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We derive the wave equation for a minimally coupled scalar field in the background of a general rotating
five-dimensional black hole. It is written in a form that involves two types of thermodynamic variables, defined
at the inner and outer event horizon, respectively. We model the microscopic structure as an effective string
theory, with the thermodynamic properties of the left- and right-moving excitations related to those of the
horizons. Previously known solutions to the wave equation are generalized to the rotating case, and their
regime of validity is sharpened. We calculate the greybody factors and interpret the resulting Hawking emis-
sion spectrum microscopically in several limits. We find aU-duality-invariant expression for the effective
string length that does not assume a hierarchy between the charges. It accounts for the universal low-energy
absorption cross section in the general nonextremal case.@S0556-2821~97!08020-X#

PACS number~s!: 04.70.Dy, 11.27.1d

I. INTRODUCTION

Hawking’s seminal calculation of the black hole tempera-
ture allows for a surprising window to quantum gravity: It
immediately yields the size of the underlying space of quan-
tum states in quantitative detail@1#. The result relies only on
a particular detail of the black hole geometry, namely, its
limiting form close to theouterevent horizon. We will argue
that other geometric properties give similarly direct evidence
on the microscopic structure of black holes. Specifically, we
find an important role for the geometry in the vicinity of the
inner event horizon, as well.

The discussion and the examples aim at the description of
black holes as quantum states in string theory~for a review
see@2,3#!. It is a characteristic property of string models that
the entropy is the sum of contributions from left- and right-
moving excitations of the string, and the thermodynamic
variables accordingly appear in duplicate versions. The black
hole geometry exhibits an analogous structure: Standard
thermodynamic variables, defined at the outer event horizon,
are mirrored by an independent set of thermodynamic vari-
ables, defined at the inner event horizon. We find that the
left- and right-moving thermodynamics of the string theory
correspond to the sum and the difference of the outer and the
inner horizon thermodynamics. This relation can be estab-
lished by direct inspection for large classes of extremal and
near-extremal black holes. Indeed, it is valid in all the cases
where the correspondence between black holes and string
theory, has been demonstrated. Ultimately we would like to
find a microscopic description ofall black holes within string
theory, and our geometrical observations may be sufficiently
robust to serve as guidance towards this goal~other attempts
include @4–6#!.

In the following we give an outline the paper and summa-
rize the results in more detail.

We begin with an important motivating fact that concerns

the entropy of general rotating black holes in five dimensions
@7#:
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~As we explain in Sec. II the nonextremality parameterm and
the boostsd i parametrize the mass and the charges, andJL,R
are angular momenta.! The form of the entropy may be in-
terpreted as an indication that it derives from two indepen-
dent microscopic contributions, and each of these may be
attributed to a gas of strings@7–9#. We will consider the
general case of rotating black holes because the crucial divi-
sion into two terms becomes ambiguous in the limit of van-
ishing angular momenta. We develop the thermodynamics of
this interpretation in detail, in Sec. II. An important feature is
that we find two independent temperaturesTR andTL , one
for each gas. These two temperatures play central roles in
subsequent sections.

In Sec. III we present our main technical result: We
write the exact wave equation for a minimally coupled scalar
in the most general black hole background in five dimensions
@Eq. ~36!#. The wave equation has a surprisingly symmetric
structure, given the generality of the setting. A characteristic
feature is that the outer and inner event horizons appear in a
symmetric fashion. The modes in the vicinity of the outer
horizon give rise to the Hawking radiation, with characteris-

tic temperatureTH
215 1

2 (TR
211TL

21). Analogously, from the
modes in the vicinity of the inner horizon we infer a ‘‘tem-

perature’’ given byT2
215 1

2 (TR
212TL

21). The temperatures
TR andTL that appear in these formulas agree precisely with
those that follow from thermodynamics. Similar results are
derived for the other thermodynamic variables, i.e., rota-
tional velocities and U~1! potentials.

The wave equation has an exact symmetry that inter-
changes the inner and outer event horizons. In Sec. IV we
identify this discrete symmetry with theT duality of an un-
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derlying string theory. Moreover, we exhibit an approximate
SL(2,R)R3SL(2,R)L symmetry group that is realized di-
rectly on the macroscopic fields. From the quantum numbers
of the symmetry group we recover the temperaturesTR and
TL . Although the precise interpretation of these facts re-
mains unclear, it is interesting that they point rather specifi-
cally towards a string theory description.

In Sec. V we find solutions to the radial wave equation in
two regions, solving first in the asymptotic region and then in
the near-horizon region. We also discuss the angular equa-
tion. These results generalize previously known results to the
case of rotating black holes. We discuss the ranges of charge,
angular momenta, and mass for which these solutions can be
combined to approximate wave functions covering the entire
spacetime, and so the black hole absorption cross sections
can be calculated explicitly. The results presented in Sec. VI
include the following.

The low-energyS-wave absorption cross section is

sabs~v→0!5A, ~2!

whereA is the area of the black hole. Our result shows that
this holds forall five-dimensional black holes in toroidally
compactified string theory.

For a range of parameters~that we specify! black holes
exhibit theS-wave absorption spectrum:

sabs
~0!~v!5A

~v/2TL!~v/2TR!

v/TH

~ev/TH21!

~ev/2TL21!~ev/2TR21!
.

~3!

This spectrum is a precise indication that the Hawking emis-
sion process of the black hole can be described in an effec-
tive string theory as a simple two-body process@10–12#. In
this dynamical model the distribution functions of the collid-
ing quanta are thermal with the temperaturesTR andTL . The
freedom afforded by the angular momenta allows a demon-
stration of this characteristic behavior in several regions of
parameter space that were previously out of reach. For ex-
ample there is a parameter range withno hierarchy in the
relative magnitudes of the charges.

For a larger range of black hole parameters, and for
higher partial waves, an explicit solution can still be found
@13,14#. In this case the absorption cross section has a more
complicated form and the Hawking radiation cannot be in-
terpreted as a two-body process. However, it is suggestive
that the emission spectrum still takes a factorized form where
each factor depends onTR andTL , respectively.

We complete the paper, in Sec. VII, with a discussion of
the microscopic description of the dynamics. It is shown that,
for the most general black holes, the two-body emission pro-
cesses can be modeled by a simple value of the effective
string length. However, we also stress that, for generic non-
extremal black holes, the typical Hawking process cannot be
described in this simple fashion.

II. THERMODYNAMICS OF ROTATING BLACK HOLES

We are interested in a class of black holes in five dimen-
sions that are parametrized by their massM , two angular
momentaJR,L , and three independent U~1! chargesQi @15#.

These are the most general solutions to the low-energy ef-
fective action of the heterotic and type-II string theories, to-
roidally compactified to five dimensions1 @17#. The explicit
expressions for these black holes are involved and given in
detail in @15#. For the sake of completeness we present their
spacetime metric in the Appendix. In this section we discuss
their thermodynamical properties.

