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Universal low-energy dynamics for rotating black holes
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Fundamental string theory has been used to show that low-energy excitations of certain black holes are
described by a two-dimensional conformal field theory. This picture has been found to be extremely robust. In
this paper it is argued that many essential features of the low-energy effective theory can be inferred directly
from a semiclassical analysis of the general Kerr-Newman solution of supersymmetric four-dimensional
Einstein-Maxwell gravity, without using string theory. We consider the absorption and emission of scalars with
orbital angular momentum, which provide a sensitive probe of the black hole. We find that the semiclassical
emission rates—including super-radiant emission and greybody factors—for such scalars agree in striking
detail with those computed in the effective conformal field theory, in both four and five dimensions. Also the
value of the quantum mass gap to the lowest-lying excitation of a cl@rglack hole Ey,,= 1/8Q% in Planck
units, can be derived without knowledge of fundamental string th¢&§556-282(97)05320-4

PACS numbsdrs): 04.70.Dy, 97.60.Lf

[. INTRODUCTION nonzero angular momentum are considered. The effective
superstring theory provides a solution, possibly the only one.
Recent statistical derivations of the Bekenstein-HawkingHence we conclude that—had history been a little
entropy have used weakly coupled fundamental string theorgifferent—much of the effective string picture of black hole
as a starting pointl—4]. In full detail, the derivation is not dynamics might have been derived without knowledge of
simple and requires a precise understanding of string theorfundamental string theory. Of course, for a complete and
and D-branes. The final answer is, however, much simplesystematic picture, string theory remains essential.
than the derivation: The quantum states of a near- The four-dimensional case is considered in Sec. Il. In
Bogomol'nyi-Prasad-SommerfielPS black hole are de- Secs. Il A-1l J we semiclassically compute the absorption
scribed by a low-energy supersymmetric conformal fieldcross section and decay rates for a massless scalar with an-
theory or effective string whose parameters are functions ofular momentum and a near-BPS Kerr-Newman black hole.
the charges. Furthermore, the validity of this effective stringThis depends on five parameters: the mass, charge, and an-
picture extends far beyond the domain of validity of its origi- gular momentum of the black hole, as well as the frequency
nal derivation from fundamental string theory. Indeed, itand angular momentum of the scalar. The total emission in-
gives accurate decay rates in thé-theory region where cludes super-radiant emission, which occurs for a rotating
there are no fundamental strings at all. black hole even at extremality when the Hawking tempera-
How did this happen? On general grounds, one expecture vanishes. In Sec. Il K we argue that the Kerr-Newman
the near-BPS dynamics of a black hole to be described bgntropy formula—including rotation—implies that the black
some effective field theory, whether or not string theory ishole degrees of freedom relevant for near-BPS excitations
weakly coupled. Apparently, we have stumbled upon the efean be described by &,4) chiral superconformal field
fective black hole field theory which is valid, at sufficiently theory with an SW2) current algebra associated with rota-
low energies, for all values of the string coupling. tions. We determine the level of the current algebra by equat-
Given this state of affairs, it is natural to ask how much ofing the bound orlL; in terms of the S(R) charge with the
this effective theory could have been discovemsithout bound implied by the absence of a naked singularity. The
knowledge of fundamental string theory? In this paper wemass gap is then computed as the energy of the first excited
address this question in the simple context of four-state of this theory. In Sec. Il L the proposed conformal field
dimensional(4D), Einstein-Maxwell gravity. We begin by theory is used to compute the decay rates. It turns out that the
assuming that, on scales large compared to the Schwarzdecay rates are almost completely determined by general
child radius, there is some kind of weakly coupled, unitaryproperties of the two-dimensional field theory correlators.
effective field theory. We then demand consistency of thisComparison with the semiclassical results of Secs. Il A-Il |
effective theory with semiclassical, black hole thermody-reveals detailed agreement.
namics and decay rates. This is a highly overconstrained The five-dimensional case is considered in Sec. Ill. An
problem, especially when decay rates into channels witlimportant new feature here is that angular momentum can be
carried by both left and right movers on the effective string.
In particular, anl=1 boson can be emitted by the collision
*Electronic address: malda@physics.rutgers.edu of left- and right-moving = 1/2 fermions. The rate for this in
Electronic address: andy@denali.physics.ucsb.edu the effective string picture involves a right and a Htmi-
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onic thermal occupation factor. In the semiclassical picture
such factors could come only from greybody effects. We will
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=—-AS\(6;am). 2.7

