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Fundamental string theory has been used to show that low-energy excitations of certain black holes are
described by a two-dimensional conformal field theory. This picture has been found to be extremely robust. In
this paper it is argued that many essential features of the low-energy effective theory can be inferred directly
from a semiclassical analysis of the general Kerr-Newman solution of supersymmetric four-dimensional
Einstein-Maxwell gravity, without using string theory. We consider the absorption and emission of scalars with
orbital angular momentum, which provide a sensitive probe of the black hole. We find that the semiclassical
emission rates—including super-radiant emission and greybody factors—for such scalars agree in striking
detail with those computed in the effective conformal field theory, in both four and five dimensions. Also the
value of the quantum mass gap to the lowest-lying excitation of a charge-Q black hole,Egap51/8Q3 in Planck
units, can be derived without knowledge of fundamental string theory.@S0556-2821~97!05320-4#

PACS number~s!: 04.70.Dy, 97.60.Lf

I. INTRODUCTION

Recent statistical derivations of the Bekenstein-Hawking
entropy have used weakly coupled fundamental string theory
as a starting point@1–4#. In full detail, the derivation is not
simple and requires a precise understanding of string theory
and D-branes. The final answer is, however, much simpler
than the derivation: The quantum states of a near-
Bogomol’nyi-Prasad-Sommerfield~BPS! black hole are de-
scribed by a low-energy supersymmetric conformal field
theory or effective string whose parameters are functions of
the charges. Furthermore, the validity of this effective string
picture extends far beyond the domain of validity of its origi-
nal derivation from fundamental string theory. Indeed, it
gives accurate decay rates in theM -theory region where
there are no fundamental strings at all.

How did this happen? On general grounds, one expects
the near-BPS dynamics of a black hole to be described by
some effective field theory, whether or not string theory is
weakly coupled. Apparently, we have stumbled upon the ef-
fective black hole field theory which is valid, at sufficiently
low energies, for all values of the string coupling.

Given this state of affairs, it is natural to ask how much of
this effective theory could have been discoveredwithout
knowledge of fundamental string theory? In this paper we
address this question in the simple context of four-
dimensional~4D!, Einstein-Maxwell gravity. We begin by
assuming that, on scales large compared to the Schwarzs-
child radius, there is some kind of weakly coupled, unitary
effective field theory. We then demand consistency of this
effective theory with semiclassical, black hole thermody-
namics and decay rates. This is a highly overconstrained
problem, especially when decay rates into channels with

nonzero angular momentum are considered. The effective
superstring theory provides a solution, possibly the only one.
Hence we conclude that—had history been a little
different—much of the effective string picture of black hole
dynamics might have been derived without knowledge of
fundamental string theory. Of course, for a complete and
systematic picture, string theory remains essential.

The four-dimensional case is considered in Sec. II. In
Secs. II A–II J we semiclassically compute the absorption
cross section and decay rates for a massless scalar with an-
gular momentum and a near-BPS Kerr-Newman black hole.
This depends on five parameters: the mass, charge, and an-
gular momentum of the black hole, as well as the frequency
and angular momentum of the scalar. The total emission in-
cludes super-radiant emission, which occurs for a rotating
black hole even at extremality when the Hawking tempera-
ture vanishes. In Sec. II K we argue that the Kerr-Newman
entropy formula—including rotation—implies that the black
hole degrees of freedom relevant for near-BPS excitations
can be described by a~0,4! chiral superconformal field
theory with an SU~2! current algebra associated with rota-
tions. We determine the level of the current algebra by equat-
ing the bound onL0 in terms of the SU~2! charge with the
bound implied by the absence of a naked singularity. The
mass gap is then computed as the energy of the first excited
state of this theory. In Sec. II L the proposed conformal field
theory is used to compute the decay rates. It turns out that the
decay rates are almost completely determined by general
properties of the two-dimensional field theory correlators.
Comparison with the semiclassical results of Secs. II A–II I
reveals detailed agreement.

The five-dimensional case is considered in Sec. III. An
important new feature here is that angular momentum can be
carried by both left and right movers on the effective string.
In particular, anl 51 boson can be emitted by the collision
of left- and right-movingl 51/2 fermions. The rate for this in
the effective string picture involves a right and a leftfermi-
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onic thermal occupation factor. In the semiclassical picture
such factors could come only from greybody effects. We will
see that such factors indeed arise with exactly the right form.
Hence one can directly ‘‘see’’ the fermionic constituents of a
black hole in thel 51 scalar emission spectrum.

