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We consider the gravitational collapse of a dust cloud in an asymptotically anti–de Sitter spacetime in which
points connected by a discrete subgroup of an isometry subgroup of anti–de Sitter spacetime are identified. We
find that black holes with event horizons of any topology can form from the collapse of such a cloud. The
quasilocal mass parameter of such black holes is proportional to the initial density, which can be arbitrarily
small. @S0556-2821~97!00120-3#

PACS number~s!: 04.70.Bw, 04.20.Gz, 04.40.Nr

I. INTRODUCTION

Black hole solutions to the Einstein field equations play a
substantial role in our understanding of gravitation. They
provide us with an important arena for testing some of our
most fundamental ideas about thermodynamics and quantum
physics. An increasingly large body of evidence that black
holes do indeed exist in our universe as physical entities@1#,
and are not merely mathematical constructs, motivates the
study of such objects even further.

There has been growing interest in recent years concern-
ing more exotic black-hole solutions to the Einstein field
equations, particularly those with nontrivial topology. Al-
though it was postulated by Freidmannet al. @2# that in a
globally hyperbolic, asymptotically flat spacetime topologi-
cally nontrivial event-horizon structures cannot be observed
~they collapse before light can traverse them!, it was later
shown that such topologies could be passively observed@3#.
In addition to this, it has been shown numerically that black
hole event horizons with toroidal topology can form, at least
temporarily @4#. More recently Aminneborget al. have
shown that by suitably identifying points in
(311)-dimensional anti–de Sitter~AdS! spacetime, black
hole solutions can result@5#. The black holes they con-
structed were eternal black holes whose event horizons had
nontrivial topology of genus higher than 1. The construction
of these AdS black holes are generalizations of the construc-
tion in 211 dimensions of Ban˜ados, Teitelboim, and Zanelli
~BTZ! @6#, and the resultant (311)-dimensional black holes
can be considered higher dimensional analogues of the
lower-dimensional case.

It is natural to ask to what extent this type of black hole
can arise from known, or at least hypothetically plausible,
physical processes. It was recently shown that pair-
production of such black holes of arbitrary genus is possible
in the presence of a domain wall of suitable topology. In
addition to this, solutions with nonzero quasilocal mass and
charge were obtained@7#, generalizing the constructions
given in Ref.@5# to spacetimes with nonconstant curvature.

We investigate here the possibility of forming this type of
black hole from the collapse of a cloud of pressureless, un-
charged dust. Traditionally, the study of gravitational col-
lapse into black holes has been limited to spheres of collaps-
ing dust and gas. We consider a cloud of dust embedded in a
region created by identifying points on a surface of constant

negative curvature. This is a generalization of the collapse
process considered in 211 dimensions@8#, in which it was
shown that a disk of pressureless dust could collapse into a
BTZ black hole provided the initial density was sufficiently
large. Although we find that black holes of nontrivial topol-
ogy can form from gravitational collapse in a nonasymptoti-
cally flat spacetime, we do not find an analogous constraint
on the initial density; rather we find that arbitrarily small
initial densities of pressureless dust will collapse to form
such black holes.

The outline of our paper is as follows. We consider in
Sec. II the general structure of the exterior and interior met-
rics. In Sec. III we solve for the metric inside the dust cloud
and in Sec. IV we match this solution to the exterior metric.
We consider the case of collapse to a ‘‘massless black hole’’
in Sec. V and summarize our results in Sec. VI.

II. TOPOLOGICAL BLACK HOLE METRICS

A further generalization of the black hole metrics dis-
cussed in Ref.@5# was recently obtained in the context of
investigating which cosmologicalC-metrics could provide
suitable instantons for black hole pair production@7#. These
metrics included terms for a nonzero mass and charge,
thereby yielding spacetimes of varying curvature. We con-
sider here collapse to neutral black holes only, for which the
metric outside of the dust reads

ds252S L

3
R21b2

2M

R DdT21
dR2

S L

3
R21b2

2M

R D
1R2@dû21csinh2~Adû !df̂2#, ~1!

whereT is the time coordinate,R is the radial coordinate,
and û and f̂ are coordinates on a two-surface of constant
curvature,f̂ being an angular coordinate whose range is
from 0 to 2p. L refers to the cosmological constant, with
positiveL corresponding to anti–de Sitter spacetime, andM
is a constant of integration corresponding to the quasilocal
mass@7#.

