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We generalize some results of Ford and Roman constraining the possible behaviors of the renormalized
expected stress-energy tensor of a free massless scalar field in two-dimensional Minkowski spacetime. Ford
and Roman showed that the energy density measured by an inertial observer, when averaged with respect to the
observers proper time by integrating against some weighting function, is bounded below by a negative lower
bound proportional to the reciprocal of the square of the averaging time scale. However, the proof required a
particular choice for the weighting function. We extend the Ford-Roman result in two ways.~i! We calculate
the optimum~maximum possible! lower bound and characterize the state which achieves this lower bound; the
optimum lower bound differs by a factor of six from the bound derived by Ford and Roman for their choice of
smearing function.~ii ! We calculate the lower bound for arbitrary, smooth positive weighting functions. We
also derive similar lower bounds on the spatial average of energy density at a fixed moment of time.
@S0556-2821~97!07420-1#

PACS number~s!: 04.62.1v, 03.70.1k, 42.50.Dv

I. INTRODUCTION AND SUMMARY

In classical physics, the energy densities measured by all
observers are non-negative, so that the matter stress-energy
tensor Tab obeys Tabu

aub>0 for all timelike vectorsua.
This ‘‘weak energy condition’’ strongly constrains the be-
havior of solutions of Einstein’s field equation: once gravi-
tational collapse has reached a certain critical stage, the for-
mation of singularities becomes inevitable@1#; traversable
wormholes are forbidden@2#; and the asymptotic gravita-
tional mass of isolated objects must be positive@3#.

However, as is well known, in quantum field theory the
energy density measured by an observer at a point in space-
time can be unboundedly negative@4#. Examples of situa-
tions where observers measure negative energy densities in-
clude the Casimir effect@5# and squeezed states of light@6#,
both of which have been probed experimentally. In addition,
the theoretical prediction of black hole evaporation@7# de-
pends in a crucial way on negative energy densities. If nature
were to place no restrictions on negative energies, it might be
possible to violate cosmic censorship@8,9#, or to produce
traversable wormholes or closed timelike curves@10#. As a
consequence, in recent years there has been considerable in-
terest in constraints on negative energy density that follow
from quantum field theory. For reviews of recent results and
their ramifications see, e.g., Refs.@11–14#.

In this paper we shall be concerned with so-called ‘‘quan-
tum inequalities,’’ which are constraints on the magnitude
and duration of negative energy fluxes and densities mea-
sured by inertial observers, first introduced by Ford@15# and
extensively explored by Ford and Roman@9,11,12,16,17#.

A. Quantum inequalities

Consider a free, massless scalar fieldF in two dimen-
sional Minkowski spacetime. We consider the following
three different spacetime-averaged observables. Fix a
smooth, strictly positive functionr5r(j) with

E
2`

`

r~j!dj51, ~1.1!

which we will call the smearing function. LetT̂ab be the
stress tensor, and let (x,t) be coordinates such that the metric
is ds252dt21dx2. Define

ÊS@r#5E
2`

`

dxr~x!T̂tt~x,0!, ~1.2!

ÊT@r#5E
2`

`

dtr~ t !T̂tt~0,t !, ~1.3!

and

ÊF@r#5E
2`

`

dtr~ t !T̂xt~0,t !. ~1.4!

The quantityÊS@r# is the spatial average of the energy den-
sity over the spacelike hypersurfacet50, while ÊT@r# is the
time average with respect to proper time of the energy den-
sity measured by an inertial observer, andÊF@r# is the time
average with respect to proper time of the energy flux mea-
sured by an inertial observer. Of these three observables,ÊS

and ÊT are classically positive, whileÊF is classically posi-
tive when only the right-moving sector of the theory contains
excitations.

