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We examine the supersymmetry of classibabrane andVi-brane configurations and explain the depen-
dence of Killing spinors on coordinates. We find that one-half supersymmetry is broken in the bulk and that
supersymmetry near tHe-brane horizon is restored far<3, for solutions in the stringy frame, but only for
p=3 in the ten-dimensional canonical frame. We study the enhancement for the case of four intersecting
D-3-branes in ten dimensions and the implication of this for the size of the infinite throat of the near horizon
geometry in noncompactified theory. We find some indications of universality of near horizon geometries of
various intersecting brane configuratiohS0556-282(97)07316-3

PACS numbe(s): 04.65:+e, 04.70.Bw, 11.25.Mj

I. INTRODUCTION formal to a regular geometry of the type aﬁqusg‘p for
all cases butp=5 (where the conformal geometry is

The implications of the enhancement of supersymmetrM,x S®). The conformal factor which bringp+3 branes
of certain classical solutions in supergravity near the horizorfrom the stringy frame to the one with regular geometry is
have been studied mostly in four dimensiga®) and in 5D proportional torP~2 and, therefore, is not a canonical ten-
[1-7]. In these cases, one finds that some supersymmetrieémensional frame either. Also, the dilaton is not regular at
are broken in the bulk, but that the breaking becomes weakehe horizon except fop=3. In view of this the issue of
as one approaches the horizon. In these dimensions the esnhancement of supersymmetry near the horizon for the
treme black holes with nonvanishing entropy, proportional toD-branes is not on the same footing as in all cases studied
the area of the horizon, are available. The enhancement @iefore. Therefore, we will simply proceed with explicit
supersymmetry near the horizon of such black holes wasvaluation of the supersymmetry transformations near the
instrumental for the study of the entropy of such black holeshorizon in two natural frames: the stringy one and the ca-
[4] and of a tension of a magnetic strip§]. In higher di-  nonical one.
mensions somp-branes and/-branes are known to have an ~ Thus our main goal is to examine the supergravity trans-
enhancement of supersymmetry near the horig®nh No  formations of various classical solutions, to determine
such study has been performed for heébraneq9]. One of  whether or not they exhibit restoration of supersymmetry at
the purposes of this paper is to fill in this gap. the horizon. It may be useful to mention here the following

The enhancement of supersymmetry near the horizon ajeneral feature of Killing spinors. One can predict their de-
intersecting and/or overlapping branes was also not studiependence on coordinates for static solutions, based on super-
before. In principle, one may expect to find some form ofsymmetry algebra. Assume that we have a geometry with
supersymmetric attractors there as suggestddOh As the  some time component of the metdg(x) wherex are space
first step in this direction we will find out what happens for coordinates. Killing spinors of unbroken supersymmetry usu-
the four intersectind>-3-branes near the horizon. We will ally are found as a product of the function of space times the
find out that near the horizon the geometry of 3-3-3-3 solu-constant spinoky:
tion is the same as of 6-2-2-2 and of 0-4-4-4 solutions.

The understanding of enhancement has been based largely €(X)=K(x) €. (1)
on the behavior of the geometry and the dilaton near the
horizon. In all known cases @anhancement of supersymme- This can be understood as follows. The commutator of two
try the near horizon geometry is regulém any framg¢ and  supersymmetries has to produce a translation. For static con-
of the form ad$,,x S9=P=2 and the dilaton is regular figurations the translation in time direction has to be a Kill-
[1-7]. ing vector. Introducing a vielbeia,* we have

In all known cases ofbsence of enhancement of super-
symmetrynear the horizon the geometry is regular in stringy — , ¢ —, = dJd — o . d d
frame and of the fornM ., ,x S*~P~2 with the dilaton blow- (eT'"e )ax_“_( el"e')e ﬁ_( €0l €5)K € a ot
ing up linearly near the horizon in the inertial frame of the )
Minkowski spaceM . , [2,3].

We will find out that for theD-p-branes the situation is Thus,
not as simple since in the stringy frame the near horizon
geometry is not regular apart frop= 3. It is actually con- K2ey =K?g,; Y?=1=K=(gy) 3)

and, therefore, the dependence of the Killing spinor has to be
*Electronic address: kallosh@physics.stanford.edu

TElectronic address: jkumar@Ileland.stanford.edu e(xX)= (gtt)lmeo. (4)
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This indeed is the case for all static configurations.