Solving the Einstein field equations for empty space, it is
clear thatb52d is the only solution. Without loss of gen-
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erality we may set the magnitudes ofb and d to unity ~or
zero!. There are then three possibilities@7#.

~1! If b52d511, c is forced to be21 in order to
preserve the signature of the metric. This is suitable for
spaces with positive, negative or zero asymptotic curvature.
Surfaces of constant (R,T) are two-spheres, and the topol-
ogy of spacetime isR2

^ S2. The cosmological constant may
be positive or negative. The resultant spacetime is simply
Schwarzchild~–anti-! de Sitter space.

~2! If b52d50, the signature forcesc511/d in the
limit d→0. L in this case is strictly positive. The metric
corresponds to a spacetime that is asymptotically anti–de
Sitter in the (R,T) section. The topology is that of a torus
R2

^ T2.
~3! If b52d521, thenc511 andL is again strictly

positive. In this case the topology isR2
^ Hg

2 , whereHg
2 is a

two-surface of constant negative curvature and genusg.1.
In case~2!, without suitable identifications in the (û,f̂)

sector, the black hole event horizon would be an infinite
sheet. Such ‘‘black plane’’ solutions have been recently
noted in the literature@9#. However, a black hole with a
compact event horizon may be obtained by considering only
a portion of the sheet, and making this section periodic
through the suitable identification of points. The shape for
the section chosen is a polygon formed from geodesics in the
( û,f̂) sector, in this case straight lines, cut out of the plane.
The sum of the angles in the polygon must be equal to 2p or
greater in order to avoid the formation of conical singulari-
ties. In addition, the number of sides must be an integer
multiple of four @5#. The simplest polygon fulfilling these
criteria is a square. Opposite sides of the square are identi-
fied, yielding the toroidal topology noted above.

Turning now to case~3!, which has the exterior metric

ds252S L

3
R2212

2M

R DdT21
dR2

L

3
R22122M /R

1R2~dû21sinh2ûdf̂2!, ~2!

where the (û,f̂) sector is now a space with constant negative
curvature, also known as a hyperbolic plane or a pseudo-
sphere. These spaces have been discussed in detail by Balazs
and Voros@10#. Geodesics on the pseudosphere are formed
from intersections of the pseudosphere with planes through
the origin, and are the analogues of great circles on a surface
of constant positive curvature~a sphere!, which are intersec-
tions of the sphere and planes through the origin. A projec-
tion of the pseudosphere onto the (y1 ,y2) plane is known as
the Poincare´ disk. On it, geodesics are segments of circles,
orthogonal to the disk boundary at the edges@10#. The pseu-
dosphere, its associated Poincare´ disk, and the geodesics are
shown in Fig. 1.

A compact surface on the pseudosphere can be obtained
by identifying opposite sides of a suitably chosen polygon
centered at the origin. In order to avoid conical singularities,
we must construct a polygon from geodesics which has
angles that sum to 2p or more, and a number of sides that is
a multiple of four. Since the geodesics on the pseudosphere
meet at angles smaller than those for geodesics meeting on a

flat plane, an octagon is the simplest solution, yielding a
surface of genus 2. This construction is shown in Fig. 2. In
general, a polygon of 4g sides yields a surface of genusg,
whereg>2.

