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We examine the supersymmetry of classicalD-brane andM -brane configurations and explain the depen-
dence of Killing spinors on coordinates. We find that one-half supersymmetry is broken in the bulk and that
supersymmetry near theD-brane horizon is restored forp<3, for solutions in the stringy frame, but only for
p53 in the ten-dimensional canonical frame. We study the enhancement for the case of four intersecting
D-3-branes in ten dimensions and the implication of this for the size of the infinite throat of the near horizon
geometry in noncompactified theory. We find some indications of universality of near horizon geometries of
various intersecting brane configurations.@S0556-2821~97!07316-5#

PACS number~s!: 04.65.1e, 04.70.Bw, 11.25.Mj

I. INTRODUCTION

The implications of the enhancement of supersymmetry
of certain classical solutions in supergravity near the horizon
have been studied mostly in four dimensions~4D! and in 5D
@1–7#. In these cases, one finds that some supersymmetries
are broken in the bulk, but that the breaking becomes weaker
as one approaches the horizon. In these dimensions the ex-
treme black holes with nonvanishing entropy, proportional to
the area of the horizon, are available. The enhancement of
supersymmetry near the horizon of such black holes was
instrumental for the study of the entropy of such black holes
@4# and of a tension of a magnetic string@8#. In higher di-
mensions somep-branes andM -branes are known to have an
enhancement of supersymmetry near the horizon@3#. No
such study has been performed for theD-branes@9#. One of
the purposes of this paper is to fill in this gap.

The enhancement of supersymmetry near the horizon of
intersecting and/or overlapping branes was also not studied
before. In principle, one may expect to find some form of
supersymmetric attractors there as suggested in@10#. As the
first step in this direction we will find out what happens for
the four intersectingD-3-branes near the horizon. We will
find out that near the horizon the geometry of 3-3-3-3 solu-
tion is the same as of 6-2-2-2 and of 0-4-4-4 solutions.

The understanding of enhancement has been based largely
on the behavior of the geometry and the dilaton near the
horizon. In all known cases ofenhancement of supersymme-
try the near horizon geometry is regular~in any frame! and
of the form adSp123Sd2p22 and the dilaton is regular
@1–7#.

In all known cases ofabsence of enhancement of super-
symmetrynear the horizon the geometry is regular in stringy
frame and of the formM p123Sd2p22 with the dilaton blow-
ing up linearly near the horizon in the inertial frame of the
Minkowski spaceM p12 @2,3#.

We will find out that for theD-p-branes the situation is
not as simple since in the stringy frame the near horizon
geometry is not regular apart fromp53. It is actually con-

formal to a regular geometry of the type adSp123S82p for
all cases butp55 ~where the conformal geometry is
M73S3). The conformal factor which bringspÞ3 branes
from the stringy frame to the one with regular geometry is
proportional tor p23 and, therefore, is not a canonical ten-
dimensional frame either. Also, the dilaton is not regular at
the horizon except forp53. In view of this the issue of
enhancement of supersymmetry near the horizon for the
D-branes is not on the same footing as in all cases studied
before. Therefore, we will simply proceed with explicit
evaluation of the supersymmetry transformations near the
horizon in two natural frames: the stringy one and the ca-
nonical one.

Thus our main goal is to examine the supergravity trans-
formations of various classical solutions, to determine
whether or not they exhibit restoration of supersymmetry at
the horizon. It may be useful to mention here the following
general feature of Killing spinors. One can predict their de-
pendence on coordinates for static solutions, based on super-
symmetry algebra. Assume that we have a geometry with
some time component of the metricgtt(x) wherex are space
coordinates. Killing spinors of unbroken supersymmetry usu-
ally are found as a product of the function of space times the
constant spinore0:

e~x!5K~x!e0 . ~1!

This can be understood as follows. The commutator of two
supersymmetries has to produce a translation. For static con-
figurations the translation in time direction has to be a Kill-
ing vector. Introducing a vielbeinea

m we have

~ ē Gme8!
]

]xm
5~ ē G0e8!e0

t
]

]t
5~ ē oG0eo8!K2e0

t
]

]t
5

]

]t
.