In Sec. Il, we will explicitly calculate the supersymmetry
transformations of the classical fields oDap-brane back-
ground in the string metric dil=2D = 10 supergravity. We

expect to find that, away from the horizon, the classical so-

lution is invariant unde# of all supersymmetry transforma-
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is_ (9H -A]T H5
Or 4H3/26r5’ W= 4H ki, r.se{0...p},
i,je{p+1...9, (11)

tions. We will then see if any of the supersymmetries arevheres is an index in the flat tangent space.

restored near the horizon. In Sec. Ill, we will perform the

From this, we see that the supersymmetry transformations

same calculations for the ten-dimensional canonical fram@re now given by

solutions for aD-p-brane background. In Sec. IV, we will
investigate M-brane classical backgrounds of 11-

dimensional supergravity and demonstrate the enhancement

of supersymmetry near the horizon of the two-brane and the

five-brane. In Sec. V, we will study the effect dfduality on

supersymmetry in the bulk and near the horizon. We will
study the enhancement of supersymmetry for solutions cor-

responding to intersectin@-branes in ten dimensions in

Sec. VI. In Sec. VII we will present some near horizon ge-
ometries of the different configurations of branes and discuss

the universality issues.

II. D-p-BRANES IN THE STRING FRAME

The supersymmetry transformations of the dilatino and

gravitino fields in the presence of@at+2 form gauge field
strength inN=2D =10 supergravity(IlA or 1IB) are given
by [11]

5¢M=3Me—%wibyabe
(—1)P
¢) e !
Jr8(p+2)! € VTPV (B
SN=vyH(d ¢)€+ —_p M1 Bpr2g!
Yoy 4(p+2)' Fu, cipe2Y OF
(6)
! _ ! — ! — *
6(0,4.8)_6’ 6(26) Y11€, 6(71,3’7)_|€, e(lvs)_lf ,( )
7

wheree is a 32-component spinor, argis the spin connec-
tion given by
ab

w’ =

2= —elay,el—0,el)) —erlre (g, e, €,

8

The classical solution for the metric and fieldsDvfp-branes
in the string metric is given by

_alpb
g;u;_ e,uevnab .

ds’=H"Y2dx? ;) —HYdX}y ), For. pi=diH Y,
Q2302 9)
7-p
H=1+{=| , r2=x},+ - +x3, (10)

where the fermionic fields vanistand consequently, so do

(3=p)(dH) ,
5)\:T5/|4[6+70...ryp6 ], (12)
((9|H) i ’ s
5'pr:3r€+wy7r[e+yo---7pe 1=V.e, (13
(o:H) . )
5¢i:‘9i5_§j (—8]H YV [t vo - vpe'l
aH ,
- 8_H Yo - Yp€
=Ve. (14)

Clearly, these vanish for atlif the following conditions are
satisfied[11]:
(15

€+ yg - ype' =0,

e=H Y8, (16
The solutionse are Killing spinors. The dependence on
space coordinates here is found in agreement with the pre-
diction in Eq.(4), since hered ~8=(g,) Y. The spinor con-
dition projects out one-half of the degrees of freedom of the
Killing spinor for all D-p-brane backgrounds. This amounts
to saying that the classical solutions@ep-branes are pre-
served under one-half of the supersymmetry transformations.
Thus, D-p-branes break one-half of supersymmetry away
from the brane.

The next task is to examine the transformations near the
horizon. We know that for small and forp<7,

HocrP=7, (17)
Therefore, the transformationsiewed in the flat tangent
space will vary with r as
SN, 8, , Sifsocr 3P4, (18)

Thus, forp<<3, the classical solutions of thH2-p-brane near
the horizon will be invariant under all supersymmetry trans-
formations near the brane. For=p> 3, the dilatino field is
not invariant unless Eq15) is satisfied. Thus, supersymme-
try is one-half broken even at the horizon. We find that for
p=3, the dilatino field is invariant, while the gravitino field
is not. But the gravitino field is not gauge invariant, so we
must examine the transformation of the gauge-invariant

the variations in the graviton, dilaton, and gauge fieldgravitino field strength in the flat tangent space. This trans-

strength.
For this solution, the spin connection is then given by

formation is given by the generalized curvature tensor
(Rab)aﬁ:
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_3 ¢ TS Ill. SUPERSYMMETRY OF D-p-BRANES
Vur=Viuthys  OVu=V0u80y =1V, Ve (19 IN THE TEN-DIMENSIONAL CANONICAL METRIC