We shall consider in this paper collapse of a cloud of dust
to a black hole whose exterior metric is given by Eq.~2!,
keeping in mind that our procedure easily generalizes to the
toroidal case. In order for a black hole to form, two condi-
tions must be satisfied. First, the exterior metric must be
matched successfully to a metric for the interior of the dust

FIG. 1. The pseudosphere is one half of the hyperboloid. The
axes do not represent any coordinates in particular. Beneath the
pseudosphere is the Poincare´ disk, the center of which is the origin.
~Balazs and Voros, p. 121!.

FIG. 2. The identification of the octagon is shown. Opposite
sides of the octagon in A will be identified. The sides are drawn
straight for clarity. Dashed lines indicate where sides have been
sewn together. First, sides 1 and 18 are identified, folding the top
and bottom of the octagon away from view~B!. Sides 2 and 28 are
brought together to form a torus with a diamond shaped hole, as in
C. Next, sides 3 and 38 are stretched out and joined for D. The loop
is lengthened along the direction of identification 3 and bent until 4
and 48 meet, forming a second torus. Finally the topology is de-
formed to the preferred shape, seen in F. Identification of a polygon
of genusg will clearly result ing attached tori or, equivalently, a
g-holed pacifier.
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cloud. Secondly, the dust cloud must be shown to collapse in
a finite amount of proper time. Simple criteria of homogene-
ity and topology suggest that we match the above spacetime
metric ~2! to an interior metric of the form

ds252dt21a2~ t !S dr2

b2 k̃ r 2
1r 2@du21csinh2~Adu!df2# D ,

~3!

wherer , u, andf are the comoving radial and angular inte-
rior coordinates, respectively.t is the proper time of the dust
cloud anda(t) is the scale factor.k̃ refers to the curvature.
Again, requiring the above metric to be an exact solution of
the Einstein equations with the stress energy tensor being
that of pressureless dust yieldsb52d52c521 andk̃,0,
so that the form of the interior metric becomes

ds252dt21
a~ t !2

kr221
dr21r 2a~ t !2~du21sinh2udf2!,

~4!

where we have substitutedk5u k̃ u.
In the next section, we shall solve Einstein’s equations

inside the dust cloud.

III. THE INTERIOR SOLUTION

Consider a collapsing dust cloud, surrounded by a
vacuum, where the metric for the dust is given by Eq.~4!. It
remains for us to solve for the scale factora(t), checking to
see under what circumstances~if any! a(t) vanishes in a
finite amount of proper timet.

The stress energy tensor for freely falling dust is given by
Tmn5rumun , where un is the four velocity, defined such
that gmnumun521. In comoving coordinates, this means
un5(21,0,0,0). If the initial density is given byr0 and the
scale factor is initiallya0, the conservation of stress energy,
Tmn

;n50, will require thatr(t)@a(t)#35r0a0
3. In addition,

requiring that the dust satisfies the standard positive energy
criteria implies thatr(t)>0.

The relevant form of the Einstein field equations with a
nonzero cosmological constant is given by

Gmn58pGTmn1Lgmn . ~5!

Application of this yields two equations: from the temporal
component

ȧ25
2L

3
a21

8

3
pG

a0
3r0

a
1k ~6!

and from the three spatial components

2aä1ȧ22k1La250, ~7!

where the overdot is used to denote the time derivatived/dt.
The second equation is directly derivable from the first, leav-
ing a single independent equation.

From our earlier discussion we know thatk must be
strictly greater than zero, implying

L13
ȧ0

2

a0
2
.8pGr0 , ~8!

from Eq. ~6!, whereȧ0 is the initial inward velocity of the
cloud. Given Eqs.~6! and~8!, k is guaranteed to be positive
for all future times. This somewhat counterintuitive condi-
tion reflects the need to maintain negative curvature within
the dust cloud. An initial density that is too large could re-
verse the sign of the curvature of the spatial sections of its
spacetime. The more familiar case~1!, whereb52d511
and c521, has no analogous limits since the form of its
metric allows a free choice in the sign of the curvature. No
such choice is admissible for our metric in a manner that
preserves the spacetime signature.

