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I. INTRODUCTION

Calculations of Casimir energy in spherically symmetric
situations have attracted the interest of physicists for well
over forty years now. This is not strange, since in many
contexts the inclusion of quantum fluctuations about semi-
classical configurations turns out to be essential. Historically
a first far reaching idea involving vacuum energies origi-
nated with Casimir himself. He proposed that the force sta-
bilizing a classical electron model arises from the zero-point
energy of the electromagnetic field within and without a per-
fectly conducting spherical shell@1#. Having found an attrac-
tive force between parallel plates due to the vacuum energy
@2#, the hope was that the same would occur for the spheri-
cally symmetric situation.1 Unfortunately, as Boyer@3# first
showed, for this geometry the stress is repulsive@4,5#. Nowa-
days it is known that the Casimir energy depends strongly on
the geometry of the space-time and on the boundary condi-
tions imposed. This is still a very active field of research
because a satisfactory understanding of the behavior has not
yet been found. For a number of results obtained in the last
ten years see for instance@6–8#.

Actual interest in the Casimir effect results from a con-
siderable improvement of the experimental verification@9# as
well as from its possible relevance to sonoluminescence~see,
however,@10#.! A different source of interest results from the
MIT bag model in QCD@11–14#. In this connection there
had been a number of calculations for the spherical geometry
~see@15–18#!, but they are still not completed, for instance
for massive quark fields.

The Casimir effect was considered up to now mostly for

massless fields~e.g., in@19,20#!. In the case of massive fields
a number of new features as additional divergences@21# oc-
curs which call for a systematic renormalization procedure
@22#.

For massless fermions the zero-point energy was consid-
ered in@19,20#. The massless fermionic field inside and out-
side the spherical surface was analyzed in@20#. In the last
case, a cancellation of divergences between the inner and
outer spaces occurs and finite zero-point energies are found.
Considering only the inner space, divergences appear and it
is necessary to introduce contact terms and perform a renor-
malization of their coupling. The case of aD-dimensional
sphere has been investigated in@23#. Results for the massive
fermionic fields contain new ultraviolet-divergent terms in
addition to those occurring in the massless case, as has been
discussed in@21#. Further considerations, especially on the
renormalization procedure necessary in order to carry out
these calculations, and on its precise interpretation, can be
found in @22#.

In nearly all of the mentioned works the authors have
used a Green’s function approach in order to calculate the
zero-point energy. An exception is Ref.@22#, where, in the
general setting of an ultrastatic spacetime with or without
boundaries, a systematic procedure which makes use of zeta
function regularization was developed~see also@24#!. In this
approach, a knowledge of the zeta function of the operator
associated with the field equation together with~eventually!
some appropriate boundary conditions is needed. Recently, a
detailed description of how to obtain the zeta function for a
massive scalar field inside a ball satisfying Dirichlet or
Robin boundary conditions has been given by some of the
authors@25,26# of the present work. An analytical continua-
tion to the whole complex plane has been obtained and then
applied to find an arbitrary number of heat-kernel coeffi-
cients. In the ensuing Refs.@27,28# the functional determi-
nant has been considered too and, furthermore, the method
has been also applied to spinors@29,30# andp-forms@31,32#.
For an alternative approach involving scalars and spinors see
also the developments in@33#. All the above considerations
yield purely analytical and quite explicit formulas. In order
to actually obtain values for the Casimir energy, however, a
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1This could be expected because the Casimir force between plates

was shown to be the same as the force resulting from the retarded
~always attractive! van der Waals forces between the atoms of the
plates.
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numerical integration had to be performed. This has been
done in different cases, in particular for the massless scalar
and electromagnetic fields@34#, partly reobtaining previous
results.