~2!

Thus,

K2e0
t5K2gtt

21/251⇒K5~gtt!
1/4 ~3!

and, therefore, the dependence of the Killing spinor has to be

e~x!5~gtt!
1/4e0 . ~4!
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This indeed is the case for all static configurations.
In Sec. II, we will explicitly calculate the supersymmetry

transformations of the classical fields of aD-p-brane back-
ground in the string metric ofN52D510 supergravity. We
expect to find that, away from the horizon, the classical so-
lution is invariant under12 of all supersymmetry transforma-
tions. We will then see if any of the supersymmetries are
restored near the horizon. In Sec. III, we will perform the
same calculations for the ten-dimensional canonical frame
solutions for aD-p-brane background. In Sec. IV, we will
investigate M -brane classical backgrounds of 11-
dimensional supergravity and demonstrate the enhancement
of supersymmetry near the horizon of the two-brane and the
five-brane. In Sec. V, we will study the effect ofT duality on
supersymmetry in the bulk and near the horizon. We will
study the enhancement of supersymmetry for solutions cor-
responding to intersectingD-branes in ten dimensions in
Sec. VI. In Sec. VII we will present some near horizon ge-
ometries of the different configurations of branes and discuss
the universality issues.

II. D-p-BRANES IN THE STRING FRAME

The supersymmetry transformations of the dilatino and
gravitino fields in the presence of ap12 form gauge field
strength inN52D510 supergravity~IIA or IIB ! are given
by @11#

dcm5]me2 1
4 vm

abgabe

1
~21!p

8~p12!!
efFm1•••mp12

gm1•••mp12gme~p!8 , ~5!

dl5gm~]mf!e1
32p

4~p12!!
efFm1•••mp12

gm1•••mp12e~p!8 ,

~6!

e~0,4.8!8 5e, e~2,6!8 5g11e, e~21,3,7!8 5ıe, e~1,5!8 5ıe* ,
~7!

wheree is a 32-component spinor, andv is the spin connec-
tion given by

vm
ab52en[a~]men

b]2]nem
b] !2er[aesb]~]secr!em

c ,

gmn5em
a en

bhab . ~8!

The classical solution for the metric and fields ofD-p-branes
in the string metric is given by

ds25H21/2dx~p11!
2 2H1/2dx~92p!

2 , F01 . . .pi5] iH
21,

e2f5H2~p23!/2, ~9!

H511S c

r D
72p

, r 25x~p11!
2 1•••1x9

2 , ~10!

where the fermionic fields vanish~and consequently, so do
the variations in the graviton, dilaton, and gauge field
strength!.

For this solution, the spin connection is then given by

v r
î ŝ5

] iH

4H3/2
d rŝ , vk

î ĵ5
] jH

4H
dk î , r ,sP$0 . . .p%,

i , j P$p11 . . . 9%, ~11!

whereŝ is an index in the flat tangent space.
From this, we see that the supersymmetry transformations

are now given by

dl5
~32p!~] iH !g i

4H5/4
@e1g0•••gpe8#, ~12!

dc r5] re1
~] iH !

8H3/2
g ig r@e1g0•••gpe8#5¹̂ re, ~13!

dc i5] ie2(
iÞ j

S ~] jH !

8H
g ig j D @e1g0•••gpe8#

2S ] iH

8H Dg0•••gpe8

5¹̂ ie. ~14!

Clearly, these vanish for allr if the following conditions are
satisfied@11#:

e1g0•••gpe850, ~15!

e5H21/8e0 . ~16!

The solutionse are Killing spinors. The dependence on
space coordinates here is found in agreement with the pre-
diction in Eq.~4!, since hereH21/85(gtt)

1/4. The spinor con-
dition projects out one-half of the degrees of freedom of the
Killing spinor for all D-p-brane backgrounds. This amounts
to saying that the classical solutions toD-p-branes are pre-
served under one-half of the supersymmetry transformations.
Thus, D-p-branes break one-half of supersymmetry away
from the brane.