II. FOUR-DIMENSIONAL KERR-NEWMAN BLACK HOLE

A. Classical geometry

The metric for a black hole of chargeQ, massM , and
angular momentumJ5Ma is

ds252S D2a2sin2u

S Ddt22S 2a sin2u~r 21a22D!

S Ddt df

1S ~r 21a2!22Da2sin2u

S D sin2u df21
S

D
dr2

1S du2, ~2.1!

where

S[r 21a2cos2u,

D[r 21a21Q222Mr ~2.2!

and we are setting the Planck length to 1 andGN51. The
inner and outer horizons are located at the zeros ofD:

r 65M6AM22Q22a2. ~2.3!

The areaA, Hawking temperatureTH , angular velocityV,
and electric potentialF at the horizon are

A54p~2M22Q212MAM22Q22a2!54pr 1
2 ,

TH5
~r 12r 2!

A ,

V5
4pa

A ,

F5
4pQr1

A . ~2.4!

These quantities are related by the first law

dM5THdS1V dJ1F dQ, ~2.5!

where the entropy isS5A/4.

B. Scalar wave equation

In this section we give the separated form of the wave
equationhF50 for a massless scalar. As for the well-
studied case of Kerr@5#, the solution separates as

F5eimf2 iwtSA
m~u;av!R~r !. ~2.6!

S obeys

S 1

sinu
]usinu]u2

m2

sin2u
1a2v2cos2u DSA

m~u;av!

52ASA
m~u;av!. ~2.7!

For smallav ~the case of eventual interest to us! the eigen-
values are

A5 l ~ l 11!1O~a2v2!. ~2.8!

R then obeys

D] rD] rR1K2R2lDR50, ~2.9!

where

K[v~r 21a2!5ma,

l[A1a2v222mva. ~2.10!

C. Low-frequency scalar absorption

In this section will calculate the low-energy absorption
cross section for the black holes described in Sec. II A. The
low-energy condition isv!1/M , which means that the
Compton wavelength of the particle is much larger than the
gravitational size of the black hole, defined as the place
where the redshift between a static observer and an
asymptotic observer becomes of order 1. We also assume
that V!1/M for simplicity.

We use a matching procedure, dividing the spacetime out-
side the horizon,r 1<r into two overlapping regions defined
by the near regionr 2r 1!1/v and the far regionM!r
2r 1 .

In each region the wave equation can be approximated
using the inequalities and then exactly solved. A complete
solution can then be obtained by matching. We now discuss
each region in turn.

D. Near-region wave equation

In the near region, the coordinate distancer 2r 1 is small
compared with the inverse frequency 1/v. This implies that
we can replace the functionsK22lD in Eq. ~2.9! by

K22lD'r 1
4 ~v2mV!22 l ~ l 11!D, ~2.11!

where the angular velocityV of the black hole is given in
Eqs.~2.4!. We have approximatedK by its constant value at
small r;r 1 since ther dependence of the potential is domi-
nated by the term proportional toD, and we have also ne-
glected the term involvingva2 in Eqs. ~2.10!. We can ap-
proximate the eigenvalues of the angular Laplacian in Eq.
~2.7! andl in Eqs.~2.10! by l ( l 11). Equation~2.9! is then,
approximately,

D] rD] rR1r 1
4 ~v2mV!2R2 l ~ l 11!DR50. ~2.12!

E. Far-region wave equation

In this region we are far from the black hole and its ef-
fects disappear. One has simply

1

r 2 ] r r
2] rR1v2R2

l ~ l 11!

r 2 R50, ~2.13!
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the equation for a massless scalar field of frequencyv and
angular momentuml in flat spacetime.

F. Near-region solution

In order to solve the near-region equation, we define a
new variable

z5
r 2r 1

r 2r 2
, 0<z<1. ~2.14!

The horizon is atz50. One finds

D] r5~r 12r 2!z]z . ~2.15!

The near-region wave equation~2.12! is then

z~12z!]z
2R1~12z!]zR1S v2mV

4pTH
D 2S 11

1

zDR

2
l ~ l 11!