The mass and the charges of the black holes are conve-
niently given in the parametric form2
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1

2
m(

i 51

3

cosh2d i , ~4!
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The Bogomol’nyi-Prasad-Sommerfield-~BPS-!saturated
limit corresponds tom→0 and d i→` with Qi kept fixed,
and som is a measure of the deviation from the BPS case.
The parametersd i are referred to as boosts because of their
role in the solution generating technique employed to find
the charged black holes.

In five dimensions the rotation group is SO~4!
.SU(2)R3SU(2)L . Therefore black holes are character-
ized by two independent projections of the angular momen-
tum vector. These parameters are the two angular momenta
that will be denotedJR and JL . Normalizations have been
chosen such thatJR,L are pure numbers~in units where
\51! that are quantized in the microscopic theory.3 It is
sometimes convenient to parametrize the angular momenta
of the general black hole in terms of thel 1,2 defined through

JR,L5
1

2
m~ l 16 l 2!S)

i
coshd i7)

i
sinhd i D . ~6!

The l 1,2 are the angular momenta of the Kerr black hole used
as a starting point of the generating technique. We will give
the formulas in terms ofl 1,2 along with those usingJR,L ,
because both forms will be needed.

A. Entropy

The black hole entropy@Eq. ~1!# was derived in@7#. As
noted already in the Introduction the entropy clearly divides
into two terms. We make this manifest by writingS5SL1SR
where

1We write formulas in their generating form, and so they are only
the most general up to duality. However, they can be written in a
manifestly duality invariant way@16#.

2The notation here ism52m wherem is the notation in@15#, or
m5r 0

2 wherer 0 is the notation of@4#. We choose duality invariant
units where the five-dimensional gravitational coupling constant is
G55 p/4. In string conventions this amounts to (a8)4g2/
(R1R2R3R4R5)51.

3The quantization condition is thatJR,L5
1
2 (Jf6Jc) where Jf

andJc are quantized as integers.
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By now there are many hints from string theory that collec-
tive excitations of solitonic objects can be described by ef-
fective low-energy theories that are themselves string theo-
ries. The structure of the entropy as a sum of two terms may
be an indication thatall black holes can be described in this
way and that the two terms in the entropy are the contribu-
tions from left- ~L-! and right-~R-! moving modes, respec-
tively. If true, it must be that the interactions between the
two kinds of modes can be treated as weak. Motivated by the
BPS-saturated case we assume that the relevant effective
theory is a noncritical string theory withc56 @18–20# and
identify the levels of the effective string as
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so that, for large levels,

S5SL1SR52p~ANL1ANR!. ~11!

If these relations could be derived from first principles, we
would have a microscopic interpretation of the entropy in the
general nonextremal case. Some evidence in this direction
was presented in@9#.

Black holes in four dimensions have entropies of a very
similar form @7#: the indexi 51,2,3→ i 51,2,3,4, the param-
eter m3→m4, and the angular momentumJL50. Therefore
the thermodynamics and indeed most results presented in
this paper immediately carry over to four dimensions. Note,
however, that there is only one angular momentum in four
dimensions, and so the symmetry between the two entropies
SR,L is a special property of the five-dimensional case that
hints at a particularly symmetric underlying structure. We
will discuss rotating black holes in four dimensions in a
separate paper@21#.

B. Thermodynamics

Our assumption that the entropy is a sum of two indepen-
dent contributions has consequences that can be derived
from general principles. Consider the first law of thermody-
namics:

dM5THdS1VRdJR1VLdJL1(
i

F idQi . ~12!

We write the inverse Hawking temperature as

bH[ 1
2 ~bL1bR!, ~13!

and useS5SL1SR . Then we find
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The two independent inverse temperatures follow directly
from this relation:

bL5
pm2~P icosh2d i2P isinh2d i !

A 1
4 m3~P icoshd i1P isinhd i !

22JL
2

5
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, ~15!

bR5
pm2~P icosh2d i2P isinh2d i !

A 1
4 m3~P icoshd i2P isinhd i !

22JR
2

5
2pm~P icoshd i1P isinhd i !

Am2~ l 11 l 2!2
. ~16!

In the string theory interpretation these are the physical tem-
peratures of the left- and right-moving modes. For this to
make sense we must assume that the modes are interacting in
such a way that the thermal equilibrium is maintained in
each of the two gasses independently, and so that the cou-
plings between the two sectors are much weaker than the
ones that act within each sector. Although this is perhaps
surprising from the string theory point of view, it may be
reasonable when considering the nature of black holes: Col-
liding left and right modes give rise to Hawking radiation,
and we know that large black holes are exceedingly stable
objects.

The angular velocities also follow from the first law of
thermodynamics:

bHVL5
2pJL

A 1
4 m3~P icoshd i1P isinhd i !

22JL
2

5
2p~ l 12 l 2!

Am2~ l 12 l 2!2
, ~17!
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As before these potentials can be attributed to their respec-
tive independent sets of modes. Note, however, that the in-
verse temperaturebH is the sum of left and right contribu-
tions, and so the rotational velocitiesVL,R cannot be
unambiguously associated with a specific sector. It is only
the combinationsbHVL,R that can be interpreted in this way.

The U~1! potentials for general rotating black holes are

bHFL
j 5

pm~ tanhd jP icoshd i2cothd jP isinhd i !

Am2~ l 12 l 2!2
, ~19!

bHFR
j 5

pm~ tanhd jP icoshd i1cothd jP isinhd i !

Am2~ l 11 l 2!2
. ~20!

The potentials are important for the description of emission
processes involving charged particles@9,22–24#. As in the
case of rotational velocities we note that it is the combina-
tions bHFR,L

j that can be attributed a given sector, rather
thanbH andFR,L

j individually.
Finally, from independent scaling symmetries in the two

sectors we have the sum rules
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which serve as useful checks on the algebra.

C. Spacetime geometry

In the preceding subsections the thermodynamic variables
were derived from the entropy, but the standard thermody-
namic quantities also have direct spacetime interpretations.
The black hole entropy is given in terms of the area of the
outer event horizon by the Bekenstein-Hawking formula

S5
A

4GN
, ~23!

the physical inverse temperature is defined from the surface
accelerationk1 at the outer event horizon as

bH5
2p

k1
, ~24!

and the physical angular velocities are
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dt D
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, ~25!

VL5
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2 S d~f2c!
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. ~26!

Direct calculations from the metric indeed verify that these
geometric definitions agree with thermodynamics. This will
be shown in the subsequent section, as a by-product of a
more detailed exploration.

It is remarkable that the natural division of thermody-
namic potentials into independentL andR contributions also
allows an interpretation in terms of spacetime geom-
etry: This follows from the presence of both outer and in-
ner event horizons. Indeed, from the areaA2 of the inner
horizon we can define an ‘‘entropy’’4
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It follows that @9#
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Similarly,
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wherek6 are the surface accelerations at the inner and outer
event horizons, respectively:
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It is suggestive that the spacetime geometry divides the en-
tropy and the temperature in thevery same way that the
microscopic interpretation does.

