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Quantum inequalities in two-dimensional Minkowski spacetime
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Cornell University, Newman Laboratory, Ithaca, New York 14853-5001
(Received 3 June 1997

We generalize some results of Ford and Roman constraining the possible behaviors of the renormalized
expected stress-energy tensor of a free massless scalar field in two-dimensional Minkowski spacetime. Ford
and Roman showed that the energy density measured by an inertial observer, when averaged with respect to the
observers proper time by integrating against some weighting function, is bounded below by a negative lower
bound proportional to the reciprocal of the square of the averaging time scale. However, the proof required a
particular choice for the weighting function. We extend the Ford-Roman result in two Wayse calculate
the optimum(maximum possiblelower bound and characterize the state which achieves this lower bound; the
optimum lower bound differs by a factor of six from the bound derived by Ford and Roman for their choice of
smearing function(ii) We calculate the lower bound for arbitrary, smooth positive weighting functions. We
also derive similar lower bounds on the spatial average of energy density at a fixed moment of time.
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. INTRODUCTION AND SUMMARY -
fﬁ p(§)dé=1, 1.

In classical physics, the energy densities measured by all

observers are non-negative, so that the matter stress-energ%_ ) ) ) -
tensor T,, obeys T,,u?uP=0 for all timelike vectorsu?. which we will call the smearing function. LeE,,, be the

This “weak energy condition” strongly constrains the be- stress tensor, and let,t) be coordinates such that the metric

havior of solutions of Einstein’s field equation: once gravi- is ds?= —dt*+dx°. Define
tational collapse has reached a certain critical stage, the for-
mation of singularities becomes inevitaljlg]; traversable és[p]:j” pr(x)']'tt(x,O), 1.2
wormholes are forbidde2]; and the asymptotic gravita- —w
tional mass of isolated objects must be posif{i8¢

However, as is well known, in quantum field theory the . @ .
energy density measured by an observer at a point in space- ET[p]=J dtp(t) T (0t), (13
time can be unboundedly negati{4]. Examples of situa- -
tions where observers measure negative energy densities in-
clude the Casimir effedis] and squeezed states of ligis], ~ and
both of which have been probed experimentally. In addition,
the theoretical prediction of black hole evaporat{ai de-
pends in a crucial way on negative energy densities. If nature
were to place no restrictions on negative energies, it might be

possible to violate cosmic censorsHi®,9], or to produce Lo . : )
traversable wormholes or closed timelike cury&6]. As a The quantityéd p] is the spatial average of the energy den

consequence, in recent years there has been considerable §§Y OVer the spacelike hypersurface0, while & p] is the
terest in constraints on negative energy density that follow/Me average with respect to proper time of the energy den-
from quantum field theory. For reviews of recent results ancbity measured by an inertial observer, afip] is the time
their ramifications see, e.g., Refd1-14. average with respect to proper time of the energy flux mea-
In this paper we shall be concerned with so-called “quan-sured by an inertial observer. Of these three observabies,
tum inequalities,” which are constraints on the magnitudeand & are classically positive, whilér is classically posi-
and duration of negative energy fluxes and densities meaive when only the right-moving sector of the theory contains
sured by inertial observers, first introduced by Fgtfl] and  excitations.
extensively explored by Ford and Romgn11,12,16,1F. In the quantum theory, lefs il p] and &t i p] denote
the minimum over all states of the expected value of the
_ N observablesé{ p] and &;[p], respectively. Similarly, let
A. Quantum inequalities &k mirlp] denote the minimum over all states in the right
Consider a free, massless scalar fididin two dimen- moving sector of the expected value &f[p]. Ford and
sional Minkowski spacetime. We consider the following Roman have previously derived lower bounds &, p]
three different spacetime-averaged observables. Fix and&: p], for a particular choice of the smearing function
smooth, strictly positive functiop=p(&) with p. Specifically, they showed that1,17

Eclp]= f :dtpmfxt(o,t). (1.4
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Here Ci)R(v) acts on the right-moving sector ar&{(u) on

Er,mirl Po]=— 8w 1.9  the left-moving sector of the theory. The nonzero compo-
nents of the stress tensor in the,¢) coordinates are
and[15] Tuu(u)=:(9,P)% and
1 Tou(0)=:(3,0p)%, (2.2
Er mi =— , (1.6
F.min o] 1677 where the colons denote normal ordering. Define the right-
moving and left-moving energy flux observables
where
o 5R>[p]sf dvp(v)T,,(v) 2.3
po()=— 73 (1.7
and
The main result of this paper is that R .
EV0p1= [ dup(Tw. 2.4
£ —¢ —2¢ - fm WAk
il P1=Esmil P1= 28k mil 1= = 527 | dvTmSE e e have Edpl=Edpl=ER[p]+EV[p], while