When the cosmological constant is absorbed into the defi-
nition of the stress-energy tensor of the Einstein equations, it
becomes

T̃mn5 p̃gmn1~ r̃ 1 p̃ !umun , ~9!

where

r̃ 5r2
L

8pG
, p̃5p1

L

8pG
. ~10!

In other words, we can consider the cosmological constant as
in some manner contributing to the pressure in our space and
lowering the density therein. IfL is not of sufficient size, or
we do not give the cloud enough initial inward velocity,
collapse cannot occur. In fact, for collapse from rest we re-
quire that the net effective density from matter and the
vacuum energy be negative. If this condition is not satisfied,
the metric will change its signature and will no longer prop-
erly describe the dust cloud.

Assuming the condition~8! is satisfied, the dust will abide
by the equation of motion given by Eq.~6!. Solving Eq.~6!
yields

d t̃ 5dxA x

2x31~11v0
2!@~12B!x1B#

, ~11!

where t̃ 5A(L/3) t, x is the relative scale factora/a0, and

v0[dx/d t̃ u t̃ 50. The parameterB is given by

B5
8pGr0

~11v0
2!L

~12!

and has the range 1.B.0. We now have a parametric so-
lution for the scale factora(t). While it is possible to gen-
erate an exact solution to this equation, it is irrelevant for our
purposes. It is sufficient for us to know thata(t) exists as
some combination of elliptic functions.

Since the interior metric is defined, we can move on to
finding the collapse time. If we start from timet50, we can
use Eq.~11! to find the time until complete collapse in the
interior coordinates. The collapse timetc is found by inte-
grating Eq.~11! from x51 to x50:

t̃ c5E
1

0

dxA x

2x31~11v0
2!@~12B!x1B#

. ~13!
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This integral can be evaluated numerically. We find that the
collapse time is finite for all allowedB between 0 and 1, and
for all allowedv0. The collapse time for a range ofv0 and all
allowed values ofB is shown in Fig. 3.

IV. MATCHING CONDITIONS

In the exterior coordinates, the stress energy vanishes and
the exterior metric~2! provides the correct description of
spacetime. Our final condition on the collapse process will
be the requirement that the boundary between the two space-
times be smooth, with no energy shells separating them. In
order to make the dust edge a boundary surface with no shell
of stress energy present, we will require that@11,12#

@gi j #50, @Ki j #50, ~14!

where@C# denotes the discontinuity inC across the edge,
Ki j is the extrinsic curvature of the dust edge, and the sub-
scriptsi , j refer to the coordinates on the dust edge.

The metric on the edge of the dust cloud is

ds252dt21R2~t!~d ũ 21sinh2 ũ df̃2!, ~15!

wheret, ũ , and f̃ are the boundary coordinates. In the in-
terior coordinates,r 5r 0 at the boundary. In the exterior co-
ordinates, the boundary is atR5R(t). Continuity of the
metric immediately impliesu5 û5 ũ and f5f̂5f̃. It is
also possible to chooset5t. The boundary metric then be-
comes

ds252dt21R2~ t !~du21sinh2udf2!. ~16!

Successful matching of the interior and exterior metrics
forces yields

S L

3
R2212

2M

R
D Ṫ22

Ṙ2

@~L/3!R22122M /R#
51.

~17!

The overdot refers to thed/dt. Solving for Ṫ yields

Ṫ5
dT

dt
5AṘ21@~L/3!R22122M /R#

@~L/3!R22122M /R#2
, ~18!

with R(t)5r 0a(t). This condition tells us the initial radius
of the dust cloud isR05r 0a0. It also means that collapse to
a50 implies collapse toR50.

The extrinsic curvature tensor is calculated by the equa-
tion @14#

Ki j 52na

de~ i !
a

dj j
52na~] jei

a1Gmn
a ei

mej
n!, ~19!

wherena is the unit spacelike normal to the edge,e( i )
a are the

basis vectors on the edge defined bygedge
ab 5ei

aej
bh i j , andj i

are the coordinates on the edge. In the interior coordinates
these quantities are

na5S 0,
a~ t !