see that such factors indeed arise with exactly the right formgor smallaw (the case of eventual interest to) tise eigen-
Hence one can directly “see” the fermionic constituents of aygjues are

black hole in thd =1 scalar emission spectrum.

Il. FOUR-DIMENSIONAL KERR-NEWMAN BLACK HOLE
A. Classical geometry

The metric for a black hole of charg@, massM, and
angular momentund=Ma is

A—a’sirf 2a sirf(r’+a?—A)
ds?=—| ——— | dt?— dt de
3 3
(r’+a?)?—Aa’sirt6) , 2,
5 Sirfe dgp?+ Far
+3 de?, (2.1
where
S =r2+a%cosh,
A=r?+a%+Q%*-2Mr (2.2

and we are setting the Planck length to 1 &ag=1. The
inner and outer horizons are located at the zeroA:of

r.=M=JM?-Q?-a’.

The aread, Hawking temperaturdy, angular velocity(},
and electric potentia® at the horizon are

A=47(2M?— Q%+ 2M yM?-Q%—a?) =472,

(ry—r-)
a4

(2.3

TH:

_ 4ma
A ’

47Qr,
1

(2.9

These quantities are related by the first law
dM=TLdS+Q dJ+® dQ, (2.5

where the entropy i$=A/4.

B. Scalar wave equation

A=1(1+1)+0(a’w?). (2.9
R then obeys
Ad,Ad,R+K?R—NAR=0, (2.9
where
K=w(r’+a%=ma,
A=A+a’w’—2moa. (2.10

C. Low-frequency scalar absorption

In this section will calculate the low-energy absorption
cross section for the black holes described in Sec. Il A. The
low-energy condition isw<<1/M, which means that the
Compton wavelength of the particle is much larger than the
gravitational size of the black hole, defined as the place
where the redshift between a static observer and an
asymptotic observer becomes of order 1. We also assume
that Q<1/M for simplicity.

We use a matching procedure, dividing the spacetime out-
side the horizon; , <r into two overlapping regions defined
by the near regiomr —r  <1/w and the far regionM<r
—ry.

In each region the wave equation can be approximated
using the inequalities and then exactly solved. A complete
solution can then be obtained by matching. We now discuss
each region in turn.

D. Near-region wave equation

In the near region, the coordinate distameer , is small
compared with the inverse frequencywl/This implies that
we can replace the function€’— \A in Eq. (2.9 by

KZ—AA=~r% (0—mQ)°—1(1+1)A, (2.11)
where the angular velocitf) of the black hole is given in
Eqgs.(2.4). We have approximateld by its constant value at
smallr~r . since ther dependence of the potential is domi-
nated by the term proportional i, and we have also ne-
glected the term involvingoa? in Egs.(2.10. We can ap-
proximate the eigenvalues of the angular Laplacian in Eq.
(2.7 andA\ in Egs.(2.10 by I(I+1). Equation(2.9) is then,
approximately,

In this section we give the separated form of the wave

equationJ® =0 for a massless scalar. As for the well-

studied case of Kel5], the solution separates as

d=eM¢" WIS (g aw)R(r). (2.6

S obeys

2

m
H _ 2 2
oS00y~ <o +a’e cogd

m .
sing ? A (0;80)