Here we will consider the massive scalar field inside and
outside the spherical surface, separately. We will discuss in
detail the renormalization procedure which is necessary to
apply in this situation and, specifically, the differences oc-
curring with respect to the case when one assumes that the
field occupies the whole space. The final result for the zero-
point energy contains several constants which experience
renormalization and whose physical values can be deter-
mined only experimentally. However, for the massive
field—as is clear from dimensional grounds—nontrivial fi-
nite parts which depend on a dimensionless variable involv-
ing the mass are present, and we will, in this case, be able to
find here for the first time the complete, renormalized zero-
point energy.

The aim of this paper is to perform the first complete
~including numbers, respectively, plots! calculation of the
Casimir energy for amassivefield ~whereby we restrict our-
selves to a scalar field obeying Dirichlet boundary condi-
tions! in the spherical geometry. As it turns out this allows
for a number of conclusions concerning the normalization
conditions and the interpretation of the effect itself@espe-
cially backwards for the massless case in model~i! below# as
well as it adds a new piece to the puzzle on the sign. In
addition the present calculation should serve as a guideline
for work on more realistic models.

The organization of the paper is as follows. In Sec. II we
describe in detail the models considered and the regulariza-
tion and renormalization procedure employed. In Sec. III we
summarize briefly the formulas that are needed in the subse-
quent study of the zeta function of the problem at hand. We
shall start with the scalar field inside the ball. Some addi-
tional considerations are necessary because the representa-
tion given in the previous articles@25,26# was only appli-
cable when the mass of the field ism<1. Here we will
derive formulas which are valid for arbitrary mass and very
useful for numerical evaluations. All divergences and finite
parts of the zero-point energy are calculated and its renor-
malization is performed with some care. The explicit depen-
dence of the finite part in the mass is determined numeri-
cally. Afterwards, the exterior space is considered and a
corresponding analysis is performed for this situation. Add-
ing up both contributions, we see clearly how the diver-
gences cancel among themselves as well as the influence of
this cancellation on the compulsory renormalization process.
Section IV is devoted to conclusions. The appendix contains
some hints and technical details that are used in the deriva-
tion of the zeta function for the nonzero mass case.

II. DESCRIPTION OF THE MODEL
AND ITS RENORMALIZATION

The physical system that we will consider consists of two
parts.

~1! A classical system consisting of a spherical surface
~‘‘bag’’ ! of radiusR. Its energy reads

Eclass5pV1sS1FR1k1
h

R
, ~1!

whereV5 4
3 pR3 andS54pR2 are the volume and surface,

respectively. This energy is determined by the parameters
p5pressure,s5surface tension, andF, k, andh which do
not have special names.

~2! A quantized fieldŵ(x) whose classical counterpart
obeys the Klein-Gordon equation

~h1m2!w~x!50, ~2!

as well as suitable boundary conditions on the surface ensur-
ing self-adjointness of the corresponding elliptic operator on
perturbations. We choose Dirichlet boundary conditions as
the easiest to handle. The quantum field has a ground state
energy

E05 1
2 (

~k!
Al~k!, ~3!

where theAl (k)’s are the one-particle energies with the
quantum numberk.

For this system we shall consider three models, which
will behave in a different way. These models consist of the
classical part given by the surface and~i! the quantized field
in the interior of the surface,~ii ! the quantized field in the
exterior of the surface, and~iii ! the quantized field in both
regions together, respectively.

The ground state energy is divergent and we shall regu-
larize it by

E05
1

2(~k!
~l~k!!

1/22sm2s, Rs.2, ~4!

wherem is the known arbitrary parameter with the dimen-
sion of mass prescribed by the regularization and introduced
in order to get the correct dimension for the energy. The one
particle energiesAl (k) are determined by the eigenvalue
equation

~2D1m2!w~k!~x!5l~k!w~k!~x!, ~5!

together with Dirichlet boundary conditions on the surface

w~k!~x!u uxu5R50. ~6!

For the field in the interior, the meaning ofl (k) is obvious:
(k)5( l ,m,n), l ( l ,m,n)5Aj l 11/2,n

2 /R21m2, Jl 11/2( j l 11/2,n)
50.

