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Scattering off the extreme Reissner-Nordstrm black hole in N=2 supergravity

Takashi Okamura
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The scattering amplitudes for the perturbed fieldsNof2 supergravity about an extreme Reissner-
Nordstran black hole are examined. Owing to the fact that the extreme hole is a BPS state of the theory and
preserves an unbroken global supersymmeily (), the scattering amplitudes of the component fields should
be related to each other. In this paper, we derive the formula of the transformation of the scattering amplitudes.
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I. INTRODUCTION renormalization for the MP solutions as a guiding principle
to the final theory.

Solitons that are nonperturbative configurations play an Thus, it is very significant to investigate extreme black
important role for studying nonperturbative aspects of quanholes in the plassmal and semu;lassmal frameworks through
tum field theories. A soliton is a classical solution which is ageneral relativity and supergravity. To better understand ex-
stationary, regular, and classically and quantum-”eme ho!e_s 'ghat are the lowest energy states fc_)r given
mechanically stable configuration with finite localized en-CNarges, it is important to study the fluctuatitexcitation

; out them.
ergy. Solitons often have some conserved charges. From tr?@ . .
stability of the configurations in classical and quantum Originally, the study of the perturbation about the extreme

) . Reissner-Nordstm hole was motivated by the interest in the
theory, we may think of a soliton as the lowest energy state i conjecture in supergravifi2] ang by the interpre-

whose energy iS. given by the charges. Further we may ex; tion problem of the paradoxical thermal properties of
pect the inequality between the mass and charges of a so treme-dilaton black holdd3]

ton. In fact, we have the inequality in supersymmetric theo- pecently in the study of the method of calculating quasi-
ries and call saturated states Bogomol'nyi-Prasadnormal frequencies of the extreme Reissner-Nordstole,
Sommerfield (BPS states[1]. Although BPS states are opozawaet al. numerically[14] found that the quasinormal
massive and break supersymmetry, they still have some URrequencies of gravitational waves and electromagnetic
broken supersymmetry. waves about it coincide by a suitable shift of the angular
In the Einstein-Maxwell theory, extreme Reissner-momentum indices. Because of the fact that the quasinormal
Nordstran solutions behave as gravitational solitdi®s3].  frequency is the resonance pole of scattering waves, we may
The Einstein and Einstein-Maxwell systems can be embedexpect that gravitational and electromagnetic waves have the
ded in supergravity theories. In asymptotically flat spacesame reflection and transmition amplitudes. Subsequently,
time, we can obtain global charges that generate rigid supethey established the coincidence betw&matrices of per-
symmetry{4]. Therefore we can follow the argument in rigid turbations of gravitational, electromagnetic, and spin-3/2
supersymmetry formally. Fd¥= 1 supergravity positivity of fields (gravitinip about the extreme Reissner-Nordstro
the energy is suggestdd,5]. Subsequently Witten estab- background in thél=2 supergravity by finding relation be-
lished the positivity for general relativity using the trick of a tween the Regge-Wheeler potentials of perturbatidit.
“Witten spinor” [6]. Further, using the “Witten spinor” From the fact that the extreme Reissner-Nordstiwle is a
motivated by the transformation law of gravitini =2  BPS state in extended supergravity, we expect that the coin-
supergravity, Gibbons and HUlf] established the inequality cidence is related to the fact that BPS states preserve unpro-
between the mass and the electromagnetic charges. FurtH&"n Supersymmetries. The purpose of this paper is to derive
they showed that the saturated configurations are Majumdaf€ relation between scattering matrices of graviton, gravi-
PapapetroUMP) solutions, which are assemblages of thetini, and photo'n using _supersymmetnc transformation. .
extreme Reissner-Nordétroholes, and that the MP solu-  1he Paper is organized as follows: In Sec. Il we briefly

tions have unbroken supersymmetries. More generalizatiorf§ViéW the perturbation equations through the Newman-
of their results are available in Ref8—10. Penrose formalism and the scattering problem. In Sec. Il we