Akr0
221

,0,0D ~20!

and

et
a5~1,0,0,0!, eu

a5„0,0,1/r 0a~ t !,0…,

ef
a5S 0,0,0,

1

r 0a~ t !sinh~u! D . ~21!

The calculations of the extrinsic curvature tensor yield

K115K225
Akr0

221

r 0a~ t !
~22!

as the only nonvanishing components.
Repeating this procedure in the exterior coordinates, we

find

eT
a5~ Ṫ,Ṙ,0,0!, eu

a5~0,0,1/R,0!, ef
a5S 0,0,0,

1

Rsinhu D
~23!

for the basis vectors on the edge and

na5~2Ṙ,Ṫ,0,0! ~24!

for the unit normal. The nonzero components of the extrinsic
curvature tensor are

K0052
d

dR
AṘ21S L

3
R2212

2M

R
D ~25!

and

K115K225
Ṫ

R
S L

3
R2212

2M

R
D . ~26!

FIG. 3. The collapse time timesAL/3 is shown as a function of
B andv0. Increasing eitherB or v0 speeds collapse.
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The matching conditions then imply thatK00 in Eq. ~25!
vanishes, yielding

C5Ṙ21
L

3
R2212

2M

R
, ~27!

whereC is simply a constant. UsingR(t)5r 0a(t) we find
upon matching Eq.~26! to Eq. ~22! and comparison of Eq.
~27! to Eq. ~6! that C5kr0

221 and

M5
1

2
r 0

3aS ȧ21
L

3
a22kD5

4

3
pGr0~r 0a0!3. ~28!

Hence a dust cloud of arbitrarily small density can collapse;
the boundary conditions produce no additional constraints.
This is in contrast to (211)-dimensional collapse of dust
into a black hole, which can only proceed if the initial den-
sity is sufficiently large relative tor 0a0 @8#. Note also that
Eq. ~27! implies

Ṙ25Ṙ0
21

L

3
~R0

22R2!12M S 1

R
2

1

R0
D

5r 0
2ȧ0

21
L

3
r 0

2~a0
22a2!1

2M

r 0
2a0a

~a02a!, ~29!

which definesṘ2, and ensures it will always be positive for
collapse provided the constraint~8! is satisfied.

As long as our conditions are satisfied, an event horizon
Rh will form around the collapsing dust. This horizon is
found by setting

1

3
LRh

2212
2M

Rh
50, ~30!

which produces one real, positive root at

Rh5
1

L

~3MAL1A9M2L21!2/311

~3MAL1A9M2L21!1/3
~31!

provided 9M2L>1. If 9M2L,1 then

Rh5A4

L
cosS cos21~A9M2L!

3 D . ~32!

The comoving timeth , defined byRh5r 0a(th), is the time
at which the dust edge and the event horizon are coincident,
and may be found by integrating~see Fig. 4!

t̃ h5E
1

xh
dxA x

2x31~11v0
2!@~12B!x1B#

. ~33!

However, the coordinate time at which an external ob-
server will witness the formation of the event horizon is in-
finite, since an outgoing radial light ray emitted from the
surface of the cloud at timeT obeys the equation

dR

dT
5

L

3
R2212

2M

R
, ~34!

and arrives at a pointRF at time

TF5T1E
r 0a~T!

RF RdR

~L/3!R32R22M
, ~35!

which diverges logarithmically asr 0a(T)→r 0a(th)5Rh .
Hence the collapse is unobservable from outside. The proper
time for a light source at the edge of the cloud is equal to the
comoving timet and so the emission time between wave
crests of wavelengthl is just dt. The arrival time between
observed wavelengthslF is just dTF , and so the redshift of
light from the dust edge is

z[
lF

l
215

dTF

dt
215

dT

dt
2

r 0ȧ

kr0
2212r 0

2ȧ2
21

5
1

Akr0
2211r 0ȧ

21, ~36!

which diverges ast→th since r 0ȧ(th)52Akr0
221. Hence

the collapsing fluid fades from sight, analogous to the usual
Oppenheimer-Snyder collapse of case~1!.

