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The scattering amplitudes for the perturbed fields ofN52 supergravity about an extreme Reissner-
Nordström black hole are examined. Owing to the fact that the extreme hole is a BPS state of the theory and
preserves an unbroken global supersymmetry (N51), the scattering amplitudes of the component fields should
be related to each other. In this paper, we derive the formula of the transformation of the scattering amplitudes.
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I. INTRODUCTION

Solitons that are nonperturbative configurations play an
important role for studying nonperturbative aspects of quan-
tum field theories. A soliton is a classical solution which is a
stationary, regular, and classically and quantum-
mechanically stable configuration with finite localized en-
ergy. Solitons often have some conserved charges. From the
stability of the configurations in classical and quantum
theory, we may think of a soliton as the lowest energy state
whose energy is given by the charges. Further we may ex-
pect the inequality between the mass and charges of a soli-
ton. In fact, we have the inequality in supersymmetric theo-
ries and call saturated states Bogomol’nyi-Prasad-
Sommerfield ~BPS! states @1#. Although BPS states are
massive and break supersymmetry, they still have some un-
broken supersymmetry.

In the Einstein-Maxwell theory, extreme Reissner-
Nordström solutions behave as gravitational solitons@2,3#.
The Einstein and Einstein-Maxwell systems can be embed-
ded in supergravity theories. In asymptotically flat space-
time, we can obtain global charges that generate rigid super-
symmetry@4#. Therefore we can follow the argument in rigid
supersymmetry formally. ForN51 supergravity positivity of
the energy is suggested@4,5#. Subsequently Witten estab-
lished the positivity for general relativity using the trick of a
‘‘Witten spinor’’ @6#. Further, using the ‘‘Witten spinor’’
motivated by the transformation law of gravitini inN52
supergravity, Gibbons and Hull@7# established the inequality
between the mass and the electromagnetic charges. Further
they showed that the saturated configurations are Majumdar-
Papapetrou~MP! solutions, which are assemblages of the
extreme Reissner-Nordstro¨m holes, and that the MP solu-
tions have unbroken supersymmetries. More generalizations
of their results are available in Refs.@8–10#.

In addition, the nonrenormalization theorem of the on-
shell effective action for the MP solutions was established
@9,11#. Although supergravity has better ultraviolet behavior
than general relativity, it is known that supergravity is non-
renormalizable at the perturbative level and is not regarded
as the final theory. However, we may expect that the final
theory should include supergravity and may think of the non-

renormalization for the MP solutions as a guiding principle
to the final theory.

Thus, it is very significant to investigate extreme black
holes in the classical and semiclassical frameworks through
general relativity and supergravity. To better understand ex-
treme holes that are the lowest energy states for given
charges, it is important to study the fluctuation~excitation!
about them.

Originally, the study of the perturbation about the extreme
Reissner-Nordstro¨m hole was motivated by the interest in the
no hair conjecture in supergravity@12# and by the interpre-
tation problem of the paradoxical thermal properties of
extreme-dilaton black holes@13#.

Recently in the study of the method of calculating quasi-
normal frequencies of the extreme Reissner-Nordsto¨m hole,
Onozawaet al. numerically@14# found that the quasinormal
frequencies of gravitational waves and electromagnetic
waves about it coincide by a suitable shift of the angular
momentum indices. Because of the fact that the quasinormal
frequency is the resonance pole of scattering waves, we may
expect that gravitational and electromagnetic waves have the
same reflection and transmition amplitudes. Subsequently,
they established the coincidence betweenS matrices of per-
turbations of gravitational, electromagnetic, and spin-3/2
fields ~gravitini! about the extreme Reissner-Nordstro¨m
background in theN52 supergravity by finding relation be-
tween the Regge-Wheeler potentials of perturbations@15#.
From the fact that the extreme Reissner-Nordstro¨m hole is a
BPS state in extended supergravity, we expect that the coin-
cidence is related to the fact that BPS states preserve unbro-
ken supersymmetries. The purpose of this paper is to derive
the relation between scattering matrices of graviton, gravi-
tini, and photon using supersymmetric transformation.