Next we consider the angular velocities. They are usually
defined from the geometry in the vicinity of the outer event
horizon. Complementary rotational velocities can be intro-
duced at the inner horizon through

V2
R 5

1

2 S d~f1c!

dt D
inner horizon

, ~31!

4Variables with index ‘‘2’’ always denote quantities measured at
the inner horizon. The corresponding quantities at the outer horizon
will sometimes be denoted with an index ‘‘1’’ and sometimes
without an index.
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However, we have already defined angular momentaJR,L
that couple only to their designated sectors, and so in this
case it should not be expected that the rotational velocities
would be further divided into two contributions. Indeed, in
the next section we show that

1

k2
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1

k2
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L 52
1

k1
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and so the rotational velocities at the inner horizon are not
independent thermodynamic parameters.@Similar comments
apply to the U~1! potentials.#

In sum, we find that each thermodynamic variable is split
into two parts. This is in accordance with the microscopic
interpretation because the string supports both left- and right-
moving excitations, and macroscopically it follows as a con-
sequence of the two horizons. Note that some special cases
have only one event horizon.5 However, we can interpret
these cases as limits that appear when the inner horizon coa-
lesces with the curvature singularity, and hence continue re-
ferring to an inner horizon.

III. GENERAL WAVE EQUATION

A good way to explore the geometry of a black hole is to
consider small perturbations of the background. The simplest
possibility is a minimally coupled scalar, i.e., a scalar field
that satisfies the Klein-Gordon equation

1

A2g
]m~A2ggmn]nF!50. ~33!

From the black hole background given in the Appendix it is
straightforward to write out the equation explicitly. To
present the result in a satisfying symmetric form we use the
Killing symmetries deriving from stationarity, and the two
axial symmetries of the rotation group in four spatial dimen-
sions. Then the wave function can be written

F[F0~r !x~u!exp~2 ivt1 imff1 imcc!

5F0~r !x~u!exp@2 ivt1 imR~f1c!1 imL~f2c!#.

~34!

The angular variablesf and c have period 2p, and so
mf,c5mR6mL are integer valued. We also introduce a di-
mensionless radial coordinatex that is related to the standard
radial coordinater through6
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In this coordinate system the outer and inner horizons atr 6

are atx5 1
2 andx52 1

2 , respectively, and the asymptotically
flat region is atx5`. With this notation the wave equation
can be written as
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Here k6 is the surface acceleration at the inner and outer
event horizons,VR,L are the angular velocities conjugate to
the two angular momenta,M is the mass,L is the eigenvalue
of the angular Laplacian, andD can be expressed in terms of
the entropy and the temperature asD5bH

21S. The expres-
sions fork6 andVR,L are precisely those given in the pre-
ceding section@Eqs.~30! and~17!, ~18!#. We emphasize that
this expression is the exact Klein-Gordon equation in the
most general black hole background in five dimensions. In-
terestingly it is in fact no more complicated than special
cases that have been considered previously@13,14#.

The wave equation is much simpler than the metric it
derives from, but it nevertheless remains rather involved.
Fortunately each term has a simple interpretation, as follows.

Energy at infinity.The symbolD can be defined in the
equivalent forms

D[bH
21S5r 1

2 2r 2
2 . ~37!

When we use the latter form forD and the definition ofx in
terms of the radial variabler @Eq. ~35!#, the term1

4 xDv2 and
the derivative term in Eq.~36! ~without the1

4! can be written
as

S 1

r 3

]

]r
r 3

]

]r
1v2DF050. ~38!

This is simply the radial part of the Klein-Gordon equation
in five flat spacetime dimensions. Evidently the term1

4 xDv2

encodes properties of the perturbation that persist even in the
absence of a black hole. It can be interpreted physically as
the energy of the perturbation at infinity.

5These include the neutral black holes where one or more of the
boost parameters vanish. An important case is the Schwarzschild
black hole.

6More precisely the coordinater is the five-dimensional analogue
of the Boyer-Lindquist coordinate. It reduces to the Schwarzschild
coordinate when charges and angular momenta vanish.
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We can use the angular momentum parametersl 1,2 @de-
fined in Eq.~6!# to write D as

D5A@m2~ l 12 l 2!2#@m2~ l 11 l 2!2#. ~39!

It is curious that, in terms ofl 1,2, D does not depend on the
boost parametersd i . Note also that this relation shows that,
in the absence of angular momentum, we have simplyD5m.

The screening terms.The termL reflects the angular mo-
mentum barrier. At large distances it is suppressed relative to
the energy at infinity by one power ofx}r 2 as expected. The
mass termM is the long-range gravitational interaction.
Coulomb-type potentials are of ther 22}x21 form in five
dimensions, and so it is reasonable that the gravitational
screening and the angular momentum barrier are of the same
order.

The precise form of the angular Laplacian is

L̂54KW 21~ l 1
21 l 2

2!v21~ l 2
22 l 1

2!v2cos2u, ~40!

where

KW 252
1

4sin2u

]

]u
sin2u

]

]u
2

1

4sin2u

]2

]f22
1

4cos2u

]2

]c2 .

~41!

is the angular Laplacian in fiveflat spacetime dimensions.
The rotation of the background modifies the angular momen-
tum barrier experienced by a small perturbation, but the
change is a very mild one. Specifically it isr independent so
that separation ofu and r variables is still possible. More-
over, it is charge independent when the angular momenta are
expressed in terms ofl 1,2.

The outer event horizon.Consider the vicinity of the outer

event horizonx; 1
2 , ignoring temporarily the angular veloci-

ties. On general grounds the geometry of the black hole must
reduce to Rindler space:

ds252k1
2 r2dt21dr2. ~42!

Herek1 is clearly identified as the surface acceleration. The
proper radial coordinater is related to the variablex as

r;Ax2 1
2 for x; 1

2 ~with x. 1
2!. The solution to the radial

wave equation in this regime is of the form

F0;exp@2 iv~ t6k1
21logr!#

;exp$2 iv@ t6 1
2 k1

21log~x2 1
2 !#%. ~43!

The full wave equation, Eq.~36!, indeed supports solutions
of this limiting form close to the outer horizon. In this way
the Rindler space approximation explains the form of the
singularity atx5 1

2 in Eq. ~36!. Specifically it verifies that the
k1 of Eq. ~36! is indeed precisely the surface acceleration.
Angular parameters can be restored by transforming to the
comoving frame, using the definitions of rotational velocities
@Eqs. ~31! and ~32!#. Then the full wave function in this
regime becomes

F;exp@2 ivt1 imR~f1c!1 imL~f2c!#

3expF7
i

2 S v

k1
2mR

VR

k1
2mL

VL

k1
D logS x2

1

2D Gx~u!.

~44!

Comparison with Eq.~36! shows that the rotational param-
etersVR,L have been identified correctly. This constitutes the
promised verification that the geometrical definition of the
physical parameters agrees with the thermodynamical one.

