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Formation of topological black holes from gravitational collapse
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Department of Physics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
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We consider the gravitational collapse of a dust cloud in an asymptotically anti—de Sitter spacetime in which
points connected by a discrete subgroup of an isometry subgroup of anti—de Sitter spacetime are identified. We
find that black holes with event horizons of any topology can form from the collapse of such a cloud. The
quasilocal mass parameter of such black holes is proportional to the initial density, which can be arbitrarily
small.[S0556-282(97)00120-3

PACS numbds): 04.70.Bw, 04.20.Gz, 04.40.Nr

[. INTRODUCTION negative curvature. This is a generalization of the collapse
process considered in421 dimensiong8], in which it was

Black hole solutions to the Einstein field equations play ashown that a disk of pressureless dust could collapse into a
substantial role in our understanding of gravitation. TheyBTZ black hole provided the initial density was sufficiently
provide us with an important arena for testing some of oufarge. Although we find that black holes of nontrivial topol-
most fundamental ideas about thermodynamics and quantufigy can form from gravitational collapse in a nonasymptoti-
physics. An increasingly large body of evidence that blackcally flat spacetime, we do not find an analogous constraint
holes do indeed exist in our universe as physical enfifigs ©n the initial density; rather we find that arbitrarily small
and are not merely mathematical constructs, motivates thiitial densities of pressureless dust will collapse to form
study of such objects even further. such black holes.

There has been growing interest in recent years concern- The outline of our paper is as follows. We consider in
ing more exotic black-hole solutions to the Einstein field Sec. Il the general structure of the exterior and interior met-
equations, particularly those with nontrivial topology. Al- rics. In Sec. lll we solve for the metric inside the dust cloud
though it was postulated by Freidmaenal. [2] that in a and in Sec. IV we match this solution to the exterior metric.
globally hyperbolic, asymptotically flat spacetime topologi- We consider the case of collapse to a “massless black hole”
cally nontrivial event-horizon structures cannot be observedn Sec. V and summarize our results in Sec. VI.

(they collapse before light can traverse theiih was later
shown that such topologies could be passively obse8gd

In addition to this, it has been shown numerically that black
hole event horizons with toroidal topology can form, at least A further generalization of the black hole metrics dis-
temporarily [4]. More recently Aminneborget al. have  cussed in Ref[5] was recently obtained in the context of
shown that by suitably identifying points in investigating which cosmological-metrics could provide
(3+1)-dimensional anti—de SitteAdS) spacetime, black suitable instantons for black hole pair product[@. These
hole solutions can resulf5]. The black holes they con- metrics included terms for a nonzero mass and charge,
structed were eternal black holes whose event horizons ha#lereby yielding spacetimes of varying curvature. We con-
nontrivial topology of genus higher than 1. The constructionsider here collapse to neutral black holes only, for which the
of these AdS black holes are generalizations of the construgnetric outside of the dust reads
tion in 2+ 1 dimensions of Bamdos, Teitelboim, and Zanelli

(BTZ) [6], and the resultant (81)-dimensional black holes

II. TOPOLOGICAL BLACK HOLE METRICS

2

can be considered higher dimensional analogues of the d<?= —(£R2+b— ﬂ)dT% dR
lower-dimensional case. 3 R A 2M
It is natural to ask to what extent this type of black hole 3 +b- R

can arise from known, or at least hypothetically plausible, . o
physical processes. It was recently shown that pair- +R[d &%+ csint?(\/dB)dd?], 1)
production of such black holes of arbitrary genus is possible

in the presence of a domain wall of suitable topology. In
addition to this, solutions with nonzero quasilocal mass ane{vhereT is the time coordinateR is the radial coordinate,

charge were obtainedi7], generalizing the constructions and # and ¢ are coordinates on a two-surface of constant
given in Ref.[5] to spacetimes with nonconstant curvature. curvature, qb being an angular coordinate whose range is
We investigate here the possibility of forming this type of from 0 to 27. A refers to the cosmological constant, with
black hole from the collapse of a cloud of pressureless, unpositive A corresponding to anti—de Sitter spacetime, khd
charged dust. Traditionally, the study of gravitational col-is a constant of integration corresponding to the quasilocal
lapse into black holes has been limited to spheres of collapsnass(7].
ing dust and gas. We consider a cloud of dust embedded in a Solving the Einstein field equations for empty space, it is
region created by identifying points on a surface of constantlear thatb=—d is the only solution. Without loss of gen-
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erality we may set the magnitudes lofandd to unity (or Yo
zerg. There are then three possibilitigs).