The paper is organized as follows: In Sec. II we briefly
review the perturbation equations through the Newman-
Penrose formalism and the scattering problem. In Sec. III we
give the supersymmetric transformation law between the cur-
vatures of perturbed fields. In Sec. IV we seek the correspon-
dence between the radial parts of the perturbations with the
suitable total angular momentum and the relations of the
reflection and transmition coefficients for them. Section V is
devoted to a summary.

II. PERTURBATION EQUATIONS

By linearizing N52 supergravity@16# about a purely
bosonic background, we have the perturbation equations for*Electronic address: okamura@th.phys.titech.ac.jp
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the linearized Einstein-Maxwell system and for the linear-
ized O~2! doublet of spin-3/2 fields, from which they are
decoupled. Here we follow Chandrasekhar@17# and Torres
del Castillo and Silva-Ortigoza@18# for bosonic perturba-
tions and fermionic ones, respectively.

The line element of the Reissner-Nordstro¨m solution is
given as

ds25
D~r !

r 2 dt22
r 2

D~r !
dr22r 2~du21sin2u df2!,

~2.1!

D~r !5r 222r 1Q2, ~2.2!

where we adopt the unitM51, M being the mass of the
background black hole, andQ is the electric charge of the
black hole.

On the background of the Reissner-Nordstro¨m solution,
the bosonic perturbations are described by the Regge-
Wheeler equation and the fermionic ones by a similar equa-
tion through the Newmann-Penrose formalism. Since this
background is static and spherically symmetric, the perturba-
tion equations are separable and nontrivial equations are ra-
dial part ones.

For the perturbations with helicity (11,1 3
2 ,12),

their equations of radial parts of the perturbations,

Y1s(r )(s51,3
2 ,2), in thephantom gauge@19#, are given by

L2Y1s1Ps~r ! L2Y1s2Qs~r !Y1s50, ~2.3!

L6[
d

dr*
6 iV, L2[L1L2 , ~2.4!

d

dr*
5

D

r 2

d

dr
, ~2.5!

wherer * is the tortoise coordinate andV is the frequency of
perturbations. We omit the index of distinguishing two gravi-
tini because they follow the same equation as expected from
the O~2! symmetry between them.

EachPs(r ) andQs(r ) is given by, fors51,2,

Ps~r ![
d

dr*
lnS r 8

Ds
D , Ds[D2S 11

2qs

m2r D , ~2.6a!

Qs~r ![m2
D

r 4S 11
2qs

m2r D S 11
qs8

m2r
D ~s,s851,2; sÞs8!,

~2.6b!

whereq1,2 are defined by

q1531A914Q2m2, q2532A914Q2m2. ~2.7!

And for s53/2,

P3/2~r ![
3

r 3 ~r 223r 12Q2!, ~2.8a!

Q3/2~r ![
D

r 6~lr 212r 22Q2!. ~2.8b!

The radial partsY1s(r ) of perturbations are constructed
in two ways. One is by the perturbed Weyl scalarC0 and the
perturbed spin connectionk as

Y1s~r !5
D2

r 3 F1s~r !, F1s5R12~r !1
qsk~r !

m
, ~2.9!

C05R12~r !S12~u!ei ~Vt1mf!,

k5A2r 2k~r !S11~u!ei ~Vt1mf!, ~2.10!

where the constantm is an eigenvalue of the spin-weighted
spherical harmonics,

L21
† L2S1252m2S12 , L2L21

† S1152m2S11 ,
~2.11!

m5A~J21!~J12!. ~2.12!

The operatorsLn andLn
† are defined by

Ln[]u1
m

sinu
1ncotu, ~2.13a!

Ln
†[]u2

m

sinu
1ncotu. ~2.13b!

Besides, the functionsS11 andS12 are related in the manner

L2S125mS11 , L21
† S1152mS12 . ~2.14!

Another is by the Weyl scalarC1 and the spin connection
s. UsingG1s , which are defined as

G1s~r !5R11~r !1
qs

m
s~r !, ~2.15!

C15
1

rA2
R11~r !S11~u!ei ~Vt1mf!,

s5rs~r !S12~u!ei ~Vt1mf!, ~2.16!

and the relations

DS D2
†2

3

r DF1s5mS 11
2qs

m2r DG1s8 ~s,s851,2; sÞs8!,

~2.17!

