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General rotating black holes in string theory: Greybody factors and event horizons
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We derive the wave equation for a minimally coupled scalar field in the background of a general rotating
five-dimensional black hole. It is written in a form that involves two types of thermodynamic variables, defined
at the inner and outer event horizon, respectively. We model the microscopic structure as an effective string
theory, with the thermodynamic properties of the left- and right-moving excitations related to those of the
horizons. Previously known solutions to the wave equation are generalized to the rotating case, and their
regime of validity is sharpened. We calculate the greybody factors and interpret the resulting Hawking emis-
sion spectrum microscopically in several limits. We findJaduality-invariant expression for the effective
string length that does not assume a hierarchy between the charges. It accounts for the universal low-energy
absorption cross section in the general nonextremal ¢86656-282(197)08020-X]

PACS numbgs): 04.70.Dy, 11.27d
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I. INTRODUCTION the entropy of general rotating black holes in five dimensions

[7]:
Hawking’s seminal calculation of the black hole tempera-

ture allows for a surprising window to quantum gravity: It \/1 3

immediately yields the size of the underlying space of quan- M

tum states in quantitative detdil]. The result relies only on

a particular detail of the black hole geometry, namely, its 1, 3 ] 2 )

limiting form close to theouterevent horizon. We will argue + M .1]1 Cosmi—l_i[ sinhg; | —Jg|.

that other geometric properties give similarly direct evidence -

on the microscopic structure of black holes. Specifically, we(As we explain in Sec. Il the nonextremality parameteand

find an important role for the geometry in the vicinity of the the boostss, parametrize the mass and the charges,&ang

inner event horizon, as well. are angular momentaThe form of the entropy may be in-
The discussion and the examples aim at the description aérpreted as an indication that it derives from two indepen-

black holes as quantum states in string thedoy a review  dent microscopic contributions, and each of these may be

see[2,3)). It is a characteristic property of string models thatattributed to a gas of strings’—9]. We will consider the

the entropy is the sum of contributions from left- and right- general case of rotating black holes because the crucial divi-

moving excitations of the string, and the thermodynamicSiOﬂ into two terms becomes ambiguous in the limit of van-

variables accordingly appear in duplicate versions. The blaciéhing angular momenta. We develop the thermodynamics of

hole geometry exhibits an analogous structure: Standartnis interpretationlin detail, in Sec. Il. An important feature is

thermodynamic variables, defined at the outer event horizorfhat we find two independent temperatuigsand T, , one

are mirrored by an independent set of thermodynamic varifor €ach gas. These two temperatures play central roles in

ables, defined at the inner event horizon. We find that th&uPsequent sections. _ _

left- and right-moving thermodynamics of the string theory _In Sec. |ll we present our main _te.chnlcal result: We

correspond to the sum and the difference of the outer and thirite the exact wave equation for a mlnlma!ly poup!ed scglar

inner horizon thermodynamics. This relation can be esta In the most general black hple backgroundiln_flve dlmenS|ons

. . . : Eqg. (36)]. The wave equation has a surprisingly symmetric

lished by direct inspection for large classes of extremal an . . ! -

L C structure, given the generality of the setting. A characteristic

near-extremal black holes. Indeed, it is valid in all the CaS€3aature is that the outer and inner event horizons appear in a

where the correspondence betvvee_n black holes and_ Str”%g/mmetric fashion. The modes in the vicinity of the outer

t_heory, has beer_1 demor_lst_rated. Ultimately we.w.ould .I'ke Sorizon give rise to the Hawking radiation, with characteris-

find a microscopic description @fl black holes within string . 21 11 o1

theory, and our geometrical observations may be sufficientifiC mperaturd, "= 3 (Tg "+ T, 7). Analogously, from the

robust to serve as guidance towards this gotter attempts modes in the vicinity of the inner horizon we infer a “tem-

include[4—6]). perature” given byT_*= 1 (T;*—T.!). The temperatures
In the following we give an outline the paper and summa-T andT, that appear in these formulas agree precisely with
rize the results in more detail. those that follow from thermodynamics. Similar results are

We begin with an important motivating fact that concernsderived for the other thermodynamic variables, i.e., rota-
tional velocities and () potentials.
The wave equation has an exact symmetry that inter-
*Electronic address: cvetic@cvetic.hep.upenn.edu changes the inner and outer event horizons. In Sec. IV we
"Electronic address: larsen@cvetic.hep.upenn.edu identify this discrete symmetry with thE duality of an un-
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derlying string theory. Moreover, we exhibit an approximateThese are the most general solutions to the low-energy ef-
SL(2R)gXSL(2R),. symmetry group that is realized di- fective action of the heterotic and type-Il string theories, to-
rectly on the macroscopic fields. From the quantum numbersoidally compactified to five dimensioh§17]. The explicit
of the symmetry group we recover the temperatifgand  expressions for these black holes are involved and given in
T, . Although the precise interpretation of these facts re-detail in[15]. For the sake of completeness we present their
mains unclear, it is interesting that they point rather specifispacetime metric in the Appendix. In this section we discuss
cally towards a string theory description. their thermodynamical properties.

In Sec. V we find solutions to the radial wave equation in The mass and the charges of the black holes are conve-
two regions, solving first in the asymptotic region and then inniently given in the parametric form
the near-horizon region. We also discuss the angular equa-
tion. These results generalize previously known results to the 1 B
case of rotating black holes. We discuss the ranges of charge, M= 5’“2 cosh;, (4)
angular momenta, and mass for which these solutions can be =1
combined to approximate wave functions covering the entire
spacetime, and so the black hole absorption cross sections
can be calculated explicitly. The results presented in Sec. VI
include the following.

The low-energyS-wave absorption cross section is The

1

Bogomol'nyi-Prasad-Sommerfield-(BPS)saturated
@) limit corresponds tqu—0 and §;—« with Q; kept fixed,

and sou is a measure of the deviation from the BPS case.
whereA is the area of the black hole. Our result shows that' "€ Parameters; are referred to as boosts because of their
this holds forall five-dimensional black holes in toroidally "€ in the solution generating technique employed to find
compactified string theory. the charged black holes.