12z
R50. ~2.16!

This can be transformed into the standard hypergeometric
form by defining

R5Azi ~v2mV!/4pTH~12z! l 11F, ~2.17!

where A is a to-be-determined normalization constant.F
then obeys

z~12z!]z
2F1F11 i

v2mV

2pTH
2S 112~ l 11!

1 i
v2mV

2pTH
D zG]zF2S ~ l 11!21 i

v2mV

2pTH
~ l 11! DF

50. ~2.18!

Since we are interested in calculating the absorption cross
section, we impose the condition that there be only ingoing
flux at the horizonz50. This implies thatF in Eq. ~2.17! is
the standard hypergeometric functionF(a,b,g;z) with

a5 l 111 i
v2mV

2pTH
,

b5 l 11,

g511 i
v2mV

2pTH
. ~2.19!

G. Far-region solution

The far-region solution is a linear combination of Bessel
functions

R5
1

Ar
@aJl 11/2~vr !1bJ2 l 21/2~vr !#. ~2.20!

For largeR this behaves as

R→
r→` 1

r A
2

pv F2a sinS vr 2
lp
2 D

1b cosS vr 1
lp

2 D G . ~2.21!

H. Matching the far and near solutions

Next we need to match the small-r far-region Bessel func-
tions ~2.20! to the large-r (z→1) near-region hypergeomet-
ric function. At smallr Eq. ~2.20! behaves as

R.
1

Ar FaS vr

2 D l 11/2 1

G~ l 1 3
2 !

1bS vr

2 D 2 l 21/2 1

G~2 l 1 1
2 !

G
~2.22!

with corrections to both terms suppressed byr 2. The large-r ,
z→1 behavior of the near-region solution~2.17! follows
from the z→12z transformation law for hypergeometric
functions:

F~a,b;g;z!5
G~g!G~g2a2b!

G~g2a!G~g2b!

3F~a,b;a1b2g11;12z!

1~12z!g2a2b
G~g!G~a1b2g!

G~a!G~b!

3F~g2a,g2b;g

2a2b11;12z!. ~2.23!

Using 12z→(r 12r 2)/r , one finds that for larger Eq.
~2.17! is given by

R5AS r

r 12r 2
D 2 l 21

GS 11 i
v2mV

2pTH
D

3S G~22l 21!

G~2 l !G„2 l 1 i ~v2mV!/2pTH…

1S r

r 12r 2
D 2l 11 G~2l 11!

G~ l 11!G„l 111 i ~v2mV!/2pTH…

D ,

~2.24!

with corrections to both terms suppressed by 1/r 2. Matching
Eq. ~2.22! at small r to Eq. ~2.24! at larger , one findsb
!a and

A5
~r 12r 2! lv l 11/2G~ l 11!G„l 111 i ~v2mV!/2pTH…

2l 11/2G~ l 1 3
2 !G~2l 11!G„11 i ~v2mV!/2pTH…

a[Na. ~2.25!
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I. Absorption

The conserved flux associated to the radial wave equation
~2.9! is

f 5
2p

i
~R* D] rR2RD] rR* !. ~2.26!

Using Eq.~2.21!, the incoming flux from infinity is approxi-
mately

f in52uau2. ~2.27!

The flux across the horizon follows from Eq.~2.17!:

f abs5
~v2mV!

TH
~r 12r 2!uNu2uau2. ~2.28!

The absorption cross section of the radial problem is

s l ,m5
f abs

f in
5

~v2mV!A
2

uNu2, ~2.29!

where we used (r 12r 2)5ATH . In order to convert the
partial wave cross sections to the usual plane wave cross
sections, we have to multiply Eq.~2.29! by p/v2. For l
50 we find

sabs
0 5A. ~2.30!

In fact, for all black holes the low-energy absorption cross
section is proportional to the area of the horizon@6#. For l
51 we find

sabs
1,m5

vA3

36 S TH
2 1

~v2mV!2

4p2 D ~v2mV!. ~2.31!

Note that the absorption cross section is negative forv
,mV, corresponding to super-radiance. This means that the
amplitude of the reflected wave is greater than that of the
incident wave, and the scattered wave mines energy from the
black hole.