For the calculations we use the corresponding zeta func-
tion:

z~s!5(
~k!

l~k!
2s . ~7!

In the interior region, we have

z~ int!~s!5(
l 50

`

(
n50

`

~2l 11!l~ l ,m,n!
2s . ~8!

For the exterior zeta functionz (ext)(s) we must take into
account that the radial quantum number is continuous. We
have to subtract the Minkowski space contribution. This pro-
cedure is well known~see, for example,@35#! and need not
be repeated here. In the case of the third model we take the
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spectrum as the union of the spectra of the first two models
and we simply add the interior and the exterior zeta func-
tions: namely,

z~ total!~s!5z~ int!~s!1z~ext!~s!. ~9!

This means that the interior and exterior region are indepen-
dent one from the other.

In any case the regularized ground state energy is given
by

E0
~mod!5 1

2 z~mod!~s2 1
2 !m2s, ~10!

where ‘‘mod’’ means the model: ‘‘int,’’ ‘‘ext’’, or ‘‘total.’’
Let us note that theregularizedenergy of the third model is
just the sum of the regularized energy of the first two mod-
els.

The divergent contributions of the ground state energy
can be found most easily using standard heat kernel expan-
sion

K~ t !5(
~k!

e2l~k!t;S 1

4pt D
3/2

e2tm2

(
j 50,1/2,1, . . .

`

Bjt
j ,

t→01, ~11!

by means of

z~s!5
1

G~s!
E

0

`

dtts21K~ t !, ~12!

where we have to take into account that, in the presence of a
boundary, coefficients with half integer numbers are non-
zero. As is well known and can be easily found from the
above formulas, in order to obtain the contribution of the first

five coefficientsBi ( i 50,1
2 ,1,32 ,2), one cannot simply puts

52 1
2 under the sign of the integral inz(s), respectively,s

50 in the energy, because this leads to a divergent integral
coming from the lower integration bound. An appropriate
analytical continuation is required. We will call the corre-
sponding contribution to the energyE0(div) . It reads

E0~div!52
m4

64p2
B0F1

s
2

1

2
1 lnS 4m2

m2 D G2
m3

24p3/2
B1/2

1
m2

32p2
B1F1

s
211 lnS 4m2

m2 D G1
m

16p3/2
B3/2

2
1

32p2
B2F1

s
221 lnS 4m2

m2 D G . ~13!

A remark is here in order. The zeta functional regularization
used leaves the contributions of the coefficients with half
integer index finite in the limits→0. This is a specific fea-
ture of the regularization, often much appreciated. However,
in other regularizations, as for example the proper time cut-
off @22#, these contributions are divergent. Equation~13!
then contains all contributions of the regularized zero point
energy which will experience renormalization.

The heat kernel coefficients needed in Eq.~13! are well
known ~see for instance@36#!. For the interior region,

B0
~ int!5 4

3 pR3, B1/2
~ int!522p3/2R2, B1

~ int!5 8
3 pR,

B3/2
~ int!52 1

6 p3/2, B2
~ int!5

16

315

p

R
.

In the exterior region,

Bi
~ext!5Bi

~ int! , i 5 1
2 , 3

2 , . . . , ~14!

Bi
~ext!52Bi

~ int! , i 50,1,2, . . . . ~15!

In order to perform the renormalization we choose as gen-
eral scheme the following: all contributions of the heat ker-
nel coefficients which can lead to divergences in some regu-
larization have to be subtracted by means of a
renormalization of the corresponding parameters in the clas-
sical part of the system. Thus, we have in each of the first
two models five divergent contributions. In the third model
we note that, in accordance with Eq.~9!,

E0~ total!
~div! 5E~div!

~ int! 1E~div!
~ext! ,

and owing to the known cancellation of divergent contribu-
tions, which is in fact due to Eq.~15!, only two of them
remain.

As physical system we will consider the classical part and
also the ground state energy of the quantum field together,
and write, for the complete energy,

E5E~class!1E0 . ~16!