For a range of parametefthat we specify black holes In five dimensions the rotation group is 8O
exhibit theS-wave absorption spectrum: =SU(2)rX SU(2)_. Therefore black holes are character-

ized by two independent projections of the angular momen-
© (/2T ) (w/2TR) (e TH—1) tum vector. These parameters are the two angular momenta
Tapd @) =A T A IR T A T that will be denotedlz andJ, . Normalizations have been
wlTy (e 1)(e 1) . .
3) chosen such tha.ﬂR,L.are pure number$m .unlts whgre
#=1) that are quantized in the microscopic thedri. is
This spectrum is a precise indication that the Hawking emissometimes convenient to parametrize the angular momenta
sion process of the black hole can be described in an effe®f the general black hole in terms of thg, defined through
tive string theory as a simple two-body proc¢$6—12. In
this dynamical model the distribution functions of the collid- 1 i
ing quanta are thermal with the temperatufgsandT, . The Jri=75 ull1xl3) II coshs; =[] sinhs;|. (6
freedom afforded by the angular momenta allows a demon- ' '

stration of this characteristic behavior in several regions otl_h | h |  the Kerr black hol q
parameter space that were previously out of reach. For ex- el are the angular momenta of the Kerr black hole use

ample there is a parameter range with hierarchy in the 25 @ starting point of the generating technique. We will give
relative magnitudes of the charges. the formulas in terms of, , along with those usindlr | ,

For a larger range of black hole parameters, and fof€Cause both forms will be needed.
higher partial waves, an explicit solution can still be found
[13,14). In this case the absorption cross section has a more
complicated form and the Hawking radiation cannot be in- A. Entropy

terpreted as a two-body process. However,_it is suggestive The plack hole entropyEq. (1)] was derived in[7]. As
that the emission spectrum still takes a factorized form wherg ;a4 already in the Introduction the entropy clearly divides

each factor depends ok andT, , respectively. _ into two terms. We make this manifest by writiSg S, + Sk
We complete the paper, in Sec. VII, with a discussion of\ynare

the microscopic description of the dynamics. It is shown that,

for the most general black holes, the two-body emission pro-———

cesses can be modeled by a simple value of the effective, _ _ _ _

string length. However, we also stress that, for generic non- We write formulas in their generating form, and so they are only

extremal black holes, the typical Hawking process cannot bé1e most general up to duality. However, they can be written in a
described in this simple fashion. manifestly duality invariant way16].
2The notation here ig.=2m wherem is the notation if15], or

,u=r3 wherer is the notation of4]. We choose duality invariant
units where the five-dimensional gravitational coupling constant is
Gs= m/4. In string conventions this amounts toa’(*g?/

We are interested in a class of black holes in five dimen{R1R:R3R4Rs)=1.
sions that are parametrized by their m&ds two angular The quantization condition is thalty = %(J,,,iJl/,) where J,,
momentalr | , and three independentl) chargexQ; [15].  andJ, are quantized as integers.

Oapd 0—0)=A,

IIl. THERMODYNAMICS OF ROTATING BLACK HOLES
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S =2 \/1 3
L= &T Z,U«

:W(H cosh+ [ | sinhéi)\/,u—(ll—lz)z, (7

We write the inverse Hawking temperature as

2
II costs,+]] sinh 5i) — 32
I I

Bu= 3 (BL+Br). (13

and useS=S, +Sg. Then we find

2
SR=277\/%M3<H coshy, — [ | sinh&i) —J3 L
' ' [— EBRdM+dSR+,8HQRdJR+,BHEi @dei}
Vu—(11+12)% (8

=7T,u,(|'| cosmi—l_l sinhd;
I I
+

By now there are many hints from string theory that collec-

tive excitations of solitonic objects can be described by ef- (14
fective low-energy theories that are themselves string theo-

ries. The structure of the entropy as a sum of two terms ma; ; - ;

be an indication thaall black holes can be described in this ?f;gﬁq ttvr\]llos :r;(ljaeti%enr.ldent inverse temperatures follow directly
way and that the two terms in the entropy are the contribu- '

tions from left- (L-) and right-(R-) moving modes, respec-

tively. If true, it must be that the interactions between the 7 u?(I1,cosits. — I1;sint? s,
two kinds of modes can be treated as weak. Motivated by the BL=
BPS-saturated case we assume that the relevant effective 103077 LT cinhs 2 12
theory is a noncritical string theory with=6 [18—2Q and \/4 w=(IT;coshy; +11;sinhd;) "= J
identify the levels of the effective string as 2 pu(TT,coshs, — IT,sinhs))
I I I I
1 2 = > ’ (15)
NL=ZM3(H coshs;+ [ sinhs, | —32, 9) Vu—=(I1=13)
I I
1 2 2(I1;cosi 6, — I1;sink? 5
NR=Z,¢L3(H coshs;— [ | sinhéi) -J2, (10 Br= mu (1 Y )
I I
\/%1 w3(IT;coshy, —I1;sinhs;) 2 — J3
so that, for large levels,
27 u(1T;coshs; + I1;sinhs;)
= (16)

S=S, +Sgr=2m(JN_+ Ng). (11) o
m— g+l

If these relations could be derived from first principles, we

would have a microscopic interpretation of the entropy in the

general nonextremal case. Some evidence in this directioff the String theory interpretation these are the physical tem-
was presented if9]. peratures of the left- and right-moving modes. For this to

Black holes in four dimensions have entropies of a Verymake sense we must assume that the modes are interacting in
similar form [7]: the indexi=1,2,3—i=1,2,3,4, the param- such a way that the thermal equilibrium is maintained in
eter u3— u and the angular’ n’10mentu,m,’_=’0,. Therefore €ach of the two gasses independently, and so that the cou-

the thermodynamics and indeed most results presented m'”gs t?etween _trr'f two aectors arKI EUCthﬁ.ak?r thaﬂ the
this paper immediately carry over to four dimensions. NoteON€S that act within each sector. Although this Is perhaps

however, that there is only one angular momentum in foursUTPrising from the string theory point of view, it may be

dimensions, and so the symmetry between the two entropi(:i'gasonable when considering the nature of black holes: Col-

Se, is a special property of the five-dimensional case tha Iding left and right modes give rise to Hawking .radiation,
hints at a particularly symmetric underlying structure. Weand we know that large black holes are exceedingly stable

will discuss rotating black holes in four dimensions in a Objects. . '
separate papde1]. The angular velocities also follow from the first law of

thermodynamics:

B. Thermodynamics

Our assumption that the entropy is a sum of two indepen- L 2md,
dent contributions has consequences that can be derived Brld-=
from general principles. Consider the first law of thermody- \/%Ms(HicoshSi+Hisinh5i)2—Jf
namics:
2m(l1—=15)

_ =, (17)
_ R L iqN.
dM=TxdS+ QRdIz+0Q dJL+2i PdQ;. (12 f—(1,—1,)2
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BHQR: _E dt
\/%;ﬁ(ﬂicosmi—Hisinha‘i)z—J%

(26)

) outer horizon

Direct calculations from the metric indeed verify that these

2m(ly+13) geometric definitions agree with thermodynamics. This will
= —2 (18) be shown in the subsequent section, as a by-product of a
Vr—(1+15) more detailed exploration.

It is remarkable that the natural division of thermody-

As before these potentials can be attributed to their respe¢iymic potentials into independentandR contributions also
tive independent sets of modes. Note, however, that the iNows an interpretation in terms of spacetime geom-

verse temperaturgy, is the sum of left and right contribu- g4y- This follows from the presence of both outer and in-

tions, and so the rotational velocitieQ"" cannot be por event horizons. Indeed, from the arka of the inner
unambiguously associated with a specific sector. It is only,4i-0n we can define an “éntropfl”

the combinationg QR that can be interpreted in this way.