The next task is to examine the transformations near the
horizon. We know that for smallr and forp,7,

H}r p27. ~17!

Therefore, the transformations~viewed in the flat tangent
space! will vary with r as

dl,dc r ,dc i}r ~32p!/4. ~18!

Thus, forp,3, the classical solutions of theD-p-brane near
the horizon will be invariant under all supersymmetry trans-
formations near the brane. For 7.p.3, the dilatino field is
not invariant unless Eq.~15! is satisfied. Thus, supersymme-
try is one-half broken even at the horizon. We find that for
p53, the dilatino field is invariant, while the gravitino field
is not. But the gravitino field is not gauge invariant, so we
must examine the transformation of the gauge-invariant
gravitino field strength in the flat tangent space. This trans-
formation is given by the generalized curvature tensor
(Rab)a

b:
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cmn5¹̂ [mcn] , dcmn5¹̂ [mdcn]5@¹̂m ,¹̂n#e, ~19!

~dcab!a5ea
meb

n@¹̂m ,¹̂n#e5@¹̂a ,¹̂b#e5~Rab!a
beb .

~20!

Note that the supercovariant derivative¹̂ is the sum of the
covariant derivative and a term involving the gauge field
strength. Thus, the generalized curvature tensor is the sum of
the Riemann curvature tensor and terms involving the gauge
field strength. By plugging in the supersymmetry transforma-
tions given above, we find the integrability condition

@¹̂ r̂ ,¹̂ ŝ#e50, ~21!

@¹̂ r̂ ,¹̂ î #e5H 2] iS ]kH

8H3/2D gkg r1
~]kH !2

32H5/2
g ig rJ

3~e1g0•••gpe~p!8 !, ~22!

@¹̂ î ,¹̂ ĵ #e5
1

8H 2H21/2F] i S ] lH

H Dg jg l2] j S ]kH

H Dg igkG
1

~]kH !2

4H5/2
@g ig j #2

~] iH !~] lH !

2H5/2
g lg j

1
~] jH !~]kH !

2H5/2
gkg iJ ~e1g0•••gpe~p!8 !.

~23!

Again, this vanishes for allr if Eq. ~15! is satisfied. We also
find that each term in the generalized curvature tensor is
proportional tor (32p)/2. We can see this more easily by not-
ing that

¹̂ r ,¹̂ i}r ~32p!/4,r→0. ~24!

Thus, the generalized curvature tensor vanishes, term by
term, asr→0 for p,3. In particular, the Riemann tensor in
the tangent space vanishes asr→0 for p,3. Since the tan-
gent space is flat, this implies that the curvature scalar
~which is found by contracting the Riemann tensor with the
metric! also vanishes. Note that this supersymmetry en-
hancement occurs for all of the cases where the dilaton blows
up asr→0, since

e2f;r ~72p!~p23!/2,f;~72p!~p23!/4lnr . ~25!

For p53 in the limit as r→0, we find that the curvature
does not vanish. However, the various terms in the field
strength transformations cancel each other. Thus, the gener-
alized curvature vanishes, and full supersymmetry is restored
in the p53 case as well. This matches our geometric under-
standing of the situation, as shown in@3#. As r→0, the
D-3-brane metric tends to adS53S5. This calculation was
performed in the string frame, and thus enhancement only
occurs whenr ! l s . It is not clear how one interprets this
from a string-theoretic point of view.

III. SUPERSYMMETRY OF D-p-BRANES
IN THE TEN-DIMENSIONAL CANONICAL METRIC

In the ten-dimensional canonical metric, the supersymme-
try transformations of the dilatino and gravitino fields are
given by @12#

dl5
1

2A2
~¹Mf!gMg11e

1
~32p!

8A2~p12!!
e[ ~32p!/4]fgM1•••M p12FM1•••M p12

e~p!8 ,

~26!

dcM5¹Me1
~32p!3p21

32~p12!!
e[ ~32p!/4]fS gM

M1•••M p12

2
~72p!~p12!

p11
dM

M1gM2•••M p12DFM1•••M p12
e~p!8 ,

~27!

e~0!8 5ıe, e~1,2!8 5e, ~28!

and the classical solution forD-p-branes is given by

ds25H ~p27!/8~dt22dx1
22•••2dxp

2!