(1) If b=—d=+1, c is forced to be—1 in order to
preserve the signature of the metric. This is suitable for
spaces with positive, negative or zero asymptotic curvature
Surfaces of constantR;T) are two-spheres, and the topol-
ogy of spacetime iR?® S?. The cosmological constant may Psuedosphere
be positive or negative. The resultant spacetime is simply
Schwarzchild(—anti-) de Sitter space.

(2) If b=—d=0, the signature forces=+1/d in the Poincaré disk
limit d—0. A in this case is strictly positive. The metric
corresponds to a spacetime that is asymptotically anti—de
Sitter in the R,T) section. The topology is that of a torus
R2® T2 -1+ = Projection center

3) If b=—d=-1, thenc=+1 andA is again strictly
positive. In this case the topology RPF®H? , whereHZ is a
two-surface of constant negative curvature and geymuig.

In case(2), without suitable identifications in thef(e) FIG. 1. The pseudosphere is one half of the hyperboloid. The
sector, the black hole event horizon would be an infiniteaxes do not represent any coordinates in particular. Beneath the
sheet. Such “black plane” solutions have been recentlypseudosphere is the Poincatisk, the center of which is the origin.
noted in the literaturd9]. However, a black hole with a (Balazs and Voros, p. 121
compact event horizon may be obtained by considering only
a portion of the sheet, and making this section periodidlat plane, an octagon is the simplest solution, yielding a
through the suitable identification of points. The shape forsurface of genus 2. This construction is shown in Fig. 2. In
the section chosen is a polygon formed from geodesics in thgeneral, a polygon of @ sides yields a surface of gengs

(6,) sector, in this case straight lines, cut out of the planeWhereg=2. S

The sum of the ang|es in the po|yg0n must be equah-t-cnz We shall consider in this paper CO”apse of a cloud of dust
greater in order to avoid the formation of conical singulari-t0 @ black hole whose exterior metric is given by K2),

ties. In addition, the number of sides must be an integekeeping in mind that our procedure easily generalizes to the
multiple of four [5]. The simplest polygon fulfiling these toroidal case. In order for a black hole to form, two condi-
criteria is a square. Opposite sides of the square are idenfilons must be satisfied. First, the exterior metric must be
fied, yielding the toroidal topology noted above. matched successfully to a metric for the interior of the dust

Turning now to cas€3), which has the exterior metric

A 2M dRr?
ds’=—| 7R*-1— —)de+
3 R
—R?-1-2M/R
3
+R?(d 6%+ sintfod ¢?), 2

where the 6, $) sector is now a space with constant negative
curvature, also known as a hyperbolic plane or a pseudo
sphere. These spaces have been discussed in detail by Bala
and Voros[10]. Geodesics on the pseudosphere are formec
from intersections of the pseudosphere with planes througt
the origin, and are the analogues of great circles on a surfac
of constant positive curvatur@ spherg which are intersec-
tions of the sphere and planes through the origin. A projec-
tion of 'the psgudosphgre onto thﬁl (v2) plane is known' as FIG. 2. The identification of the octagon is shown. Opposite
the Poincaralisk. On it, geodesics are segments of CIrCIeS’sides of the octagon in A will be identified. The sides are drawn
orthogonal to the disk boundary at the edff&3]. The pseu- i

d h . iated Poiricdigk d th desi straight for clarity. Dashed lines indicate where sides have been
Sﬁz\?vneirr?’lzlits e;-ssomate oinc , and the geodesics are sewn together. First, sides 1 and are identified, folding the top

. and bottom of the octagon away from vié®). Sides 2 and 2are
A compact surface on the pseudosphere can be obtainggl,gnt together to form a torus with a diamond shaped hole, as in

by identifying opposite sides of a suitably chosen polygonc next, sides 3 and'3are stretched out and joined for D. The loop
centered at the origin. In order to avoid conical singularitiesjs |engthened along the direction of identification 3 and bent until 4
we must construct a polygon from geodesics which hasind 4 meet, forming a second torus. Finally the topology is de-
angles that sum to-2 or more, and a number of sides that is formed to the preferred shape, seen in F. Identification of a polygon
a multiple of four. Since the geodesics on the pseudosphers genusg will clearly result ing attached tori or, equivalently, a
meet at angles smaller than those for geodesics meeting ongeholed pacifier.
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cloud. Secondly, the dust cloud must be shown to collapse in 32
a finite amount of proper time. Simple criteria of homogene- A+ 3—g> 87Gpy, (8)
ity and topology suggest that we match the above spacetime ao

metric (2) to an interior metric of the form .
from Eg. (6), whereay is the initial inward velocity of the

r2 cloud. Given Egs(6) and(8), k is guaranteed to be positive

— 2+rz[d672+csinhz(\/549)d<i>2] ,  for all future times. This somewhat counterintuitive condi-
b—kr tion reflects the need to maintain negative curvature within
() the dust cloud. An initial density that is too large could re-
verse the sign of the curvature of the spatial sections of its
spacetime. The more familiar caéb, whereb=—-d=+1
) — and c=—1, has no analogous limits since the form of its
cloud anda(t) is the scale factork refers to the curvature. qetric allows a free choice in the sign of the curvature. No