The U1) potentials for general rotating black holes are A 1 5
. S_Eﬁzb{ \/Z,w"(]__[ coshs + [ | sinhéi) - J?
. mp(tanhs;IT;cosh; — coths; I1;sinhg;) N i i
:BHq)f_: (l I )2 ’ 19) 1 5
u—(,—
v - \/Z,Lﬁ H coshﬁi—l_i[ sinhéi) —JﬁJ. (27)
. mu(tanhg;IT;coshs; + coths;11;sinhs;)
BuPk= . (20
V= (11+1,)2 It follows that[9]
The potentials are important for the description of emission 1/ Ay A_
processes involving charged partick%22—-24. As in the SrL=5 4G, 4Gy, (28
case of rotational velocities we note that it is the combina-
tions BHCD{Q’L that can be attributed a given sector, ratherSim”a”y
than By, and®} | individually. ’
Finally, from independent scaling symmetries in the two om 2w
sectors we have the sum rules BR’L:K_iK_’ (29
n _

1 . 3
EBRM - E Bu®LQ;— EﬁHQRJRZESR, (21)  wherex. are the surface accelerations at the inner and outer
! event horizons, respectively:

1 . 3 3
SBM=2 Bi®[Q— 580 =55, (22 1 i pA(costs —TTisint? )
] J—

K+ . 2
which serve as useful checks on the algebra. \/% p3(ITjcoshs, — I1;sinhs)*— Jg

12017, —TT.si )
C. Spacetime geometry 2 p(Iicostt o~ Tlisink? 5)

I+

(30

In the preceding subsections the thermodynamic variables 1 3(I1.coshs: + IT.sinhs:)2— J2
were derived from the entropy, but the standard thermody- \/4 w(l o )

namic quantities also have direct spacetime interpretation?f is sugaestive that the spacetime aeometry divides the en-
The black hole entropy is given in terms of the area of the 99 P g y

outer event horizon by the Bekenstein-Hawking formula tropy and_th_e temperature in theery same way that the
microscopic interpretation does.

A Next we consider the angular velocities. They are usually
S=aGo (23)  defined from the geometry in the vicinity of the outer event
N horizon. Complementary rotational velocities can be intro-

the physical inverse temperature is defined from the surfacdUced at the inner horizon through

accelerationk . at the outer event horizon as
gr_t ( d(¢+ )

2w -2
Bu=— (24)

dt ' 3

inner horizon

)
K+

and the physical angular velocities are _ o -
“Variables with index ‘" always denote quantities measured at

1/d(p+ ) the inner horizon. The corresponding quantities at the outer horizon
r Y ' . e :
=5\ = , (25 will sometimes be denoted with an index+™ and sometimes
outer hotizon without an index.
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d(¢—¢)

—at (32)

1
L—_
9—2(

However, we have already defined angular momehta

) inner horizon

that couple only to their designated sectors, and so in this
case it should not be expected that the rotational velocities

would be further divided into two contributions. Indeed, in
the next section we show that

iQR:iQR

K_ Ky
and

g ta

K_ Ky

and so the rotational velocities at the inner horizon are not

independent thermodynamic paramet¢&milar comments
apply to the W1) potentials]
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The angular variablesp and ¢ have period #, and so
my ,=Mg*m_ are integer valued. We also introduce a di-
mensionless radial coordinatehat is related to the standard
radial coordinate througtf

r2—(r2 +r?)
— -
(I’+—I’,)

X (35

In this coordinate system the outer and inner horizons.at

are atx= 3 andx= — 3, respectively, and the asymptotically
flat region is atx=o0. With this notation the wave equation
can be written as

9 [l &d) + Aw?—A+Mo?
5 X Z (9_X 0 Z XA w w
1 (a) QR Qb2
+ — —Mgp——m —
X—% Ky Ky Ky
L NI Ui QL)Z D=0 36
i 3l MR ] BomO %9

In sum, we find that each thermodynamic variable is split
into two parts. This is in accordance with the microscopicHere .. is the surface acceleration at the inner and outer
interpretation because the string supports both left- and righ€vent horizonsQR* are the angular velocities conjugate to
moving excitations, and macroscopically it follows as a con-the two angular momentd) is the massA is the eigenvalue
sequence of the two horizons. Note that some special cas@$the angular Laplacian, antl can be expressed in terms of

have only one event horizohHowever, we can interpret

the entropy and the temperature &s- ,8;18. The expres-

these cases as limits that appear when the inner horizon cosions fork.. and QR! are precisely those given in the pre-
lesces with the curvature singularity, and hence continue receding sectiofiEqgs.(30) and(17), (18)]. We emphasize that

ferring to an inner horizon.

IIl. GENERAL WAVE EQUATION

A good way to explore the geometry of a black hole is to

this expression is the exact Klein-Gordon equation in the
most general black hole background in five dimensions. In-
terestingly it is in fact no more complicated than special
cases that have been considered previoLkdy14.

The wave equation is much simpler than the metric it

consider small perturbations of the background. The simpleg{erives from, but it nevertheless remains rather involved.
possibility is a minimally coupled scalar, i.e., a scalar field Fortunately each term has a simple interpretation, as follows.

that satisfies the Klein-Gordon equation

(33

1
—d,(V—9g*"d,d)=0.

Energy at infinity.The symbolA can be defined in the
equivalent forms
A=pB;ts=r2—r2. (37)

When we use the latter form faxr and the definition ok in
terms of the radial variable[Eq. (35)], the term} xA »? and

From the black hole background given in the Appendix it iSihe gerivative term in Eq36) (without the) can be written

straightforward to write out the equation explicitly. To

as

present the result in a satisfying symmetric form we use the

Killing symmetries deriving from stationarity, and the two

axial symmetries of the rotation group in four spatial dimen-

sions. Then the wave function can be written

D=D(r)x(0)exp —iot+imyp+im,p)

=Qo(r)x(O)exd —iwt+img(d+ ) +im (o= )]
(34

19

r3or
This is simply the radial part of the Klein-Gordon equation
in five flat spacetime dimensions. Evidently the tefmA w?
encodes properties of the perturbation that persist even in the

absence of a black hole. It can be interpreted physically as
the energy of the perturbation at infinity.

d
r3—+w2)CI>0=O.

or (38)

5These include the neutral black holes where one or more of the *More precisely the coordinateis the five-dimensional analogue
boost parameters vanish. An important case is the Schwarzschilof the Boyer-Lindquist coordinate. It reduces to the Schwarzschild

black hole.

coordinate when charges and angular momenta vanish.
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We can use the angular momentum parameltgsq de- d~exd —iwt+img(d+ ) +im (¢— )]
fined in Eq.(6)] to write A as
ol 2 e
exg ¥5| ——mg——m_—log| x— 5 .
A= T (7T (417 (39) A e T
(44)

It is curious that, in terms df; ,, A does not depend on the

boost parameters, . Note also that this relation shows that, Comparison with Eq(36) shows that the rotational param-

in the absence of angular momentum, we have simphye.  etersQ®" have been identified correctly. This constitutes the
The screening termdhe termA reflects the angular mo- promised verification that the geometrical definition of the

mentum barrier. At large distances it is suppressed relative tphysical parameters agrees with the thermodynamical one.

the energy at infinity by one power &f<r? as expected. The For later reference we note that modes of the form

mass termM is the long-range gravitational interaction.