In addition. the nonrenormalization theorem of the on-9ive the supersymmetric transformation law between the cur-

shell effective action for the MP solutions was established’atures of perturbed fields. In Sec. IV we seek the correspon-
[9,11]. Although supergravity has better ultraviolet behaviordence between the radial parts of the perturbations with the
than general relativity, it is known that supergravity is non-Suitable total angular momentum and the relations of the
renormalizable at the perturbative level and is not regardeéeﬂeCt'on and transmition coefficients for them. Section V is

as the final theory. However, we may expect that the finaf€voted to a summary.

theory should include supergravity and may think of the non- Il PERTURBATION EQUATIONS

By linearizing N=2 supergravity[16] about a purely
*Electronic address: okamura@th.phys.titech.ac.jp bosonic background, we have the perturbation equations for

0556-2821/97/5@)/492717)/$10.00 56 4927 © 1997 The American Physical Society



4928 TAKASHI OKAMURA 56

the linearized Einstein-Maxwell system and for the linear- The radial partsy , 4(r) of perturbations are constructed
ized O2) doublet of spin-3/2 fields, from which they are in two ways. One is by the perturbed Weyl scalag and the
decoupled. Here we follow Chandrasekfia?7] and Torres perturbed spin connectiokn as

del Castillo and Silva-Ortigozf18] for bosonic perturba-

L .. : 2
tions and fermionic ones, respectively. A

qsk(r)

The line element of the Reissner-Nordstresolution is Y+S(r):r_3':+5(r)’ Frs=Realn)+ » 29
given as ‘
V=R, 5(1)S;5(0)e' M),
a2=20 g2 g2 r2age st a2 -
Y Aqn 4 rr(deHsimo des), Kk=2r2K(r)S, 4(9)ei@trmé), (2.10
(2.2
where the constant is an eigenvalue of the spin-weighted
A(r)=r?-2r+Q?, (2.2 spherical harmonics,
where we adopt the uni=1, M being the mass of the L1108 =S5, LL11S,1=—p?S,y,
background black hole, an@ is the electric charge of the (2.1
black hole.
On the background of the Reissner-Nordstrsolution, p=vE-1)(I+2). (212

the bosonic perturbations are described by the Regge- + .
Wheeler equafc)ion and the fermionic ones by gsimilar e(?l?:[he operator<, and L, are defined by
tion through the Newmann-Penrose formalism. Since this m
background is static and spherically symmetric, the perturba- L,=0dy+ ——-+ncot, (2.133
tion equations are separable and nontrivial equations are ra- sing

dial part ones. m
For the perturbations with helicity 41,+3,+2), L1=0,— =+ ncots. (2.13n
. . . ; sing
their equations of radial parts of the perturbations,
Y.«(r)(s=1,%,2), in thephantom gauggl9], are given by  Besides, the functionS, ; andS, , are related in the manner

A2Y+s+ Ps(r) A_Y.,s—=Qs(r)Y,s=0, (2.3 L7Si5=pSy1, £113+1=—,LLS+2. (2.149
d Another is by the Weyl scalaF; and the spin connection
A= +iQ, A?=A,A_, (2.9 o. Using G, 5, which are defined as
dr,
q
d _Ad , G =Rea(n)+ 7 s(), (219
dr, rZdr’ (29
. . . . 1 :
wherer , is the tortoise coordinate arfd is the frequency of P =——R,(r)S,(0)e'@trme),
perturbations. We omit the index of distinguishing two gravi- rv2
tini because they follow the same equation as expected from .
the O2) symmetry between them. o=r5(I)S, ,(h)e' M, (219

EachPg(r) andQq(r) is given by, fors=1,2, and the relations

d 20

r8
= — =A2 3 2q
Ps(r) dr, In(DS)’ Ds=A% 1+ ,uzr)’ (2.69 A(D;— F)F+S=,u 1+ ;Q?S)G+S, (s,s'=1,2; s#¢'),
(2.17
— ZA 2qs Qs ' . ’
Qsr)=p pr 1+;2? 1+ % (s,8'=1,2; s#9'), ir20 r—1 .
Iu’ = —_— _ = *
(2.6b Dy=9,+ A +2n A D,=(Dn*, (2.18
whereq; , are defined by G, are related tor .