Dn[] r1
ir 2V

D
12n

r 21

D
, Dn

†5~Dn!* , ~2.18!

G1s are related toY1s .
In order to obtainY13/2(r ) for the helicity-(13/2) per-

turbations, we first construct the supersymmetric gauge-
invariant quantitiesH0

i from the supercovariant curvature
C i A

BC of the spin-3/2 fieldscm
i ( i 51,2) as

H0
i 5C~ABC!

i oAoBoC, ~2.19!

C i A
BC5 1

2 FD~BuA8uc
iA

C)
A81

i

M p
e i j FA

~Bc̄ jA8
uA8uC)G ,

~2.20!
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where the boldface letters indicate the background quantities
andoA is a principal spinor ofFAB that is a two-spinor rep-
resentation of the self-dual part of electromagnetic field
strengthFmn . Dm is covariant derivative with respect to the
spin connectionvmab5vmABeA8B81v̄mA8B8eAB , for ex-
ample,

DmhA5]mhA1vmA
BhB . ~2.21!

From H0
i , we obtain the radial parts of the helicity-(13/2)

perturbations,

Y13/2
j ~r !5

D3/2

r 2
R13/2

j , ~2.22!

H0
j 5R13/2

j ~r !S13/2~u! ei ~Vt1mf!, ~2.23!

wherem is 11/2 or 21/2 and the spin-weight13/2 spheri-
cal harmonicsS13/2 satisfies

L21/2
† L3/2S13/252lS13/2, ~2.24!

l5~Js2
1
2 !~Js1

3
2 ! ~Js5

3
2 , 5

2 , . . . !. ~2.25!

Equation~2.3!, which is derived from the above proce-
dures, is a ‘‘master’’ equation for the physical process of
linear perturbations about black holes, for instance, the scat-
tering problem. The scattering problem of the linear pertur-
bations about black holes is closely related to that of the
one-dimensional scattering problem of Eq.~2.3! @17#. The
scattering problem as a one-dimensional system is easily for-
mulated by converting Eq.~2.3! into a Regge-Wheeler-type
equation without the first order derivative term@17,18#. Here
we only show the results in terms ofY1s variables.

To set the scattering problem, we need the normalized
in~out!going wave forms forY1s at the asymptotic regions
(r *→6`). At r *→`, its asymptotic form of each normal-

ized perturbationY1s(s51,3
2,2) becomes

Y1s
~1`, in!;24V2e1 iVr

* and

Y1s
~1`,out!;2

Ks

4V2r 2isi
e2 iVr

* , ~2.26!

whereisi52 for s51,2 andisi5 3
2 for s5 3

2 . HereKs are
defined by

Ks[m2~m212!12iVbs , bs
2[qs8

2
~s,s851,2;sÞs8!,

~2.27!

K3/2[2iV~k3/212iVb3/2!, ~2.28!

k3/2
2 [@~Js2

1
2 !~Js1

1
2 !~Js1

3
2 !#2, b3/2

2 [4. ~2.29!

Similarly, at r *→2`, for s51,2,

Y1s
~2`,out!;4iVS iV2

r 12Q2

r 1
3 Dexp~1 iVr * !,

Y1s
~2`, in!;

Ks~112qs /m2r 1!D isi

4r 1
4isi@ iV22~r 121!/r 1

4 #@ iV2~r 12Q2!/r 1
3 #

3exp~2 iVr * !, ~2.30!

and, fors53/2,

Y13/2
~2`,out!;4iVS iV2

r 121

2r 1
2 Dexp~1 iVr * !,

Y13/2
~2`, in!;

KsD
isi

4r 1
4isi@ iV2~r 121!/2r 1

2 #@ iV2 3
4 ~r 121!/r 1

2 #

3exp~2 iVr * !. ~2.31!

Using the above basis, the scattering problems of the per-
turbations are set as

Y1s;Y1s
~1`, in!1Rs~V!Y1s

~1`,out! ~r *→`!

;Ts~V!Y1s
~2`,out! ~r *→2`!, ~2.32!

where Rs and Ts are the reflection and transmition coeffi-
cients, respectively.