Coulomb-type potentials are of the ?«x~* form in five o 1|~ i(wls ~mg 0%, —m Olic,)r2
dimensions, and so it is reasonable that the gravitational o~ X35 , (49
screening and the angular momentum barrier are of the same
order. ) o are the infalling modes and those of the form
The precise form of the angular Laplacian is
1\ i (@l —mg QR iy —m Qi )2
A=4K2+ (12419 w2+ (12-12)w’cos®,  (40) ®8“‘~(X— 5) ., (46)
where are outgoing. In general relativity these modes are sometimes
referred to as left- and right-moving modes, respectively, as
5 g 4 1 9 1 & this is their direction in the Rindler diagram. We do not use
Re=— WSW\Z@&—@— 4sinz¢9¢9¢2_ 400200y this terminology here in order to avoid confusion with exci-

(41) tations of the effective string.
The inner event horizorSimilarly, in the vicinity of the

is the angular Laplacian in fivélat spacetime dimensions. inner event horizon the metric can be written

The rotation of the background modifies the angular momen-
tum barrier experienced by a small perturbation, but the
change is a very mild one. Specifically itisndependent so
that separation ob andr variables is still possible. More- Here p and x are related ap~ \x+ 3 for x~— 3 (with
over, it is charge independent when the angular momenta ake> — 3). Note that the overall signature is opposite of the
expressed in terms of ». one close to the outer horizkq. (42)]. However, the wave

The outer event horizo@onsider the vicinity of the outer equation is of second order, and so it is unaffected by this
event horizorx~ %, ignoring temporarily the angular veloci- change. The modes are

ties. On general grounds the geometry of the black hole must
reduce to Rindler space:

ds?= k2 p?dt?—dp?. (47

Do~exd —iw(t=«"tlogp)]
~ —i +1,.-1 1
ds= — k2 p2dt2+dp2. (42) exp—iw[t*35 k_log(x+ 3)]}. (48

. _ - _ As before the full wave equation indeed supports modes with
Herex. is clearly identified as the surface acceleration. Thethis limiting form close to the inner horizon. Hence, from the
proper radial coordinate is related to the variabl& as  approximate metric close to the inner horizon we understand

p~\VXx— 3 for x~ 3 (with x>3). The solution to the radial the form of the pole term in Eq36) atx=— %, and verify

wave equation in this regime is of the form the physical meaning of the various symbols. This calcula-
tion therefore substantiates the advertised relations between
Do~exf —iw(t*=«; ogp)] thermodynamics and the geometry in the vicinity of the inner
horizon. In particular the relations
~exp{—iw[t*} k; Nog(x— 1)1} (43
1 1
—QR — _QR
The full wave equation, E(36), indeed supports solutions Ko Ky
of this limiting form close to the outer horizon. In this way
the Rindler space approximation explains the form of theand
singularity atx= 3 in Eq. (36). Specifically it verifies that the
«, of Eq. (36) is indeed precisely the surface acceleration. iQL __ iQL
Angular parameters can be restored by transforming to the K_ T K4

comoving frame, using the definitions of rotational velocities
[Egs. (31) and (32)]. Then the full wave function in this can be read off directly from the inner horizon term. This
regime becomes explains why the parameter, , associated with the outer
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horizon, appears in the pole of the inner horizon: It is ators commutgR;,L;]=0, as they should. It is an important
consequence of the fact that thE¥" refer to quantities at fact that the quadratic Casimirs of the groups are identical
the outer horizon. R?=L? and equal to

IV. SPACETIME SYMMETRIES AND STRING THEORY R?’=—RZ—R3+R3="H,. (55)

As we have seen the black hole thermodynamics can bg maximal set of commuting operators for the

naturally organized into aR and anL sector that is related g (2R),xSL(2R), symmetry can be chosen as the two
to the black hole event horizons, but it is not obvious whycompact generator®; and L, and the quadratic Casimir.
they are, roughly, the sum and the difference of inner andrhe wave function is an eigenfunction of all these operators.

outer horizon contributions. In this section we indicate howpy apyse of notation we equate the operators and their ei-
this comes about, by exhibiting a symmetry of the spacetimgenyalyes:

geometry that singles out precisely these combinations.
The thermal behavior at the outer horizon can be thought )
of as a complex periodicity of theeal Rindler time . In 27TR3=BR§—,3HmRQR, (56)
analogy, we introduce a new Rindler-type variabtethat
encodes the complex periodicity close to the inner horizon. ©
Just as the “temperaturek _/27 of the inner horizon is not 2mls=pL 5 — Bum Q" (57)
quite a temperature, because the signature is flipped and the 2
variableo is not quite a Rindler “time,” but rather an analo-
gous spatial variable. Introducing these auxiliary variables R2= Ezzl(M w2—A). (58)
and ¢ directly in the wave equation, and ignoring for the 4
time being the energy at infinity, the radial part becomes the

eigenvalue problem Then the wave function is
HPo=3 (Mw’=A)dy, (49 D~ PoeRalrr I Thalme), (59)
where where, as beforep, denotes the radial wave function that

5 ) depends only op. TheR3 andL 5 eigenvalues are the com-
B J sinh2 J 1 4 N 1 4 plex periodicities of the variables+ o and 7— . They can
4sinhdp dp Asinfpar®  4coskpio? therefore be thought of as the world sheet temperatures, if we
(50 reinterpretr and o as the world sheet variables of an effec-
, ) ) ) ) i tive string theory.
is written in terms of the radial variable defined by In the calculation just presented we have ignored the term
x= 3coshp (p reduces to the proper radial coordinate closel xA w? of the original wave equatiofEq. (36)]. This term is
to the horizong a property of the perturbing field, namely, its energy at in-
This radial equation is closely related to an underlyingfinity, and so it is possible that the description nevertheless
SL(2R)gX SL(2R), symmetry group. The generatdrsof indicates the internal structure of the black hole accurately.
the SL(2R) group are The role of the energy at infinity is to ensure that the geom-
etry far from the black hole is indeed flat Minkowski space.
In this sense the troublesome term encodes boundary condi-
tions, and so indicates that the internal symmetry
P P SL(2R)grXSL(2R), is spontaneously broken. The precise
v v role of the energy at infinity is a major concern that must
cothp arT *tantp &a) ' G eventually be elucidated.
We conclude this section by exhibiting another symmetry.
The exact equatiofEg. (36)] is invariant under