In order to obtainY ,3/5(r) for the helicity-(+ 3/2) per-
q;=3+V9+4Q%u? q,=3—9+4Q%u% (2.7  turbations, we first construct the supersymmetric gauge-
invariant quantitiesH from the supercovariant curvature

And for s=3/2, ¥ Agc of the spin-3/2 fieldsy, (i=1,2) as
3 i _api AqBAC
Ps/z(r)Er—g(f2—3r+2Q2), (2.8a Ho=Y(agg0"0 0", (2.19
. NV
A2 2 W' ge=3| Dgar 9o + el Fley™ |A'C>}’
Qa/2(r)= —5(Ar<+2r—2Q°). (2.8 p

r

(2.20
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where the boldface letters indicate the background quantities (Cin) Ko(1+ 2q5/,u2r+)A”S”
ando” is a principal spinor of 5 that is a two-spinor rep- ~ Yis '~ A pers 773

. S 4r iQ=2(r, —D)/r [1Q—=(r,—Q)/r
resentation of the self-dual part of electromagnetic field e (re =Dl (re=QO/r3]

strengthF,,,. D,, is covariant derivative with respect to the xXexp(—iQr,), (2.30
spin  connection®,,ap= ®,Ag€a’p’ + W a5 €pg, fOr €x-
ample, and, fors=3/2,
D,unA:&/.LnA—}_w/.LABnB' (22]) r+_1
A _ _ N Y<;3°7é°“°~4i9<i9— . )exp:(+iﬂr*),
From Hy, we obtain the radial parts of the helicity-@/2) 2ry
perturbations,
, K_Alsl
. 3/2 . Y(+_307ém)~ 4” H . : 2 . 3 2
Y‘+3,2(r)=—r2 R 32, (2.22 Ar Q= (ry = D)/2r Q= 3(r, —1)/r% ]
Xexp(—iQr,). (2.31)
Hb=R. 3/2(1)S:32(0) €@™), (2,23

Using the above basis, the scattering problems of the per-
wherem is +1/2 or —1/2 and the spin-weight 3/2 spheri- turbations are set as
cal harmonicsS, 3;, satisfies
Y o~ YU R(Q) YO (r, o0
LY 115L312S 1 32= —NS. 312, (2.249 e {(0)Yos (Fem)
~TLOYTM (1= =), (2.32
A== )0s+3) (Js=3.3,...). (2.25
) o ) where Ry and T are the reflection and transmition coeffi-
Equation(2.3), which is derived from the above proce- cients, respectively.
dures, is a “master” equation for the physical process of
linear perturbations about black holes, for instance, the scat-
tering problem. The scattering problem of the linear pertur- ll. THE TRANSFORMATION LAW
bations about black holes is closely related to that of the OF THE CURVATURES
one-dimensional scattering problem of HG.3) [17]. The
scattering problem as a one-dimensional system is easily fo
mulated by converting Eq2.3) into a Regge-Wheeler-type
equation without the first order derivative teftv,18. Here
we only show the results in terms ¥f, ¢ variables.
To set the scattering problem, we need the normalize
in(out)going wave forms forY . ¢ at the asymptotic regions
(r,—*x). At r,—oo, its asymptotic form of each normal-

In the previous section, we summarized the perturbation
E'quations governing the physical modes. On the extreme
Reissner-Nordstra background, the quasinormal frequen-
cies of the perturbations with different helicity coincide by a

uitable shift of the total angular momentJriv,15. This
act suggests that the reflection and transmition amplitudes
are equivalent among the perturbations with different helic-

ity.
ized perturbationY , ((s=1,3,2) becomes It is well known that the extreme Reissner-Nordsiro
) _ background has an unbroken global supersymmetiy=#?
Y5~ —402e 1% and supergravity[ 7]. This implies that the perturbations with the
different helicity are related to each other.
K . In this section, we obtain the supersymmetric transforma-
Yoo~ — > __gilr, (2.26  tion laws between the curvatures of the perturbed fields