In this context the renormalization can be achieved by shift-
ing the parameters inE(class)by an amount which cancels the
divergent contributions and removes completely the contri-
bution of the corresponding heat kernel coefficients. In the
first two models, we have

p→p7
m4

64p2F1

s
2

1

2
1 lnS 4m2

m2 D G , s→s1
m3

48p
,

F→F6
m2

12pF1

s
211 lnS 4m2

m2 D G , k→k2
m

96
, ~17!

h→h6
1

630pF1

s
221 lnS 4m2

m2 D G ,

where the upper sign corresponds to the first model and the
lower sign to the second. In the third model there are only
two contributions, which are divergent in some regulariza-
tions. The renormalization reads

s→s1
m3

24p
, k→k2

m

48
. ~18!

Within the method of zeta function regularization this is a
finite renormalization.

After the subtraction of these contributions fromE0 we
denote it byE0

(ren)5E02E0
(div) and the complete energy be-

comes

E5E~class!1E0
~ren! . ~19!
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In our renormalization scheme, we have defined a unique
renormalized ground state energyE0

(ren) . Often, the renor-
malization arbitrariness is removed by imposing some nor-
malization conditions. In this case a natural candidate would
be the requirement, thatE0

(ren) vanishes forR→`. This is
certainly fulfilled in our case. However, such a requirement
does not fix completely the renormalization in the first two
models, since a finite renormalization ofh is still possible.

With respect to this renormalization there is a qualitative
difference between the first two and the third model. In the
latter one some divergences have been canceled when adding
up the contributions from the interior and exterior regions.
The corresponding terms in the classical energy do not need
to be renormalized. In general, as mentioned in@22# and
much earlier in connection with the renormalization of QED,
those contributions which need renormalization are not of
quantum nature, but have to be present in the classical part of
the system and are to be determined from outside~like the
electron mass and charge in QED! or by the dynamics of the
classical part. For example, in the bag model one has to look
for a minimum of the complete energy while varying these
parameters. The contributions which do not need
renormalization—like the one resulting fromB0, B1, or B2 in
the third model—may be absent in the classical part and can
be considered as pure quantum contributions. In this sense
the third model contains only two classical parameters (s
andk).

Having in mind that only the complete energy has physi-
cal meaning, a change of the normalization conditions—
respectively, a finite renormalization—would be equivalent
to a change of the classical parameters and should not influ-
ence issues like that of finding a minimum of the complete
energy by varying the parameters of the classical part.

Special remarks are in order for the case of a massless
quantum field. There, only contributions fromB2 remain
~one performs the limitm→0 in the regularized expressions,
the Bi ’s are proportional tom422i). In the third model these
contributions are finite and can be considered as pure quan-
tum corrections. They yield, together with the finite contri-
butions ~cf. the quantityN in the next section!, the known
1/R contributions to the Casimir energy for a sphere and a
massless field with various boundary conditions. However,
in the models~i! and~ii ! theB2 contribution is divergent and
the corresponding 1/R term in the energy must be considered
as a classical contribution. Thus, in these cases the ground
state energy for a massless field can be removed by a finite
renormalization and the energy of the system remains for-
mally the classical one. In this sense there is no Casimir
effect. The same is true in the presence of a thick spherical
shell ~interior and exterior regions are separated by a finite
distance, with no quantum field!, because here no cancella-
tion between interior and exterior modes occurs.

Similar remarks hold not only for a spherical surface, but
also for an arbitrarily shaped one. For the infinitely thin sur-
face a cancellation between interior and exterior modes does
occur, while if it has a finite thickness this is not true any-
more.