AdAGR+T (0—mQ)?R—1(1+1)AR=0. (2.12

E. Far-region wave equation
In this region we are far from the black hole and its ef-
fects disappear. One has simply

1 [(1+1)
P 3,r%9,R+ w’R— 2

R=0, (2.13
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the equation for a massless scalar field of frequenand 1

angular momentunh in flat spacetime. R= T [ad sy wr)+BI_ | _1wr)]. (2.20
r

F. Near-regi luti -
ear-region solution For largeR this behaves as

In order to solve the near-region equation, we define a

new variable RHW 1 . I
— T o —a SINl wr — i
ST ==t (2.14 |7
i o S S ' +ﬂcos(wr+—2 . (2.2

The horizon is az=0. One finds

H. Matching the far and near solutions

Ad,=(r,—r_)zo,. (2.15 )

Next we need to match the smalfar-region Bessel func-

The near-region wave equati¢®.12) is then tions (2.20 to the larger (z—1) near-region hypergeomet-
ric function. At smallr Eq. (2.20 behaves as

2

- 1
— 7\ 92 _ - - +1/2 —1-1/2
2(1-2)9;R+(1-2)9,R+ 4T, 1+Z R R:i a(m_r) 1 N (w_r 1
v 2lra+s) T2 P(=1+3)
I(1+1)
- —4—; R=0 (2.16 (2.22

with corrections to both terms suppressed ByThe larger,
This can be transformed into the standard hypergeometrigz—1 behavior of the near-region solutiq2.17) follows

form by defining from the z—1—z transformation law for hypergeometric
R:Azi(a)—mQ)Mﬂ'TH(l_Z)l+1F, (217) functions:

where A is a to-be-determined normalization constat. o I (y—a—p)
then obeys Fla.Bivi2)= 5= -

en obey F'(y=a)l'(y=B)

Y PN L PP B A
A E e (=D LTt )

+(1-2)7"@ T
+i o mf F—| (1+1)%+i ©-mo I+1) |F e
=0. (2.18 —a—fB+1;1-2). (2.23

Since we are interested in calculating the absorption crosdsing 1-z—(r,—r_)/r, one finds that for large Eq.
section, we impose the condition that there be only ingoing2.17) is given by
flux at the horizore=0. This implies thaf in Eq.(2.17) is

the standard hypergeometric functibi«, 8, y;z) with r —-1-1 w—mQ
R=A ri1+i
(D_mQ r+_r, 27TTH
a=+1+i ,
27Ty " r—=21-1)
B=1+1, F(—=HI'(=l+i(w—mQ)/27Ty)
( r )2'“ r(21+1)
w—m{) i ,
y=1+i . (2.19 ry—r_ FrA+Hrd+1+i(o—mQ)2=Ty)
2’7TTH

(2.29

with corrections to both terms suppressed hy 1Matching
The far-region solution is a linear combination of BesselEqg. (2.22 at smallr to Eq. (2.24 at larger, one findspg
functions <a and

G. Far-region solution

()Y DT+ 1+ i (0 —mQ) 27 Ty)
2+ 3T 21+ DT L +i (0—mQ)/27T,)

a=Na. (2.25
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I. Absorption where we usedr(,—r_)=ATy. In order to convert the
The conserved flux associated to the radial wave equatioR@rtial wave cross sections to the usual plane2 wave Cross
(2.9 is sections, we have to multiply Eq2.29 by #/w*. For |
=0 we find
2 . .
f= T (R*A9,R—RAG,R*). (2.26 o= A (2.30
Using Eq.(2.21), the incoming flux from infinity is approxi- In fact, for all black holes the low-energy absorption cross
mately section is proportional to the area of the horiZ@n. For |
=1 we find
fin=2|a|? (2.27
. _ wA3 (w—mQ)2
The flux across the horizon follows from E@.17): oLm= %6 ( a+ s (w—mQ). (2.3)
(0—mQ) o 12
abs™ T (re=r)IN[*[al” (2.28 Note that the absorption cross section is negative dor
<m(}, corresponding to super-radiance. This means that the
The absorption cross section of the radial problem is amplitude of the reflected wave is greater than that of the
incident wave, and the scattered wave mines energy from the
Shm_ abs_ (@7 M)A NP (2.29  black hole.
fin 2 ' ' The decay rates are related to the scattering amplitudes by
|
I,m 2 21-1721+1 42141 _ 2
— Lo _ al(1+1)°w”  "Ty A o (o-m02Tl [ | 414 ® mQ) (2.32
elo~mWMy 1 221721 (1 +3/2)°T' (21 +1)? 27Ty