Again, requiring the above metric to be an exact solution ofsych choice is admissible for our metric in a manner that
the Einstein equations with the stress energy tensor beingreserves the spacetime signature.

ds?=—dt?+a?(t)

wherer, 6, and ¢ are the comoving radial and angular inte-
rior coordinates, respectivelyis the proper time of the dust

that of pressureless dust yields —d=—c=—1 andk <0, When the cosmological constant is absorbed into the defi-
so that the form of the interior metric becomes nition of the stress-energy tensor of the Einstein equations, it
becomes
ds?’=—dt?+ a? dr2+r2a(t)?(d 6%+ sinttod ¢?) = _= ~. =
kr’—1 ’ T =Pgut(ptpuLu,, 9
4
where
where we have substitutéd=|k|.
. . - . - A - A
In the next section, we shall solve Einstein’s equations p=p—=—=, P=pt-—x. (10)
inside the dust cloud. 87G 87G

In other words, we can consider the cosmological constant as
IIl. THE INTERIOR SOLUTION in some manner contributing to the pressure in our space and
Consider a collapsing dust cloud, surrounded by dJowering the Qensity therein. Ik is not' o_f'suf_ficient size, or
vacuum, where the metric for the dust is given by B It W€ do not give the cloud enough initial inward velocity,
remains for us to solve for the scale facait), checking to col_lapse cannot occur. In_fact, for _collapse from rest we re-
see under what circumstancés any) a(t) vanishes in a duire that the net effective density from matter and the
finite amount of proper time. vacuum energy be negative. If this cond|t|.on is not satisfied,
The stress energy tensor for freely falling dust is given bythe metric will change its signature and will no longer prop-

T,,=pu,u,, whereu, is the four velocity, defined such €My describe the dust cloud. I
thlgit g’/)“’llj u,=—1. In comoving coordinziltes this means AAssuming the conditioK®) is satisfied, the dust will abide
uv . ’

u,=(—1,0,0,0). If the initial density is given by, and the b_y the equation of motion given by E(f). Solving Eq.(6)
scale factor is initiallyay, the conservation of stress energy, yields
T#r.,=0, will require thatp(t)[a(t)]3=poas. In addition,
requiring that the dust satisfies the standard positive energy dT:dx\/
criteria implies thafp(t)=0.

The relevant form of the Einstein field equations with a _ ] )
nonzero cosmological constant is given by where t =~\/(A/3) t, x is the relative scale facta/a,, and

vo=dx/d t|7_o. The parameteB is given by

X
—x3+(1+v3)[(1-B)x+B]’

(11)

G,,=8nGT,,+Ag,,. (5)
87Gpg
Application of this yields two equations: from the temporal B= (1+v§)A (12
component
and has the range>B>0. We now have a parametric so-
L, —A , 8 agpo lution for the scale factoa(t). While it is possible to gen-
a=—3za * §7’GT +k )  erate an exact solution to this equation, it is irrelevant for our
purposes. It is sufficient for us to know thaft) exists as
and from the three spatial components some combination of elliptic functions.
Since the interior metric is defined, we can move on to
2aa+a2—k+Aa2=0, (7  finding the collapse time. If we start from tinte=0, we can
use Eq.(11) to find the time until complete collapse in the
where the overdot is used to denote the time derivatik. interior coordinates. The collapse tintgis found by inte-

The second equation is directly derivable from the first, leav9rating Eq.(11) from x=1 to x=0:

ing a single independent equation. o
From our earlier discussion we know thkt must be T :f dX\/

strictly greater than zero, implying © —X3+(1+vS

X
)[(1-B)x+B] 13
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. dT \/z)'a2+[(A/3)m2—1—2M/m]
T=—= . (19

dt [(A/3)R?—1—2M/R]?

with SR(t) =rya(t). This condition tells us the initial radius
of the dust cloud i$Ry=rpap. It also means that collapse to
a=0 implies collapse t&R=0.