———e
40?2l throughN=2 supergravity. The actions &f=2 supergrav-

ity are represented by
where|s|=2 for s=1,2 and|s|=3 for s=%. HereK; are

defined by Myz%e 1 oo 1 AR =T
, L= =R 5 e (Yp,et" D, d,
Ke=p?(u?+2)+2iQBs, Bi=q, (s;s'=125s#53'),
(2.27 _ ‘ﬂlAr,LeﬁA’Dpl//IAg)
K3/2=2iQ (k312210 B3/2), (2.28 o 0 i A o KB
" 3o S €T (€ ) (€94, g,,)
k3=[(Js= 5 (Is+3)(Is+ )12 B3=4. (229 P
P S\ A =t e,\ ~ v
Similarly, atr, — —o°, for s=1,2, — (€l w',f Ynr,) (6“@58 wB,U)]—ZFWF”

o . r.—Q? . i L o
Y '°“t)~4|Q(|Q— =3 )exp(+|Qr*), +8Mp6uvp<r|:paeu (P, + 0 ), (3D

+
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e Lo ia i TmT -

F o= Pt i N0 W) (k=12
(3.2

whereM,=(87G) 2 is the Planck mas/, —eiaAA',

andD,, |s a covariant derivative with respect o, b The

connectlonw#ab including the torsion is given by a tetrad
and gravitini through varying the action with respect to

®pabs

wﬂab:wLO)ab_*_ K#ab, (3.33

1
C()(O)éi‘lb: eava[ eb _ - ecﬂeaveb)\ﬁveg_ (a<—>b),

Iz i )
(3.3b
i _ _
K ab— eavwl a.bAA’lpl
© 2 A'[ |A]v]
2M, #
1 ava b\ T cAA i
26 e I,UA/ Uan | —(a—b), (3.30
and the curvature is given by
R,,%"=20[,0,1%%+ 20,0 ", (3.49
Rab: eg’“egRWbc. (34b)

TAKASHI OKAMURA 56

They are transformed according to

M i . .
IABCZTPRBCADCV:D EG'J[D(BA FC)A]OZ]A/"‘O(lﬁZ),
(3.79
SPiA :%R AD i_i_ ij[D IE)AB]—J_
B'C'T 5 NBrCr DT 5 € B(B’ @y
1
2M F FB’C’aD+O($ ) (37b)

Because we will analyze the perturbations about a purely
bosonic background, it is sufficient to obtain the transforma-
tion laws at linear order of,, .

We introduce an expansion paramekeand replace the
fundamental fields, tetrad, connection, gravitini, and electro-
magnetic potential about a background as, for example,
Ynu— 1/)Aﬂ+)\¢AM, where we use boldface for the back-
ground guantities and standard letters for the perturbed quan-
tities, respectively. Various equations and relations for per-
turbed fields are given by expanding with respeck to

Let us consider supersymmetric transformation laws. Be-
cause ofx,UAuzo, the bosonic background quantities are in-
variant under a supersymmetric transformation. On the other
hand, fermionic quantities generally change due to a non-
trivial bosonic background. For example, the background
gravitini transform under the supersymmetric transformation
into

The action is invariant under the supersymmetric transfor-

mations as
[ o
%0, =~ oa; (@a0a" Yyt @p oY),
(3.53
oA, ==}l (ahyly,—a™ g, ), (3.5
SYp, =MD aph—i€FaPe,gaal®, (350

S, =MD, as—i€/F,Pe,pp al® (3.9

Therefore, if there are some supercovariantly constant

spinors(SCCS’s

R —,
D,{a— M €lFA® epa =0, (3.9
p

the background configurations are invariant under the super-
symmetric transformations that are induced by SCCS's. And

WhereaA are Grassmann odd transformation parameters anif€n, unbroken supersymmetry persists on the system con-

Fag is a two-spinor representation of the self-dual part of

Fuv-

We can check thab ., andF,

, are supercovariant, i.e.,

sisting of the perturbed fields.
Next, the perturbed supercovariant curvatures of gravitini
transform into

that their transformations have no derivative of transforma-

tion parameters. For the spin-3/2 fields, we introduce the 5\1,'

supercovariant curvatures @f,g, =€k, ¥, in the two-
spinor representation:

: , P,
D gjar /Py + M—pf”FAmWA A’C)}’
(3.63

: 1
iA = —]
v BC 2

. 1 . i -
\IIIABrcr = §|: DB(BrlpIABcr)_ M_pEIJ FABEJ(—BICI)B:| .