III. CALCULATION OF THE GROUND STATE ENERGY

First we consider the interior case. As it is easily seen
from Eq. ~4!, the task that remains for the evaluation of the

zero-point energy is to perform a convenient analytical treat-
ment of the zeta function~8!. A precise way to obtain an
analytical continuation ofz(s) to s521/2 has been de-
scribed in@25,26# in detail, what allows us to be brief here.
We may write the zeta function for the interior space in the
form

z~ int!~s!5N~ int!~s!1 (
i 521

3

Ai~s!, ~20!

where theAi ’s are the contributions of the first five terms of
the uniform asymptotic expansion of the modified Bessel
functions asn→` andk→`, with n/k fixed. It is sufficient
to subtract these five contributions in order to absorb all
possible divergent contributions. A higher number of sub-
tractions is possible in order to speed up the convergence of
the remaining numerical expressions. We have calledN the
zeta function where all these asymptotic terms have been
subtracted:

N~ int!~s!5
sin~ps!

p (
l 50

`

~2l 11!E
mR/n

`

dxF S xn

R D 2

2m2G2s

3
]

]x F lnI n~nx!2 lnS enh

A2pn~11x2!1/4D
2

1

n
D1~ t !2

1

n2
D2~ t !2

1

n3
D3~ t !G , ~21!

being t51/A11x2 and h5A11x21 ln@x/(11A11x2)#. In
this formula the parameters can be put equal to21/2 under
the integration and summation signs. The evaluation of
N(1/2) is the remaining numerical task. The polynomialsDi
are

D1~ t !5 (
a50

1

x1,at112a[
1

8
t2

5

24
t3,

D2~ t !5 (
a50

2

x2,at212a[
1

16
t22

3

8
t41

5

16
t6, ~22!

D3~ t !5 (
a50

3

x3,at312a[
25

384
t32

531

640
t51

221

128
t72

1105

1152
t9,

and, in terms of their coefficients,xi ,a , the functionsAi(s)
are given by

A21~s!5
R2s

2ApG~s!
(
j 50

`
~21! j

j !
~mR!2 j

G@ j 1s2~1/2!#

s1 j

3zH~2 j 12s22;1/2!,

A0~s!52
R2s

2G~s!(j 50

`
~21! j

j !
~mR!2 jG~s1 j !

3zH~2 j 12s21;1/2!, ~23!
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Ai~s!52
2R2s

G~s! (j 50

`
~21! j

j !
~mR!2 jzH~211 i 12 j

12s;1/2! (
a50

i

xi ,a

G@s1a1 j 1~ i /2!#

G@a1~ i /2!#
.

It is easy to see that the above series are convergent for
umRu<1. Alternative representations valid for arbitrary val-
ues of mR are derived in the Appendix. Using the above
formulas, or alternatively, the ones given in the Appendix,
we can perform the renormalization and calculate the renor-
malized ground state energy numerically. The result for the
ground state energy is shown in Fig. 1 forR51 as a function
of m. For very small values of the argument,mR, the func-
tion goes to a finite, negative value~remember that we are
plotting RE0

(ren) , not E0
(ren)), whereas for large values of the

argument the function goes to zero.
The dependence ofE0

ren on the radius for fixed mass is
depicted in Fig. 2. This plot also exhibits a maximum for
mR.0.023, and here we have restricted the domain to a
region around it.

The zero-point energy in the exterior of the spherical sur-
face can be calculated in a much similar manner. Indeed,
only a few changes are necessary. Subtracting the
Minkowski space zeta function from the zeta function asso-
ciated with the field outside the surface, the starting point
here reads

zext~s!5Next~s!1 (
i 521

3

~21! iAi~s!, ~24!

with

Next~s!5
sin~ps!

p (
l 50

`

~2l 11!E
mR/n

`

dxF S xn

R D 2

2m2G2s

3
]

]x F lnKn~nx!2 lnS Ape2nh

A2n~11x2!1/4D
1

1

n
D1~ t !2

1

n2
D2~ t !1

1

n3
D3~ t !G . ~25!