The decay rates are related to the scattering amplitudes by

G l5
sabs

l ,m

e~v2mV!/TH21
5

pG~ l 11!2v2l 21TH
2l 11A2l 11

22l 12G~ l 13/2!2G~2l 11!2 e2~v2mV!/2THUGS l 111 i
v2mV

2pTH
D U2

. ~2.32!

Note that the decay rate, unlike the cross section, is positive
for all values ofv. Note also that for a very nonextremal
black hole the exponential factors simplify in the low-energy
region sincev!TH;1/M . Near extremality,TH→0 andG l

reduces to

G l→0 for v.mV,

G l→usabs
l u for v,mV. ~2.33!

In particular, thel .0 decay rate does not vanish forTH
50 and is dominated byv&mV emissions.

J. Near-BPS and extremal limits in Einstein-Maxwell gravity

A black hole with generic values ofa, M , andQ is quan-
tum mechanically unstable due to both Hawking and super-
radiant emissions. The exceptional, stable case is achieved in
the limit of BPS saturation:

M5Q,

a50. ~2.34!

In the N52 supersymmetric extension of Einstein-Maxwell
gravity, Eqs.~2.34! represent a supersymmetric BPS state of
the black hole@7#.1

When the angular momentum is included, a black hole
can be extremal, but not BPS saturated. Extremality occurs
when the horizon is at double zero ofD,

r 15r 2 . ~2.35!

This implies

M25Q21a2,

TH50. ~2.36!

In the extremal limit, there is no Hawking radiation. How-
ever, if a.0, the black hole still decays through super-
radiant emission. The black hole loses its angular momentum
much as aQ5M black hole loses its charge in a theory with
~mass/charge! ,1 particles: Real pair creation oflÞ0 par-
ticles occurs in the Kerr-Newman ergosphere. Actually, in a
theory containing particles with~mass/charge! ,1, like the
real world, both extremal limits look very similar.

We wish to analyze low-lying excitations of the black
hole about the BPS limit. To do so we expand in the excita-
tion energy

E[M2Q, ~2.37!

taking E/Q!1 and Q@1 in Planck units. Sincea2 is
bounded from above byM22Q2 ~greater values give a na-
ked singularity!, this implies thata2 is of ordera2;EQ. To
leading order inE, we then find

r 6.Q6A2EQ2a2,

1Unlike thed55 case@8#, the addition of angular momentum in
d54 always breaks supersymmetry@4#.
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A.4p~Q212QA2EQ2a2!,

TH.
A2EQ2a2

2pQ2 ,

V.
a

Q2 . ~2.38!

The black hole will emit Hawking quanta with frequencies of
orderTH and super-radiant quanta with frequencies of order
V. In both cases this gives

v;A E

Q3. ~2.39!

This implies that the greybody factors in Hawking emission
will be correctly given by formula~2.32! since the only as-
sumptions that went into that calculation were thatv!1/M
andV!1/M which are certainly obeyed by Eqs.~2.39! and
~2.38!.

K. Semiclassical derivation of the effective low-energy theory

To begin with, the excess energyE[M2Q of a near-
BPS, nonrotating black hole is related to the Hawking tem-
perature by

E52p2Q3TH
2 . ~2.40!

In D spacetime dimensions the energy of a weakly interact-
ing field theory scales likeTD. Hence Eq.~2.40! indicates
that the quantum states of the black hole are described by a
D52 field theory. Since we are takingE to be much less
than any other mass scale in the problem2 ~in particular 1/Q!,
this should be aD52 conformal field theory, with associ-
ated central chargec. The exact energy-temperature relation
for a D52 conformal field theory is

E5
p

12
LcTH

2 , ~2.41!

whereL is the volume of the one-dimensional space. This
relation is valid ifL is large compared to the typical wave-
lengths of the particles,3

L@
1

TH
. ~2.42!

The energyE is related toL0 by

E5
2p

L
L0 . ~2.43!

Comparing Eqs.~2.41! and ~2.40!, we learn that

cL524pQ3. ~2.44!