For later reference we note that modes of the form

F0
in;S x2

1

2D 2 i ~v/k1 2mR VR/k12mL VL/k1!/2

, ~45!

are the infalling modes and those of the form

F0
out;S x2

1

2D i ~v/k1 2mR VR/k12mL VL/k1!/2

, ~46!

are outgoing. In general relativity these modes are sometimes
referred to as left- and right-moving modes, respectively, as
this is their direction in the Rindler diagram. We do not use
this terminology here in order to avoid confusion with exci-
tations of the effective string.

The inner event horizon.Similarly, in the vicinity of the
inner event horizon the metric can be written

ds25k2
2 r2dt22dr2. ~47!

Here r and x are related asr;Ax1 1
2 for x;2 1

2 ~with
x.2 1

2!. Note that the overall signature is opposite of the
one close to the outer horizon@Eq. ~42!#. However, the wave
equation is of second order, and so it is unaffected by this
change. The modes are

F0;exp@2 iv~ t6k2
21logr!#

;exp$2 iv@ t6 1
2 k2

21log~x1 1
2 !#%. ~48!

As before the full wave equation indeed supports modes with
this limiting form close to the inner horizon. Hence, from the
approximate metric close to the inner horizon we understand

the form of the pole term in Eq.~36! at x52 1
2 , and verify

the physical meaning of the various symbols. This calcula-
tion therefore substantiates the advertised relations between
thermodynamics and the geometry in the vicinity of the inner
horizon. In particular the relations

1

k2
V2

R 5
1

k1
VR

and

1

k2
V2

L 52
1

k1
VL

can be read off directly from the inner horizon term. This
explains why the parameterk1 , associated with the outer
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horizon, appears in the pole of the inner horizon: It is a
consequence of the fact that theVR,L refer to quantities at
the outer horizon.

IV. SPACETIME SYMMETRIES AND STRING THEORY

As we have seen the black hole thermodynamics can be
naturally organized into anR and anL sector that is related
to the black hole event horizons, but it is not obvious why
they are, roughly, the sum and the difference of inner and
outer horizon contributions. In this section we indicate how
this comes about, by exhibiting a symmetry of the spacetime
geometry that singles out precisely these combinations.

The thermal behavior at the outer horizon can be thought
of as a complex periodicity of the~real! Rindler timet. In
analogy, we introduce a new Rindler-type variables that
encodes the complex periodicity close to the inner horizon.
Just as the ‘‘temperature’’k2/2p of the inner horizon is not
quite a temperature, because the signature is flipped and the
variables is not quite a Rindler ‘‘time,’’ but rather an analo-
gous spatial variable. Introducing these auxiliary variablest
and s directly in the wave equation, and ignoring for the
time being the energy at infinity, the radial part becomes the
eigenvalue problem

HrF05 1
4 ~Mv22L!F0 , ~49!

where

Hr52
1

4sinh2r

]

]r
sinh2r

]

]r
2

1

4sinh2r

]2

]t2 1
1

4cosh2r

]2

]s2

~50!

is written in terms of the radial variabler defined by

x5 1
2 cosh2r ~r reduces to the proper radial coordinate close

to the horizons!.
This radial equation is closely related to an underlying

SL(2,R)R3SL(2,R)L symmetry group. The generatorsRW of
the SL(2,R)R group are

R15
1

2
sin~t1s!

]

]r
1

1

2
cos~t1s!

3S cothr
]

]t
1tanhr

]

]s D , ~51!

R252
1

2
cos~t1s!

]

]r
1

1

2
sin~t1s!

3S cothr
]

]t
1tanhr

]

]s D , ~52!

R35
1

2 S ]

]t
1

]

]s D , ~53!

and the generatorsLW of the SL(2,R)L group are found by
taking s→2s. TheRW satisfy the algebra

@Ri ,Rj #5 i e i jk~2 !dk3Rk , ~54!

and similarly forLW . These are the appropriate commutation
relations for SL(2,R).SO(2,1,R). The two sets of genera-

tors commute@Ri ,L j #50, as they should. It is an important
fact that the quadratic Casimirs of the groups are identical
RW 25LW 2 and equal to

RW 252R1
22R2

21R3
25Hr . ~55!

A maximal set of commuting operators for the
SL(2,R)R3SL(2,R)L symmetry can be chosen as the two
compact generatorsR3 and L3 , and the quadratic Casimir.
The wave function is an eigenfunction of all these operators.
By abuse of notation we equate the operators and their ei-
genvalues:

2pR35bR

v

2
2bHmRVR, ~56!

2pL35bL

v

2
2bHmLVL, ~57!

RW 25LW 25
1

4
~Mv22L!. ~58!

Then the wave function is

F;F0eR3~t1s!1L3~t2s!, ~59!

where, as before,F0 denotes the radial wave function that
depends only onr. TheR3 andL3 eigenvalues are the com-
plex periodicities of the variablest1s andt2s. They can
therefore be thought of as the world sheet temperatures, if we
reinterprett ands as the world sheet variables of an effec-
tive string theory.

In the calculation just presented we have ignored the term
1
4 xDv2 of the original wave equation@Eq. ~36!#. This term is
a property of the perturbing field, namely, its energy at in-
finity, and so it is possible that the description nevertheless
indicates the internal structure of the black hole accurately.
The role of the energy at infinity is to ensure that the geom-
etry far from the black hole is indeed flat Minkowski space.
In this sense the troublesome term encodes boundary condi-
tions, and so indicates that the internal symmetry
SL(2,R)R3SL(2,R)L is spontaneously broken. The precise
role of the energy at infinity is a major concern that must
eventually be elucidated.

We conclude this section by exhibiting another symmetry.
The exact equation@Eq. ~36!# is invariant under

x→2x, ~60!

r 1
2↔r 2

2 ~D→2D!, ~61!

2pR3→2pR3 , ~62!

2pL3→22pL3 . ~63!

Macroscopically this interchanges the role of the two hori-
zons. In the microscopic interpretation the symmetry leaves
R3 invariant and acts as a parity transformation on theL3 .
This is precisely the wayT duality acts on conventional con-
formal field theories, and so the interchange of horizons can
be identified withT duality. From this point of view the
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transformations in spacetime geometry generalize the usual
R→ a8/R that accompaniesT duality in the simplest case.

To avoid misunderstanding we emphasize that the argu-
ments presented in this section are entirely in the context of
the classical geometry. We interpret them as an indication of
a strategy towards a comprehensive effective string model of
black holes, but we do not yet have such a model.

V. SOLUTIONS OF THE WAVE EQUATION

In general Eq.~36! is a rather complicated differential
equation. It has regular singularities at the horizonsx56 1

2

and an irregular singularity at infinity. The singularity at in-
finity is not of the so-called normal kind, and so it can not be
cured by absorption in a determining factor~see, e.g.,@25#!.
The solutions to this kind of ordinary differential equation
has an essential singularity and it is not known how to find
them explicitly. However, the equation simplifies in various
regions of the radial variablex. In the following we consider
these cases, postponing the discussion of their combination
into solutions covering all of space to Sec. VI.