H,=

1 g 1
R1=§sm( T+o0) % + ECOE{ T+ o0)

X

1 J 1
R,=— ECOS{ 7+0) % + ESIn( 7+0)

X— —X, (60)
X J i 52
cottp —— +tantp —— |, (52 r2er? (A—-A), (62)
R 1/ d 2mR;—27R;, (62
=215 " 30/ &3
27ls— —27Ls,. (63
and the generators of the SL(2R), group are found by _ o )
taking o— — . TheR satisfy the algebra Macroscopically this interchanges the role of the two hori-
zons. In the microscopic interpretation the symmetry leaves
[Ri,Ri]=i eijk(_)ékst, (54) R; invariant and acts as a parity transformation on lthe

. This is precisely the way duality acts on conventional con-
and similarly forL. These are the appropriate commutationformal field theories, and so the interchange of horizons can
relations for SL(R)=S0(2,1R). The two sets of genera- be identified withT duality. From this point of view the
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2

transformations in spacetime geometry generalize the usual J 1\ o 1 1 w
R— o'/R that accompanie¥ duality in the simplest case. &—X( X2— Z)&_x t2 ~A+Mw?+ 2
To avoid misunderstanding we emphasize that the argu- X= 2%+
ments presented in this section are entirely in the context of 1 w?
the classical geometry. We interpret them as an indication of — 5 ) d,=0. (70
a strategy towards a comprehensive effective string model of X+ 3=

black holes, but we do not yet have such a model.
The only approximation is the omission of the term

V. SOLUTIONS OF THE WAVE EQUATION IxAw?=1x(r2 —r?)w? Itis the divergence of this term
for largex that is responsible for the irregular singularity at
In general Eq.(36) is a rather complicated differential infinity in the general case, and so the approximate equation
equation. It has regular singularities at the horizars=3  has three singularities that are all regular. This is a standard
and an irregular singularity at infinity. The singularity at in- problem that is solved by the hypergeometric function
finity is not of the so-called normal kind, and so it can not be[13,14. One solution is
cured by absorption in a determining factsee, e.g.[25]).

The solutions to this kind of ordinary differential equation x— 3\~ iBpoldm 1\ ¢
has an essential singularity and it is not known how to findd{'= : X+ 3
them explicitly. However, the equation simplifies in various X+ 3

regions of the radial variabbe. In the following we consider L

these cases, postponing the discussion of their combination . Bro BLo Buo X3

into solutions covering all of space to Sec. VI. XF( £l A 3 A A1 27 Tyt ;) ' (72)
We will omit the rotational parameters for simplicity in z

notation but this involves no loss of generality as they can b

restored by the substitutions

Svhere ¢ is given in Eq.(69). The surface accelerations,
were eliminated in terms of the temperaturg  and

Bu= 3 (Br+ BL) [using Eq.(29)]. A linearly independent

@ @ R solution can be chosen as
IBRE_’IBRE_ﬁHmRQ : (64)
1\ iBuwldm _
2 1)7¢
® ® L o= 1 X+ 2
ﬁLE_)BLE_ﬂHmLQ , (65) X+ 3
Bro  BLo  Pyw XT3
,BHw_’,BHw_,BHmRQR_,BHmLQL- (66) XF(f-H ype JE+I ype A+ . 1x+% . (72
The asymptotic regionAt large[x|>1 we approximate Ed. the two solutions are related by time reversal. This can be
(36) by seen directly by the substitution— — w.
L The two independent solutions have been chosen in a
J J ics i icini
Lot = (xhw?— A+ Mw?) D=0, 67) form that reflects the physics in the VICI?ItX of /t4he outer
X oX 4 horizon: They reduce to plane waves— 3)~'PH°"4™ for

X~ 3. An alternative basis that is adapted to the behavior at
The horizon terms were omitted and we taok- z=x?in infinity follows by the modular properties of the hypergeo-
the kinetic energy. This equation can be solved exactly inmetric functions. For exampk (' of Eq. (71) can be written
terms of Bessel functions. The linearly independent solutions

arg —iByoldT

1

. 5 1\ ¢
o= : X+ =
1 X+ % 2
DL =—1p5ds 26 XA), 68
)= e Vd) (©9 I(1-i Bywl2m)T(1-2¢)
X T(A— =1 BLaldm) T (1— £~ Braldm)
where¢ is
1
X[ 6= B2 i P e 2
=1 (1+ 1+ A—Mw?). (69) 4m 4m " x4 4
1\ T(a-i 2m)(2¢6—-1
The horizon regionin the horizon region the wave equation +|{x+ = (, | Buol2m) (, ¢ 1)
can be approximated by 2] T(&~iBLolAmI (£~ Brwldm)

w 0} 1
XF 1—§—iﬂ;,1—§—iﬁi,2—2§, .
41 4 X+ 3
"For approximate solutions at large distances we replace the index
0 of the radial wave functions wittv. (73
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In this form the asymptotic behavior for largeis manifest: BrwA

41

1 _
flux= E(d)r3(9rd>—c.c.)=|Ao|2 (77)

I'1-iBuwl2m)'(1-2¢)
(1-¢—-i BLo/dm)T'(1—£—i Browldm)

I'1-iBywl2m)(26-1)
I'(é—i BLwldm)I'(é—i Browldm)’

Here each term admits corrections for larg¢hat are sub- 2 1
; ; +d+ +
leading in 1x. ALD~A I, 2wC0 w\VXA— &+ 27 (78)

Similarly a basis adapted to the behavior at the inner ho-
rizon can be chosen. The wave function that has only an
ingoing component at the outer horizon has both an outgoingnd so the flux becomes
and an ingoing component at the inner horizon. In physical
terms the scattering off the background invariably mixes the
components. The basis adapted to the inner horizon will play
no role in the present investigation.