The group SU~2! of global space rotations is a symmetry of
the Hilbert space of black hole states. The Noether currents
of this symmetry generate an SU~2! Kac-Moody algebra
within the conformal field theory. Letj denote the generator
of the U~1! subgroup of rotations about thez axis. Thenj
obeys

@ j m , j n#5
km

2
dm1n,0 , ~2.45!

where the integerk is the Kac-Moody level and we have
chosen the normalization so thatj 0 has half integral eigen-
values. The eigenvalues ofj 0 are thez componentsJz of
angular momentum. Standard arguments using the Sugawara
construction of the stress tensor imply thatL0 is bounded
according to

L0>
Jz

2

k
. ~2.46!

This bound is saturated by the extremal states

eiJzfu0&, ~2.47!

where the U~1! bosonf;f12p is the angle about thez
axis defined byj 5(k/2)]f. A similar bound can be derived
in a completely different manner from the conditionr 1

>r 2 ; i.e., the absence of a naked singularity in the space-
time solutions. Using Eqs.~2.38!, this implies

2EQ>a2, ~2.48!

which, together with Eq.~2.44!, yields

L0>
6Jz

2

c
. ~2.49!

Consistency of the two dimensional effective field theory
with the spacetime analysis requires that Eqs.~2.46! and
~2.49! be the same bound. This yields

c56k. ~2.50!

This is exactly the relation betweenk andc encountered in a
chiral ~0,4! superalgebra. This result is especially striking in
that so far we have been discussing the purely bosonic
Einstein-Maxwell theory and have not assumed or used su-
persymmetry in any way.

In a supersymmetric theory the black hole ground state is
a soliton preserving four supersymmetries.4 We are consid-
ering here a chiral theory with only right movers, and so we
must have a~0,4! supersymmetry algebra. This algebra con-
tains an SU(2)R symmetry, which in fact is the same as the
SU~2! symmetry of spatial rotations considered above. This
implies that c56k. The black hole mass gap is then the

2Except the black hole mass gap; see below.
3Of course, there are other situations, such as conformal field

theories with a small mass gap due to twisted sectors, in whichL is
not large, but Eq.~2.40! remains valid.

4As is the case for extreme Reisner-Nordstro¨m solutions ofN
52, N54, andN58 supergravity.
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energy of the lowest-lying excitation. This is the extremal
state~2.47! with Jz5

1
2 . Using Eqs.~2.46!, ~2.50!, and~2.44!,

it has energy

Egap5
1

8Q3 . ~2.51!

The existence and value of the black hole mass gap was
first derived using fundamental string theory in@9#. Here we
see it can be derived in a purely semiclassical analysis, with-
out any reference to fundamental string theory.

L. Microscopic decay rates

We have seen that the effective string picture correctly
reproduces the thermodynamic behavior of a near-BPS Kerr-
Newman black hole. In Sec. II I we semiclassically com-
puted the rate at which such a macroscopic black hole emits
scalars as a function of emitted energy and angular momen-
tum. In the effective string picture, such decays arise from a
coupling of the spacetime scalarf to an operatorO in the
conformal field theory. These are of the general form

Sint;E dt ds ]nf~0,t !O~s1t !. ~2.52!

The spatial argument off is 0 because we have taken the
black hole to be atx50. Heres is the spatial coordinate in
the conformal field theory, andO depends only ons1t
because it is chiral theory.

We know of no principle, without recourse to string
theory, which allows us to determine the numerical coeffi-
cients in front of the couplings in Eq.~2.52!. However, we
will be able to determine the energy and angular momentum
dependence of the decay rates in great detail. A striking
agreement between the macroscopic and microscopic decay
rates will be found.

The amplitudeM for the emission of a particle with en-
ergy v has an internal contribution

M;E ds1^ f uO~s1!u i &e2 ivs1
, ~2.53!

where s1[s1t. Squaring and summing over final states
gives

(
f

uMu2;E ds1ds18^ i uO†~s1!O~s18!u i &

3e2 iv~s12s18!, ~2.54!

for the rate, where we have used the fact that the sum over
final states produces an identity matrix. To compare with the
macroscopic decay rate, we should thermally average, at
temperatureTH with an angular potentialV, over the initial
state. This potential implies that a state with U~1! chargem
is weighted by exp@2(v2mV)/TH#. The rate is then propor-
tional to the thermal correlation function

E ds1^O†~0!O~s1!&Te2 i ~v2mV!s1
. ~2.55!

m arises here as the U~1! charge ofO. The shift inv imple-
ments the effects of the angular potential.