2H ~p11!/8~dxp11
2 1•••1dx9

2!,

H511S c

r D
72p

, ~29!

F01 . . .pi52
] iH

H2 , e2f5H ~32p!/2. ~30!

We will find that, in this case, we can determine all of the
information we need about enhancement from the dilatino
variation, which reduces to

dl5S 32p

8A2
D ~] iH !

H
H2~p11!/16g ig11@e1g11g0•••gpe~p!8 #.

~31!

As expected, we find that, away from the horizon, the solu-
tion is preserved only whene obeys the spinor condition

e1g11g0•••gpe~p!8 50. ~32!

As r→0, we find that

dl→r 2[ ~32p!2/16]. ~33!

Thus, we find that, ifpÞ3, supersymmetry is not enhanced
in the ten-dimensional canonical frame. Forp53, the dilaton
is regular and the ten-dimension canonical frame is the same
as the string frame, wherein we have already determined that
supersymmetry is enhanced at the horizon.

It seems at first strange that supersymmetry should appear
in some cases to be enhanced in the string metric, while not
in the ten-dimensional canonical metric. But this should not
be too surprising, since each metric measures the supersym-
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metry breaking on a different scale. One notes that the inte-
grability condition is very closely related to the curvature,
which is clearly different depending on whether one uses the
string metric or canonical metric. It may be that the extent to
which some supersymmetries are broken goes to zero when
measured on the string scale, but not when measured on the
ten-dimensional Planck scale. One must then ask which scale
is appropriate for asking questions regarding supersymmetry
enhancement. This may be a question whose answer depends
on M -theoretic considerations.

In any case, these ambiguities do not affect us when deal-
ing with D-3-branes, for which the string frame and canoni-
cal frame are identical. We will see in Sec. VII that we can
find a class of solutions which exhibits near horizon adS
geometry. These solutions are all equivalent to a configura-
tion involving only intersecting three-branes, for which there
is no ambiguity.

IV. SUPERSYMMETRY OF CLASSICAL SOLUTIONS
OF M -BRANES

Using the 11-dimensional canonical metric, we find the
supersymmetry transformation@13,14#

dcm5]me2 1
4 vm

abgagbe1
i

288
~g [mgagbgggd]

28dm
ag [bgggd] !Fabgde. ~34!

The supermembrane classical field configuration is given by

ds25H22/3~dt22dx1
22dx2

2!2H1/3~dx3
21•••1dx10

2 !,

H511S c

r D
82p

, ~35!

F012i52
] iH

H2 . ~36!

We thus find the following transformations for the gravitino
field strength

@¹̂ r̂ ,¹̂ ŝ#50, ~37!

@¹̂ r̂ ,¹̂ î #52FH1/6] iS ]kH

6H3/2D gk2
~]kH !2

36H7/3
g i

1
~]kH !~] iH !

36H7/3
gkGg r~11 ig0g1g2!, ~38!

@¹̂ î ,¹̂ ĵ #52FH21/3H ] i S ] lH

12H Dg lg j2] j S ]kH

12H Dgkg i J
1

~]kH !2

72H7/3
@g i ,g j #1

~]kH !~] jH !

36H7/3
g ig

k

2
~] iH !~] lH !

36H7/3
g jg

l G ~11 ig0g1g2!. ~39!

In the bulk, these variations vanish only when the spinor
condition is satisfied. Asr→0, we see that the variations
vanish for anye. Thus supersymmetry is half-broken in the
bulk, but is enhanced at the horizon of theM -2-brane in the
11-dimensional canonical frame.

The classical solution for theM -5-brane is given by

ds25H21/3~dt21dx1
21•••1dx5

2!

2H2/3~dx6
21•••1dx10

2 !,

H511S c

r D
3

, ~40!

Fabgd52e012345abgde
]eH

H2
. ~41!

Using Eq.~34!, and plugging in as before, we find

@¹̂ r̂ ,¹̂ ŝ#50, ~42!