M ) i —
p ’
) RBCADCYID+§5”[D(BA Feyal al,

i , .
+ Efljaa(BA [waC)DFDA+ walAlDFC)D] an,
(3.10

where we omit the transformation laws #“g, ., because
they vanish due to the equations of motion.

Since the physical modes of gravitini are given deg,
we are interested in the transformation lawsHf generated
by SCCS's,h,
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i oo i where we, of course, adopt the phantom gagge ¢,=0.
Ho=—[40 V1= ¢ Vol According to Sec. II, we decompodé,, ¥4, k, ando by

spin-weighted spherical harmonics, and we manifest angular

i - . momentum dependence. For example,
+ 5 €(Dacbo) (£ {gr) M= L1111

. ; ; . - ; Wo=R),(r)S),(9)e'+md) 4,
+iél ¢O(ﬁ?{0,)_ 6?{1,))—i6” ¢1(0_?J('0,)_ Kfl(—l’))! 0 2( ) 2( ) (4.5
.13 LMLPS) = - 43S, 4.6

where {jo,=0"¢, and {;;,=¢"{, and they have the spin —_—

WeightSEi-)% and— 3, respge)ctively. And thenp o, ¥4, ¢y, o, m=NE=1)(I+2). 4.7)
and « are perturbed Weyl scalars, Maxwell scalar, and com-

plex spin coefficients, respectively. Furtheand 8 are back-  And then

ground spin coefficients.

IV. RELATIONS OF THE REFLECTION 5Hio=—
AND TRANSMISSION COEFFICIENTS

d (A ,
- Riz‘“a'n(ﬁ) |(m1)S%>)

In the previous section, we obtained the transformation _1 R’ _rgi é K| (5,S ) ei@trM)
law between the perturbed curvatures of gravitini. Using it rltt 7 drl\r? 0>+1 ’
we can relate the decoupled mod€s of perturbations
about the extreme Reissner-Nordstrblack hole. (4.9
On the extreme hole, there exist the supercovariantly con-
stant spinors whereM=m+m’. _
Each quantityn'(l)sl2 and 7S}, has spin weight
=2 i ()expim’ d), 41 +3/2, but not an eigenstate of total angular momentum, re-
Lo V2 7o) O)eXpim’ ) 413 spectively. Hence we need decompose them nﬁb@}éz)
Ua and (81—3/12/2) which are eigenstates of the total angular mo-
i i ., mentum. It is easy to check the equations
{iy=—— 71 (O)exim’ ), (4.1b d |
] EMI/zﬁlez( 7l|(1)31+ 2) =—puy( 7/‘(0)3]+ 1) - Mg( 77|(1)S«]+2),
wherem’ is + 3 or — 3 and 7}, satisfy (4.9a
ETEzni(o)= ET;,Zni(l)= 0, (4.29 ﬁl\fl/zﬁgﬂ/z( WI(O)Si 1) ==y 77|(1)S:]+2) - (/-L§+ 3)( WI(O)?E{lg)t-))
LT112M0)= M1 (4.2b From these equations, we can decompos@)slz) and
(7I|(0)311) as
mt i
Li12M0)= = Moy (4.29 Y12 Qd-1/2
i _Lio+3/2 +3/2
m mt M(1)S+2= '—q —q ) (4.109
where the operator§, and £, are the same operators as 2 M
defined in Egs(2.13 in the previous section and we mani-
fest azimuthal angular momentum dependence with imdex _ q; SEH—q —1/2
: . : : i i +3i2 U2 9132
The supercovariantly constant spinors satisfy the relation n(o)sil—g CPRCIECR) , (4.10b
JLM2 1

'_eij ¢12£/ =_ .V(ZLL_A,LAJFO_AVOA) CiA- (4.3 where¢' are a.rbi_trary Grassmann odd constants @nglare
My A the extremal limit Q?=1) values of Eq(2.7),

