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Casimir energies for massive scalar fields in a spherical geometry
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The Casimir energy corresponding to a massive scalar field with Dirichlet boundary conditions on a spheri-
cal surface is obtained. The field is considered, separately, inside and outside the surface. The renormalization
procedure that is necessary to apply in each situation is studied in detail, in particular, the differences occurring
with respect to the case when the field occupies the whole space. The final result contains several constants that
experience renormalization and can be determined only experimentally. The nontrivial finite parts that appear
in the massive case are found exactly, providing a precise determination of the complete, renormalized zero-
point energy for the first timeg.S0556-282(197)04220-3

PACS numbdrs): 04.62:+v, 12.39.Hg

[. INTRODUCTION massless field&.g., in[19,20). In the case of massive fields
a number of new features as additional diverger2dsoc-
Calculations of Casimir energy in spherically symmetriccurs which call for a systematic renormalization procedure
situations have attracted the interest of physicists for wel[22].
over forty years now. This is not strange, since in many For massless fermions the zero-point energy was consid-
contexts the inclusion of quantum fluctuations about semiered in[19,20. The massless fermionic field inside and out-
classical configurations turns out to be essential. Historicallyside the spherical surface was analyzed46]. In the last
a first far reaching idea involving vacuum energies origi-case, a cancellation of divergences between the inner and
nated with Casimir himself. He proposed that the force staeuter spaces occurs and finite zero-point energies are found.
bilizing a classical electron model arises from the zero-poinConsidering only the inner space, divergences appear and it
energy of the electromagnetic field within and without a per-is necessary to introduce contact terms and perform a renor-
fectly conducting spherical sh¢ll]. Having found an attrac- malization of their coupling. The case of2-dimensional
tive force between parallel plates due to the vacuum energgphere has been investigated 28]. Results for the massive
[2], the hope was that the same would occur for the spherifermionic fields contain new ultraviolet-divergent terms in
cally symmetric situatiod.Unfortunately, as Boyef3] first  addition to those occurring in the massless case, as has been
showed, for this geometry the stress is repuli8]. Nowa-  discussed iff21]. Further considerations, especially on the
days it is known that the Casimir energy depends strongly omenormalization procedure necessary in order to carry out
the geometry of the space-time and on the boundary condthese calculations, and on its precise interpretation, can be
tions imposed. This is still a very active field of researchfound in[22].
because a satisfactory understanding of the behavior has not In nearly all of the mentioned works the authors have
yet been found. For a number of results obtained in the lasised a Green’s function approach in order to calculate the
ten years see for instan{é-8. zero-point energy. An exception is R¢R2], where, in the
Actual interest in the Casimir effect results from a con-general setting of an ultrastatic spacetime with or without
siderable improvement of the experimental verificafi®@has  boundaries, a systematic procedure which makes use of zeta
well as from its possible relevance to sonoluminescésee, function regularization was developéske alsd24]). In this
however[10].) A different source of interest results from the approach, a knowledge of the zeta function of the operator
MIT bag model in QCD[11-14. In this connection there associated with the field equation together wighrentually
had been a number of calculations for the spherical geometryome appropriate boundary conditions is needed. Recently, a
(see[15-18), but they are still not completed, for instance detailed description of how to obtain the zeta function for a
for massive quark fields. massive scalar field inside a ball satisfying Dirichlet or
The Casimir effect was considered up to now mostly forRobin boundary conditions has been given by some of the
authors[ 25,26 of the present work. An analytical continua-
tion to the whole complex plane has been obtained and then
*Electronic address: bordag@qft.physik.uni-leipzig.d400.de applied to find an arbitrary number of heat-kernel coeffi-

"Electronic address: eli@zeta.ecm.ub.es cients. In the ensuing Reff27,28 the functional determi-
*Electronic address: kirsten@tph100.physik.uni-leipzig.de nant has been considered too and, furthermore, the method
SElectronic address: lese@zeta.ecm.ub.es has been also applied to spin¢29,30 andp-forms[31,32.

This could be expected because the Casimir force between platé=r an alternative approach involving scalars and spinors see
was shown to be the same as the force resulting from the retardealso the developments {83]. All the above considerations
(always attractivevan der Waals forces between the atoms of theyield purely analytical and quite explicit formulas. In order
plates. to actually obtain values for the Casimir energy, however, a
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numerical integration had to be performed. This has beewhereV=37R® and S=4=7R? are the volume and surface,
done in different cases, in particular for the massless scalaespectively. This energy is determined by the parameters
and electromagnetic field84], partly reobtaining previous p=pressuregs=surface tension, anfl, k, andh which do
results. not have special names.

H-ere we will ansider the maSSiVe Scalar f|e|d InSIde and (2) A quantized f|e|d(’b(x) Whose Classica' Counterpart
outside the spherical surface, separately. We will discuss igpeys the Klein-Gordon equation
detail the renormalization procedure which is necessary to
apply in this situation and, specifically, the differences oc- (O+m?)e(x)=0, 2
curring with respect to the case when one assumes that the ) .
field occupies the whole space. The final result for the zero2s Well as suitable boundary conditions on the surface ensur-
point energy contains several constants which experiend8d self-adjointness of the corresponding elliptic operator on
renormalization and whose physical values can be deteperturbgtlons. We choose Dirichlet bpundary conditions as
mined only experimentally. However, for the massive the easiest to handle. The quantum field has a ground state
field—as is clear from dimensional grounds—nontrivial fi- €N€rgy
nite parts which depend on a dimensionless variable involv-
ing the mass are present, and we will, in this case, be able to Eg=1>, M 3
find here for the first time the complete, renormalized zero- (k)
point energy.