In the quantum theory, letES,min@r# andET,min@r# denote
the minimum over all states of the expected value of the
observablesÊS@r# and ÊT@r#, respectively. Similarly, let
EF,min@r# denote the minimum over all states in the right
moving sector of the expected value ofÊF@r#. Ford and
Roman have previously derived lower bounds onET,min@r#
andEF,min@r#, for a particular choice of the smearing function
r. Specifically, they showed that@11,17#
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ET,min@r0#>2
1

8pt2 ~1.5!

and @15#

EF,min@r0#>2
1

16pt2 , ~1.6!

where

r0~ t ![
t

p

1

t21t2 . ~1.7!

The main result of this paper is that

ET,min@r#5ES,min@r#52EF,min@r#52
1

24p E
2`

`

dv
r8~v !2

r~v !
,

~1.8!

for arbitrary smearing functionsr(v). Equation~1.8! gener-
alizes the Ford-Roman results and shows that the qualitative
nature of those results does not depend on their specific
choice of smearing function~which was chosen to facilitate
the proofs of the inequalities!, as one would expect. Equation
~1.8! also gives the optimum, maximum possible lower
bound on the averaged energy density, in contrast to the
lower bounds~1.5! and ~1.6!. For the particular choice~1.7!
of smearing function, Eq.~1.8! shows that the optimum
lower bounds are a factor of six smaller in absolute value
than the bounds~1.5! and ~1.6!.

Equation~1.8! holds not just for smearing functionsr(v)
which are strictly positive@as is the Ford-Roman smearing
function ~1.7!#, but also for smearing functions which are
strictly positive only in an open intervalv1,v,v2 ~with
v1 ,v2 finite! and zero elsewhere, as long asr(v) is smooth
on 2`,v,`. For such smearing functions, the quantity
r8(v)2/r(v) appearing in Eq.~1.8! should be interpreted to
be zero whenr(v)50.

Equation~1.8! also shows that the lower bounds on the
temporal averages and spatial averages of energy are identi-
cal, which is not surprising in a two-dimensional theory.

We derive the result~1.8! in Sec. II below. In Sec. III we
discuss some of its implications: we show that the total
amount of negative energy that can be contained in a finite
region 0<x<L at a fixed moment of time is infinite, but that
if a.0 is a number such that, for some state,
^T̂tt(x,0)&<2a for all x with 0<x<L, then a cannot be
arbitrarily large.

II. DERIVATION OF THE QUANTUM INEQUALITY

We start by showing that the minimum values of the three
observablesÊS , ÊT , and ÊF that we have defined are not
independent of each other, cf., the first part of Eq.~1.8!
above. To see this, introduce null coordinatesu5t1x,
v5t2x, so that the field operator can be decomposed as

F̂~x,t !5F̂R~v !1F̂L~u!. ~2.1!

Here F̂R(v) acts on the right-moving sector andF̂L(u) on
the left-moving sector of the theory. The nonzero compo-
nents of the stress tensor in the (u,v) coordinates are
T̂uu(u)5:(]uF̂L)2: and

T̂vv~v !5:~]vF̂R!2:, ~2.2!

where the colons denote normal ordering. Define the right-
moving and left-moving energy flux observables

Ê~R!@r#[E dvr~v !T̂vv~v ! ~2.3!

and

Ê~L !@r#[E dur~u!T̂uu~u!. ~2.4!

Then we have ÊS@r#5 ÊT@r#5 Ê(R)@r#1E(L)@r#, while
ÊF@r#5 Ê(R)@r#2 Ê(L)@r#. It follows that ET,min@r#
5ES,min@r#52EF,min@r#52Emin

(R) @r#, where

Emin
~R!@r#[min

states
^Ê~R!@r#&, ~2.5!

from which the first part of Eq.~1.8! follows.
Thus, to establish Eq.~1.8! it is sufficient to consider the

right-moving sector of the theory and to show that

Emin
~R!@r#52

1

48p E
2`

`

dv
r8~v !2

r~v !
. ~2.6!