The angular LaplacianThe angular Laplaciarhz2 of a

flat five-dimensional backgroundEq. (41)] is the quadratic . ) . . T
Casimir of the group SO(43SU(2), X SU(2). It has ei- _The effec_tlve two-dimensional transmission co_efﬂmEI’n_gl

luedc2= 1 K(K+2) whereK is an integer. The pres- is the ratio of these fluxes. Using a geometric relation de-
genvaluesi®= j a ger. P rived in [29] the absorption cross section of tkgh partial
ence of the curved background modifies the angular Laplaq;vave becomes

ian to[Eq. (40)]

<I>i(§‘~x“fr

Similarly, we write the wave function in the asymptotic re-
(74  gion asAS ®; and expand at very large distances:

xé1

ﬂux:i(qTrSac1>—cc)=|A+|2A (79
2i r " =l A

A=4K2+ (12419 02+ (12— 12) w?cosd. (75 Am(K+1)? 2
(K) )=—————|T |2:
T aps( @ @3 K

4By

0
w2 +

(K+1)2: (80)

o0

The solutionse'(Ms¢* M) y(6) to the corresponding eigen-
value problem cannot in general be found in closed form.
As a qualitative result we note that the contributions from theT
rotation of the black hole are always positive. In the special[
casel =1, the eigenfunctiong(6) are hypergeometric func-
tions and the eigenvalues are very simple:

1 1
A=K(K+2)+(I2+13) 0> (76) <I>w=A:§XT7J2§_1(w\/XA)+Am X—mJ_(zg_l)(w\/xA),
(81

o find the ratio] Ay /A | we consider a general wave func-
ion in the asymptotic region,

Corrections can be calculated perturbatively. The leading
term is of second order inl{—1%) »? because cog2van-
ishes when averaged over all angles. We can usé®jas  and expand for small arguments of the Bessel function:
approximate eigenvalues for large classes of problems, in-

cluding those relevant for low-energy perturbations or for

black holes with nearly coincident rotation parameters. L. 1 (JAe\*!
O ~AIXET——— | ——
* ree\ 2
VI. ABSORPTION CROSS SECTIONS
L 1 \/Kw 1-2¢
The calculation of absorption cross sections follows much +ALX F(2——2§) > . (82

previous work(including[26,27,11,23,24,13,14,28 In this
section we find the necessary generalizations due to angular
momentum and sharpen the ranges of validity previously esthis should be compared with the near-horizon wave func-
tablished for nonrotating black holes. We first carry out thetion A,® ™ for largex [Eq. (74)]. Assuming that these limit-

alﬁj%braic manipulations, and then consider their ranges qﬁg forms have an overlapping regime of validity we find
validity.
In the absorption geometry the wave function close to the

horizon has only an incoming component. We normalize the Al JAw\17%
wave function a#\ @' . Then Eq.(71) gives the flux at the Al T2 r(25H)r(2é-1)
horizon as

I'1-iByw/2m)
“T(E=1 BLaldm)T (£—1 Broldm)’

(83

8In fact the differential equation is the analytical continuation of

the radial equation(50): The constant term is analogous to the . . - . C
mass term and the cog2erm corresponds to the energy at infinity 'NOt€ that the “matching region” of overlapping validity is

[omitted in Eq.(50)]. necessarily at large, and so, foré>%, the x¢~ ! terms
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dominate and th&™ ¢ terms can be neglected. This fact was The necessary and sufficient conditions for the existence of
anticipated already in the derivation of the fllig. (79)],  suchx are
whereA, was ignored. , A ,

Collecting the results the partial absorption cross sections Aw?<l, BrBlAw’<l, |-A+Mo?|<l. (87)

become . . T .
For higher partial waves a positive integer contributeg\to

+1)2 4¢-2 [Eq. (40)], a_nd S0 the last condition can only_ be satisfied in
Ugﬁ;(a))z am(K 21) ’BH/ \/Zw) rather special circumstances. In this subsection we only con-
w |2 sider theS wave. The last condition automatically implies

T(é—i BLowldm)T(E—i IGR“)/47T)|2 £=1, and so the coincident wave functions in the matching
X - . (84 region[Eq. (74) or (82)] indeed reduce to constants, as ex-

F(2¢- DT (29T (1~i Byowl2m)| pected. Moreover, the absorption cross section takes a par-
ticularly simple and suggestive form

Recall the definitiort= % (1+ 1+ A —Mw?) whereA was
given in Eq.(40).

We turn next to the range of validity for the matching
procedure that leads to this cross section. It is most transpar-

I'(1-iBLwldmI(1-i BRw/4w)\2
[(1—i Bywl/2m) |

Tabd ©)=A

ent to derive the conditions directly from the general wave _ABL(w/z) Br(w/2) (efro—1)

equation[Eq. (36)] written as - Brw (ePrel2_1)(ePro2_1)"
e 1)aq)+1 Aw?’—A+Mo? (®9
X 4/ox 0" 4 @ @ whereA denotes the area of the black hdlie rewriting Eq.

(84) we usedA = B,,'S, S=(1/4G\)A, andGy=.] This
®, cross section can be interpreted microscopically in terms of a
two-body process of the effective string theory that param-
etrizes the collective excitations of the black hfl,11].
=0. (85) Note that we have not assumg@kw~ B w~1, and so
there are regimes where either one or both of the Bose dis-
[We assumemz=m_ =0 for convenience, but generality tribution factors simplify to either the Maxwell distribution

could be restored using Eq&64) and (65).] The Bessel or to the Bose degenerate state. The classical calculation is
function is valid when we can ignore the horizon terms andkstill reliable in these cases.

the 1 in the derivative terms, and the hypergeometric func- Next we consider some specific examples.

tion requires that the energy at infinifyxA » is negligible. Low-energy limit.In the S wave the angular operatdr

We must show that there is an intermediate matching regioe 2, and so for an arbitrary black hole all conditions in Eq.

where both approximations are valid. We consider two use(g7) can be satisfied by taking the energy sufficiently

ful strategies in the following subsections. small. In this case Eq(88) applies and the cross section
becomes

1 ((Br+BU)

x— 1\ 4w

? 1 [(Br=BU)\?
W' x+ 1\ 4w ) o*

A. Matching on a vanishing potential 0

, L . o O(w—0)=A. (89
The first possibility is thaall potential terms are smalh

the matching region. Then only the kinetic term remains, andrjs relation is well known for scattering off nonrotating

the equation integrates. to a constqnt .solution. T_his constapjack holes(see[30] and references therginbut the result
value of the wave function is the coincident amplitude of thepere also applies to nonrotating ones.

Bessel function at small argument and the hypergeometric Ty0 large chargesAssume that two of the boost param-

function gt largex. ™ o ) ] eters are large, say=45;~ 8,>1, and treat the last one as
Matching on a vanishing potential requires a rangexof grder unity. We generalize this “dilute gas” region of Mal-
that satisfies dacena and Stromingét1] by including also large angular
1 momenta with Jg~J ~u%%?® or, equivalently,
x>1, Axw?<l, ;BRIBLU‘)2<11 |— A+Mw?|<1. l1~1,~u [, were defined in Eq(6).] In this case

A~up, M~pue?’, A~ puw?, andBr~ B~ u*%e?’. Accord-

(86) ing to Eq. (87) the cross section, Eq88), is reliable for
frequencies that satis’u?w<1. This includegbut is not
limited to) the interesting range~ Bg1~un~ Y%2°. The

®The case wheré becomes a complex number corresponds tothermodynamic parameters of the absorption cross section,
large frequencies. Here both, and Al must be taken into ac- Eq. (88), have a nontrivial dependence on angular momenta,
count. In this case the appropriate modifications are given in arand the inferred distribution functions agree in detail with
appendix of(13]. those expected from counting argumef,31].