This correlation function is completely determined by the
conformal weight of the operatorO. If the operatorO has
conformal weightD, then the correlation function becomes

^O†~0!O~s1!&TH
;F pTH

sinh~pTHs1!G
2D

. ~2.56!

Note that according to Eq.~2.42! we can ignore the period-
icity along the spatial direction and take it to be infinite when
we calculate Eq.~2.56!. The periodicity along Euclidean
time translates into

s1;s11 i2/TH . ~2.57!

Hence we must evaluate the integral

E ds1e2 i ~v2mV!s1F TH

sinh~pTHs1!G
2D

. ~2.58!

This Fourier transform should be performed with ani e pre-
scription for dealing with the pole atx50. The two different
prescriptions correspond to absorption or emission. The one
corresponding to emission gives

E ds1e2 i ~v2mV!~s12 i e!F TH

sinh~pTHs1!G
2D

;~TH!2D21e2~v2mV!/2THUGS D1 i
~v2mV!

2pTH
D U2

.

~2.59!

The next problem is to determineD. The coupling~2.52!
and the allowed operatorsO are restricted by the symmetries
of the theory. The simplest way of satisfying this restrictions
is when the integral ofO is invariant under supersymmetry
transformations of the conformal field theory and is single
valued on the circle~i.e., it is not a twist field!.5 Under these
conditions there is a bound relating the conformal weight of
the operator and the U~1! charge:

D> l 11. ~2.60!

Operators which saturate the bound are of the form

O5$G1/2,C%, ~2.61!

with C a chiral primary andG a supercharge. The leading
contribution in the low-energy expansion comes from the
lowest value ofD, and so we conclude

D5 l 11. ~2.62!

An additional contribution to the energy dependence
arises from the external spacetime part of the interaction in
Eq. ~2.52!. For a mode of angular momentuml , the first l
21 spatial derivatives off vanish at the origin. Hencen

5Though this gives the desired answer, the justification of this
second assumption is unclear since the states~2.47! themselves are
not single valued.
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must be at leastl in Eq. ~2.52!. The leading contribution is
for n5 l . Since the fieldf is massless, derivatives give pow-
ers of v. In other words, we need at leastl powers of the
spatial momentum to match the SO~3! transformation prop-
erties ofO. Hence there is an additional power ofv2l in the
rate. Multiplying by a factor of 1/v for the normalization of
the outgoing state and restoring powers ofQ with dimen-
sional analysis, the microscopic rate is

G l;v2l 21Q4l 12~TH!2l 11e2~v2mV!/2pTH

3UGS l 111 i
~v2mV!

2pTH
D U2

, ~2.63!

in agreement with Eq.~2.32!, noting thatA;Q2.

III. FIVE-DIMENSIONAL BLACK HOLES

In this section we consider the interactions of five-
dimensional, nonrotating black holes in string theory with a
massless scalar, extending the results of@10–13# to include
orbital angular momentum for the scalar field. Qualitatively,
new features arise in five dimensions because the spatial ro-
tation group is SU~2!3SU~2!, and one SU~2! is carried by
right movers, while the other is carried by left movers@8# on
the effective string. A single left-moving and a single right-
moving fermion can collide and create an outgoing boson.
The rate for this process will involve a left and a right fer-
mionic thermal factor. We will find that these factors arise in
the greybody calculation. It is fascinating that one can ‘‘see’’
that the black hole is in part made of fermions in such a
purely bosonic calculation.

A. Semiclassical scattering

We consider the scattering of scalars from a five-
dimensional black hole in the dilute gas approximation con-
sidered in@11#. We follow the notation of@11#, where further
details of the geometry may also be found. The wave equa-
tion is

g

r 3

d

dr
r 3g

df

dr
1

g

r 2 ¹u
2f1v2f f50, ~3.1!

where

f 5S 11
r 1

2

r 2D S 11
r 5

2

r 2D S 11
r n

2

r 2D , g512
r 0

2

r 2 . ~3.2!

¹u
2 is the angular Laplacian which has eigenvaluesl ( l 12) in

five dimensions, andl is an integer which labels the orbital

angular momentum. The rotation group SO~4! can be decom-
posed as SO~4!;SU(2)L3SU(2)R . The representations ap-
pearing here corresponds to (l /2,l /2) under the two SU~2!’s.
The degeneracy of this representation is (l 11)2, corre-
sponding to the different allowedJz values of each SU~2!.