(1.8 &[p]=EP[p]-V[p]. 1t follows that &Ermilpl
=Es minl P1=2E¢ minl P1=2E50{ p], Where

for arbitrary smearing functions(v). Equation(1.8) gener-
alizes the Ford-Roman results and shows that the qualitative nﬁ%[p]zmin@m[p]), (2.5
nature of those results does not depend on their specific states
choice of smearing functiotwhich was chosen to facilitate
the proofs of the inequaliti¢sas one would expect. Equation from which the first part of Eq(1.8) follows.
(1.8 also gives the optimum, maximum possible lower Thus, to establish Eq1.8) it is sufficient to consider the
bound on the averaged energy density, in contrast to thaght-moving sector of the theory and to show that
lower boundg1.5 and(1.6). For the particular choic€l.?)
of smearing function, Eq(1.8) shows that the optimum R) = p'(v)?
lower bounds are a factor of six smaller in absolute value Emnlp]=— 487 fo "olv)
than the bound$1.5) and(1.6).

Equation(1.8) holds not just for smearing function®v)  \ye derive the result2.6) in this section in two stages. First,
which are strictly positivgas is the Ford-Roman smearing j, sec. |1 A, we give a simple derivation which is valid only

function (1.7)], but also for smearing functions which are ¢, smearing functions which are strictly positive and for
strictly positive only in an open interval;<v<wv, (With  yhich the minimum over states in E€@.5) is achieved by a
v1,v2 finite) and zero elsewhere, as long @) is smooth  giate in the usual Hilbert spagef. Eq.(2.23 below]. Then,
on —oo<y <. For such smearing functions, the quantity j; gec. |1 B, we use the algebraic formulation of quantum

p'(v)?/p(v) appearing in Eq(1.8) should be interpreted to field theory to extend the proof to more general smearing
be zero wherp(v)=0. functions.

Equation(1.8) also shows that the lower bounds on the
temporal averages and spatial averages of energy are identi-
cal, which is not surprising in a two-dimensional theory.

We derive the resull.8) in Sec. Il below. In Sec. Il we The key idea in our proof is to make a Bogolubov trans-
discuss some of its implications: we show that the totalformation which transforms the quadratic fort.3) into a
amount of negative energy that can be contained in a finitsimple form. In general spacetimes such a Bogolubov trans-
region O<x<L at a fixed moment of time is infinite, but that formation is difficult to obtain, but in flat, two-dimensional
if >0 is a number such that, for some state,spacetimes it can be obtained very simply by using a coor-
(Tu(x,0))< —a for all x with 0<x=<L, thena cannot be dinate transformation, as we now explain.
arbitrarily large. We can write the mode expansion of the right-moving

field operator as

(2.6

A. Bogolubov transformation

II. DERIVATION OF THE QUANTUM INEQUALITY

- 1 o 1 .
) =—— | do—[e '"Ya,+H.c], (2.
We start by showing that the minimum values of the three R(v) 2 fo © \/zw[ ¢ 1. @7

observabless, &, and & that we have defined are not

independent of each other, cf., the first part of Ef.9 where H.c. means Hermitian conjugate. The Hamiltonian of
above. To see this, introduce null coordinatest+x, the right-moving sector is

v=t—X, so that the field operator can be decomposed as

~ _ e ,\TA
D(x,1) = D(v) + Dy (). (2.1) Hr JO dowa,a,,. (2.9
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Consider now a new coordinaté¢ which is a monotonic
increasing function ob,

V=1(v), (2.9

say, where the functiofi is a bijection from the real line to
itself. We define a mode expansion with respect to the
coordinate[ 18]:

Dr(v) =D fLV)]= dw—[e"‘”vb +H.cl.

(2.10

=
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A(v)=lim d,a5{H(v—0)—H[f(v)—F@)1}.

vV—V

(2.16
Using Eq.(2.14 we find
V/”(U) V//(U)Z
A= 22 8V ) 4V’(v)2}
— ! 1 ! (2 17)
T VN |

The relation(2.15 is the key result that we shall use.