Note that the decay rate, unlike the cross section, is positive When the angular momentum is included, a black hole
for all values ofw. Note also that for a very nonextremal can be extremal, but not BPS saturated. Extremality occurs
black hole the exponential factors simplify in the low-energywhen the horizon is at double zero Af

region sincew<Ty~1/M. Near extremalityT;—0 andI"

reduces to ro=r_. (2.35

r''—o0 for o>mQ, This implies

M2=Q?%+a?,
I'>|old for e<mQ. (2.33 Q
) i Ty=0. (2.36
In particular, thel>0 decay rate does not vanish fog,
=0 and is dominated by=m() emissions. In the extremal limit, there is no Hawking radiation. How-
ever, if a>0, the black hole still decays through super-
J. Near-BPS and extremal limits in Einstein-Maxwell gravity radiant emission. The black hole loses its angular momentum
much as & =M black hole loses its charge in a theory with

tum mechanically unstable due to both Hawking and superg.m""S’S/Ch‘"‘r@e<1 particles: Real pair creation o0 par-

radiant emissions. The exceptional, stable case is achieved'ti les occu;s_ln the K(i.rrl-NewTan erg/;or?pherg.lAtl;tl(ualtlz, Ina
the limit of BPS saturation- eory containing particles wittmass/charge< 1, like the

real world, both extremal limits look very similar.

A black hole with generic values @f, M, andQ is quan-

M=Q, We wish to analyze low-lying excitations of the black
hole about the BPS limit. To do so we expand in the excita-
a=0. (2.34 tion energy
E=M-Q, (2.37

In the N=2 supersymmetric extension of Einstein-Maxwell
gravity, Eqs.(2.34) represent a supersymmetric BPS state Oftaking E/Q<1 and Q>1 in Planck units. Sincea? is
the black holg7].* bounded from above bi12— Q? (greater values give a na-
ked singularity, this implies thai? is of ordera?~EQ. To
leading order inE, we then find
Unlike thed=5 case[8], the addition of angular momentum in

d=4 always breaks supersymmet#j. r.=Q=2EQ—a?,
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A=47(Q?+2Q\2EQ-a?), The group SWR) of global space rotations is a symmetry of
the Hilbert space of black hole states. The Noether currents
[2EQ-a? of this symmetry generate an 8) Kac-Moody algebra
Ty= 2707 within the conformal field theory. L&t denote the generator
of the U(1) subgroup of rotations about tteaxis. Thenj
a obeys
) IRELLP (2.49
The black hole will emit Hawking quanta with frequencies of Im:Jnl= 75" Omino; '

orderTy and super-radiant quanta with frequencies of order

Q). In both cases this gives where the integek is the Kac-Moody level and we have
chosen the normalization so thgt has half integral eigen-
[E values. The eigenvalues ¢f are thez components], of
o~ Q% (2.39 angular momentum. Standard arguments using the Sugawara

construction of the stress tensor imply that is bounded
This implies that the greybody factors in Hawking emissionaccording to
will be correctly given by formuld2.32 since the only as-

sumptions that went into that calculation were thag1/M J2
and () <1/M which are certainly obeyed by Eqg®.39 and Lo= e (2.46
(2.38.

