certain sense can all be viewed as a special case of
the generalized momentum regularization in which the regu-
larized integral for an arbitrary momentum-dependent func-
tion f(p) is written as

a(A)
Jo

b(k)

wherea(A) andb(k) are arbitrary functions of the cutoffs
andk, respectively. This is readily seen by noting that the

prescriptions presented previously can be related to the gen-
eralized momentum regularization via

f(p), (B33)

1 ’
re —p?s_ re — -p%s
Pk g(s,A)fpe Gme) ™ PYs,A) fp e

a(A) )
= Sdf dp pd~le P (B34)
b(k)
or
2592 ran) )
Y s,A)= = dp p?~te P, B35

For example, in thel=4 Pauli-Villars case, we have

pv, _ 7k23_ —A%s_ 2 a(A) 3 7p23
pr(s,A)=e e =2s dp p’e
b(k)

=[1+b%(k)s]e ks

—[1+a2(A)s]e @N)s (B36)

wherea(A) obeys the transcendental equation

e Ms=[1+a%(A)s]e Vs, (B37)
The IR cutoff functionb(k) can be obtained in a similar
manner.

(5a Dimensional regularization. One can also show that
dimensional regularization falls into the generalized class of
proper-time by taking the smearing function to be

p(s)=(4ms), (B38)
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which follows from integrating the variable ind— € dimen-  and
sion without imposing the cutoffs, i.e.,

2
p(d)(s A= —— f e—zzs 51"(4)_ _ 3L
X ' Sel'(dr2) J, 2 pe+u )
2572 d?" <z -2%s_ 4 €/2 3\? 2\ —€l2
TS | emeee —@mST ~ samz (W) T (el2)
(539 3\ 12 = (477 + (B44)
el n . s
Sincez can be regarded as the momentum varighlehe - 3277
feature of dimensional regularization is completely encapsu-
lated.
We comment that an alternative approach akin to dimen'/nere we have usefg]
sional regularization is the method of analytic regularization.
The manner in which the theory is regulated is to increase (—1)"[2 1 1
the power of the propagator 6y2, e.g., p°+u?) '—=(p>  T(—n+ef2)= o ( L5+t oy +o(é)}.

+u?) "1+ € thereby decreasing the power of divergence. ' (B45)
In the proper-time formulation, it is equivalent to choosing

= (5= 25(d=#)/2 d’z o5 (47s) " The divergences now appear as polesder0 and 2 since
PSS =g Td—9/2] | (2m)° ’

(B40)
where the original space dimension ofs kept. It is inter- [(—1+el2)= (C1te2)(e2) I'(1+e/2). (B46)

esting to notice the relative negative sign between di-
mensional regularization andin the analytic regularization.
While both dimensional and analytic regularizations give theThese poles can be mapped onto the divergent expressions
same results at the one loop level, the latter is known tmbtained by using the momentum cutoffs.
violate BRS symmetry at higher loop order. In other words, (5b) Dimensional cutoff regularization. The most direct
upon inverting the propagator given by the analytic regularway to establish the connection between dimensional regu-
ization to obtain the kernel, one finds that the regularizedarization and the momentum cutoff regulator is by means of
theory is no longer BRS invariant. The details can be foundhe “dimensional cutoff regularization” defined by
in [5].

Equation(B38) suggests

a2 pur(5,0)=p(5)pI(s A):L)dz S(d+e)/2f’e,225
e G T A ‘ ¢ TSI (dls) LS
HY o T(n) Jo (B47)
I'(n+e€/2) i
- €29 /—(n+€l2) . L . -
) (Am) e, (B41) which is simply the product of the two smearing functions
taken from each scheme id dimension. The modified
and propagator and kernel in this scheme read
H 12 ” —1+€l2 —H —H,
Tr.n 7 =—(4m)® dss 17 €Tr(e” 75— e H0d) 1 1 is
0 0 il
| F(n)f ds & 1p¥(s,A)e”
= —(4m) T (el2)T(H™ >~ Hy %), (B42)
1 2(4m)€?’T'(n+d/2)
The corrections to the two- and four-point functions are, T dr(n)['(d/2)
respectively,
Az)d’zF(d d+e 1 d AZ)
- X4 | = =, —+nl+ -, ——
5F(52):£J’ 2:L 2 :£(4’7T)e/2J' ds§’2e*“25f e P’ H 2 2 2 H
SR R M ° P @\ (d dre o d K
A oy “\®] Pl eyl
= “T(—1+€l2