Since the functiorf is a bijection, the algebra spanned by theNote that taking the expected value of E@.15 in the
operatorsa coincides with the algebra spanned by the op-yacuum state yields

eratorsb,,. [In Sec. Il B below we will consider the case
wheref is a bijection from a finite open intervab (,v,) to
the real line, and where correspondingly the operaﬁgrand
b span different algebrasThus, the operatorb can be
expressed as linear combinations of fhgs anda’’s, and
conversely. A

We now assume that there exists a unitary opet@asrch
that

sa,S'=bh,. (2.12

Such an operator will not always exist, as we discuss in Sec.
I B below, but for the remainder of this subsection we will

restrict attention to coordinate transformatians-V(v) for

which the operatofs does exist. It follows from Eq(2.11)
that

S'Pr(v)S=PR[f(v)]. (2.12

Consider now the transforrréT'Al'w(v)AS of the operator
T,,(v). Using Eq.(2.2) this can be written as

S'T,,(0)S=lim §'3;,[ Pa(v) Pr(v)—H(v—0)1S,
o 2.13

where

H(Av)=— %[In|Av|+wi®(—Av)] (2.14

is the distribution that the normal ordering procedure effec-

tively subtracts off. Here® is the step function. Equations
(2.2, (2.9, (2.12, and(2.13 now yield

S™T,,(v)S= lim 7,3, [PRLF (0) 1PRL f ()]~ H(v—)]

=Jm V’(v) avch( )&Vd)R(V) 9,9 H(v—v)
=V (0)% [ Pr(V) ]2~ A(v),
=V'(0)2T,,(V) = A(v), (2.15

where primes denote derivatives with respect tand

<dl|Tvv(v)|dl>=_A(U)! (218)
where| ) = S|0) is the natural vacuum state associated with
theV coordinate, which satisfids | ) =0. This reproduces
the standard formula for the expected stress tensor in the
vacuum state associated with a given null coordinate; see,
e.g., Ref[19].

Now integrate Eq.(2.19 against the smearing function
p(v). From Eqg.(2.3 this yields

SRR 15— f dvp()V (0)2T,,[V(0)]

—f dvp(v)A(v). (2.19

We now choose the coordinat® to be such that
p(v)V’'(v)=1; note that this prescription yields a bijection
v—V(v) since p(v)>0. The first term on the right-hand
side of Eq.(2.19 now becomeg dVT,,(V), which is just
the HamiltonianHg; cf. Eq. (2.8) above. Inserting the rela-
tion V' (v)=1/p(v) into Egs.(2.17) and(2.19 gives

S'ER[p]S=Hg-A, (220
where
1 . p(v)*
_Efdv\/p(v)[w(v)] Jdv p(v)
(2.20)

On the second line we have integrated by parts, and have
assumed thgb'(v)—0 asv— *= .

Itis clear from Eq(2.20 thatER)[p]=—A, smceHR is a
positive operator with minimum eigenvalue zero. Equation
(2.6) then follows from Eq.(2.21. Also, the state which
achieves the minimum value-A of £&®[p] is just the
vacuum statd )= S|0) associated with th& coordinate;
this is a generalize¢multimode squeezed state. Thé co-
ordinate is given in terms gf(v) by

V(v)=f

dv
p(v)

(2.22
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B. Algebraic reformulation

The derivation just described suffers from the limitation

that in certain cases the “scattering matri8’ will fail to
exist. This operatoB will exist when[20]

f dwf do'|B,.|2<>, (2.23
0 0
where
ﬁww;fw dv Loz oV )] (v)]e*‘“’”e*‘w"’(”).
- oo’
(2.29

The condition(2.23 will be violated unlesgV’ (v) —1|<1
everywhere, i.e., unless

p(v)>1/2 (2.25

everywhere. Therefore, for smearing functions which satisfy
the normalization conditiofil.1), the Bogolubov transforma-
tion to the mode basis associated with the new coordinat

(2.22 does not yield a well defined scattering opera$or

The proof outlined in Sec. Il A above is valid only for non-

normalizable smearing functions satisfying £g.25.

However, it is straightforward to generalize the proof to

smearing functions for which the conditig®.23) is violated
using the algebraic formulation of quantum field the[29],
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then a straightforward point-splitting computation exactly
analogous to that outlined in Sec. Il A above yields

(2.30

whereA (v) is the quantity defined by EqR.17) above. Now
choosingV’(v)=1/p(v) yields, in obvious notation,

(ER[p1),=(Hr)7—A, (2.3D)

whereA is given by Eq.(2.21) but with the domain of inte-
gration being ¢,v,). Finally we use the fact that the qua-
dratic formHpg is positive indefinite for all algebraic states
(not just for states in the folium of the vacuum sjat€he
remainder of the proof now follows just as before.