As is clear, one just needs to substitute the Bessel function
Kn for I n . The asymptotic contributions, as compared with
those for the interior space, get an alternating sign coming
from the asymptotics of the Bessel functionKn —which ex-
hibit this sign when compared with those of the functionI n

~see Ref.@37#!. By construction,Next(s) is finite at s5
21/2. The results forAi(s521/2) are given in the Appen-
dix. They are the same as in the previous case. Again, the
renormalized ground state energy can be calculated. The re-
sult is shown in Fig. 3. It is apparent that the slope is always
negative and that the plot always gives positive values. It is
clear that, had we plotted the same quantity in units of the
mass, a curve with both these properties would have been
obtained too. In particular, it would not develop a maximum
as the one observed for the interior case.

In the case of the third model, i.e., for the quantum field
extending to both regions altogether, we just have to add the
two results above. As shown in Fig. 4, there is an interval
where the slope is positive. This would seem to leave open
the possibility, that a plot in units of the mass could exhibit a
maximum. We have carefully investigated this possibility,
but the answer is negative. In other words, such alternative
plot is always monotonically decreasing.

FIG. 1. Plot of the renormalized vacuum energyE0
ren measured

in units of the inverse of the radius.
FIG. 2. Plot of the renormalized vacuum energyE0

ren measured
in units of the mass. The plot has been restricted to a domain around
the maximum value.
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IV. CONCLUSIONS

In this paper we have developed a systematic approach to
the calculation of the Casimir energy of a massive field
obeying Dirichlet boundary conditions on a spherical sur-
face. The models corresponding to the quantum field con-
fined to the interior and to the exterior regions of the surface,
respectively, have been discussed separately, and the differ-
ences in the renormalization of these models with respect to
the case where the field is present in the whole space have
been investigated in detail.

Figures 1–4 show the quantum contribution to the renor-
malized ground state energy. This quantum ground state en-
ergy of the interior region exhibits a maximum for variable
radius and fixed mass, as is clear from Fig. 2. Thus, we may
say that if the surface is small enough, the quantum part of
the vacuum energy induces an attractive force. We would

like to remark that the appearance of this attractive force is
sensitive to the normalization conditions chosen. For in-
stance, it can be removed by performing a suitable finite
renormalization ofh @cf. formula ~17!#. Here the consider-
ation of a massive field allows for a physical justification of
the normalization prescription chosen. The point is that the
complete subtraction of the contributions resulting from the
corresponding heat kernel coefficients@as it is done by
means of ~17!# automatically removes all contributions
which do not vanish in the infinite mass limit. But the latter
is a physically reasonable requirement—a field with infinite
mass should not produce quantum effects.

The appearance of attractive forces in this kind of situa-
tion is not new, however, and has been found also when
dealing with spinors@19# and with the electromagnetic field
on a dielectric cylinder@38#.

Our analysis presents the first complete treatment of the
massive Casimir effect in the presence of nonplanar bound-
aries and it shows specific properties not encountered before.
If one considers planar boundaries, the only case completely
solved up to now~see, i.e.,@8#!, for the rangemR@1 the
Casimir energy is exponentially small and thus of very short
range. This is due to the vanishing extrinsic curvature of
planar boundaries.

In our case the above remarks do not hold anymore. Us-
ing Eq. ~11! in Eq. ~12! one easily obtains the asymptotic
series form→` of z(s) in the form

z~s!5
1

~4p!3/2G~s!
(

j 50,1/2,1, . . .

`

G~s1 j 23/2!Bjm
322 j 22s.

~26!

The contributions coming fromj 50,1/2,1,3/2,2 were in-
volved in the renormalization procedure~see Sec. II!, the
remaining finite pieces behave like 1/m. These pieces are
present due to the nonvanishing of the higher coefficients
Bj , j 55/2,3, . . . , which is a result of the nonvanishing ex-
trinsic curvature in our example. For that reason, in general
one cannot say that the Casimir force for the massive case is
of very short range or that the contributions due to the mass
are negligibly small compared to the massless case. These
comments may all be realized in Figs. 1 to 4 of our paper.