The extrinsic curvature tensor is calculated by the equa-
tion [14]

Modified Collapse Time
o o
o o -

<o
~

K:: = 585)_ a Fa M AV 19
”__nag_gi__n“(ajeiJr €l ej), (19

wheren,, is the unit spacelike normal to the ed@g) are the
basis vectors on the edge definedd§f .= e/'e/'»", and¢

o _ _ are the coordinates on the edge. In the interior coordinates
FIG. 3. The collapse time time$A/3 is shown as a function of ~ these quantities are
B andv,. Increasing eitheB or v, speeds collapse.

This integral can be evaluated numerically. We find that the n = a(t) 00 (20)
. . . o il 2 1V
collapse time is finite for all alloweB between 0 and 1, and vkrg—1
for all allowedv . The collapse time for a range of and all
allowed values oB is shown in Fig. 3. and
IV. MATCHING CONDITIONS e*=(1,0,0,0, e2=(0,0,1fqa(t),0),
In the exterior coordinates, the stress energy vanishes and
the exterior metric(2) provides the correct description of N
spacetime. Our final condition on the collapse process will €= O’O’Ofoa(t)sinr( )] (22)

be the requirement that the boundary between the two space-
times be smooth, with no energy shells separating them. |
order to make the dust edge a boundary surface with no shell
of stress energy present, we will require thht,12]

he calculations of the extrinsic curvature tensor yield

[01=0, [K;j1=0, (19 “u=Ke=S o 22

where[ W] denotes the discontinuity i across the edge, as the only nonvanishing components.

Kij is the extrinsic curvature of the dust edge, and the sub- peoneating this procedure in the exterior coordinates, we
scriptsi,j refer to the coordinates on the dust edge. find

The metric on the edge of the dust cloud is

ds?=—d 7?2+ R?(7)(d 6%+ sintF 6d §?), 15 a_(T.9 a_ a_ -
T (7)( ¢°) (15  ef=(T,%,00), e;=(00,1R0), e} (o,o,omSmm)
wherer, 6, and$ are the boundary coordinates. In the in- (23
terior coordinates; =r at the boundary. In the exterior co- for the basi he ed d
ordinates, the boundary is &=9(7). Continuity of the or the basis vectors on the edge an
metric immediately impliesd=6="19 and ¢=p=2¢. It is .
also possible to choose=t. The boundary metric then be- n,=(-R,T,0,0 (24)
comes
for the unit normal. The nonzero components of the extrinsic
ds?= —dt?+ R?(1)(d 6>+ sinFPod ¢?). (16)  curvature tensor are

Successful matching of the interior and exterior metrics d \/ A oM
f iel - w2 ep2_1_ "
orces Yields Koo an R+ 39% 1 n ) (25

A, . 2M|., R

R —-1-—|T°— =1. and

3 R [(A/3)R%2—1—-2M/5R]

17

. = - | —pr2_1_—__
The overdot refers to thé/dt. Solving for T yields Ku=Kz, SR( 3 =%/ (26)
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The matching conditions then imply thKty, in Eq. (25) 1
vanishes, yielding

<
©
T

c—s)'%2+Am2 1 M 2

o
©
T
1

e
3
T
)

whereC is simply a constant. Usinfi(t) =rya(t) we find
upon matching Eq(26) to Eq. (22) and comparison of Eq.
(27) to Eq.(6) that C=kr3—1 and

e
=3
T
1

<

'S
T
L

4 3
=2 mGpo(rodo)”. (28

.. A
2. a2
a+ak3

3

o
w
T
1

1
M= Erga

horizon scale factor / initial scale factor
(=]
wn
T

o
)
T
1

Hence a dust cloud of arbitrarily small density can collapse;
the boundary conditions produce no additional constraints.
This is in contrast to (2 1)-dimensional collapse of dust 0 : : : ‘ :

0.1 .

into a black hole, which can only proceed if the initial den- ° o *2 modited collapse time 00 o6
sity is sufficiently large relative toga, [8]. Note also that
Eq. (27) implies Flg. 4. A sample collapse, showing, shrinking as horizon
time t,, increases. In this casey,=1 and B=0.5. This smooth
2 524 é(%z—iﬁz)—FZM 1 i) collapse, with no bouncing, guarantees theg<t., where
0" gt~ R R 0<xp,=a(tp)/ag<1 sincea(t) is a decreasing function efandR},

is nonvanishing. The value dfj, is finite since the integrand in Eq.
(33) is positive for 0<x,<1, and we necessarily have,<1t,

. A 2M
=rgad+ zri(@—a’)+ —(ap—a), (29

3 r2asa upon comparing Eq13) with Eq. (33).
which definesi?, and ensures it will always be positive for _ Re RdR
collapse provided the constraif8) is satisfied. roaM(A/3)R3—R—2M