S — elel[V ,@ [V ,@ —(R..) Ben. In the ten-dimensional canonical metric, the supersymme-
(OWap)a=€a€ul V, Vil€=[Va, Vole=(Ran)a"ep try transformations of the dilatino and gravitino fields are
given by[12]

Note that the supercovariant derivatiVeis the sum of the 1

covariant derivative and a term involving the gauge field S = ——(V,,¢) yMy*te
strength. Thus, the generalized curvature tensor is the sum of V2

the Riemann curvature tensor and terms involving the gauge

field strength. By plugging in the supersymmetry transforma- + ﬂen&mmwwl- “MpoE E('p) ,
tions given above, we find the integrability condition 8V2(p+2)! vz
i oA (26)
[Vi. Vi]le=0, (21) .
(3_p)3p_ M.---M
Sun=Vye+t ———l(3—P/s 1 Mp+2
e B e Il AP Tl T
PVile=) —di| 5| Yt Y
rsVi '\ gHaer r ogoys2 1T (7—p)(p+2) My Mo M ,
, o p+1 Oy 22 FMl"'Mp+2E(P)’
X(6+70” 'ype(p))! (22)
(27)
PN 1 oH\ . aH\ . ' /
[V;,Vile= gi—H‘l’Z[ai('W) Jy'—ﬂj(kT) v'vk} €o)=1€  €1a=€ (28)
) and the classical solution f@-p-branes is given by
(@H)” o (GH)(GH) |
4H5/2 [77] 2H5/2 Yy dSZZH(p77)/8(dt2_dX§—'"_dxg)
—HpP+1)/8y2 S 2
(9;H) (9 H) K , H (dXg, 1+ -+ - +dXg),
~opez VY (et 70 Vp€(p)- o17op
H=1+|- , (29
(23)
Again, this vanishes for al if Eq. (15) is satisfied. We also F __dH 26— y(3-p)2 (30
find that each term in the generalized curvature tensor is 01...pi H2" '
proportional tor 3~ P2 We can see this more easily by not-
ing that We will find that, in this case, we can determine all of the
information we need about enhancement from the dilatino
@r ,@iw@—p)m,r_}o_ (24) variation, which reduces to

. . 3—-p\(gH) _ . ,
Thus, the generalized curvature tensor vanishes, term by&:(_)ITH (PHUMABY I ALY ¢ p 1Ly Vel
term, asr— 0 for p<3. In particular, the Riemann tensor in 82

the tangent space vanishesras0 for p<<3. Since the tan- (3D
gent space is flat, this implies that the curvature scalar

(which is found by contracting the Riemann tensor with theS expected, we find that, away from the horizon, the solu-

metri9 also vanishes. Note that this supersymmetry enlion is preserved only whea obeys the spinor condition
hancement occurs for all of the cases where the dilaton blows

11 [
up asr—0, since €ty Yo Vp€(p)=0- (32

€20~ T-PO-32. 4 (7 1) (p—3)/4lnr (25 As r—0, we find that
SN—r[(3-p)716], (33

For p=3 in the limit asr—0, we find that the curvature

does not vanish. However, the various terms in the fieldThus, we find that, ifp# 3, supersymmetry is not enhanced

strength transformations cancel each other. Thus, the genen the ten-dimensional canonical frame. For 3, the dilaton

alized curvature vanishes, and full supersymmetry is restored regular and the ten-dimension canonical frame is the same

in the p=3 case as well. This matches our geometric underas the string frame, wherein we have already determined that

standing of the situation, as shown [iB]. As r—0, the supersymmetry is enhanced at the horizon.