III. THE TRANSFORMATION LAW
OF THE CURVATURES

In the previous section, we summarized the perturbation
equations governing the physical modes. On the extreme
Reissner-Nordstro¨m background, the quasinormal frequen-
cies of the perturbations with different helicity coincide by a
suitable shift of the total angular momentum@14,15#. This
fact suggests that the reflection and transmition amplitudes
are equivalent among the perturbations with different helic-
ity.

It is well known that the extreme Reissner-Nordstro¨m
background has an unbroken global supersymmetry inN52
supergravity@7#. This implies that the perturbations with the
different helicity are related to each other.

In this section, we obtain the supersymmetric transforma-
tion laws between the curvatures of the perturbed fields
throughN52 supergravity. The actions ofN52 supergrav-
ity are represented by

L52
M p

2e

2
R2

1

2
emnrs~cAm

i en
AA8Drc̄A8s

i

2 c̄A8m
i en

AA8DrcAs
i !

2
i

32M p
2
emnrs @~e i j cm

iAcAn
j ! ~eklcr

kBcBs
l !

2~e i j c̄m
iA8c̄A8n

j
! ~eklc̄ r

kB8c̄B8s
l

!#2
e

4
F̂mnF̂mn

1
i

8M p
emnrsF̂rse i j ~cm

iAcAn
j 1 c̄m

iA8c̄A8n
j

!, ~3.1!
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F̂mn5Fmn1
1

2M p
e i j ~cm

iAcAn
j 2 c̄m

iA8c̄A8n
j

! ~ i , j ,k,l 51,2!,

~3.2!

whereM p5(8pG)21/2 is the Planck mass,em
AA85em

a sa
AA8 ,

and Dm is a covariant derivative with respect tovm
ab. The

connectionvmab including the torsion is given by a tetrad
and gravitini through varying the action with respect to
vmab ,

vm
ab5vm

~0!ab1Km
ab, ~3.3a!

vm
~0!ab5ean] [men]

b 2
1

2
ecmeanebl]nel

c2~a↔b!,

~3.3b!

Km
ab5

i

2M p
2 S eanc̄A8[m

i sbAA8c uAun]
i

2
1

2
eaneblc̄A8n

i em
cAA8cAl

i D2~a↔b!, ~3.3c!

and the curvature is given by

Rmn
ab52] [mvn]

ab12v [m
acvn]c

b, ~3.4a!

Rab5ea
mec

nRmnb
c. ~3.4b!

The action is invariant under the supersymmetric transfor-
mations as

deam52
i

2M p
~aA

i sa
AA8c̄A8m

i
1 āA8

i sa
AA8cAm

i !,

~3.5a!

dAm52 1
2 e i j ~a iAcAm

j 2 ā iA8c̄A8m
j

!, ~3.5b!

dcAm
i 5M pDmaA

i 2 i e i j F̂A
BemBA8ā

jA8, ~3.5c!

whereaA
i are Grassmann odd transformation parameters and

F̂AB is a two-spinor representation of the self-dual part of
F̂mn .

We can check thatvmab andF̂mn are supercovariant, i.e.,
that their transformations have no derivative of transforma-
tion parameters. For the spin-3/2 fields, we introduce the
supercovariant curvatures ofcABA8

i
5eBA8

m cAm
i in the two-

spinor representation:

C iA
BC5

1

2FD ~BuA8uc
iA

C)
A81

i

M p
e i j F̂A

~Bc̄ jA8
uA8uC)G ,

~3.6a!

C iA
B8C85

1

2FDB~B8c
iAB

C8)2
i

M p
e i j F̂A

Bc̄
~B8C8!

j BG .
~3.6b!

They are transformed according to

dC iA
BC5

M p

2
RBC

ADaD
i 1

i

2
e i j @D ~B

A8F̂C)
A# āA8

j
1O~c2!,

~3.7a!

dC iA
B8C85

M p

2
RB8C8

ADaD
i 2

i

2
e i j @DB(B8F̂ !AB] āC)8

j

1
1

2M p
F̂ADF̄̂B8C8aD

i 1O~c2!. ~3.7b!