As long as our conditions are satisfied, an event horizon
Ry, will form around the collapsing dust. This horizon is which diverges logarithmically asqa(T)—rqa(t,)=R;.

found by setting Hence the collapse is unobservable from outside. The proper
time for a light source at the edge of the cloud is equal to the
Liree1-M_g (3p Comoving timet and so the emission time between wave
37 Ry, ' crests of wavelength is justdt. The arrival time between
observed wavelengths: is justdTg, and so the redshift of
which produces one real, positive root at light from the dust edge is
5 1 (BM YA +OMZA —1)23+1 31 Ae dTe dT rod
= z=—-1=—-1=/——-—F->—--1
A (3BMVA+OMZA 1)1 X dt dt  ki2—1-r2a?
provided M?A=1. If IM?A <1 then 1
=1, (36)

4 [cos }(\IMZA) Jkri—T+rea
R,= KCO f . (32)

which diverges as—t,, sincerqa(ty)=— \/kroz—l. Hence
The comoving time,,, defined byR,=roa(ty,), is the time the collapsing fluid fades from sight, analogous to the usual
at which the dust edge and the event horizon are coincidenfPPenheimer-Snyder collapse of cdsg

and may be found by integratingee Fig. 4 We close this section by noting that the only curvature
singularity in the spacetime is R=0. This is easily seen by
_ Xh \/ X computing the Kretschmann scalar, which in the exterior co-
th= : i i
h Jl dx 3 (11 0)[(1-B)x+ B] (33 ordinates is
2p6 2
However, the coordinate time at which an external ob- K:24m. (37)
server will withess the formation of the event horizon is in- R
finite, since an outgoing radial light ray emitted from the ] } o _
surface of the cloud at tim& obeys the equation Alternatively, in the interior coordinates
dR A, 2M o K_32(I7TGa8p0)2—327TGa(3)p0a3A+8a6A2 -
a3 TR (34 300 |

and arrives at a poirRg at time which diverges whet—t..
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V. COLLAPSE OF A MASSLESS PSEUDOSPHERE . AT sin(\/A_/3t) "
The solution for the mass of the pseudosphere is consis- sin 3" ———
tent with our previous result that collapse requires sufficient VA/3[rcos VA/3)]P -1
curvature, not density as in traditional black hole models. R R
This begs the question of what will happen if the density, =06, ¢=4d¢. (44)

and therefore the mass, vanishes.
The interior metric is unchanged, but the exterior metric isHere,k=A/3 anda has been transformed to a cosine func-

now tion. The “collapse” time has become simply the time at
, which the identification surfaces used to construct the
A dRrR (3+ 1)-dimensional AdS black hol@9) merge[5]. The cur-
— _ | . p2_ 2 2 2 : 2
ds’= ( 3 R 1)dT + A +R¥(d§*+sint?od¢?), vature is no longer singular &= 0, and the singularity is of
§R2—1 the Misner type.

(39
VI. CONCLUSIONS
where the event horizon R,= y3/A. The solution for the

first derivative of the scale factor becomes We have demonstrated that a cloud of pressureless dust
can undergo gravitational collapse to a black hole whose
. A event horizon has arbitrary topology. The properties of the

collapsing dust are similar to those of the us[edse(1)]
Oppenheimer-Snyder collapse, with black holes of arbitrarily
where now small mass being formed from arbitrarily small initial den-
sity distributions. Perhaps the most unusual feature of the
collapse scenario investigated here is that, for a given value
of the cosmological constant, collapse is not possible once
the density is sufficiently large unless the dust cloud is given

A 2, 42
k=§ao+a0 (41)

and the parameteB is zero. From Eq(14) then, the “col- 3 |arge enough initial inward velocity. This feature is a con-

lapse™ time for such a “massless” cloud is finite, given by sequence of the negative curvature of thed) sector in the
spacetimes we consider.

t,= \Efo dx _ 3 arcsir( . ) Of course the exterior black hole spacetimes to which the
A ~/1+v§—x2 A ~/1+v§ dus_t collapses have nontr|\_/|al topology. By e_ncl_osmg the
(42)  entire dust cloud and a portion of the vacuum inside a shell
of appropriate stress-energy and topology, it might be pos-
In spite of these suggestive results, we expect that a massible to match these solutions onto background spacetimes

less cloud would be indistinguishable from the surroundingyhose topology iR2@ 2, using methods similar to those

space, and indeed we find the interior massless metric igiscussed in Ref§13,14). Work on this is in progress.

merely a transformation of the exterior coordinates. The
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