@¹̂ r̂ ,¹̂ î #5F2H1/6] iS ]kH

12H3/2D gk1
~]kH !2

36H8/3
g i

1
~]kH !~] iH !

72H8/3
gkGg r~11 ig6

•••g10!, ~43!

@¹̂ î ,¹̂ ĵ #5H22/3F] i S ] lH

6H Dg jg l2] j S ]kH

6H Dg igk

1
~]kH !2

18H2 @g i ,g j #1
~] jH !~]kH !

9H2 g igk

2
~] lH !~] iH !

9H2 g jg l G~11 ig6
•••g10!. ~44!

Again, this yields one-half supersymmetry breaking in the
bulk, but asr→0, the variations vanish for alle. Thus, we
see supersymmetry enhancement for both the 2-brane and
5-brane ofM theory in the 11-dimensional canonical frame.
On the basis of the properties of the geometry adS43S7 for
the 2-brane and adS73S4 for the 5-brane near the horizon,
the enhancement of supersymmetry was studied in@3#. Here,
we have in addition checked that the generalized curvature
vanishes near the horizon and, therefore, there are no con-
straints on Killing spinors near the horizon.

V. T DUALITY

It may at first seem odd that supersymmetry is enhanced
for p53 but not forp54. One might expect that configura-
tions T dual to theD-3-brane will exhibit the same super-
symmetry at the horizon. In particular, one might expect the
D-4-brane solution to also exhibit enhancement. But one
must first note that the 4-brane and 3-brane solutions given
above are notT dual. TheT dual of the 4-brane solution@15#
is given by
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ds25H21/2~dt22dx1
22•••2dx3

2!

2H1/2~dx4
21•••1dx9

2!,

H511S c

r D
3

, ~45!

which depends on the harmonic function of the 4-brane. But
in any case,@16# showed thatT duality does not necessarily
respect supersymmetry, even in the bulk. They found that the
supersymmetry of a configuration is preserved only if one
dualizes along a direction on which the Killing spinor does
not depend. From Eq.~16! we see that for aD-brane solu-
tion, the graviton field is only preserved if the Killing spinor
depends on the transverse coordinates. When we dualize the
3-brane solution, we find that we break supersymmetries at
the horizon only if we increase theD-brane dimension,
which occurs precisely when we dualize along directions
upon which the Killing spinor depends.

VI. NEAR HORIZON SUPERSYMMETRY
OF INTERSECTING D-p-BRANES

We consider the classical solution for fourD-3-branes,
pairwise intersecting on one-branes. For simplicity, we make
the particular choice of orientations~1 2 3!, ~3 4 5!, ~5 6 1!,
and ~2 4 6!. We then have the classical solution@17–20#

ds25H22dt22H2~dx7
21dx8

21dx9
2!2~dx1

21•••1dx6
2!,

H511
c

r
, ~46!

F̂0123i5F̂0345i5F̂0561i5F̂0246i52
] iH

H2
,

Fabgd5 1
2 ~ F̂abgd1* F̂abgd!. ~47!

We have chosen the four three-brane charges to be the same
for simplicity, although the argument holds for arbitrary
charges. When compactified down to four dimensions, this
solution is known to form a black hole with18 supersymmetry
in the bulk, but1

4 supersymmetry near the horizon. Using the
previous methods, one derives the supersymmetry transfor-
mations

dl50, ~48!

@¹̂ 0̂ ,¹̂ î #5F] i S ]kH

2H3Dgk1
~]kH !2

2H4 g i Gg0D1 , ~49!

@¹̂ î ,¹̂ ĵ #5F] i S ] lH

2H Dg lg j

H
2] j S ]kH

2H Dgkg i

H

1
1

2

~]kH !2

H4 @g i ,g j #2
~] lH !~] iH !

H4 g lg j

1
~]kH !~] jH !

H4 gkg i GD12
3

8F ~]kH !2

2H4 @g i ,g j #

2
~] lH !~] iH !

H4 g lg j1
~]kH !~] jH !

H4 gkg i GD2 ,

~50!

@¹̂ r̂ ,¹̂ ŝ#50, ~51!