. , _— . This bound is saturated by the extremal states
K. Semiclassical derivation of the effective low-energy theory y

To begin with, the excess energg=M —Q of a near- eJz¢|0), (2.47
BPS, nonrotating black hole is related to the Hawking tem-
perature by where the W1) boson¢~ ¢+ 27 is the angle about the

axis defined byj = (k/2)d¢. A similar bound can be derived

in a completely different manner from the condition
=r_; i.e., the absence of a naked singularity in the space-
time solutions. Using Eq<2.38), this implies

E=272Q%TZ. (2.40

In D spacetime dimensions the energy of a weakly interact
ing field theory scales likdP. Hence Eq.(2.40 indicates
that the quantum states of the black hole are described by a
D=2 field theory. Since we are takirig to be much less
than any other mass scale in the probiéim particular 1Q),
this should be @& =2 conformal field theory, with associ-
ated central charge. The exact energy-temperature relation

2EQ=a?, (2.49

which, together with Eq(2.44), yields

_ - : 6J2
for aD=2 conformal field theory is Lo= Cz. (2.49
E=— LcT2 (2.4
12 ' ' Consistency of the two dimensional effective field theory

. . . _with the spacetime analysis requires that E(546 and
wherelL is the volume of the one-dimensional space. This(2.49 be the same bound. This yields

relation is valid ifL is large compared to the typical wave-

lengths of the particled, c=6k. (2.50
1
L>—. (2.42  This is exactly the relation betweérandc encountered in a
Th chiral (0,4) superalgebra. This result is especially striking in

that so far we have been discussing the purely bosonic

The energyE is related tol.o by Einstein-Maxwell theory and have not assumed or used su-

o persymmetry in any way.
E= T Lo. (2.43 In a supersymmetric theory the black hole ground state is
a soliton preserving four supersymmetriedle are consid-
Comparing Egs(2.41) and (2.40, we learn that ering here a chiral theory with only right movers, and so we
must have 40,4) supersymmetry algebra. This algebra con-
cL=247Q85. (2.44  tains an SU(2) symmetry, which in fact is the same as the

SU(2) symmetry of spatial rotations considered above. This
implies thatc=6k. The black hole mass gap is then the

2Except the black hole mass gap; see below.

30f course, there are other situations, such as conformal field
theories with a small mass gap due to twisted sectors, in whish “4As is the case for extreme Reisner-Nordstreolutions ofN
not large, but Eq(2.40 remains valid. =2, N=4, andN=8 supergravity.
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energy of th.e Ioweft-lyir_ng excitation. This is the extremalm arises here as the(l) charge of®. The shift inw imple-
state(2.47) with J,= 3. Using Eqs(2.46), (2.50, and(2.44,  ments the effects of the angular potential.

it has energy This correlation function is completely determined by the
conformal weight of the operatd®. If the operator©O has
1 conformal weightA, then the correlation function becomes
Egar~ g3 (250
’7TTH 24
O"(0)O(c ™ )1 ~| ——— 2.5
The existence and value of the black hole mass gap was (O(0)O(a )>TH sin7Tyo™) (256

first derived using fundamental string theory{81. Here we , ) .
see it can be derived in a purely semiclassical analysis, withNote that according to Ed2.42 we can ignore the period-
out any reference to fundamental string theory. icity along the spatial direction and take it to be infinite when

we calculate Eq.(2.56. The periodicity along Euclidean

. . time translates into
L. Microscopic decay rates

We have seen that the effective string picture correctly ot ~a"+i2MMy. (2.57
reproduces the thermodynamic behavior of a near-BPS Kerrl:|ence we must evaluate the intearal
Newman black hole. In Sec. Il we semiclassically com- 9
puted the rate at which such a macroscopic black hole emits _ . Th 2A
scalars as a function of emitted energy and angular momen- f dote (le-mory ___ _— (2.58
sinN7Tyo™)

tum. In the effective string picture, such decays arise from a
coupling of the spacetime scaldrto an operatoi® in the

_ This Fourier transform should be performed withianpre-
conformal field theory. These are of the general form

scription for dealing with the pole at=0. The two different
prescriptions correspond to absorption or emission. The one

Sm~J dt do 9"Hp(0t)O(a+1). (2.52  corresponding to emission gives
_ . Ty 25
The spatial argument op is 0 because we have taken the f dote I(emm(e"—ie) S Tao™)
black hole to be ak=0. Hereo is the spatial coordinate in H
the conformal field theory, and depends only onr+t (w—mQ)\|?
because it is chiral theory. ~(Ty)?A te (omm/2Th F( A+i W)

We know of no principle, without recourse to string
theory, which allows us to determine the numerical coeffi- (2.59
cients in front of the couplings in Eq2.52. However, we
will be able to determine the energy and angular momentum
dependence of the decay rates in great detail. A strikin
agreement between the macroscopic and microscopic dec
rates will be found.