We will omit the rotational parameters for simplicity in
notation but this involves no loss of generality as they can be
restored by the substitutions

bR

v

2
→bR

v

2
2bHmRVR, ~64!

bL

v

2
→bL

v

2
2bHmLVL, ~65!

bHv→bHv2bHmRVR2bHmLVL . ~66!

The asymptotic region.At large uxu@1 we approximate Eq.
~36! by

]

]x
x2

]

]x
F01

1

4
~xDv22L1Mv2!F050. ~67!

The horizon terms were omitted and we tookx22 1
4 .x2 in

the kinetic energy. This equation can be solved exactly in
terms of Bessel functions. The linearly independent solutions
are7

F`
65

1

x1/2J6~2j21!~vAxD!, ~68!

wherej is

j5 1
2 ~11A11L2Mv2!. ~69!

The horizon region.In the horizon region the wave equation
can be approximated by

F ]

]xS x22
1

4D ]

]x
1

1

4S 2L1Mv21
1

x2 1
2

v2

k1
2

2
1

x1 1
2

v2

k2
2 D GF050. ~70!

The only approximation is the omission of the term
1
4 xDv25 1

4 x(r 1
2 2r 2

2 )v2. It is the divergence of this term
for largex that is responsible for the irregular singularity at
infinity in the general case, and so the approximate equation
has three singularities that are all regular. This is a standard
problem that is solved by the hypergeometric function
@13,14#. One solution is

F0
in5S x2 1

2

x1 1
2
D 2 ibHv/4pS x1

1

2D 2j

3FS j2 i
bRv

4p
,j2 i

bLv

4p
,12 i

bHv

2p
,
x2 1

2

x1 1
2
D , ~71!

wherej is given in Eq.~69!. The surface accelerationsk6

were eliminated in terms of the temperaturesbR,L and

bH5 1
2 (bR1bL) @using Eq.~29!#. A linearly independent

solution can be chosen as

F0
out5S x2 1

2

x1 1
2
D ibHv/4pS x1

1

2D 2j

3FS j1 i
bRv

4p
,j1 i

bLv

4p
,11 i

bHv

2p
,
x2 1

2

x1 1
2
D . ~72!

The two solutions are related by time reversal. This can be
seen directly by the substitutionv→2v.

The two independent solutions have been chosen in a
form that reflects the physics in the vicinity of the outer

horizon: They reduce to plane waves (x2 1
2 )6 ibHv/4p for

x; 1
2 . An alternative basis that is adapted to the behavior at

infinity follows by the modular properties of the hypergeo-
metric functions. For exampleF0

in of Eq. ~71! can be written

F0
in5S x2 1

2

x1 1
2
D 2 ibHv/4pF S x1

1

2D 2j

3
G~12 i bHv/2p!G~122j!

G~12j2 i bLv/4p!G~12j2 i bRv/4p!

3FS j2 i
bRv

4p
,j2 i

bLv

4p
,2j,

1

x1 1
2
D

1S x1
1

2D j21 G~12 i bHv/2p!G~2j21!

G~j2 i bLv/4p!G~j2 i bRv/4p!

3FS 12j2 i
bLv

4p
,12j2 i

bRv

4p
,222j,

1

x1 1
2
D G .

~73!

7For approximate solutions at large distances we replace the index
0 of the radial wave functions with̀ .

56 5001GENERAL ROTATING BLACK HOLES IN STRING . . .



In this form the asymptotic behavior for largex is manifest:

F0
in;x2j

G~12 i bHv/2p!G~122j!

G~12j2 i bLv/4p!G~12j2 i bRv/4p!

1xj21
G~12 i bHv/2p!G~2j21!

G~j2 i bLv/4p!G~j2 i bRv/4p!
. ~74!

Here each term admits corrections for largex that are sub-
leading in 1/x.

Similarly a basis adapted to the behavior at the inner ho-
rizon can be chosen. The wave function that has only an
ingoing component at the outer horizon has both an outgoing
and an ingoing component at the inner horizon. In physical
terms the scattering off the background invariably mixes the
components. The basis adapted to the inner horizon will play
no role in the present investigation.

The angular Laplacian.The angular LaplacianKW 2 of a
flat five-dimensional background@Eq. ~41!# is the quadratic
Casimir of the group SO(4).SU(2)L3SU(2)R . It has ei-

genvaluesKW 25 1
4 K(K12) whereK is an integer. The pres-

ence of the curved background modifies the angular Laplac-
ian to @Eq. ~40!#

L̂54KW 21~ l 1
21 l 2

2!v21~ l 2
22 l 1

2!v2cos2u. ~75!

The solutionsei (mff1mcc)x(u) to the corresponding eigen-
value problem cannot in general be found in closed form.8

As a qualitative result we note that the contributions from the
rotation of the black hole are always positive. In the special
casel 15 l 2 the eigenfunctionsx~u! are hypergeometric func-
tions and the eigenvalues are very simple:

L5K~K12!1~ l 1
21 l 2

2!v2. ~76!

Corrections can be calculated perturbatively. The leading
term is of second order in (l 2

22 l 1
2)v2 because cos2u van-

ishes when averaged over all angles. We can use Eq.~76! as
approximate eigenvalues for large classes of problems, in-
cluding those relevant for low-energy perturbations or for
black holes with nearly coincident rotation parameters.

VI. ABSORPTION CROSS SECTIONS

The calculation of absorption cross sections follows much
previous work~including @26,27,11,23,24,13,14,28#!. In this
section we find the necessary generalizations due to angular
momentum and sharpen the ranges of validity previously es-
tablished for nonrotating black holes. We first carry out the
algebraic manipulations, and then consider their ranges of
validity.

In the absorption geometry the wave function close to the
horizon has only an incoming component. We normalize the
wave function asA0F0

in . Then Eq.~71! gives the flux at the
horizon as

flux5
1

2i
~F̄r 3] rF2c.c.!5uA0u2

bHvD

4p
. ~77!

Similarly, we write the wave function in the asymptotic re-
gion asA`

1F`
1 and expand at very large distances:

A`
1F`

1;A`
1A 2

px3/4D1/2v
cosS vAxD2jp1

1

4
p D , ~78!

and so the flux becomes

flux5
1

2i
~F̄r 3] rF2c.c.!5uA`

1u2
D

4p
. ~79!

The effective two-dimensional transmission coefficientuTKu2
is the ratio of these fluxes. Using a geometric relation de-
rived in @29# the absorption cross section of theKth partial
wave becomes

sabs
~K !~v!5

4p~K11!2

v3 uTKu25
4pbH

v2 ~K11!2UA0

A`
1U2

. ~80!