Because we will analyze the perturbations about a purely
bosonic background, it is sufficient to obtain the transforma-
tion laws at linear order ofcAm

i .
We introduce an expansion parameterl and replace the

fundamental fields, tetrad, connection, gravitini, and electro-
magnetic potential about a background as, for example,
cAm

i →cAm
i 1lcAm

i , where we use boldface for the back-
ground quantities and standard letters for the perturbed quan-
tities, respectively. Various equations and relations for per-
turbed fields are given by expanding with respect tol.

Let us consider supersymmetric transformation laws. Be-
cause ofcAm

i 50, the bosonic background quantities are in-
variant under a supersymmetric transformation. On the other
hand, fermionic quantities generally change due to a non-
trivial bosonic background. For example, the background
gravitini transform under the supersymmetric transformation
into

dcAm
i 5M pDmaA

i 2 i e i j FA
BemBA8ā

jA8. ~3.8!

Therefore, if there are some supercovariantly constant
spinors~SCCS’s!

DmzA
i 2

i

M p
e i j FA

B emBA8 z̄ jA850, ~3.9!

the background configurations are invariant under the super-
symmetric transformations that are induced by SCCS’s. And
then, unbroken supersymmetry persists on the system con-
sisting of the perturbed fields.

Next, the perturbed supercovariant curvatures of gravitini
transform into

dCABC
i 5

M p

2
RBCA

DaD
i 1

i

2
e i j @D~B

A8FC)A# āA8
j

1
i

2
e i j sa~B

A8@va
C)

DFDA1va
uAu

DFC)D# āA8
j ,

~3.10!

where we omit the transformation laws ofC iA
B8C8 because

they vanish due to the equations of motion.
Since the physical modes of gravitini are given byH0

i ,
we are interested in the transformation laws ofH0

i generated
by SCCS’s,zA

i ,
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dH0
i 5

M p

2
@z~0!

i C12z~1!
i C0#

1
i

2
e i j ~Daf0!~ z̄

~08!

j
ma2 z̄

~18!

j
l a!

1 i e i j f0~b z̄
~08!

j
2e z̄

~18!

j
!2 i e i j f1~s z̄

~08!

j
2k z̄

~18!

j
!,

~3.11!

where z (0)
i 5oAzA

i and z (1)
i 5iAzA

i and they have the spin
weights1 1

2 and2 1
2, respectively. And then,C0, C1, f0, s,

andk are perturbed Weyl scalars, Maxwell scalar, and com-
plex spin coefficients, respectively. Furthere andb are back-
ground spin coefficients.

IV. RELATIONS OF THE REFLECTION
AND TRANSMISSION COEFFICIENTS

In the previous section, we obtained the transformation
law between the perturbed curvatures of gravitini. Using it,
we can relate the decoupled modesY1s of perturbations
about the extreme Reissner-Nordstro¨m black hole.

On the extreme hole, there exist the supercovariantly con-
stant spinors

z~0!
i 5A2 h~0!

i ~u!exp~ im8f!, ~4.1a!

z~1!
i 5

D1/2

r
h~1!

i ~u!exp~ im8f!, ~4.1b!

wherem8 is 1 1
2 or 2 1

2 andhA
i satisfy

L21/2
m8† h~0!

i 5L21/2
m8 h~1!

i 50, ~4.2a!

L11/2
m8 h~0!

i 5h~1!
i , ~4.2b!

L11/2
m8† h~1!

i 52h~0!
i , ~4.2c!

where the operatorsLn
m andLn

m† are the same operators as
defined in Eqs.~2.13! in the previous section and we mani-
fest azimuthal angular momentum dependence with indexm.
The supercovariantly constant spinors satisfy the relation

i

M p
e i j f1 z̄ A8

j
52gS 2r 2

D
ī A8i

A1 ōA8o
AD zA

i . ~4.3!

From Eq.~4.3!, the transformation ofH0
i , Eq. ~3.11! be-

comes

dH0
i 5

M p

2 FD1/2

r S C014g
r 2

D
s Dh~1!

i

2A2~C122gk! h~0!
i Geim8f, ~4.4!

where we, of course, adopt the phantom gaugef05f250.
According to Sec. II, we decomposeC0, C1, k, ands by

spin-weighted spherical harmonics, and we manifest angular
momentum dependence. For example,

C05R12
J ~r !S12

J ~u!ei ~Vt1mf!, ~4.5!