The amplitudeM for the emission of a particle with en-
ergy o has an internal contribution

The next problem is to determine The coupling(2.52
nd the allowed operato(8 are restricted by the symmetries
f the theory. The simplest way of satisfying this restrictions
|§Iwhen the integral o® is invariant under supersymmetry
transformations of the conformal field theory and is single
valued on the circléi.e., it is not a twist fieldl®> Under these
conditions there is a bound relating the conformal weight of
the operator and the () charge:

M~Jd “flo(a™)iye oo, 2.5
o (ot (253 A=1+1. (2.60
where o * =0 +t. Squaring and summing over final states Operators which saturate the bound are of the form
gives
O:{Gl/z,C}, (261)
2 |M|2~J dg+dg+’<i|(9T(g+)(9(g+’)|i> with C a chiral primary andG a supercharge. The leading
f contribution in the low-energy expansion comes from the
e lowest value ofA, and so we conclude
Xe*l(u(o’ - ), (254)
A=I+1. (2.62

for the rate, where we have used the fact that the sum over

final states produces an identity matrix. To compare with the An additional contribution to the energy dependence
macroscopic decay rate, we should therma”y average, Eﬁrises from the external Spacetime part of the interaction in
temperaturel, with an angular potentia), over the initial  EQ. (2.52. For a mode of angular momentum the firstl
state. This potential implies that a state withlchargem ~ —1 spatial derivatives oty vanish at the origin. Hence

is weighted by exp-(wo—mQ)/T]. The rate is then propor-

tional to the thermal correlation function

SThough this gives the desired answer, the justification of this

da+((9T(0)O(o+))Te_i(‘”_mQ)H. (2.55 second assumption is unclear since the stgtek?) themselves are
not single valued.
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must be at leadt in Eq. (2.52. The leading contribution is angular momentum. The rotation group @0Dcan be decom-
for n=1. Since the fieldp is massless, derivatives give pow- posed as S@)~SU(2), X SU(2)z. The representations ap-
ers of w. In other words, we need at ledspowers of the pearing here corresponds t4,1/2) under the two S(®)’s.

spatial momentum to match the & transformation prop- The degeneracy of this representation Is-1)2, corre-
erties of 0. Hence there is an additional power®f inthe  sponding to the different allowed, values of each S().

rate. Multiplying by a factor of 4 for the normalization of We consider low energies satisfying<1/r,, 1/r5, and
the outgoing state and restoring powers@fwith dimen-  we divide space into a far regior>r 1, rs and a near region
sional analysis, the microscopic rate is r<l/w. We will match the solutions in the overlapping re-

gion. In the far region we writeb= (1/r) s and the equation

| 21-1~41+2 2141 40— (0—mQ) 27T N
I~ 2 7 1QH*2(Ty )2 Hle (omm)/2mTy for ¢ becomes, wittp= wr,

(0—m@)) 2 2y 1dy (1+1)?
X|I' |+1+IW , (2.63 d_p2+;$+(l_ p2 )1//=0 (3.3
- - - 2
in agreement with Eq(2.32), noting thatA~Q*“. The solutions are the Bessel functions
Il. FIVE-DIMENSIONAL BLACK HOLES 1
_ _ _ _ _ _ d=—[adyi(p)+BI—1(p)]. (3.9
In this section we consider the interactions of five- p

dimensional, nonrotating black holes in string theory with aFrom the larges behavior, the incoming flux is found to be

massless scalar, extending the result$l®-13 to include 1

orbital angular momentum for the scalar field. Qualitatively, _ .3 _ i(1+1)m/2 —i(1+1)7/2|2
L . . . in= = + .

new features arise in five dimensions because the spatial ro- fin=Im($*r°0r$) = 7 |ae pe |

tation group is S(2)xSU(2), and one SI) is carried by (3.5

right movers, while the other is carried by left movEs$ on . .