To find the ratiouA0 /A`
1u we consider a general wave func-

tion in the asymptotic region,

F`5A`
1

1

x1/2J2j21~vAxD!1A`
2

1

x1/2J2~2j21!~vAxD!,

~81!

and expand for small arguments of the Bessel function:

F`;A`
1xj21

1

G~2j!
SADv

2 D 2j21

1A`
2x2j

1

G~222j!
SADv

2 D 122j

. ~82!

This should be compared with the near-horizon wave func-
tion A0F0

in for largex @Eq. ~74!#. Assuming that these limit-
ing forms have an overlapping regime of validity we find

UA`
1

A0
U5SADv

2 D 122j

G~2j!G~2j21!

3
G~12 i bHv/2p!

G~j2 i bLv/4p!G~j2 i bRv/4p!
, ~83!

Note that the ‘‘matching region’’ of overlapping validity is

necessarily at largex, and so, forj. 1
2 , the xj21 terms

8In fact the differential equation is the analytical continuation of
the radial equation~50!: The constant term is analogous to the
mass term and the cos2u term corresponds to the energy at infinity
@omitted in Eq.~50!#.
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dominate and thex2j terms can be neglected. This fact was
anticipated already in the derivation of the flux@Eq. ~79!#,
whereA`

2 was ignored.9

Collecting the results the partial absorption cross sections
become

sabs
~K !~v!5

4p~K11!2bH

v2 SADv

2 D 4j22U
3

G~j2 i bLv/4p!G~j2 i bRv/4p!

G~2j21!G~2j!G~12 i bHv/2p!
U2

. ~84!

Recall the definitionj5 1
2 (11A11L2Mv2) whereL was

given in Eq.~40!.
We turn next to the range of validity for the matching

procedure that leads to this cross section. It is most transpar-
ent to derive the conditions directly from the general wave
equation@Eq. ~36!# written as

]

]xS x22
1

4D ]

]x
F01

1

4FxDv22L1Mv2

1
1

x2 1
2

S ~bR1bL!

4p D 2

v22
1

x1 1
2

S ~bR2bL!

4p D 2

v2GF0

50. ~85!

@We assumemR5mL50 for convenience, but generality
could be restored using Eqs.~64! and ~65!.# The Bessel
function is valid when we can ignore the horizon terms and
the 1

4 in the derivative terms, and the hypergeometric func-
tion requires that the energy at infinity14 xDv2 is negligible.
We must show that there is an intermediate matching region
where both approximations are valid. We consider two use-
ful strategies in the following subsections.

A. Matching on a vanishing potential

The first possibility is thatall potential terms are smallin
the matching region. Then only the kinetic term remains, and
the equation integrates to a constant solution. This constant
value of the wave function is the coincident amplitude of the
Bessel function at small argument and the hypergeometric
function at largex.10

Matching on a vanishing potential requires a range ofx
that satisfies

x@1, Dxv2!1,
1

x
bRbLv2!1, u2L1Mv2u!1.

~86!

The necessary and sufficient conditions for the existence of
suchx are

Dv2!1, bRbLDv4!1, u2L1Mv2u!1. ~87!

For higher partial waves a positive integer contributes toL
@Eq. ~40!#, and so the last condition can only be satisfied in
rather special circumstances. In this subsection we only con-
sider theS wave. The last condition automatically implies
j.1, and so the coincident wave functions in the matching
region @Eq. ~74! or ~82!# indeed reduce to constants, as ex-
pected. Moreover, the absorption cross section takes a par-
ticularly simple and suggestive form

sabs
~0!~v!5AUG~12 i bLv/4p!G~12 i bRv/4p!

G~12 i bHv/2p!
U2

5A
bL ~v/2! bR ~v/2!

bHv

~ebHv21!

~ebL v/221!~ebR v/221!
,

~88!

whereA denotes the area of the black hole.@In rewriting Eq.

~84! we usedD5bH
21S, S5(1/4GN)A, andGN5 1

4 p.# This
cross section can be interpreted microscopically in terms of a
two-body process of the effective string theory that param-
etrizes the collective excitations of the black hole@12,11#.

Note that we have not assumedbRv;bLv;1, and so
there are regimes where either one or both of the Bose dis-
tribution factors simplify to either the Maxwell distribution
or to the Bose degenerate state. The classical calculation is
still reliable in these cases.

Next we consider some specific examples.
Low-energy limit.In the S wave the angular operatorL

}v2, and so for an arbitrary black hole all conditions in Eq.
~87! can be satisfied by taking the energyv sufficiently
small. In this case Eq.~88! applies and the cross section
becomes

sabs
~0!~v→0!5A. ~89!

This relation is well known for scattering off nonrotating
black holes~see@30# and references therein!, but the result
here also applies to nonrotating ones.

Two large charges.Assume that two of the boost param-
eters are large, say,d[d1;d2@1, and treat the last one as
order unity. We generalize this ‘‘dilute gas’’ region of Mal-
dacena and Strominger@11# by including also large angular
momenta with JR;JL;m3/2e2d or, equivalently,
l 1; l 2;m1/2. @l 1,2 were defined in Eq.~6!.# In this case
D;m, M;me2d, L;mv2, andbR;bL;m1/2e2d. Accord-
ing to Eq. ~87! the cross section, Eq.~88!, is reliable for
frequencies that satisfyedm1/2v!1. This includes~but is not
limited to! the interesting rangev;bR,L

21 ;m2 1/2e22d. The
thermodynamic parameters of the absorption cross section,
Eq. ~88!, have a nontrivial dependence on angular momenta,
and the inferred distribution functions agree in detail with
those expected from counting arguments@20,31#.

Rapidly spinning black holes.The freedom provided by
the angular momenta also allows for a new kind of limit: All
the boosts are arbitrary but a dilute-gas-type region can nev-
ertheless be reached by tuning the angular momentum pa-

9The case wherej becomes a complex number corresponds to
large frequencies. Here bothA`

2 and A`
1 must be taken into ac-

count. In this case the appropriate modifications are given in an
appendix of@13#.

10The coefficient of the linearly independent solution, proportional
to x21, can be determined by matching derivatives. This term con-
tributes a flux that is suppressed by (Dv2)2!1, due to the large
matchingx.
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rameters so that both inverse temperatures are large. This is
accomplished by takingl 250 and tuningm2 l 1

25me2!m
@ l 1,2 were defined in Eq.~6!#. Then D;me2, M;m,
L;mv2, andbR;bL;m1/2e21. The matching conditions,
Eq. ~87!, requiremv2!1. This range of frequencies includes
the interesting ones withv;bR,L

21 ;m21/2e. Note that in this
exampleno hierarchy in the charges is necessary, and so we
capture the entire functional dependence of the temperatures
on the boost parameters. It is also interesting that in this case
the black hole is not even approximately supersymmetric.