We derive the result~2.6! in this section in two stages. First,
in Sec. II A, we give a simple derivation which is valid only
for smearing functions which are strictly positive and for
which the minimum over states in Eq.~2.5! is achieved by a
state in the usual Hilbert space@c.f. Eq.~2.23! below#. Then,
in Sec. II B, we use the algebraic formulation of quantum
field theory to extend the proof to more general smearing
functions.

A. Bogolubov transformation

The key idea in our proof is to make a Bogolubov trans-
formation which transforms the quadratic form~2.3! into a
simple form. In general spacetimes such a Bogolubov trans-
formation is difficult to obtain, but in flat, two-dimensional
spacetimes it can be obtained very simply by using a coor-
dinate transformation, as we now explain.

We can write the mode expansion of the right-moving
field operator as

F̂R~v !5
1

A2p
E

0

`

dv
1

A2v
@e2 ivvâv1H.c.#, ~2.7!

where H.c. means Hermitian conjugate. The Hamiltonian of
the right-moving sector is

ĤR5E
0

`

dvvâv
† âv . ~2.8!
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Consider now a new coordinateV which is a monotonic
increasing function ofv,

V5 f ~v !, ~2.9!

say, where the functionf is a bijection from the real line to
itself. We define a mode expansion with respect to theV
coordinate@18#:

F̂R~v !5F̂R@ f 21~V!#5
1

A2p
E

0

`

dv
1

A2v
@e2 ivVb̂v1H.c.#.

~2.10!

Since the functionf is a bijection, the algebra spanned by the
operatorsâv coincides with the algebra spanned by the op-
eratorsb̂v . @In Sec. II B below we will consider the case
where f is a bijection from a finite open interval (v1 ,v2) to
the real line, and where correspondingly the operatorsâv and
b̂v span different algebras.# Thus, the operatorsb̂v can be
expressed as linear combinations of theâv’s and âv

† ’s, and
conversely.

We now assume that there exists a unitary operatorŜ such
that

ŜâvŜ†5b̂v . ~2.11!

Such an operator will not always exist, as we discuss in Sec.
II B below, but for the remainder of this subsection we will
restrict attention to coordinate transformationsv→V(v) for
which the operatorŜ does exist. It follows from Eq.~2.11!
that

Ŝ†F̂R~v !Ŝ5F̂R@ f ~v !#. ~2.12!

Consider now the transformŜ†T̂vv(v)Ŝ of the operator
T̂vv(v). Using Eq.~2.2! this can be written as

Ŝ†T̂vv~v !Ŝ5 lim
v̄→v

Ŝ†] v̄]v@F̂R~ v̄ !F̂R~v !2H~v2 v̄ !#Ŝ,

~2.13!

where

H~Dv !52
1

4p
@ lnuDvu1p iQ~2Dv !# ~2.14!

is the distribution that the normal ordering procedure effec-
tively subtracts off. HereQ is the step function. Equations
~2.2!, ~2.9!, ~2.12!, and~2.13! now yield

Ŝ†T̂vv~v !Ŝ5 lim
v̄→v

] v̄]v†F̂R@ f ~ v̄ !#F̂R@ f ~v !#2H~v2 v̄ !‡

5 lim
v̄→v

V8~v !2] V̄F̂R~V̄!]VF̂R~V!2] v̄]vH~v2 v̄ !

5V8~v !2:@]VF̂R~V!#2:2D~v !,

5V8~v !2T̂vv~V!2D~v !, ~2.15!

where primes denote derivatives with respect tov and

D~v !5 lim
v̄→v

]v] v̄$H~v2 v̄ !2H@ f ~v !2 f ~ v̄ !#%.

~2.16!

Using Eq.~2.14! we find

D~v !5
1

4p F V-~v !

6V8~v !
2

V9~v !2

4V8~v !2G
52

1

12p
AV8~v !S 1

AV8~v !
D 9

. ~2.17!