the effective string. A single left-moving and a single right- Or; t_he cher hand, the smallbehavior of the far-region

moving fermion can collide and create an outgoing bosonSolution is

The rate for this process will involve a left and a right fer- 1

1+1
mionic thermal factor. We will find that these factors arise in b=— a(ﬂ) - — (pz))
the greybody calculation. It is fascinating that one can “see” p 2 I'(1+2)
that the black hole is in part made of fermions in such a p\ Y1
purely bosonic calculation. +8 5) (m— O(pz)) (3.6

A. Semiclassical scattering Since Eq.(3.6) has a pole for integel, it is convenient to
We consider the scattering of scalars from a five-keepl near an integer value during the calculation and make
dimensional black hole in the dilute gas approximation condt integer at the end. Now we turn to the solution in the near
sidered in[11]. We follow the notation of11], where further ~ region r<1/w. Defining v=rg/r?, the near-region wave
details of the geometry may also be found. The wave equagquation is

L d¢ D E
tion is — )2 _¢_ —p) —= — 4+ —|e=
(1-v) a2 (1-v) i +(C+ 5 + Uz)d) 0,
gd ., d¢ g _, e (3.7
Bar " 9gr Tz Vbt efe=0, @1 where
where _(wrnrlr5)2 _o?rird 1(1+2)
f=11 1 1 r§ 1 £ 1 ré (3.2 ZVS | 4f§ o
=1+ + + =], =1-—. .
2\ e e 9T I(1+2)
5. ) ) ) ) E=- . (3.8
V7, is the angular Laplacian which has eigenvall(és- 2) in 4
five dimensions, andl is an integer which labels the orbital Defining
|
¢:U7|/2(1_U)7iw/477THAF1 (39)

with A a constant, we find that the solution to E§.7) with only ingoing flux at the horizon is given by E@.9) with F
=F(a,B,v,1-v), a hypergeometric function, with

w
47TTH ’

y=1+2q, a=-1/2+q+iJC, B=-I12+q-iJC, q=i (3.10

The behavior for smalp is
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- C(1+2q)C(1+1)
p~Av 2 _ _ [1+0O(v)]
C(1+1/2+g—iJC)I'(1+1/2+g+i/C)
F(1+2q)T(-1-1
+ptt! ( _ alill ) _ [1+O(v)]|. (3.11
L(—1/2+q+iJC)I'(—1/2+q—i\C)
Matching solutions in the overlapping region and anticipating &t in Eq. (3.4), we find
12=A(wry/2)"'T(1+DHT(2+1) Ti+2q) (3.12
= r . .
wemmelo T(1+1/2+q—iJC)T(1+1/2+q+iyC)
The absorbed flux is
fabs=IM($* gréd, ¢)=2rg Im(¢* ga, ¢)=4|q|rg|Al>. (3.13

Hence the absorption cross section for the radial problem is given by the ratio of the two(Buk®sand (3.5). The plane
wave cross section is obtained multiplying by4»*, and we obtain

4 " 2! \2 C((1+2)/2+iwlAxT )T (1 +2)/2+iw/4wTR)\2 a1
b= An(N00) ™ Ty (17 2)) T(1+iwi2aTy) |- (3.14
|
We see the same left-right structure that was foundlfor I ® I 2
=0 in _[11_], but with the difference that the_factor bfap- x|\ l+§+| AT, i1+ §+| anTq
pears inside thd" functions. To evaluate this we need the
absolute value of (n/2+ib). Properties of" functions can (3.16