Near-BPS limit.We generalize the nonrotating near-BPS
black hole~considered in@23,24#! by including angular mo-
menta l 1; l 2;m1/2. ~This implies JR;m3/2ed and
JL;m3/2e3d, and so there is a hierarchy in the angular mo-
menta.! Close to extremality all the boosts are larged i@1
and we expand systematically ined ~where d;d i!. Then
D;m, M;me2d, L;mv2, bR;m1/2e3d, andbL;m1/2ed.
The conditions, Eq.~87!, are satisfied for frequencies in the
rangem1/2ved!1. There is a hierarchy of the temperatures
(bR@bL) in this case, and so there is no regime where both
Bose factors are significant simultaneously. The applicable
range of frequencies isv;bR

21;m21/2e23d but not
v;bL

21;m21/2e2d, and so only thebR can be reliable
probed.

Near-extreme Kerr-Newman limit.As the final example
we consider the near-extreme Kerr-Newman limit defined by
m2( l 12 l 2)25me2!m ~with l 2Þ0!. Here D;me,
M;L/v2;m, bL;m1/2, andbR;m1/2e21, and so the con-
dition on the frequency becomesmv2!1. As in the near-
BPS case we can probebR , but notbL .

It is interesting that in the limite→0 the entropies ap-
proachSR50 and

S5SL52pAQ1Q2Q31JR
22JL

252pAn1n2n31JR
22JL

2,
~90!

where theni are quantized charges. The near-extreme Kerr-
Newman limit is not supersymmetric, but the form of the
entropy is nevertheless reminiscent of the BPS case: The
entropy does not depend on moduli, and the counting argu-
ments can be made notably less heuristic.

B. Matching on a constant potential

In this casethe screening termdominates in the matching
region. Then the wave equation is solved by the polynomials
xj21 and x2j. The coincident wave functions@Eq. ~74! or
~82!# indeed reduce to precisely these polynomials.

Matching on a constant potential requires a range ofx so
that

x@1, xDv2!u2L1Mv2u,
1

x
bRbLv2!u2L1Mv2u.

~91!

If u2L1Mv2u!1, the present procedure corresponds to
matching on a vanishing potential, but in this case the con-
ditions, Eq. ~91!, are nevertheless stronger than Eq.~87!,
because here we insist that the screening term dominates
even though it is small whenu2L1Mv2u!1. Therefore the

two matching procedures must be considered separately to
find the most generous ranges of validity.

The necessary and sufficient conditions for the existence
of x satisfying Eq.~91! are

Dv2!u2L1Mv2u, bRbLDv4!u2L1Mv2u2.
~92!

In the S wave,L}v2, and so in this case there areno as-
sumptions about the frequency of the radiation.11 Indeed, in
the S wave the entire potential in Eq.~85! is proportional to
v2, and so conditions on the relative size of potential terms
must be frequency independent.

We consider a few specific examples.
Higher angular momentum modes.The simplest example

of matching on a constant potential concerns a particular
partial waveK, but otherwise the same restrictions as in the
case of matching on a vanishing potential. This is consistent
with Eq. ~91! @but not Eq.~87!#. In this caseL.K(K12)
and Mv2!1, and so the absorption spectrum is Eq.~84!
with j5 K/211. The process can be modeled microscopi-
cally as an impinging closed string that is absorbed by bound
state ofD-branes, with 2K fermions being excited in the
process@14,29,32#.

One large charge.We consider theS wave and take
d[d3@1 and d1,2 of order 1 @13#. Angular momenta
l 1,2;m1/2 can be included. ThenD;m, M;me2d, L;mv2,
andbR;bL;m1/2ed. This is sufficient to satisfy the condi-
tions D!M and bRbLD!M2 required by Eq.~91!, and so
the absorption cross section is given by Eq.~84! with a gen-
eral value ofj.

VII. DISCUSSION

We would like to conclude the paper with remarks on the
microscopic interpretation of our results. As a starting point
for the discussion we consider the Hawking emission rate

Gem5sabs~v!
1

ebHv21

d4k

~2p!4 . ~93!

In the regime where matching on a vanishing potential is
justified @Eq. ~87!# we use Eq.~88! for the cross section and
find

Gem5A
bL~v/2!bR~v/2!

bHv

1

~ebL v/221!~ebR v/221!

d4k

~2p!4

~94!

58pGNL
1

v S v

2 D 2 1

~ebL v/221!~ebR v/221!

d4k

~2p!4 ,

~95!

where the intermediate step used relations given in Sec. II,
and we definedL as

11Note, however, that we only give the final result forj.
1
2 , but

the argument shows that the analogous calculation forj complex is
reliable as well.
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L52pm2S)
i

cosh2d i2)
i

sinh2d i D . ~96!

It was shown by Das and Mathur that the emission rate, Eq.
~95!, is identical, including the coefficient, to the two-body
annihilation rate for small amplitude waves propagating on
an effective string of lengthL @12#. In this model of the
emission process the length of the effective string param-
etrizes the strength of the interactions. It is satisfying that in
our case the lengthL is both U-duality invariant and inde-
pendent of angular momenta.

For large black holesL is much larger that the naive
string length. The importance of this kind of ‘‘tension renor-
malization’’ was recognized already in the early countings of
nonperturbative string states@33–35#, and it is now under-
stood from D-brane properties how this may come about
@36,37#. The near-BPS black holes related to momentum-
carrying bound states ofD1- andD5-branes@10,38# are spe-
cial cases of the general formula, Eq.~96!: Here two boosts
are larged1;d2@1 and the length reduces toL52pQ1Q2
52pn1n2R, wheren1,2 are the quantizedD1- andD5-brane
charges andR is the length of the dimension that the
D1-brane wraps around@12#. However, the general expres-
sion forL accounts for emission from a larger class of black
holes than has previously been considered. For example, the
full dependence on boost parameters is needed in the case of
rapidly spinning black holes even though the thermodynamic
properties of this case are analogous to the ‘‘dilute gas’’
regime of@11#.

In the microscopic interpretation the colliding quanta
have Bose distributions with inverse temperatures@Eqs.~15!,
~16!#:

bR,L5
2pm~P icoshd i6P isinhd i !

Am2~ l 16 l 2!2
. ~97!

The dynamical considerations therefore give direct informa-
tion about properties of the microscopic theory. In particular,
this gives a concrete physical meaning to the temperatures
derived at each event horizon. However, the two-body form
of the emission rate is a low-energy approximation, and so
only the cases where the precise requirement@Eq. ~87!# on
the frequency is consistent with the interesting ranges
v;bR

21 and v;bL
21 can be probed in detail@11#. Despite

this restriction we can verify the dependence of the inverse
temperatures on all boost parameters by considering rapidly
rotating black holes. Our expressions for the U~1! potentials
@Eqs. ~19! and ~20!# can similarly be checked in some re-
gimes, by considering emission of charged particles, and the
angular potentials@Eqs. ~17! and ~18!# can be probed by
considering the emission of higher partial waves.12 Hence
the microscopic model based on the thermodynamics of two
horizons provides an economical summary of a large class of
special cases, including some that have not been considered
before.