The relation~2.15! is the key result that we shall use.
Note that taking the expected value of Eq.~2.15! in the
vacuum state yields

^cuT̂vv~v !uc&52D~v !, ~2.18!

whereuc&5Ŝu0& is the natural vacuum state associated with
the V coordinate, which satisfiesb̂vuc&50. This reproduces
the standard formula for the expected stress tensor in the
vacuum state associated with a given null coordinate; see,
e.g., Ref.@19#.

Now integrate Eq.~2.15! against the smearing function
r(v). From Eq.~2.3! this yields

Ŝ†Ê~R!@r#Ŝ5E dvr~v !V8~v !2T̂vv@V~v !#

2E dvr~v !D~v !. ~2.19!

We now choose the coordinateV to be such that
r(v)V8(v)51; note that this prescription yields a bijection
v→V(v) since r(v).0. The first term on the right-hand
side of Eq.~2.19! now becomes*dVT̂vv(V), which is just
the HamiltonianĤR; cf. Eq. ~2.8! above. Inserting the rela-
tion V8(v)51/r(v) into Eqs.~2.17! and ~2.19! gives

Ŝ†Ê~R!@r#Ŝ5ĤR2D, ~2.20!

where

D52
1

12p E dvAr~v !@Ar~v !#95
1

48p E dv
r8~v !2

r~v !
.

~2.21!

On the second line we have integrated by parts, and have
assumed thatr8(v)→0 asv→6`.

It is clear from Eq.~2.20! thatEmin
(R) @r#52D, sinceĤR is a

positive operator with minimum eigenvalue zero. Equation
~2.6! then follows from Eq.~2.21!. Also, the state which
achieves the minimum value2D of Ê(R)@r# is just the
vacuum stateuc&5Ŝu0& associated with theV coordinate;
this is a generalized~multimode! squeezed state. TheV co-
ordinate is given in terms ofr(v) by

V~v !5E dv
r~v !

. ~2.22!
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B. Algebraic reformulation

The derivation just described suffers from the limitation
that in certain cases the ‘‘scattering matrix’’Ŝ will fail to
exist. This operatorŜ will exist when @20#

E
0

`

dvE
0

`

dv8ubvv8u
2,`, ~2.23!

where

bvv85E
2`

`

dv
@v2v8V8~v !#

Avv8
e2 ivve2 iv8V~v !.

~2.24!

The condition~2.23! will be violated unlessuV8(v)21u,1
everywhere, i.e., unless

r~v !.1/2 ~2.25!

everywhere. Therefore, for smearing functions which satisfy
the normalization condition~1.1!, the Bogolubov transforma-
tion to the mode basis associated with the new coordinate
~2.22! does not yield a well defined scattering operatorŜ.
The proof outlined in Sec. II A above is valid only for non-
normalizable smearing functions satisfying Eq.~2.25!.

However, it is straightforward to generalize the proof to
smearing functions for which the condition~2.23! is violated
using the algebraic formulation of quantum field theory@20#,
as we now outline. The following proof also applies to
smearing functions which are strictly positive in an open
regionv1,v,v2 ~with v1 and/orv2 finite! and which van-
ish outside that open region. For any algebraic stateh on
Minkowski spacetime, let

Fg,h~v !5^Tvv~v !&h ~2.26!

denote the expected value of thevv component of the stress
tensor in the stateh. Hereg5gab denotes the flat Minkowski
metric

gabdxadxb52dt21dx252dudv, ~2.27!

wherexa5(x,t). Now suppose thatV is a coordinate on the
open interval (v1 ,v2) @which may be (2`,`)# given by
V5 f (v), where f is a monotonically increasing bijection
from (v1 ,v2) to (2`,`). Consider the metricḡab which is
conformally related togab given by

ḡabdxadxb52dudV52V8~v !dudv. ~2.28!

This metric is defined on the submanifoldM̄ of the original
spacetime defined by the inequalityv1,v,v2 ; the pair
(M̄ ,ḡab) is itself a two-dimensional Minkowski spacetime.