@¹̂ 0̂ ,¹̂ r̂ #52
~]kH !2

16H4 g0g r@6~11g1g2g4g5!

6~11g3g4g6g1!6~11g5g6g2g3!#, ~52!

@¹̂ r̂ ,¹̂ î #52F] i S ]kH

2H2Dgk

H
2

~]kH !2

2H4 g i

1
~] iH !~] lH !

2H4 g l GGg r S 6
iG

4
g0g1g2g3

6
iG

4
g0g3g4g56

iG

4
g0g5g6g16

iG

4
g0g2g4g6D

1F ~]kH !2

16H4 g ig r2
~] iH !~] lH !

8H4 g lg r GD2 , ~53!

D1511
iG

4
g0g1g2g31

iG

4
g0g3g4g51

iG

4
g0g5g6g1

1
iG

4
g0g2g4g6 ,

G5
11G11

2
, ~54!

D2511 1
3 g1g2g4g51 1

3 g3g4g6g11 1
3 g5g6g2g3 . ~55!

These transformations involve two different types of
spinor projector combinations. The first is a sum of four
projectors

4D15~11 iGa!1~11 iGb!1~11 iGg!1~11 iGd!, ~56!

Ga5g0gagbgc , ~57!

whoseg matrix indices are in the directions along the three-
branes. Only three of these projectors are independent, how-
ever, since

e52 iGae52 iGbe52 iGbe

→e52 i ~2GaGbGg!e52 iGde. ~58!

Thus, this combination of spinor projectors breaks supersym-
metry to 1

8. The second projector combination is a sum of
three projectors of the form

6~11G12!6~11G13!6~11G23!, Gab5GaGb ,
~59!

where the term withg matrices is a product of any two of the
analogous terms in the first projector combination. By noting
that

GaGb5GbGa , GaGbGg52Gd , ~60!
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we see that there are only three possible ways to form a term
of a projector of this type. We can in fact write this projector
in the more symmetric form

11
1

6(i , j
G i j . ~61!

We find that of the three projectors, only two are indepen-
dent. Therefore, this projector combination preserves1

4 of
supersymmetry. We see

e52 iGae,e52 iGb→e52Gab . ~62!

Thus, if e survives a projector combination of the first type,
it also satisfies the second. Therefore, the1

8 supersymmetry
preserved by the first projector is a subset of the1

4 supersym-
metry preserved by the second.

The transformations in the bulk preserve1
8 of the total

supersymmetry. Asr→0,

@¹̂ 0̂ ,¹̂ î #→0, ~63!

@¹̂ î ,¹̂ ĵ #→2
3

8c2S @g i ,g j #

2
2

xlxi

r 2 g lg j1
xjxk

r 2 gkg i DD2 ,

~64!

@¹̂ r̂ ,¹̂ î #→S g i

16c2 2
xixl

8r 2c2 g l Dg rD2 , ~65!

which preserve1
4 supersymmetry, as expected. Thus, we are

able to recover the supersymmetry of a four-dimensional
black hole, both in the bulk and at the horizon, using a ten-
dimensional supergravity calculation of intersecting
D-brane solutions.

VII. UNIVERSALITY OF THE NEAR HORIZON
GEOMETRIES

We may consider the 3-3-3-3 solution of intersecting
D-branes with harmonic functionsHa511r a /r with four
different parametersr a for each harmonic function. We then
find the following geometry@19,18,20#

ds25~HaHbHgHd!21/2dt22~HaHbHgHd!21/2

3~dx7
21•••1dx8

2!2~HaHbHgHd!1/2

3S dx1
2

HaHb
1•••1

dx6
2

HgHd
D . ~66!

The meaning of ther a is that it measures the size of the
throat and the volume of the sphere of adS53S5, which is
the near horizon geometry of a single three-brane.

For the intersecting solution of four three-branes the near
horizon canonical geometry has a nice form: the geometry is
that of an anti–de Sitter space times a circle and times an
Euclidean space: adS23S23E6:

ds25
r 2

Ar ar br gr d

dt22
Ar ar br gr d

r 2
dr22Ar ar br gr dd2V2

2Ar ar br gr dS dx1
2

r ar b
1•••1

dx6
2

r gr d
D . ~67!