A remark must be added. Having in mind a Greens func-
tion treatment of the considered problem and methods like
the multireflection expansion of the Greens function, one
would expect that the Casimir energy is exponentially small
for large masses. How this is related to the global calculation
presented here should be clarified by an investigation of the
local energy density.

Robin boundary conditions can be treated in complete
analogy, as has been described in detail in Refs.@26–28#.
Also the interior and exterior regions can be considered sepa-
rately, and adding up the contributions coming from each
region the same cancellation of divergences appear. The
ground state energy of the electromagnetic field subject to
superconductor boundary conditions~i.e., vanishing normal
component of the magnetic field and vanishing tangential
component of the electric field! is the sum of the ground state
energy of two scalar fields satisfying, respectively, Dirichlet
boundary conditions and Robin boundary conditions~TE and
TM modes!. The B1/2 heat kernel coefficient has opposite
sign for Dirichlet and Robin boundary conditions, what leads

FIG. 3. Plot of the renormalized vacuum energy in units of the
inverse of the radius.

FIG. 4. The renormalized vacuum energy represented in units of
the inverse of the radius.
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to a partial cancellation of divergences between the TE and
TM modes~in the massive case!. Doing the same kind of
calculation as the one presented here and taking the massless
limit, previous results are reobtained@4,5#, what provides a
further check of the procedure.

Along the same lines, it would be interesting to perform
the calculations for higher spin fields and to apply the results
to realistic physical models, as the MIT bag model for in-
stance. Furthermore, in complete analogy, the case of two
concentric spherical shells can be treated with our method
too.
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APPENDIX: REPRESENTATIONS
FOR THE ASYMPTOTIC CONTRIBUTIONS

INSIDE THE SURFACE

In this appendix we derive explicit representations of the
Ai(s), i 521, . . . ,3 @see Eq.~23!#, which are valid for ar-
bitrary mR. Let us start withA21(s), which is actually the
most difficult piece to treat. Instead of Eq.~23!, one may use
the representation@25,26#

A21~s!52
sin~ps!

p (
l 50

`

n2E
mR/n

` F S xn

R D 2

2m2G2sA11x221

x
,

~A1!

of which we need the analytical continuation tos521/2.
With the substitutiont5(xn/R)22m2, this expression re-
sults in the following one:

A21~s!5
sin~ps!

p (
l 50

`

nE
0

`

dt
t2s

t1m2
$An21R2~ t1m2!2n%

52
1

2Ap

sin~ps!

p (
l 50

`

nE
0

`

dtt2sE dae2a~ t1m2!

3E
0

`

dbb23/2$e2b~n21R2@ t1m2# !2e2bn2
%, ~A2!

where the Mellin integral representation for the single factors
has been used. As we see, theb integral is well defined.
Introducing a regularization parameterd, A21(s) can then be
written as

A21~s!5 lim
d→0

@A21
1 ~s,d!1A21

2 ~s,d!#, ~A3!

with

A21
1 ~s,d!52

1

2Ap

sin~ps!

p (
l 50

`

nE dae2am2

3E
0

`

dbb23/21de2b~n21R2m2!

3E
0

`

dtt2se2t~a1bR2!

and

A21
2 ~s,d!5

1

2Ap
G~12s!

sin~ps!

p (
l 50

`

nE dae2am2
as21

3E
0

`

dbb23/21de2bn2
.

Let us proceed with the remaining pieces. InA21
1 (s,d) one

of the integrations can be done, yielding

A21
1 ~s,d!52

R122d

2ApG~s!
G~s1d21/2!

3(
l 50

`

nE
0

`

dyyd23/2Fm21yS n

RD 2G1/22s2d

.

~A4!

For A21
2 (s,d), one gets

A21
2 ~s,d!5

m22s

2Ap
G~d21/2!(

l 50

`

n222d

5
R122d

2ApG~s!
G~s1d21/2!

3(
l 50

`

nE
0

`

dxxs21Fm2x1S n

RD 2G1/22s2d

.