From Eq.(4.3), the transformation oH{), Eq. (3.1 be- 5
comes 0;=3+9+4u5=2(J+2),

r2

. =3—9+4u5=-2(J-1). 4.1
\POHYKU)% 02 pi=-2(3-1) (4.1

i Mp Al/Z
Moo=

Because\ = (r —1)? in the extreme case, E¢.8) is rewrit-

—V2(¥1—-2yK) 7(g)|€™?, (4.4 tenas
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1/2 i
SHi= MpA 3 +1/2( £ 1 J
0 2I’(qz—q1) +3/2 +1 ZA]‘/Z,LLJ +2
_ —3%2(,:.]2_ 9z GJl) gl (Qt+Mg)
+ + + !
2Al/21u‘]
_ MpA1/2§-i 11 FJ _% rAl/Z
2r(ae—an)| 2| Y 2 plreoq
3
X DZ_F)FJH]
1/2{': q2 rA”Z
T 94372 27 5 T
2 pir +20,
T 3 J i(Qt+Mo)
X Dz_r F+2 e ] (4'12

where we use the relatidi2.17). Equation(4.12) shows that
the helicity-(+ 3/2) modes withJ+ 1/2 are generated by un-
broken supersymmetry from the helicity-(L) mode Fil
With total angular momenturd or the helicity-(+2) mode
F25 with J+1.

From Eq.(4.12, the radial p<':1rt$(+3,2 of perturbed cur-
vatures of gravitini are generated froYYiF as

+3,2 =YL —Clr) A_YL]] (4.133
or, equivalently,
k| o; 1 J 1 J
f 2|Q+F_CSQS+E P3/2 Y+s
) 1 1
=2iO0)+ C_g+§P3/2 +3/2+A Y+3/2,
(4.13bh
where
r2A3’2 2
CAn="_— p=af 1+, 414
2u5Dg maf

andJq is J+ 3 for s=1 andJ— 3 for s=2. Equationg4.13

TAKASHI OKAMURA

Where'ysz(iﬂqs/ﬂJ)K /K3/2 and|ys|=1

Similarly, it follows thatY>s,,, derived fromY2; ™™ and

Y=o (s=1,2) have, respectively, the asymptotic behav-
iors, atr, — —oo,

Jg(—,in)

Jg (—o0,0ub)
Yoy Y ~s Yian

4327 Y 32 and Y7

+3/2

(4.19
of’s

Therefore the asymptotic form of 5, , derived from the
solution forYﬂrs (s=1,2) having the asymptotic behavior

Y= YIS RAQIYITOY (1, =)
(Q)YJ( o0, 0ut) (r*_>_oc), (417)
has the asymptotic behavior
Yiss/z Y+3/+20c In)+RJ(Q)7’S +3/+200 o (ry—)
~TAQYEL O (1, =), (4.18

Accordingly, we obtain the relations of reflection and trans-
mission coefficients,

RE(Q)=yRAQ) and TE,(Q)=TYQ) (s=12.

(4.19

Thus, under a suitable shift of angular momenta, while the
amplitudes of the transmitted waves are identically the same
for three perturbed fields, the reflected amplitudes differ only
in their phases.

V. SUMMARY

In the previous section, using the unbroken supersymme-
try that remains on the extreme Reissner-Norastidack
hole, we obtained the relation between the reflection and
transmission coefficients of decoupled modes Witélicity,
total angular momentum=(1J), (3,J+3), (2J+1).

These relations are also expected for the perturbations
about the superpartners of the extreme Reissner-Nomstro
black hole[20] and for matter multiplets about them.

In a previous papefl5], we observed that the Regge-
Wheeler potential of gravitational perturbation coincides
with the one of electromagnetic perturbation by inversion of
the tortoise coordinate, that is, exchange of the horizon for

are our main result, and in principle, we can also obtain thénfinity and vice versa. It is interesting to understand the
relations between potentials of perturbations with differentabove correspondence by using the relations of the perturba-

helicities. Hereafter we omit the indéxwhich distinguishes
two gravitini.

From Egs.(4.13, we can obtain the relation between re-

tions obtained in the previous section.
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