2
A { 20 (ﬁ; T (B43)

and
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H = ds 32 (2 €
_ — = (d) —HSs_ A—HpS (4)_ = _ - 2
Tro In(HO> Jo S Pk (s,A)Tr(e e~ o) or. = W( 1+In4dxw [ 1 5 Inu
2(471.)6/2 AZ d/2 ) A2/2
:_TTr ﬁ -1 —ln(A +IU, )+m + -
d d+e d_ A2 A2\ 42 _ 3\? n A2+,u,2 B A2 +O(e)
“Flz 2127 %) %, 32m* W2 AR T

(pld dte  d A?
2272 e,

|9 (d dre d K
H T\222 2w
kz)d/ZF d d+el d kz)
) T2 2275
(B49)

Equations(B43) and (B44) are now modified as

p PP+ u?

)\ o
=—(47T)5/2f dss1-(1
2 0

2 2 2
+A%s)e A Sle# Sf e s
p

AT(—1+€l2)

2 2
=5 A= az ((Mz)ldz_ eA Vet i
2 (4m)Z e

(B50)
and

3>\2 I'(el2)

ST 3>\2J
P+ w ) 477') ~€

. (1+e/2)A2+,u,
Xi (u?) /Z—Wz—- (B51)

To recover the cutoff results, we take the lirait> 0 first and
obtain

AZ
+2_,LLZ

11

@_ _
ory -5

1672 [ In4mu }

1
-3 In4m(A%2+ u?) | +0O(e)

Y 2+2

T 3272

+0(e), (B52)

AZ—,uzln(

and

(B53)

The above equations explicitly demonstrate how with this

hybrid dimensional cutoff regulator, the elsingular term
coming from dimensional regularization and cutoff regular-
ization cancels each other and gives backAhéependence
of the cutoff theory shown in EqgB8) and (B9). On the
other hand, taking the limiA — o~ beforee—0 allows us to
recover the usual dimensional regularization scheme.

other words, depending on the order in which the limits
A—o ande—0 are taken, different regularization schemes

are actually achieved.

(6a) ¢-function regularization.Z-function regularization
has been discussed extensively by Elizatlal. [39] and in
the context of operator regularization by McKeetnal. [26)].

In the ¢-function regularization, the logarithm of an op-
erator is represented by

d
InH——hm — Ht

Gt (B54)
Noting that
%=% f:ds $-le 7t (B55)
one may define thé function as
()= =— ) j dsd Tre s, (B56)

which implies

d
detH=exd Tr InH]zex% Tr Iim[ T Ht“

t—0
=ex;{ —lim — g(t)}
t~>0

The equivalent of-function regularization in the proper-

(B57)

time formulation can be obtained by choosing the smearing

function

d
pi(s)=lim —

1
lm 5 7 S (B59)

which gives



56 OPERATOR CUTOFF REGULARIZATION AN . . . 5031

1 d 1 (r [p?+V"(D)
— =lim — —f dsgtt-le 7t UM (@ =—f In| ————
H" c o d [F(t)l“(n) < (P) 2 J)p p%+V"(0)
I'(n+t) (n+1) 1 f 1-d/2
= - 7 — — lim dSé
!Té [ T - 2(4mT2 Odt T(t)
=1lim M H (”+t)[1//(n+t) l/l(t) |nH] (d)(s A)(e—V "(®)s_ e—v//(O)S) (864)
ol F(MI(Y)
_ i lim I'(n+t) —t By demanding that Eq(B64) yields the same differential
HY o T(MI(t+1) flow equation forU, as that obtained from momentum cutoff
regularization, we are led to
n-1 1 1
X| 1+t E ——InH||{— 7=, (B59)
=1 t+l H d 1 % ap\@(s,A)
lim — fdsé‘l‘d’2 ) P> (e~ V'(®)s
. 0dt T(t) ak
and
VH )J
H d( 1
Tr n —lim — f ds s 1Tr(e "s—e oS
¢ (HO) .- 0dt{l‘(t) ( ) __mf it —kZS(e—v”(<1>)s_e—v”(O)S)_
0