D-3-brane metric tends to ag8 S;. This calculation was It seems at first strange that supersymmetry should appear

performed in the string frame, and thus enhancement onlin some cases to be enhanced in the string metric, while not

occurs whenr<lg. It is not clear how one interprets this in the ten-dimensional canonical metric. But this should not

from a string-theoretic point of view. be too surprising, since each metric measures the supersym-
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metry breaking on a different scale. One notes that the intein the bulk, these variations vanish only when the spinor
grability condition is very closely related to the curvature, condition is satisfied. As—0, we see that the variations
which is clearly different depending on whether one uses theanish for anye. Thus supersymmetry is half-broken in the
string metric or canonical metric. It may be that the extent tabulk, but is enhanced at the horizon of thie2-brane in the
which some supersymmetries are broken goes to zero wherl-dimensional canonical frame.

measured on the string scale, but not when measured on the The classical solution for th®-5-brane is given by
ten-dimensional Planck scale. One must then ask which scale

is appropriate for asking questions regarding supersymmetry ds?=H Y3 dt2+ dx§+ cet dxg)
enhancement. This may be a question whose answer depends
on M-theoretic considerations. —HZ(dXE+ - - - +dxy),

In any case, these ambiguities do not affect us when deal-

ing with D-3-branes, for which the string frame and canoni- 3
cal frame are identical. We will see in Sec. VIl that we can H=1+|-| , (40
find a class of solutions which exhibits near horizon adS r
geometry. These solutions are all equivalent to a configura-
tion involving only intersecting three-branes, for which there dH
is no ambiguity. FaBro= — (01234apyoe_—_ H (41)
IV. SUPERSYMMETRY OF CLASSICAL SOLUTIONS Using Eq.(34), and plugging in as before, we find
OF M-BRANES
Using the 11-dimensional canonical metric, we find the WF,@&]:Q (42)
supersymmetry transformatiga3,14]
i - s aH (H)?
_ b a S ~ | 164 KX Kk i
5¢,u_07,u6_ éllw,i 737b6+ 2_88( Yiun? ,yﬁ,y‘}/,y ] [Vr 'Vl] H (?I( 12H3/2 Y 36H8/3 Y
— 88 YPy7yNE 4. s€. (34) .
m aByd (akH)(aH) .
+—72H8’|3 Y[ r(1+iy8 919, (43
The supermembrane classical field configuration is given by
ds?=H"23(dt?—dx{—dxg) — HY3¥(dxG+ - - - +dx5) . 4 (aH) akH .
! - “l=H" | — jal—
c\&P )
diH (OH)(oH)
Foaa=— 17 (36) — T Y (i 9. (44

We thus find the following transformations for the gravitino

field strength Again, this yields one-half supersymmetry breaking in the

bulk, but asr —0, the variations vanish for al. Thus, we
see supersymmetry enhancement for both the 2-brane and

[V:,Vel=0, (37)  5-brane ofM theory in the 11-dimensional canonical frame.
On the basis of the properties of the geometry adS’ for
A A o H (6 H)? the 2-brane and ad,S<S4 for the 5-brane near the horizon,
(Vi Vil=—| Y| — | ¥ 57 the enhancement of supersymmetry was studid@irHere,
6H 36H we have in addition checked that the generalized curvature
(3 H)(H) vani_shes near the h_orizon and, theref_ore, there are no con-
W k v (1+iy°y*y?), (38 straints on Killing spinors near the horizon.
aH 4H V. T DUALITY
[Vi,Vil=—|H" 1/3[ (12H) Yy~ (12H) 0% yl} It may at first seem odd that supersymmetry is enhanced
for p=3 but not forp=4. One might expect that configura-
(9 H)? o @H)GH) tions T dual to theD-3-brane will exhibit the same super-
7/3[')/ Y ]+—7/37i'y symmetry at the horizon. In particular, one might expect the
724 36H D-4-brane solution to also exhibit enhancement. But one
(3H) (9 H) must first note that the 4-brane and 3-brane solutions given
R (14409 02). 39 above are not dual. TheT dual of the 4-brane solutidri5]
27 VY |((A+iy iy y9) (39  &PY
36H is given by
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ds?=H YAdt?—dx—- - —dxj)
—HYAdxg+ - - - +dxd),

3

C
H=1+(-| , (45)

F

D J. KUMAR

[V;,Vs]=0, (51)

(0H)?