We close this section by noting that the only curvature
singularity in the spacetime is atR50. This is easily seen by
computing the Kretschmann scalar, which in the exterior co-
ordinates is

K524
~L/3!2R612M2

R6
. ~37!

Alternatively, in the interior coordinates

K5
320~pGa0

3r0!2232pGa0
3r0a3L18a6L2

3a6
, ~38!

which diverges whent→tc .

FIG. 4. A sample collapse, showingxh shrinking as horizon

time t̃ h increases. In this case,v051 and B50.5. This smooth

collapse, with no bouncing, guarantees thatt̃ h, t̃ c , where
0,xh[a(th)/a0,1 sincea(t) is a decreasing function oft andRh

is nonvanishing. The value oft̃ h is finite since the integrand in Eq.

~33! is positive for 0,xh,1, and we necessarily havet̃ h, t̃ c

upon comparing Eq.~13! with Eq. ~33!.
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V. COLLAPSE OF A MASSLESS PSEUDOSPHERE

The solution for the mass of the pseudosphere is consis-
tent with our previous result that collapse requires sufficient
curvature, not density as in traditional black hole models.
This begs the question of what will happen if the density,
and therefore the mass, vanishes.

The interior metric is unchanged, but the exterior metric is
now

ds252S L

3
R221DdT21

dR2

L

3
R221

1R2~du21sinh2udf2!,

~39!

where the event horizon isRh5A3/L. The solution for the
first derivative of the scale factor becomes

ȧ252
L

3
a21k, ~40!

where now

k5
L

3
a0

21ȧ0
2 ~41!

and the parameterB is zero. From Eq.~14! then, the ‘‘col-
lapse’’ time for such a ‘‘massless’’ cloud is finite, given by

tc5A3

LE
1

0 dx

A11v0
22x2

5A3

L
arcsinS 1

A11v0
2D .

~42!

In spite of these suggestive results, we expect that a mass-
less cloud would be indistinguishable from the surrounding
space, and indeed we find the interior massless metric is
merely a transformation of the exterior coordinates. The
transformation is

R5rcosSAL

3
t D ,

sinhSAL

3
TD 5

sin~AL/3t !

AL/3@rcos~AL/3t !#221
, ~43!

û5u, f̂5f. ~44!

Here,k5L/3 anda has been transformed to a cosine func-
tion. The ‘‘collapse’’ time has become simply the time at
which the identification surfaces used to construct the
(311)-dimensional AdS black hole~39! merge@5#. The cur-
vature is no longer singular atR50, and the singularity is of
the Misner type.

VI. CONCLUSIONS

We have demonstrated that a cloud of pressureless dust
can undergo gravitational collapse to a black hole whose
event horizon has arbitrary topology. The properties of the
collapsing dust are similar to those of the usual@case~1!#
Oppenheimer-Snyder collapse, with black holes of arbitrarily
small mass being formed from arbitrarily small initial den-
sity distributions. Perhaps the most unusual feature of the
collapse scenario investigated here is that, for a given value
of the cosmological constant, collapse is not possible once
the density is sufficiently large unless the dust cloud is given
a large enough initial inward velocity. This feature is a con-
sequence of the negative curvature of the (u,f) sector in the
spacetimes we consider.

Of course the exterior black hole spacetimes to which the
dust collapses have nontrivial topology. By enclosing the
entire dust cloud and a portion of the vacuum inside a shell
of appropriate stress-energy and topology, it might be pos-
sible to match these solutions onto background spacetimes
whose topology isR2

^ S2, using methods similar to those
discussed in Refs.@13,14#. Work on this is in progress.
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