10The coefficient of the linearly independent solution, proportional ~ Rapidly spinning black holes'he freedom provided by
to x~1, can be determined by matching derivatives. This term conthe angular momenta also allows for a new kind of limit: All
tributes a flux that is suppressed b &?)2<1, due to the large the boosts are arbitrary but a dilute-gas-type region can nev-
matchingx. ertheless be reached by tuning the angular momentum pa-
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rameters so that both inverse temperatures are large. Thistiwo matching procedures must be considered separately to

accomplished by taking,=0 and tuningu—12=pue’<u  find the most generous ranges of validity.

[1,, were defined in Eq.(6)]. Then A~ue®, M~u, The necessary and sufficient conditions for the existence

A~ pw?, and Br~ B~ u*%e 1. The matching conditions, of x satisfying Eq.(91) are

Eq.(87), requireww?< 1. This range of frequencies includes

the interesting ones with~ B { ~ u~*%. Note that in this Aw’<|-A+Mo?, BrBlAw*<|-A+Mo??.

exampleno hierarchy in the charges is necessaapd so we (92)

capture the entire functional dependence of the temperatures ) )

on the boost parameters. It is also interesting that in this cadé the S wave, A= w?, and so in this case there ane as-

the black hole is not even approximately supersymmetric. Sumptions about the frequency of the radiatibindeed, in
Near-BPS limitWe generalize the nonrotating near-BPSthe S wave the entire potential in E8S) is proportional to

black hole(considered if23,24)) by including angular mo- w?, and so condltlons on the relative size of potential terms

menta |;~l,~uY2 (This implies Jz~u%%’ and Must be frequency independent.

J.~u3%3 and so there is a hierarchy in the angular mo- We consider a few specific examples.

menta) Close to extremality all the boosts are large>1 Higher angular momentum modeEhe simplest example

and we expand systematically & (where 5~ ¢8;). Then of matchmg on a constant potential concerns a par.tlcular

A~u, M~ ue?, A~ uw?, Br~u'?%e3, and B~ u%e’. partial WaveK,. but otherW|s_e t.he same restrlct'lons as in the

The conditions, Eq(87), are satisfied for frequencies in the €aS€ of matching on a vanishing pot_entlal. This is consistent

rangeuY2we’<1. There is a hierarchy of the temperaturesWith Eq.2(91) [but not Eq.(87)]. In this caseA=K(K+2)

(B>, in this case, and so there is no regime where botfNd Mw“<1, and so the absorption spectrum is &)

Bose factors are significant simultaneously. The applicabldVith £= K/2+1. The process can be modeled microscopi-
range of frequencies isw~Bgi~u *%~3% but not cally as an impinging closed string that is absorbed by bound

~ B e V20 ; state ofD-branes, with K fermions being excited in the
;)rokiLd w Y%7° and so only theBg can be reliable procesd 14,2037,

Near-extreme Kerr-Newman limis the final example One large chargeWe consider theS wave and take

we consider the near-extreme Kerr-Newman limit defined byﬁE 53?,% and 5, of order 1[13]. Angular momenta

H 286 2
(11 —1.)2= &< ith 1.#0). H A~ e, I, o~ u™“can be |nclude_d._'|'heﬁ_~,_u, M~,ue_ y A~ pow?, _
'L,\jlw(Al/wzzzﬂ /giwlfl/z (av;]"dﬂRwiLngfl aﬁ:jeso thelucfnn- and Br~ BL~ uY%e’. This |szsuff|C|ent to satisfy the condi-
dition on the frequency becomgsw?<1. As in the near- tions A<M .and'BR'BLA<M rqulred by Eq.(9;), and so
BPS case we can protg, but notA, . the absorption cross section is given by Ey) with a gen-

It is interesting that in the limie— 0 the entropies ap- eral value of¢.
proachSz=0 and

2

VII. DISCUSSION

S=S§. = ZW\/Q1Q2Q3+J§—J5= 277\/n1n2n3+J§—J2, We would like to conclude the paper with remarks on the
(90 microscopic interpretation of our results. As a starting point
for the discussion we consider the Hawking emission rate

where then; are quantized charges. The near-extreme Kerr-

Newman limit is not supersymmetric, but the form of the B 1 d%
entropy is nevertheless reminiscent of the BPS case: The Lem= Uab{w)eﬁHw—l(zw)“' (93
entropy does not depend on moduli, and the counting argu-
ments can be made notably less heuristic. In the regime where matching on a vanishing potential is
justified[Eq. (87)] we use Eq(88) for the cross section and
B. Matching on a constant potential find
In this casethe screening terrdominates in the matching BL(0/2) Br(w/2) 1 d%k
region. Then the wave equation is solved by the polynomials T'g,,=A By (PR 1) (27
x¢~1 andx ¢, The coincident wave functiorl€q. (74) or Brw (e )(e )(2m) o4
(82)] indeed reduce to precisely these polynomials. (94
Matching on a constant potential requires a range b 1/ w\2 1 4%k
that = il
- 877-GNI-(,u ( 2) (eBL wl2__ 1)(eBRwl2_ 1)(27T)4 '
(95)

1
x>1, XAw?<|-A+Mw?, ;,BR,BLw2<|—A+Mw2|.

(91)  where the intermediate step used relations given in Sec. Il
and we defined. as

If |-A+Mw? <1, the present procedure corresponds to

matching on a vanishing potential, but in this case the con-

ditions, Eq.(91), are nevertheless stronger than E87), YNote, however, that we only give the final result o 3, but
because here we insist that the screening term dominat@se argument shows that the analogous calculatios fmmplex is
even though it is small wheji- A + M w?|<1. Therefore the  reliable as well.
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The Hawking emission process can be described as a two-
L=2mu? H COSH@—H sintfs, |. (96)  pody process in the entire regime where matching on a con-
' ' stant potential is justifiefEq. (87)]. For generic nonextremal
black holes this implies3 rw<1, and so the agreement