Yo¥i[ £(1+ y1Y2YaYs)

T (1+ ¥3vav6¥1) = (14 ¥5¥67273)], (52

which depends on the harmonic function of the 4-brane. But

in any case|16] showed thafl duality does not necessarily

respect supersymmetry, even in the bulk. They found that the[ﬁ; ﬁ;] =—
supersymmetry of a configuration is preserved only if one

dualizes along a direction on which the Killing spinor does
not depend. From Eq16) we see that for &-brane solu-
tion, the graviton field is only preserved if the Killing spinor

depends on the transverse coordinates. When we dualize the
3-brane solution, we find that we break supersymmetries at

the horizon only if we increase thB-brane dimension,

which occurs precisely when we dualize along directions

upon which the Killing spinor depends.

VI. NEAR HORIZON SUPERSYMMETRY
OF INTERSECTING D-p-BRANES

We consider the classical solution for foDr-3-branes,

pairwise intersecting on one-branes. For simplicity, we make

the particular choice of orientatiori 2 3), (34 5, (56 1),
and(2 4 6). We then have the classical solutift7—20

d?=H2dt?—H2(dX3+ dx3+ dx3) — (dxG+ - - - +dx3),

c
H=1+ T (46)
N ~ ~ N diH
Fo123=Fo345 = Fose1 = Fo2aa = — F
Faﬁyﬁzé(ﬁaﬂ‘yﬁ_'—*'&aﬁ'y&)- (47)

We have chosen the four three-brane charges to be the sam&,=(1+il,)+(1+ilp)+(1+il,)+(1+iT),

for simplicity, although the argument holds for arbitrary

charges. When compactified down to four dimensions, this

solution is known to form a black hole withsupersymmetry
in the bulk, but} supersymmetry near the horizon. Using the

aH\ Y (9H)?
M2z /H T 2R
(3;H)(gH) ir
—ops [y, 7 YoY1Y2Y3
ir ir ir

|

ij ’}’07’37’4’}’5ij3’07’5)’671—j YoY2Y4Vs

(9H)? (aH)(9H)
+|: 16|_|4 Yive— : 8H4 NYr AZY (53)
ir ir
Ap=1+ Z?’o?’17273+ Z YoY3YaYsTt 2 YoYsYeY1
ir

_|__
4 YoY2Y4Ye6

2 )

(54)

Ap=143y1727aYsF 3¥3YaYeY1 T 356 Y273 (59
These transformations involve two different types of
spinor projector combinations. The first is a sum of four
projectors

(56)

I'2=7Y0YaYoYe> (57)

previous methods, one derives the supersymmetry transfolYhosey matrix indices are in the directions along the three-

mations
SN=0, (48)
- o dkH (9H)?
[Vo.Vil= f%(ﬁ; wh g v vl (49
s o | (dH Yy (adH | nev
[Vi'vi]_{‘?‘(ﬁ)? f’i(ﬁ)?
1 (9H)? (aiH)(9;H)
2 HY YinYj _T?’ﬂ’j
(H)(9;H) 3[(9,H)?
+kH—4J')’k')’i}Al_ g[#[%ﬁ’j]
(H)(9;H) (akH)(9;H)
T RE it T o i Ay,
(50)

branes. Only three of these projectors are independent, how-
ever, since

e=—il,e=—iTge=—ilge
—i(=TI'gl' ) e=—

—€ il se. (58
Thus, this combination of spinor projectors breaks supersym-
metry to 3. The second projector combination is a sum of
three projectors of the form
i(l+F12)i(l+Fl3)i(l+F23), Faﬁzrarﬂ,
(59

where the term withy matrices is a product of any two of the
analogous terms in the first projector combination. By noting
that

rarﬁz Fﬁra y

FQFBFyZ—F(;, (60)
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we see that there are only three possible ways to form a term

2
. ; . AN . r NP N;
of a projector of this type. We can in fact write this projector ds?= dt?— —= BZ Y 2qr2— Vrof gt o 5d2Q,
in the more symmetric form Vlal glyls r

dx2 dx3 ) 67

_\rarﬁr,yrg(m‘F""F_

1
1+ 62 F” (61) ryrb‘

i<j
The size of the infinite throat is now given by the inverse

We find that of the three projectors, only two are indepen-Scalar curvature of the agyeometry{6]
dent. Therefore, this projector combination preseryesf

41
supersymmetry. We see 27N G gl ¥ 5= R (68)
e=—ile,e=—ilg—oe=—Tp. (62 The flat six-dimensional Euclidean geometry is not of the

_ _ _ o _ standard formds?= &;;dxdX, as each direction has to be
Thus, if e survives a projector combination of the first type, rescaled with different constant parameters to bring the co-
it also satisfies th? Secof‘d- Th.erefore, fheupersymmetry ordinatesx’' to x'. This expression upon compactification
preserved by the first projector is a subset of jfseipersym- will become the entropy of the black hole. From the point of

metry preserved by the _second. view of the ten-dimensional geometry it is of the size of the
The transformations in the bulk presergeof the total hori h f

supersymmetry. As—0 near horizon throat of ads . -

' ’ However, we also find evidence that there is in fact a class

L of solutions which exhibits the same near horizon geometry.