We consider low energies satisfyingv!1/r 1 , 1/r 5 , and
we divide space into a far regionr @r 1 , r 5 and a near region
r !1/v. We will match the solutions in the overlapping re-
gion. In the far region we writef5(1/r )c and the equation
for c becomes, withr5vr ,

d2c

dr2 1
1

r

dc

dr
1S 12

~ l 11!2

r2 Dc50. ~3.3!

The solutions are the Bessel functions

f5
1

r
@aJl 11~r!1bJ2 l 21~r!#. ~3.4!

From the large-r behavior, the incoming flux is found to be

f in5Im~f* r 3] rf!5
1

pv2 uaei ~ l 11!p/21be2 i ~ l 11!p/2u2.

~3.5!

On the other hand, the small-r behavior of the far-region
solution is

f5
1

r FaS r

2D l 11S 1

G~ l 12!
2O~r2! D

1bS r

2D 2 l 21S 1

G~2 l !
2O~r2! D G . ~3.6!

Since Eq.~3.6! has a pole for integerl , it is convenient to
keepl near an integer value during the calculation and make
it integer at the end. Now we turn to the solution in the near
region r !1/v. Defining v5r 0

2/r 2, the near-region wave
equation is

~12v !2
d2f

dv22~12v !
df

dv
1S C1

D

v
1

E

v2Df50,

~3.7!

where

C5S vr nr 1r 5

2r 0
2 D 2

, D5
v2r 1

2r 5
2

4r 0
2 1

l ~ l 12!

4
,

E52
l ~ l 12!

4
. ~3.8!

Defining

f5v2 l /2~12v !2 iv/4pTHAF, ~3.9!

with A a constant, we find that the solution to Eq.~3.7! with only ingoing flux at the horizon is given by Eq.~3.9! with F
5F(a,b,g,12v), a hypergeometric function, with

g5112q, a52 l /21q1 iAC, b52 l /21q2 iAC, q5 i
v

4pTH
. ~3.10!

The behavior for smallv is
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f;Av2 l /2H G~112q!G~11 l !

G~11 l /21q2 iAC!G~11 l /21q1 iAC!
@11O~v !#

1v11 l
G~112q!G~212 l !

G~2 l /21q1 iAC!G~2 l /21q2 iAC!
@11O~v !#J . ~3.11!

Matching solutions in the overlapping region and anticipating thatb!a in Eq. ~3.4!, we find

a/25A~vr 0/2!2 lG~11 l !G~21 l !F G~112q!

G~11 l /21q2 iAC!G~11 l /21q1 iAC!
G . ~3.12!

The absorbed flux is

f abs5Im~f* gr3] rf!52r 0
2 Im~f* g]vf!54uqur 0

2uAu2. ~3.13!

Hence the absorption cross section for the radial problem is given by the ratio of the two fluxes~3.13! and ~3.5!. The plane
wave cross section is obtained multiplying by 4p/v3, and we obtain

sabs
l 5AH~r 0v!2lU 2l

G~ l 11!G~ l 12!
U2UG„~ l 12!/21 iv/4pTL…G„~ l 12!/21 iv/4pTR…

G~11 iv/2pTH!
U2

. ~3.14!

We see the same left-right structure that was found forl
50 in @11#, but with the difference that the factor ofl ap-
pears inside theG functions. To evaluate this we need the
absolute value ofG(n/21 ib). Properties ofG functions can
be used to reduceG(n/21 ib)G(n/22 ib) to the form
G( ib)G(12 ib) or G(1/21 ib)G(1/22 ib) ~times a polyno-
mial in b!. While G( ib)G(12 ib) is proportional to
b/sinhpb, G(1/21 ib)G(1/22 ib) is proportional to
1/coshpb. This cosh will eventually translate into a fermi-
onic as opposed to bosonic ocupation factor, and this hap-
pens for oddl as it should. For example, in the case ofl
51,

sabs
1 5

p3

8
~r 1r 5!4v@~2pTL!21v2#@~2pTR!21v2#

3
ev/TH21

~ev/2TR11!~ev/2TL11!
. ~3.15!