be used to reducd’(n/2+ib)I"(n/2—ib) to the form
I'(ib)I'(1—ib) or I'(1/2+ib)I'(1/2—ib) (times a polyno-
mial in b). While T'(ib)['(1—ib) is proportional to
b/sinhmb, TI'(1/2+ib)I'(1/2—ib) is proportional to
1/coshrb. This cosh will eventually translate into a fermi- It would be of interest to see how much of the structure of
onic as opposed to bosonic ocupation factor, and this hathe effective string for the five-dimensional black hole can be
pens for odd as it should. For example, in the caselof deduced, as in the four-dimensional case of the previous sec-
=1, tions, without fundamental string theory. However, in this
section our main goal is to understand the emission of angu-
lar momentum and we shall simply assume the structure im-
plied by string theory. String theory says that the low-energy
dynamics is described by a two-dimensional conformal field
theory [1] which is a good description of the low-energy
dynamics in the black hole regidt4]. Some twisted sectors
% (3.19 of this superconformal field theorySCFT) contain excita-
(e”?Tr+1)(e?TL+1)" ' tions which can be viewed as the excitations of a long mul-
tiply wound string. Some things are more clear in this picture
of a multiply wound string, and some things are more clear
The corresponding decay rate seems to come from two pathinking about the full conformal field theory; so it is useful
ticles colliding, where both particles are fermions, as oneo keep both in mind.
expects from the decomposition b&1 as (1/2,1/2) under In Sec. Il L conformal field theoretic arguments were
the two SU2)’'s. We shall see that this coincides beautifully given for determining the microscopic decay rate. The same
with the effective string picture. In general, fermions appeararguments are applicable here, with a few modifications as
for odd| and bosons for eveh follows. Since there are right movers as well as left movers,
The Hawking rate for emitting particles with angular mo- the rate involves the product of two factors of the form
mentum is obtained by multiplying E43.14) by the usual (2.59), one at temperatur€_and conformal weight\, and
Hawking thermal factor, producing one at temperaturdz and conformal weightAr. The
bounds onA give A =Ar=1+1/2. In this section we are
considering) =0 black holes, and so there is no shiftof
o /2Ty but it is easy to see how to extend the calculation for general
[T(+1)T(1+2)]? Q.

B. Microscopic decay rate

3
ko
e g (M1l o[ (27T %+ w?][(27TR)*+ 0’

ea)/TH -1

. 24I+4W2|+3(r§r§TLTR)I+1w2|—1
H=
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Itis possible to give the general form of the operator with  T'~(g?Q;QsT, Tg)' " tw? e~ @2TH
the correct weights. For a scalar arising from metric defor-

2 2
mations of the internal (an internally polarized graviton sIrliz+1+i -2 ) rlipe1si -2 )
the operator is of the form 4mT, 4mTr
3.1
EIJwIOIlIZ,LOﬁIZ,R* (3.17 (319

In this expression we have multiplied by a factor ab Xfom

the normalization of the outgoing scalar and a factordf

from squaring thew factors in the vertex operat¢8.17). The
where ¢, indicates the polarization of the graviton in the factor ofg? *? comes from the fact that in string theory this
internal directions and the factors af arise as before be- is a disk amplitude with a closed string plu$+22 open
cause the spacetime field must be acted oh bgrivatives. ~ strings (I +1 right rlnolving and +1 left moving. Finally,
The operator®, O involves the fields propagating on the the factor of Q1Qs)'"* can be understood from the fact that
effective string and has angular momentuh2{/2) under one can create this many different fa2m2|I|es of open strings.
the SU2), XSU(2)z~S0O(4) symmetry. It must also carry Once we remer_nber th@tleQ5=rlr5, we see that Eq.
the indiceslJ in order to be contracted with the graviton (3.19 agrees precisely with Eq3.16. Once again, we find

larization t The index i ied by the b . detailed agreement between the macroscopic and micro-
polarization tensor. Index 1S carrned by the bosonic scopic descriptions of black hole dynamics. It would be in-

field 9X' living on the brane. The simplest such operai©rs teresting to calculate, as was done for kied casg10] and
are of the form the fixed scalar cagd 3], the precise numerical coefficient in
Eqg. (3.19 and compare it with Eq.3.16). As an aside, note
that the full energy dependence of the cross sections for the
| fixed scalard13] comes from the fact that it couples to an
Ol X" i)+~ i, (3.18  operator with conformal weight& = Ag=2.
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