(95), is identical, including the coefficient, to the two-body%e.tWeen the MICTOSCOpIC model and the macroscopic calcu-
lation reduces to a single number, namely, the universal low-

annihilation rate for small amplitude waves propagating on ) ) L
an effective string of length. [12]. In this model of the energy absorption cross section. This is nevertheless non-

emission process the length of the effective string param'grivial because we consider that the most general black holes
etrizes the strength of the interactions. It is satisfying that if?nd the model capture the full functional dependence on all
our case the length is both U-duality invariant and inde- Parameters. It has previously been argiaidng somewhat
pendent of angular momenta. different lineg that the universal Iow:energy scattering off
For large black holed is much larger that the naive Schwarzschild5] and Reissner-Nordstmo[39] black holes
string length. The importance of this kind of “tension renor- ¢an be accounted for by an effective string model. Our result
malization” was recognized already in the early countings ofincludes these observations as special cases as well as the
nonperturbative string stat¢§83—35, and it is now under- D-brane-inspired string models for near-BPS black holes.
stood fromD-brane properties how this may come aboutLet us summarize the argument: From the horizon structure
[36,37]. The near-BPS black holes related to momentumwe identify distribution functions for right- and left-moving
carrying bound states @ 1- andD5-braneg10,38 are spe-  string excitations, from rapidly spinning black holes we infer
cial cases of the general formula, Ef6): Here two boosts the coupling between the two sectors, and then a calculation
are larged;~ 8,>1 and the length reduces to=27Q;Q, gives the universal low-energy cross section &ir black
=2mn;n;R, wheren, , are the quantizeB1- andD5-brane  holes. In this sense the version of the effective string model
charges andR is the length of the dimension that the presented in this paper has some applicability even for ge-
D1-brane wraps around2]. However, the general expres- neric nonextremal black holes.
sion forL accounts for emission from a larger class of black The remaining problem becomes one of interactions,
holes than has previously been considered. For example, thiather than that of state counting. Here it is concerning that
full dependence on boost parameters is needed in the caseiofgeneral the typical Hawking particle is too energetic to
rapidly spinning black holes even though the thermodynamicesult from a simple two-body process. This may simply in-
properties of this case are analogous to the ‘“dilute gas’dicate that interactions are more involved at larger energies,
regime of[11]. at least in the range of parameters where matching on a con-
In the microscopic interpretation the colliding guantastant potential is justifiefEq. (91)] [13]. Here the absorption
have Bose distributions with inverse temperatiggs.(15), cross section[Eq. (84)] depends on the parameter

(16)]: £&=1(1+J1+A—Mw?). The angular momentum eigen-
value A [Eq. (76)] depends on the angular momentum of the
27 (I coshs, + I1;sinhs)) particle as well as that of the background. When the main
BrL= . 97 contribution to¢ is from particle angular momentum tlgds
Vu—(;21,)? § P 9 lge

integer or half-integer and the spectrum can be understood

gualitatively from many-body kinemati¢44,29,33. In gen-
The dynamical considerations therefore give direct informaeral the background mass and angular momenta contribute to
tion about properties of the microscopic theory. In particular,¢ but the emission spectrum retains its qualitative character.
this gives a concrete physical meaning to the temperaturgs is therefore reasonable to suspect that further understand-
derived at each event horizon. However, the two-body formng of many-body effects might account also for this case.
of the emission rate is a low-energy approximation, and so As we saw in Sec. IV the geometry of the region in the
only the cases where the precise requirenj&ot (87)] on  vicinity of the horizons immediately suggests an effective
the frequency is consistent with the interesting rangeslescription in string theory. The matching on a vanishing
w~Br* andw~ B, ! can be probed in detajlL1]. Despite  potential corresponds to the situation where this suggestive
this restriction we can verify the dependence of the inversaear-horizon region can be unambiguously distinguished
temperatures on all boost parameters by considering rapidffom the surrounding space. In the case of matching on a
rotating black holes. Our expressions for thélJJootentials  constant potential the long-range fields make the distinction
[Egs. (19) and (20)] can similarly be checked in some re- less clear, but presumably still valid, as we argued in the
gimes, by considering emission of charged particles, and thprevious paragraph. However, in the most general problem
angular potential§Eqgs. (17) and (18)] can be probed by the distinction seems ambiguous, and it is the processes that
considering the emission of higher partial wavesdence are sensitive to this coupling between the near-horizon re-
the microscopic model based on the thermodynamics of twgion and the asymptotic space that we are presently unable to
horizons provides an economical summary of a large class afccount for even classically.This seems to be a barrier that
special cases, including some that have not been consideredll remain difficult to surmount in the string theory descrip-
before.

3t is possible that investigations involving particles with non-
2This calculation uses matching on a constant potential, not aninimal coupling (initiated in [40]) might help, for example, by
vanishing one. being less sensitive to the term at infinity.
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tion. It is not yet clear whether this represents an obstacle ofhis work was supported in part by DOE Grant No. DOE-

purely technical nature or a more profound crisis. EY-76-02-3071, NSF Grant No. PHY95-12784.C.), and
NATO collaborative Grant No. CGR 94981MC).
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APPENDIX: THE BLACK HOLE SOLUTION

(r?+13cog 6+ I5sin?6)(r*+1cog 6+ I3sifo—2m) r2

A 13g2=—
= A (r2+12)(r?+12)—2mr?

dr?+de?

. 4mcog 6sirt 6

<]

|1|2[ (r2+12cog6+12sirt6) —2m] | sianaisinrﬁaj} +2m(12+15)]] coshy,
1

4Amsir? 6

X sinhs, —4mlyl,] | sint?s, |dgpdy— (r2+12cog 6+ 12sirf9)
|

I IT coshsi—1,] ] sinhﬁi)
I I

_ 4mcos 6
+2mI2H sinhs; dd)dt—T
I

(r2+lico§0+lgsin26)(lzﬂ coshs;— 1] | sinhai)

sirfe
+2mI1H sinhéi}dwdHT (r?+2msint? 83+ 19)(r2+ 2msint? 8, + 12cog 6+ 1 5sir? 0) (r2+ 2msintt 5,

+12c0S 0+ 13sir?0) + 2msin26{ (12cosi 83— 13sini? 85) (r2+13cog 6+ 13sir?6) + 4mlyl, | | coshs;sinhs,

i<j

— 2msint? 8;Sink? 8,(12cosi 83+ 15sint? 85) — 2mI3sink? 85(sint? 5, + sinhzéz)] d¢?

cogé

(r2+2msint? 83+ 13)(r2+ 2msint? 8, + 12coS 6+ 15sir? 0) (r2+ 2msintf 8, + 15cog 6+ 15sir? 6)

+ 2mcosz0{ (13cosit 83— 13sini? 85) (r2+12cog 6+ 13sir? 6) + 4mly 1, ] | coshy;sinhs,

i<j

— 2msint? 8;Sink? 8,(15cosk 83+ 12sint? 55) — 2mI2sintkf 85(sink? 5, + sinhzéz)] } dy?, (A1)

where It is possible that the metric can be written in a more
compact and symmetrical form, but we are not aware of any
substantial simplifications. One helpful identityrat is non-
trivial to verify) is

A_:H (r2+2msint? s, +12cog 0+ 12sirfg).  (A2) _
' V—g=rAY3singcoss. (A3)

We inverted the metric using this relation repeatedly and,
The notation follows[15], except that the indices on the after lengthy manipulation of the resulting formulas, found
boostsé have been redefined{,e2,e)—(1,2,3). Thex of  certain complete squares in the resulting wave equation.
the main text is related tm throughu=2m. Note that the These are the terms that are recognized as the horizon terms
complete solution also includes gauge fields and other mattén the general equatiofEq. (36)], after the linear change of
fields (of considerable complexify They are given irf15]. radial variablg Eq. (35)].
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