[V3,Vi]—0, (63)  For example, consider the 0-4-4-4 solution, with the three

four-branes pairwise intersecting on two-branes. The metric

is given by[21]

(V: 9] _i([?’n)’j]_ﬁ _+@ N
v 8c?l 2 2 Wz R ds’=(HoHaoHasH4,) " Y2dt? = (HoH4HagH4,) 12
(64)
X(dXe+ - - - +dx§) — (HoH HgH, H )2
~ ~ Yi Xi I dX2 dX2
[V‘,V’]—><———7)7A : (65) LRI °
rriaT 16c?  8r3c? M) T2 H4aH4ﬁ+ +H4,;H47’ (69)

which preserve: supersymmetry, as expected. Thus, we areVith Ho=1+r1/r the harmonic function associated with the
able to recover the supersymmetry of a four-dimensionaf€ro-brane, and,,=1+rg,/r associated with the three
black hole, both in the bulk and at the horizon, using a tenfour-branes. Near the horizon, this geometry approaches
dimensional supergravity calculation of intersecting

D-brane solutions. 42— r2 giz— Yrol4alaplay 5
Vol aal agl 4y r?
VIl. UNIVERSALITY OF THE NEAR HORIZON
GEOMETRIES = rof 4af agl 4,402 = NI ol 448 2l 2y
. , , , dx? dxé
We may consider the 3-3-3-3 solution of intersecting Rt (70)
D-branes with harmonic functiond ,=1+r,/r with four M4alap Fgly
different parameters, for each harmonic function. We then . o
find the following geometry19,18,2Q As before, the size of the agShroat is given by
4
A= (H H gHH )~ 2t~ (H H gHH ) 2 270l aal 457 7= 5 @y

XA+ - - -+ dXx) = (H .H.H_H )2 . | -
(dxg 8~ (HoHgH,H,) Another example is the 6-2-2-2 solution, with the two-
dxf dxé branes intersecting at a point, and all two-branes embedded

X H.H, oot HH,)" (66)  within the six-brane. Its geometry is given B31]

dSz:(HeHzaHz,Bszrm_(HstaHmHz«y)llz(dX;"' e

The meaning of the , is that it measures the size of the
throat and the volume of the sphere of 33&°, which is H2aH2BH2‘y) 1/2( dxs N dXé)
HG H2a H27 ,

2y
the near horizon geometry of a single three-brane. +dx) (72)

For the intersecting solution of four three-branes the near
horizon canonical geometry has a nice form: the geometry iwvhere Hg=1+rg/r is the harmonic function for the six-
that of an anti—de Sitter space times a circle and times ahrane andH,,=1+r,,/r are associated with the three two-
Euclidean space: ag& S*x E®: branes. Near the horizon, this geometry tends to




4940 R. KALLOSH AND J. KUMAR 56

2
B r2 , Vrelaaloglay B ) (1 ol g )32 )
ds?= dt — 5 dr ds?= s — 55 r
Vrel 20l 257 2 r (rargry)
Mol 2 dx? dx2
—For2al 247 2,00, — \| = rzf 27 —(rar gr)2RdQg—(r i1 gr,) "3 r—:+ c r—:)
dx? dx3 (77)
X|—+--+—]. (73
M2a M2y This is adSx S*X E®. The solution for 3515 can be