L21
m†L2

mS12
J 52mJ

2S12
J , ~4.6!

mJ5A~J21!~J12!. ~4.7!

And then

dH0
i 5

M p

2 H D1/2

r FR12
J 1r

d

dr
lnS D

r 2D sJG~h~1!
i S12

J !

2
1

r FR11
J 2r 3

d

drS D

r 2D kJG~h~0!
i S11

J !J ei ~Vt1Mf!,

~4.8!

whereM5m1m8.
Each quantityh (1)

i S12
J and h (0)

i S11
J has spin weight

13/2, but not an eigenstate of total angular momentum, re-
spectively. Hence we need decompose them into (S13/2

J11/2)
and (S13/2

J21/2), which are eigenstates of the total angular mo-
mentum. It is easy to check the equations

L21/2
M† L3/2

M ~h~1!
i S12

J !52mJ~h~0!
i S11

J !2mJ
2~h~1!

i S12
J !,

~4.9a!

L21/2
M† L3/2

M ~h~0!
i S11

J !52mJ~h~1!
i S12

J !2~mJ
213!~h~0!

i S11
J !.

~4.9b!

From these equations, we can decompose (h (1)
i S12

J ) and
(h (0)

i S11
J ) as

h~1!
i S12

J 5j i
S13/2

J11/22S13/2
J21/2

q22q1
, ~4.10a!

h~0!
i S11

J 5j i
q1 S13/2

J11/22q2 S13/2
J21/2

2mJ~q22q1!
, ~4.10b!

wherej i are arbitrary Grassmann odd constants andq1,2 are
the extremal limit (Q251) values of Eq.~2.7!,

q1531A914mJ
252~J12!,

q2532A914mJ
2522~J21!. ~4.11!

BecauseD5(r 21)2 in the extreme case, Eq.~4.8! is rewrit-
ten as
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dH0
i 5

M pD1/2j i

2r ~q22q1!FS13/2
J11/2S F11

J 2
q1

2D1/2mJ

G12
J D

2S13/2
J21/2S F12

J 2
q2

2D1/2mJ

G11
J D Gei ~Vt1Mf!,

5
M pD1/2j i

2r ~q22q1!FS13/2
J11/2H F11

J 2
q1

2

rD1/2

mJ
2r 12q1

3S D2
†2

3

r DF11
J J

2S13/2
J21/2H F12

J 2
q2

2

rD1/2

mJ
2r 12q2

3S D2
†2

3

r DF12
J J Gei ~Vt1Mf!, ~4.12!

where we use the relation~2.17!. Equation~4.12! shows that
the helicity-(13/2) modes withJ11/2 are generated by un-
broken supersymmetry from the helicity-(11) mode F11

J

with total angular momentumJ or the helicity-(12) mode
F12

J11 with J11.
From Eq.~4.12!, the radial partsY

13/2
Js of perturbed cur-

vatures of gravitini are generated fromY1s
J as

Y
13/2
kJs 5jk@Y1s

J 2Cs
J~r ! L2Y1s

J # ~4.13a!

or, equivalently,

jkF2iV1
1

Cs
J 2Cs

JQs1
1

2
P3/2GY1s

J

5F2iV1
1

Cs
J1

1

2
P3/2GY13/2

kJs 1L2Y
13/2
kJs ,

~4.13b!

where

Cs
J~r ![

qsr
2D3/2

2mJ
2Ds

, Ds[D2S 11
2qs

mJ
2r D , ~4.14!

andJs is J1 1
2 for s51 andJ2 1

2 for s52. Equations~4.13!
are our main result, and in principle, we can also obtain the
relations between potentials of perturbations with different
helicities. Hereafter we omit the indexk which distinguishes
two gravitini.

From Eqs.~4.13!, we can obtain the relation between re-
flection and transmission amplitudes. From them, it follows
that Y

13/2
Js derived from Y1s

J(1`, in) and Y1s
J(1`,out)(s51,2)

have, respectively, the asymptotic behaviors, atr *→`,

Y
13/2
Js ;Y

13/2
Js~1`, in! and Y

13/2
Js ;gs Y

13/2
Js~1`,out! ,

~4.15!

wheregs[( iVqs /mJ
2)Ks /K3/2 and ugsu51.