~A5!

And adding up Eqs.~A4! and ~A5! yields

A21~s!5
R

2ApG~s!
G~s21/2!

3(
l 50

`

nE
0

1

dxxs21Fm2x1S n

RD 2G1/22s

, ~A6!

a form suited for the treatment of the angular momentum
sum.

To perform the summation overl , we will use

(
n51/2

`

f ~n!5E
0

`

dn f ~n!2 i E
0

`

dn
f ~ in1e!2 f ~2 in1e!

11e2pn
,

~A7!

wheree→0 is understood and appropriate analytic proper-
ties of the functionf (n) are assumed. When expanding the
function f (n) in a Taylor series, one arrives at the well
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known Euler-Maclaurin summation formula~a thorough
treatment of the Euler-Maclaurin summation formula can be
found in Ref.@39#!.

In order to get the Casimir energy we will need only the
expansion ofA21(s) arounds521/2. Using Eq.~A7! one
finds, after a lengthy calculation,

A21~s!5S 1

s11/2
1 lnR2D S 7

1920pR
1

m2R

48p
2

m4R3

24p D
1 ln4S 7

1920pR
1

m2R

48p
2

m4R3

24p D1
7

1920pR

2
m2R

48p
1

m4R3

48p
@114ln~mR!#

2
1

pRE0

`

dn
n

11e2pn
~n22m2R2!lnun22m2R2u

2
2m2R

p E
0

`

dn
n

11e2pnS lnun22m2R2u

1
n

mR
lnUmR1n

mR2nU D . ~A8!

All other Ai(s) can be treated in a much easier way. As a
starting point forA0(s) we choose@25,26#

A0~s!52
m22s

2 (
l 50

`

nF11S n

mRD 2G22s

. ~A9!

Using Eq.~A7!, this yields immediately

A0~s!5
1

6
R2m32mE

0

mR

dn
n

11e2pn
A12S n

mRD 2

.

~A10!

For the remainingAi ’s we proceed in a different way. Let us
explain the method using one of the contributions ofA1(s),
say

(
l 50

`

n22sF11S n

mRD 2G2s21/2

5zH~2s;1/2!2~s11/2!~mR!2zH~2s12;1/2!

1(
l 50

`

n22sH F11S n

mRD 2G2s21/2

21

1~s11/2!S mR

n D 2J .

This provides the immediate continuation of the sums tos
521/2. In fact, the infinite sum is convergent and in the
Hurwitz zeta function the analytical continuation tos5
21/2 is easily performed. All pieces inAi , i 51,2,3 have a
similar aspect and may be treated in the same way. Thus~we
just write down the results!

A1~s!5S 1

s11/2
1 lnR2D S 7

48p
m2R1

1

192pRD
2

1

72pR
@219zR8 ~21!#

1
1

24p
m2R~2217g121ln2!

1
1

8pR(
l 50

`

nH S mR

n D 2

2 lnF11S mR

n D 2G J
2

5

12pR(
l 50

`

nH F11S mR

n D 2G21

211S mR

n D 2J ,

A2~s!5
1

16R(
l 50

` H F11S mR

n D 2G21/2

21J
2

3

16R(
l 50

` H F11S mR

n D 2G23/2

21J
1

15

128R(
l 50

` H F11S mR

n D 2G25/2

21J , ~A11!

A3~s!52
229

40320pRS 1

s11/2
1 lnR2D

1
21522687g22061ln2

60480pR
1

25

192pR

3(
l 50

`
1

nH F11S mR

n D 2G21

21J
2

177

160pR(
l 50

`
1

nH F11S mR

n D 2G22

21J
1

221

120pR(
l 50

`
1

nH F11S mR

n D 2G23

21J
2

221

252pR(
l 50

`
1

nH F11S mR

n D 2G24

21J .

This completes the list of expressions necessary for the
analysis of the massive scalar field inside the surface with
Dirichlet boundary conditions.
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