This is an ad$x S?x E® geometry with ad$ throat volume transformed to & metric of the form

given by 2

2(r 1 or )32
417 - 2( )1/3 (dtz_dxio)_[#} dr2
— Fof gl
277 rerzarzﬁrz,}/:ﬁ. (74) aply
dxq dXg
. . . . +rrr2’3dQ—rrr1’3<—+~~-—.
It is possible that this indicates a universality of near ho- (Fal gT) 2~ (Fal gl ) Mol g raly
rizon black hole geometries in 10 and 11 dimensions. Spe- (78)

cifically, it may be that all classical solutions for intersecting

branes in 10 and 11 dimensions which presersapersym-  1ps i adSx S*x E®, which, in five dimensions, is the dual
metry in the bulk a_nd _which have consta(rllmt_ nonzerQ) of adS,x S*x E®.

curvature at the horizo(in the tangent spagexhibit a near We also examine the intersections of the two two-branes
horizon geometry of the form ad8 S"XE". Imagine that 5 two five-branes in 11D. There are two parameters in the
we have a metric of the form harmonic functions for the two-braneg,r, and two param-

ds2= Hydx(zt)Jr HXdx+ - - - + Hd X2, eters in the harmonic functions for the flve-brar_lgsr ». For

the two-branes the parameters measure the size of the adS

. throat of the near horizon geometry of a single two-brane.
HH(E) . r—0, (75)  For the five-branes the parameters measure the size of the

r adS; throat of the near horizon geometry of a single five-

] ] brane. These parameters appear in the near horizon intersect-

wherez=d—2, d is the number of overall transverse direc- jng solution on an unequal footing, as opposed to the cases

tions, and thex, are the coordinates in those directions. BY examined above.

examining the spin connection and covariant derivatives in & The near horizon geometry ofLl21 515 [17,18 in the

straightforward manner, one can show that canonical 11-dimensional frame is a product space of the
. type an anti—de Sitter space times a circle and times an Eu-
Vv, oyt (76)  clidean space: adX S>X E®XE. Universality appears if

one performs a conformal rescaling of the 11-dimensional
Thus, curvature is only constant wheg=2. This (and the  metric with a constant parameter
demand of} supersymmetryforms powerful constraints on
the solutions which can be examined. Suppose we only co “Fals e
sider conventional solutions, by which we mean solutions fo:L—) dsj;
intersecting branes such that each term of the metric is thel12
product of the appropriate terms in the metric solutions of 2 \/7
the individual branes. One-eighth supersymmetry requires r dt2— ol gyl
the presence of at least three branes. In ten dimensions, we /r1r2F1F r2

may assume tha®=1, since that seems typical when the

dr2—r 1 grr 5d2Q,

curvature at the horizon is constant but nonzero. In that case, dx? dx? Tils 12

the string frame is the same as the canonical frame, and we NIl gl f s +.--t +|—=] (dxy)2
find that for a(conventional solution with three branes, Falp Fyfel \Mal2

y=3. This does not allow for an integer value nfand is (79)

thus unacceptable. For a solution with four branes, we find

we must havey=2z=1, and we have three overall trans- In this form again we may recognize the size of the
verse directions. In order to hagesupersymmetry from four anti—de Sitter throat which will measure the entropy of the
branes, we must demand that any direction have either zerblack hole in 4D upon compactification.

two, or four branes extend along it. Quite clearly, this will  Thus some indication of universality comes out from this
give us a near horizon geometry of ad$x S?x E®*. analysis of geometries even before compactification.

For solutions in 11 dimensions involving the intersection
of three branes, we find that the solutions giverj20] for
the 2.215 and 2.51 5 are nonregular at the horizon. The
solution for 2L 21 2 yields a near horizon geomettgfter a We have found that, in the string frame, classidabrane
simple coordinate transformatipof supergravity —solutions preserve; supersymmetry in

VIIl. CONCLUSION
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the bulk, but preserve full supersymmetry at the horizon forn particular, it appears that all solutions in 10 and 11 dimen-
p=<3. In the ten-dimensional canonical frame, however, susions which preservgsupersymmetry in the bulk and which
persymmetry is enhanced only fpr=3. It seems that the have a regulatbut nonzerp Riemann tensor at the horizon
next step is to understand this supersymmetry enhancemeexhibit a near horizon geometry of the form aaS" < E".
from the string theory point of view. The size of the anti—de Sitter throat then gives the entropy of
We have found supersymmetry enhancement fothe corresponding configuration, when compactified.
M-theory two-branes and five-branes, as expected. We have
also found en_har_1cer_nent for_ the configuration of_ four ACKNOWLEDGMENTS
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