The Hawking emission process can be described as a two-
body process in the entire regime where matching on a con-
stant potential is justified@Eq. ~87!#. For generic nonextremal
black holes this impliesbL,Rv!1, and so the agreement
between the microscopic model and the macroscopic calcu-
lation reduces to a single number, namely, the universal low-
energy absorption cross section. This is nevertheless non-
trivial because we consider that the most general black holes
and the model capture the full functional dependence on all
parameters. It has previously been argued~along somewhat
different lines! that the universal low-energy scattering off
Schwarzschild@5# and Reissner-Nordstro¨m @39# black holes
can be accounted for by an effective string model. Our result
includes these observations as special cases as well as the
D-brane-inspired string models for near-BPS black holes.
Let us summarize the argument: From the horizon structure
we identify distribution functions for right- and left-moving
string excitations, from rapidly spinning black holes we infer
the coupling between the two sectors, and then a calculation
gives the universal low-energy cross section forall black
holes. In this sense the version of the effective string model
presented in this paper has some applicability even for ge-
neric nonextremal black holes.

The remaining problem becomes one of interactions,
rather than that of state counting. Here it is concerning that
in general the typical Hawking particle is too energetic to
result from a simple two-body process. This may simply in-
dicate that interactions are more involved at larger energies,
at least in the range of parameters where matching on a con-
stant potential is justified@Eq. ~91!# @13#. Here the absorption
cross section @Eq. ~84!# depends on the parameter

j5 1
2 (11A11L2Mv2). The angular momentum eigen-

valueL @Eq. ~76!# depends on the angular momentum of the
particle as well as that of the background. When the main
contribution toj is from particle angular momentum thej is
integer or half-integer and the spectrum can be understood
qualitatively from many-body kinematics@14,29,32#. In gen-
eral the background mass and angular momenta contribute to
j but the emission spectrum retains its qualitative character.
It is therefore reasonable to suspect that further understand-
ing of many-body effects might account also for this case.

As we saw in Sec. IV the geometry of the region in the
vicinity of the horizons immediately suggests an effective
description in string theory. The matching on a vanishing
potential corresponds to the situation where this suggestive
near-horizon region can be unambiguously distinguished
from the surrounding space. In the case of matching on a
constant potential the long-range fields make the distinction
less clear, but presumably still valid, as we argued in the
previous paragraph. However, in the most general problem
the distinction seems ambiguous, and it is the processes that
are sensitive to this coupling between the near-horizon re-
gion and the asymptotic space that we are presently unable to
account for even classically.13 This seems to be a barrier that
will remain difficult to surmount in the string theory descrip-

12This calculation uses matching on a constant potential, not a
vanishing one.

13It is possible that investigations involving particles with non-
minimal coupling ~initiated in @40#! might help, for example, by
being less sensitive to the term at infinity.
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tion. It is not yet clear whether this represents an obstacle of
purely technical nature or a more profound crisis.
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APPENDIX: THE BLACK HOLE SOLUTION

The Einstein metric of the black holes is@15#

D̄21/3dsE
252

~r 21 l 1
2cos2u1 l 2

2sin2u!~r 21 l 1
2cos2u1 l 2

2sin2u22m!

D̄
dt21

r 2

~r 21 l 1
2!~r 21 l 2

2!22mr2
dr21du2

1
4mcos2usin2u

D̄
F l 1l 2H ~r 21 l 1

2cos2u1 l 2
2sin2u!22m)

i , j
sinh2d isinh2d j J 12m~ l 1

21 l 2
2!)

i
coshd i

3sinhd i24ml1l 2)
i

sinh2d i Gdfdc2
4msin2u

D̄
F ~r 21 l 1

2cos2u1 l 2
2sin2u!S l 1)

i
coshd i2 l 2)

i
sinhd i D

12ml2)
i

sinhd i Gdfdt2
4mcos2u

D̄
F ~r 21 l 1

2cos2u1 l 2
2sin2u!S l 2)

i
coshd i2 l 1)

i
sinhd i D

12ml1)
i

sinhd i Gdcdt1
sin2u

D̄
F ~r 212msinh2d31 l 1

2!~r 212msinh2d11 l 1
2cos2u1 l 2

2sin2u!~r 212msinh2d2

1 l 1
2cos2u1 l 2

2sin2u!12msin2uH ~ l 1
2cosh2d32 l 2

2sinh2d3!~r 21 l 1
2cos2u1 l 2

2sin2u!14ml1l 2)
i , j

coshd isinhd j

22msinh2d1sinh2d2~ l 1
2cosh2d31 l 2

2sinh2d3!22ml2
2sinh2d3~sinh2d11sinh2d2!J Gdf2

1
cos2u

D̄
F ~r 212msinh2d31 l 2

2!~r 212msinh2d11 l 1
2cos2u1 l 2

2sin2u!~r 212msinh2d21 l 1
2cos2u1 l 2

2sin2u!

12mcos2uH ~ l 2
2cosh2d32 l 1

2sinh2d3!~r 21 l 1
2cos2u1 l 2

2sin2u!14ml1l 2)
i , j

coshd isinhd j

22msinh2d1sinh2d2~ l 2
2cosh2d31 l 1

2sinh2d3!22ml1
2sinh2d3~sinh2d11sinh2d2!J Gdc2, ~A1!

where

D̄5)
i

~r 212msinh2d i1 l 1
2cos2u1 l 2

2sin2u!. ~A2!

The notation follows@15#, except that the indices on the
boostsd have been redefined (e1,e2,e)→(1,2,3). Them of
the main text is related tom throughm52m. Note that the
complete solution also includes gauge fields and other matter
fields ~of considerable complexity!. They are given in@15#.

It is possible that the metric can be written in a more
compact and symmetrical form, but we are not aware of any
substantial simplifications. One helpful identity~that is non-
trivial to verify! is

A2g5r D̄1/3sinucosu. ~A3!

We inverted the metric using this relation repeatedly and,
after lengthy manipulation of the resulting formulas, found
certain complete squares in the resulting wave equation.
These are the terms that are recognized as the horizon terms
in the general equation@Eq. ~36!#, after the linear change of
radial variable@Eq. ~35!#.
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@8# M. Cvetič, Nucl. Phys. B~Proc. Suppl.! 56, 1 ~1997!.
@9# F. Larsen, Phys. Rev. D56, 1005~1997!.

@10# C. Callan and J. Maldacena, Nucl. Phys.B472, 591 ~1996!.
@11# J. Maldacena and A. Strominger, Phys. Rev. D55, 861~1996!.
@12# S. Das and S. Mathur, Nucl. Phys.B478, 561 ~1996!.
@13# I. R. Klebanov and S. Mathur, ‘‘Black hole grey body factors

and absorption of scalars by effective strings,’’
hep-th/9701187.

@14# J. Maldacena and A. Strominger, this issue, Phys. Rev. D56,
4975 ~1997!.
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