The size of the infinite throat is now given by the inverse
scalar curvature of the adS2 geometry@6#

2pAr ar br gr d5
4p

R
. ~68!

The flat six-dimensional Euclidean geometry is not of the
standard formds25d i j d x̃d x̃, as each direction has to be
rescaled with different constant parameters to bring the co-

ordinatesxi to x̃ i . This expression upon compactification
will become the entropy of the black hole. From the point of
view of the ten-dimensional geometry it is of the size of the
near horizon throat of adS2.

However, we also find evidence that there is in fact a class
of solutions which exhibits the same near horizon geometry.
For example, consider the 0-4-4-4 solution, with the three
four-branes pairwise intersecting on two-branes. The metric
is given by@21#

ds25~H0H4aH4bH4g!21/2dt22~H0H4aH4bH4g!21/2

3~dx7
21•••1dx8

2!2~H0HaHbHgHd!1/2

3S dx1
2

H4aH4b
1•••1

dx6
2

H4bH4g
D , ~69!

with H0511r 0 /r the harmonic function associated with the
zero-brane, andH4a511r 4a /r associated with the three
four-branes. Near the horizon, this geometry approaches

ds25
r 2

Ar 0r 4ar 4br 4g

dt22
Ar 0r 4ar 4br 4g

r 2
dr2

2Ar 0r 4ar 4br 4gdV22Ar 0r 4ar 4br 4g

3S dx1
2

r 4ar 4b
1•••1

dx6
2

r br g
D . ~70!

As before, the size of the adS2 throat is given by

2pAr 0r 4ar 4br 4g5
4p

R
. ~71!

Another example is the 6-2-2-2 solution, with the two-
branes intersecting at a point, and all two-branes embedded
within the six-brane. Its geometry is given by@21#

ds25~H6H2aH2bH2g!21/22~H6H2aH2bH2g!1/2~dx7
21•••

1dx9
2!2S H2aH2bH2g

H6
D 1/2S dx1

2

H2a
1•••1

dx6
2

H2g
D , ~72!

where H6511r 6 /r is the harmonic function for the six-
brane andH2a511r 2a /r are associated with the three two-
branes. Near the horizon, this geometry tends to
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ds25
r 2

Ar 6r 2ar 2br 2g

dt22
Ar 6r 2ar 2br 2g

r 2
dr2

2Ar 6r 2ar 2br 2gdV22Ar 2ar 2br 2g

r 6

3S dx1
2

r 2a
1•••1

dx6
2

r 2g
D . ~73!

This is an adS23S23E6 geometry with adS2 throat volume
given by

2pAr 6r 2ar 2br 2g5
4p

R
. ~74!

It is possible that this indicates a universality of near ho-
rizon black hole geometries in 10 and 11 dimensions. Spe-
cifically, it may be that all classical solutions for intersecting
branes in 10 and 11 dimensions which preserve1

8 supersym-
metry in the bulk and which have constant~but nonzero!
curvature at the horizon~in the tangent space! exhibit a near
horizon geometry of the form adSl3Sm3En. Imagine that
we have a metric of the form

ds25Hydx~ t !
2 1Hx1dx1

21•••1Hxndxn
2 ,

H→S q

r D 2z

, r→0, ~75!

wherez5d22, d is the number of overall transverse direc-
tions, and thext are the coordinates in those directions. By
examining the spin connection and covariant derivatives in a
straightforward manner, one can show that

¹̂m}r yz/221. ~76!