Similarly, it follows thatY
13/2
Js derived fromY1s

J(2`, in) and
Y1s

J(2`,out)(s51,2) have, respectively, the asymptotic behav-
iors, atr *→2`,

Y
13/2
Js ;Y

13/2
Js~2`,out! and Y

13/2
Js ;gs Y

13/2
Js~2`, in! .

~4.16!

Therefore the asymptotic form ofY
13/2
Js derived from the

solution forY1s
J (s51,2) having the asymptotic behavior

Y1s
J ;Y1s

J~1`, in!1Rs
J~V!Y1s

J~1`,out! ~r *→`!

;Ts
J~V!Y1s

J~2`,out! ~r *→2`!, ~4.17!

has the asymptotic behavior

Y
13/2
Js ;Y

13/2
Js~1`, in!

1Rs
J~V!gsY13/2

Js~1`,out!
~r *→`!

;Ts
J~V!Y13/2

Js~2`,out!
~r *→2`!. ~4.18!

Accordingly, we obtain the relations of reflection and trans-
mission coefficients,

R3/2
Js ~V!5gsRs

J~V! and T3/2
Js ~V!5Ts

J~V! ~s51,2!.
~4.19!

Thus, under a suitable shift of angular momenta, while the
amplitudes of the transmitted waves are identically the same
for three perturbed fields, the reflected amplitudes differ only
in their phases.

V. SUMMARY

In the previous section, using the unbroken supersymme-
try that remains on the extreme Reissner-Nordstro¨m black
hole, we obtained the relation between the reflection and
transmission coefficients of decoupled modes with~helicity,

total angular momentum! 5(1,J), ( 3
2 ,J1 1

2 ), (2,J11).
These relations are also expected for the perturbations

about the superpartners of the extreme Reissner-Nordstro¨m
black hole@20# and for matter multiplets about them.

In a previous paper@15#, we observed that the Regge-
Wheeler potential of gravitational perturbation coincides
with the one of electromagnetic perturbation by inversion of
the tortoise coordinate, that is, exchange of the horizon for
infinity and vice versa. It is interesting to understand the
above correspondence by using the relations of the perturba-
tions obtained in the previous section.

ACKNOWLEDGMENTS

The author would like to thank H. Onozawa, T. Mishima,
and H. Ishihara for valuable comments and stimulating dis-
cussions. He also appreciates Professor A. Hosoya for con-
tinuous encouragement. This research was supported in part
by the Scientific Research Fund of the Ministry of Educa-
tion.

4932 56TAKASHI OKAMURA



@1# E. Witten and D. Olive, Phys. Lett.78B, 97 ~1978!.
@2# P. Hajicek, Nucl. Phys.B185, 254 ~1981!.
@3# G. W. Gibbons, inSupersymmetry, Supergravity and Related

Topics, proceedings of the XVth GIFT Seminar, edited by F.
Augila et al. ~World Scientific, Singapore, 1985!.

@4# C. Teitelboim, Phys. Lett.69B, 240 ~1977!.
@5# S. Deser and C. Teitelboim, Phys. Rev. Lett.39, 249 ~1977!;

M. Grisaru, Phys. Lett.73B, 207 ~1978!.
@6# E. Witten, Commun. Math. Phys.80, 381~1981!; J. M. Nester,

Phys. Lett.83A, 241 ~1981!.
@7# G. W. Gibbons and C. M. Hull, Phys. Lett.109B, 190 ~1982!.
@8# K. P. Tod, Phys. Lett.121B, 241 ~1983!.
@9# R. Kallosh, A. Linde, T. Ortin, and A. Peet, Phys. Rev. D46,

5278 ~1992!.
@10# G. W. Gibbons, D. Kastor, L. A. J. London, P. K. Townsend,

and J. Traschen, Nucl. Phys.B416, 850 ~1994!.
@11# R. Kallosh, Phys. Lett. B282, 80 ~1992!.
@12# P. Cordero and C. Teitelboim, Phys. Lett.78B, 80 ~1978!; R.
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