We can naturally associate with the stateh on Minkowski
spacetime (M ,gab) a state h̄ on the spacetime (M̄ ,ḡab)
which has the same n point distributions
^F̂R(v1)...F̂R(vn)&. It can be checked that the resulting al-
gebraic stateh̄ obeys the Hadamard and positivity conditions
on the spacetime (M̄ ,ḡab) and so is a well defined state. If
we define

F ḡ ,h̄~v !5^Tvv~v !& h̄ , ~2.29!

then a straightforward point-splitting computation exactly
analogous to that outlined in Sec. II A above yields

Fg,h~v !5V8~v !2F ḡ ,h̄@V~v !#2D~v !, ~2.30!

whereD(v) is the quantity defined by Eq.~2.17! above. Now
choosingV8(v)51/r(v) yields, in obvious notation,

^Ê~R!@r#&h5^ĤR& h̄2D, ~2.31!

whereD is given by Eq.~2.21! but with the domain of inte-
gration being (v1 ,v2). Finally we use the fact that the qua-
dratic formĤR is positive indefinite for all algebraic statesh̄
~not just for states in the folium of the vacuum state!. The
remainder of the proof now follows just as before.

III. IMPLICATIONS

In this section we discuss some of the implications of our
result ~1.8!. First, it is possible to deduce from Eq.~1.8!
constraints on themaximumenergy density rather than the
averaged energy density in a region of space. Specifically,
the quantity

min
states

max
0<x<L

^T̂tt~x,0!& ~3.1!

is bounded below for anyL.0, which confirms in this con-
text a conjecture made in Ref.@14#. To see that the quantity
~3.1! is bounded below, note thatT̂tt(x,t50)5T̂uu(u
5x)1T̂vv(v52x), so that

max
0<x<L

^T̂tt~x,0!&< max
0<u<L

^T̂uu~u!&1 max
2L<v<0

^T̂vv~v !&.

~3.2!

Thus, it is sufficient to bound each term on the right-hand
side of Eq.~3.2!. Next, for any state, and for any smearing
function r(v) with support in@2L,0# and normalized ac-
cording to Eq.~1.1!, we have

^ÊR@r#&< max
2L<v<0

^Tvv~v !&. ~3.3!

One can write down a similar inequality for the other term on
the right-hand side of Eq.~3.2!. Taking the minimum over
states and using Eqs.~2.6!, ~3.2!, and~3.3! now yields

min
states

max
0<x<L

^T̂tt~x,0!&>2 max
r

ER,min@r#, ~3.4!

where the maximum is taken over all smooth normalizable
smearing functionsr with support in @0,L#. It is clear on
dimensional grounds that the right-hand side of Eq.~3.4! is
proportional to2\/L2, and hence we obtain

min
states

max
0<x<L

^T̂tt~x,0!&>2k
\

L2 , ~3.5!

for some constantk.
The second implication of our result is that thetotal

amount of negative energy that can be contained in a finite
region 0<x<L of space in two dimensions is infinite. This
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can be seen from our result applied to the observableÊS@r#,
by taking the limit where the smearing functionr(x) ap-
proaches the function

rbox~x!5H 1, 0<x<L,

0, otherwise.
~3.6!

In this limit the quantityES,min@r# diverges. However, this
divergence is merely an ultraviolet edge effect, in the sense
that states which have large total negative energies inside the
finite region will have most of the energy density concen-
trated near the edges atx50 andx5L @this can be seen from
Eq. ~3.5!#, and furthermore such states will have compensat-
ing large positive energy densities just outside the finite re-
gion.

IV. CONCLUSION

We have derived a very general constraint on the behavior
of renormalized expected stress tensors in free field theory in

two dimensions, generalizing earlier results of Ford and Ro-
man @21#. Our result confirms the generality of the Ford-
Roman time-energy uncertainty-principle-type relation@11#:
that the amountDE of energy measured over a timeDt is
constrained by

DE*2
\

Dt
. ~4.1!

We also showed that the total energy in a one-dimensional
box is unbounded below, but that the maximum energy den-
sity in such a box is bounded below.
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