| |l
—Tr—hm—(H —Ho ) |[=TrlIn (B65)

t—0 dt HO)
(B60)  One can then verify by direct substitution that the above
expression is indeed satisfied by the smearing function given
in Eq. (1.5). Thus the samg({?(s,A) can be used to bring
the momentum cutoffs inta-function regularization al-
though this may seem redundant since no divergence is en-
T'(x) countered in this prescription. Nevertheless, by retaining the

where we have usg@i0]

(X)) = T'(x) (B61) cutoff scales, the flow pattern of the theory may be explored
in a lucid manner.
As an explicit demonstration af function cutoff regular-
and ization, we compute the one-loop contribution of the blocked
potential ind=4 and obtain
lﬂ(ﬂ"l‘t):lﬂ(t):i —. (862) U(l)(q)) 1 lim d f dsd- 3[(1+k2 e —-K3s
<o t+l k © 3202, dt | T(t)
(6b) ¢-function cutoff regularization. In an analogous —(1+A2)e M) (e V' (®)s— eV"(O)S)]
manner to the dimensional cutoff regularization scheme, one
can introduce cutoff scales to tlefunction cutoff regular- 1 1
ization as well. This again can be done with the product of " 3. I|m [m {[K2+V"(P)]?"

two smearing functions:
1
q 1 _[AZ V"(CI))]Z t}+ {kz[kz-i-V"((I))]l t
£,(d) _ L (d) — T &t (d)
pri (SA)=pi(s)pi(s,A)= Ilm ' atT( Spi (S,A).
(B63) —AZAZHV(@)] Y+

{v"(q>)(A2—k2)+A4|n(1+ VS”)

k2+v"(q>))
AZHV (D) ]

To show that the san}éf’)(s,/\) obtained in Eq(1.5) can
be used to reproduce the momentum cutoff structure, we
consider again the simple scalar theory. In tiiinction
cutoff formalism, the one-loop correction t, is written as —k*In
remove theA dependence. On the other handAifis first
sent to infinity before the integration, one arrives at SRR (B66)

~ 64r?

1+7£—) +V"(P)?In
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Here we see that by keeping the UV cutdfffinite when ) 3 )
integrating overs, counterterms have to be introduced to =~ ga2 | V(@) + 5 VI(P)
remove theA dependence. On the other handAifis first

sent to infinity before the integration, one arrives at K2+ V"(®D)
+[k*=V"(P)?]In e )
Ul(®)=— I|m d ] 1 ds§ 3(1+Kk3s)
k 32n2 I'(t) (B67)
XefKZS(er”(tb)s_ eV”(0>S)} which is precisely the finite one-loop contribution of the
blocked potential. It is interesting to note that taking the limit
1 K2V (D)2 A— o before and after the integration actually yields dif-
—— lim — # ferent results. In fact, the two limits correspond to two dif-
S 82m? o dt [ (t—1)(t-2) ferent regularization procedures. The connection between the
oo - {-function cutoff formalism and the momentum cutoff regu-
kTk™+V'(@)] .. larization can actually be established by the following inte-
t—1 gral transformation:
|
U (d)=— ! I| d f ds S 3pP(s,A)(e™ V' (P)s_g=V'(0)s)
k 3272 o dt T(t)

—>——J’z lim _{F(t)f dss e Zs(e V(®)s_ o= v”(o>s)]

__l II dr 1 3 1 ]
= im [

2 J, o dt |[[ZHVI( @) [ZZ+ V(0T
2+ V"(D)
"2 f Z+V" 0)) (B68)

In other words, equality with cutoff regularization can be obtained by keeping itegration till the end and interpretirg
as the momentum scafe
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