Thus, curvature is only constant whenzy52. This ~and the
demand of18 supersymmetry! forms powerful constraints on
the solutions which can be examined. Suppose we only con-
sider conventional solutions, by which we mean solutions for
intersecting branes such that each term of the metric is the
product of the appropriate terms in the metric solutions of
the individual branes. One-eighth supersymmetry requires
the presence of at least three branes. In ten dimensions, we
may assume thatef51, since that seems typical when the
curvature at the horizon is constant but nonzero. In that case,
the string frame is the same as the canonical frame, and we
find that for a ~conventional! solution with three branes,
y5 3

2. This does not allow for an integer value ofz, and is
thus unacceptable. For a solution with four branes, we find
we must havey52,z51, and we have three overall trans-
verse directions. In order to have1

8 supersymmetry from four
branes, we must demand that any direction have either zero,
two, or four branes extend along it. Quite clearly, this will
give us a near horizon geometry of adS21x3S23E62x.

For solutions in 11 dimensions involving the intersection
of three branes, we find that the solutions given in@20# for
the 2'2'5 and 2'5'5 are nonregular at the horizon. The
solution for 2'2'2 yields a near horizon geometry~after a
simple coordinate transformation! of

ds25F 2d

~r ar br g!1/3G 2

dt22F ~r ar br g!1/3

2d G2

dr2

2~r ar br g!2/3dV32~r ar br g!1/3S dx1
2

r a
1•••1

dx6
2

r g
D .

~77!

This is adS23S33E6. The solution for 5'5'5 can be
transformed to a metric of the form

ds25F r

2~r ar br g!1/3G 2

~dt22dx10
2 !2F2~r ar br g!1/3

r G2

dr2

1~r ar br g!2/3dV22~r ar br g!1/3S dx1

r ar b
1•••1

dx6

r br g
D .

~78!

This is adS33S23E6, which, in five dimensions, is the dual
of adS23S33E6.

We also examine the intersections of the two two-branes
and two five-branes in 11D. There are two parameters in the
harmonic functions for the two-branesr 1 ,r 2 and two param-
eters in the harmonic functions for the five-branesr̂ 1 , r̂ 2. For
the two-branes the parameters measure the size of the adS4
throat of the near horizon geometry of a single two-brane.
For the five-branes the parameters measure the size of the
adS7 throat of the near horizon geometry of a single five-
brane. These parameters appear in the near horizon intersect-
ing solution on an unequal footing, as opposed to the cases
examined above.

The near horizon geometry of 2'2'5'5 @17,18# in the
canonical 11-dimensional frame is a product space of the
type an anti–de Sitter space times a circle and times an Eu-
clidean space: adS23S23E63E1. Universality appears if
one performs a conformal rescaling of the 11-dimensional
metric with a constant parameter

S r̂ 1r̂ 2

r 1r 2
D 1/6

ds11
2

5F r 2

Ar 1r 2r̂ 1r̂
dt22

Ar ar br gr d

r 2
dr22Ar ar br gr d d2V2G

2Ar ar br gr dF dx1
2

r ar b
1•••1

dx6
2

r gr d
G1S r̂ 1r̂ 2

r 1r 2
D 1/2

~dx7!2.

~79!

In this form again we may recognize the size of the
anti–de Sitter throat which will measure the entropy of the
black hole in 4D upon compactification.

Thus some indication of universality comes out from this
analysis of geometries even before compactification.

VIII. CONCLUSION

We have found that, in the string frame, classicalD-brane
supergravity solutions preserve1

2 supersymmetry in
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the bulk, but preserve full supersymmetry at the horizon for
p<3. In the ten-dimensional canonical frame, however, su-
persymmetry is enhanced only forp53. It seems that the
next step is to understand this supersymmetry enhancement
from the string theory point of view.

We have found supersymmetry enhancement for
M -theory two-branes and five-branes, as expected. We have
also found enhancement for the configuration of four
D-3-branes, pairwise intersecting on one-branes. This con-
figuration, when compactified to four dimensions, is known
to give a black hole which exhibits the same enhancement.
We described the near horizon geometry of different con-
figurations in 10D and 11D and found some signatures of
universal behavior near the horizon before compactification.

In particular, it appears that all solutions in 10 and 11 dimen-
sions which preserve18 supersymmetry in the bulk and which
have a regular~but nonzero! Riemann tensor at the horizon
exhibit a near horizon geometry of the form adSl3Sm3En.
The size of the anti–de Sitter throat then gives the entropy of
the corresponding configuration, when compactified.
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