Fon0)=V'(0)2Fg-V(v)]-A(v),

IIl. IMPLICATIONS

In this section we discuss some of the implications of our
result (1.8). First, it is possible to deduce from EL.9
constraints on thenaximumenergy density rather than the
averaged energy density in a region of space. Specifically,
the quantity

min max (Ty(x,0))
statesO=x<L

(3.9

is bounded below for ani >0, which confirms in this con-
text a conjecture made in Réfl4]. To see that the quantity

as we now outline. The following proof also applies to (3.1) is bounded below, note thaﬁ'tt(X,tIO)ZTuu(U
smearing functions which are strictly positive in an open:X)+-}vU(v:_x), so that

regionuv<v<w, (with v, and/orv, finite) and which van-
ish outside that open region. For any algebraic staten
Minkowski spacetime, let

fgr”l(v):<Tvv(v)>7] (226)

denote the expected value of the component of the stress

tensor in the state. Hereg=g,, denotes the flat Minkowski
metric

JapdX2dxP= —dt?+dx?= —dudv, (2.27

wherex?=(x,t). Now suppose tha¥ is a coordinate on the
open interval {,,v,) [which may be (o,)] given by

V=f(v), wheref is a monotonically increasing bijection

from (vq,v,) to (—=,%). Consider the metrig,, which is
conformally related t@,, given by

QapdX@dxP=—dudV=—V'(v)dudv.  (2.29
This metric is defined on the submanifdidi of the original
spacetime defined by the inequality<v<wv,; the pair
(M,g.p) is itself a two-dimensional Minkowski spacetime.
We can naturally associate with the staten Minkowski
spacetime §,g,,) a state on the spacetimeM,dap)
which  has the same n point distributions

<<i>R(vl)...<I>R_(vn)>. It can be checked that the resulting al-
gebraic state; obeys the Hadamard and positivity conditions

max('AI'n(x,O))s max(i’uu(u)>+ max <'i'uv(v)>.
O=xs<L O<usL —L=sv=<0

(3.2

Thus, it is sufficient to bound each term on the right-hand
side of Eq.(3.2). Next, for any state, and for any smearing
function p(v) with support in[ —L,0] and normalized ac-
cording to Eq.(1.1), we have

(Elpl)= max (T,,(v)).

—L=<v=<0

3.3

One can write down a similar inequality for the other term on
the right-hand side of Eg3.2). Taking the minimum over
states and using Eg&.6), (3.2), and(3.3) now yields

min max <%tt(x,0)>>2 Max&gr minl 1
statesOs=x<L p

(3.9

where the maximum is taken over all smooth normalizable
smearing functiong with support in[O,L]. It is clear on
dimensional grounds that the right-hand side of B34) is
proportional to—7#/L2, and hence we obtain

min max (T(x,0))=—k
statesO<x=<L

0z (3.5

on the spacetimeM,g,p,) and so is a well defined state. If for some constark.

we define

Faatv) =(Tuu(v))7, (2.29

The second implication of our result is that thetal
amount of negative energy that can be contained in a finite
region O<x=<VL of space in two dimensions is infinite. This
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can be seen from our result applied to the observég[lp],
by taking the limit where the smearing functigr{x) ap-
proaches the function

EANNA E. FLANAGAN
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two dimensions, generalizing earlier results of Ford and Ro-
man[21]. Our result confirms the generality of the Ford-
Roman time-energy uncertainty-principle-type relatiadl:

that the amounfAE of energy measured over a tim¢ is
1, O=sx<lL, constrained by

Prol =1 @6

, otherwise.

In this limit the quantity&s mi[p] diverges. However, this AE= 4.9

divergence is merely an ultraviolet edge effect, in the sense

that states which have large total negative energies inside t%e also showed that the total energy in a one-dimensional

finite region will have most of the energy density concen- ; .
trated near the edgesyat 0 andx= L [this can be seen from b_ox 1S unbounded _below, but that the maximum energy den-
sity in such a box is bounded below.

Eq. (3.5], and furthermore such states will have compensat-
ing large positive energy densities just outside the finite re-
gion.
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