The corresponding decay rate seems to come from two par-
ticles colliding, where both particles are fermions, as one
expects from the decomposition ofl 51 as (1/2,1/2) under
the two SU~2!’s. We shall see that this coincides beautifully
with the effective string picture. In general, fermions appear
for odd l and bosons for evenl .

The Hawking rate for emitting particles with angular mo-
mentum is obtained by multiplying Eq.~3.14! by the usual
Hawking thermal factor, producing

GH5
24l 14p2l 13~r 1

2r 5
2TLTR! l 11v2l 21

uG~ l 11!G~ l 12!u2 e2v/2TH

3UGS 11
l

2
1 i

v

4pTL
DGS 11

l

2
1 i

v

4pTR
D U2

.

~3.16!

B. Microscopic decay rate

It would be of interest to see how much of the structure of
the effective string for the five-dimensional black hole can be
deduced, as in the four-dimensional case of the previous sec-
tions, without fundamental string theory. However, in this
section our main goal is to understand the emission of angu-
lar momentum and we shall simply assume the structure im-
plied by string theory. String theory says that the low-energy
dynamics is described by a two-dimensional conformal field
theory @1# which is a good description of the low-energy
dynamics in the black hole region@14#. Some twisted sectors
of this superconformal field theory~SCFT! contain excita-
tions which can be viewed as the excitations of a long mul-
tiply wound string. Some things are more clear in this picture
of a multiply wound string, and some things are more clear
thinking about the full conformal field theory; so it is useful
to keep both in mind.

In Sec. II L conformal field theoretic arguments were
given for determining the microscopic decay rate. The same
arguments are applicable here, with a few modifications as
follows. Since there are right movers as well as left movers,
the rate involves the product of two factors of the form
~2.59!, one at temperatureTL and conformal weightDL and
one at temperatureTR and conformal weightDR . The
bounds onD give DL5DR511 l /2. In this section we are
consideringV50 black holes, and so there is no shift ofv,
but it is easy to see how to extend the calculation for general
V.
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It is possible to give the general form of the operator with
the correct weights. For a scalar arising from metric defor-
mations of the internalT4 ~an internally polarized graviton!,
the operator is of the form

e IJv lOl /2,L
I Ol /2,R

J , ~3.17!

where e IJ indicates the polarization of the graviton in the
internal directions and the factors ofv arise as before be-
cause the spacetime field must be acted on byl derivatives.
The operatorOLOR involves the fields propagating on the
effective string and has angular momentum (l /2,l /2) under
the SU~2!L3SU(2)R;SO(4) symmetry. It must also carry
the indicesIJ in order to be contracted with the graviton
polarization tensor. TheI index is carried by the bosonic
field ]XI living on the brane. The simplest such operatorsO
are of the form

Ol /2
I ;]XIc i 1

c i 2
•••c i l

, ~3.18!

wherec i are different families of fermions propagating on
the string. The operator~3.18! hasD511 l /2, precisely as
needed for agreement with the factors in Eq.~3.16!.

Putting this all together, our final result for the Hawking
emission rate is, up to numerical coefficients,

G;~g2Q1Q5TLTR! l 11v2l 21e2v/2TH

3UGS l /2111 i
v

4pTL
D U2UGS l /2111 i

v

4pTR
D U2

.

~3.19!

In this expression we have multiplied by a factor of 1/v from
the normalization of the outgoing scalar and a factor ofv2l

from squaring thev factors in the vertex operator~3.17!. The
factor ofg2l 12 comes from the fact that in string theory this
is a disk amplitude with a closed string plus 2l 12 open
strings ~l 11 right moving andl 11 left moving!. Finally,
the factor of (Q1Q5) l 11 can be understood from the fact that
one can create this many different families of open strings.

Once we remember thatg2Q1Q55r 1
2r 5

2, we see that Eq.
~3.19! agrees precisely with Eq.~3.16!. Once again, we find
detailed agreement between the macroscopic and micro-
scopic descriptions of black hole dynamics. It would be in-
teresting to calculate, as was done for thel 50 case@10# and
the fixed scalar case@13#, the precise numerical coefficient in
Eq. ~3.19! and compare it with Eq.~3.16!. As an aside, note
that the full energy dependence of the cross sections for the
fixed scalars@13# comes from the fact that it couples to an
operator with conformal weightsDL5DR52.
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