The aim of this paper is to perform the first complete

(including numbers, respectively, plptsalculation of the : . :
S o ; For this system we shall consider three models, which
Casimir energy for anassivefield (whereby we restrict our will behave in a different way. These models consist of the

selves to a scalar field obeying Dirichlet boundary condi- ; : X : '

tions) in the spherical geometry. As it turns out this allows _classw_al part given by the su_r_face a(mhthe_quan_‘uzeo_l field

for a number of conclusions concerning the normalization]" thg interior of the surfacg_(u) the quar)tlzed.ﬂeld. in the

conditions and the interpretation of the effect itsidspe- extgnor of the surface, ap(iu) the quantized field in both

cially backwards for the massless case in mdgddelow] as reg_I[?]ns togetzer, respectwely. di d hall

well as it adds a new piece to the puzzle on the sign. Ir] e groun state energy Is divergent and we shall regu-

addition the present calculation should serve as a guidelinélrlze it by

for work on more realistic models. 1
The organization of the paper is as follows. In Sec. Il we EO:E(k)

describe in detail the models considered and the regulariza-

tion and_renor_malization procedure employed. In_ Sec. lll Weyhere u is the known arbitrary parameter with the dimen-
summarize briefly the formulas that are needed in the subsego, of mass prescribed by the regularization and introduced
quent study of the zeta function of the problem at hand. We, o der to get the correct dimension for the energy. The one

shall start with the scalar field inside the ball. Some addi- article energies\\ o are determined by the eigenvalue
tional considerations are necessary because the represe ?1'uation (K

tion given in the previous article25,26 was only appli-

caple when the mass of the_ field IiBi.l. Here we will (_A+mz)‘P(k)(X):)\(k)‘P(k)(X)v (5)

derive formulas which are valid for arbitrary mass and very

useful for numerical evaluations. All divergences and finitetogether with Dirichlet boundary conditions on the surface

parts of the zero-point energy are calculated and its renor-

malization is performed with some care. The explicit depen- q"(k>(x)|lxl=R:0- (6)

gglrl]ce of the finite part in the mass 1S determmed NUMETNE 1 the field in the interior, the meaning &fy is obvious:
y. Afterwards, the exterior space is considered and B B e ) X

corresponding analysis is performed for this situation. Add- K =(.mn), Nmm= Vit p2n/RT+HM Jicasaliievn)

ing up both contributions, we see clearly how the diver-~ “- . )

gences cancel among themselves as well as the influence of FOT the calculations we use the corresponding zeta func-

this cancellation on the compulsory renormalization procesd!®":

Section IV is devoted to conclusions. The appendix contains

some hints and technical details that are used in the deriva- {(s)= )\(’kf. (7)

tion of the zeta function for the nonzero mass case. (k)

where theJ\()’'s are the one-particle energies with the
quantum numbek.

(N Y2 3u®,  Rs>2, 4

In the interior region, we have
Il. DESCRIPTION OF THE MODEL

AND ITS RENORMALIZATION

: , : . i = +N S
The physical system that we will consider consists of two iy (S) |:Eo ngo 1+ DXy ®

parts.
(1) A classical system consisting of a spherical surfacg=or the exterior zeta functiode,)(s) we must take into
(“bag”) of radiusR. Its energy reads account that the radial quantum number is continuous. We
have to subtract the Minkowski space contribution. This pro-
(1) cedure is well knowr(see, for exampl€,35]) and need not

h
Eoass=PVHoS+FRk+ R’ be repeated here. In the case of the third model we take the
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spectrum as the union of the spectra of the first two models g(i™=4 7R3 B(W=—-27%R2 B{™W=%7R,
and we simply add the interior and the exterior zeta func-

tions: namely, Bm_ 1 B("ﬂLEZ
¥2 -8 B2 T 31ER
L (tota) (8) = L(int)(S) + L(ext(S).- 9
This means that the interior and exterior region are indepen the exterior region,
dent one from the other. gEd_pgln  _13 (14
In any case the regularized ground state energy is given ! b 222y
by B=_B(M  j=0172... . (15)
EG"?=3{(moo (5~ 3) 1 (10

In order to perform the renormalization we choose as gen-
where “mod” means the model: “int,” “ext”, or “total.” eral scheme the following: all contributions of the heat ker-
Let us note that theegularizedenergy of the third model is nel coefficients which can lead to divergences in some regu-

just the sum of the regularized energy of the first two mod-arization have to be subtracted by means of a
els. renormalization of the corresponding parameters in the clas-

The divergent contributions of the ground state energysic@l part of the system. Thus, we have in each of the first
can be found most easily using standard heat kernel expaf’0 models five divergent contributions. In the third model

sion we note that, in accordance with B§),
) div) _ int) 1)
1\%2 , Eg)(lt\(l)tal)_ E::iniv)—'—EEgi)i/))v
K(t)=2 e M'~| —| e B;t), _ _ _ _
(k) j=0121... and owing to the known cancellation of divergent contribu-
. tions, which is in fact due to Eq.15), only two of them
t—0", (1)  remain.

As physical system we will consider the classical part and
also the ground state energy of the quantum field together,
and write, for the complete energy,

by means of

_ s
éV(S)_F(s)fo dte KA. 12 E=E class + Eo- (16)

where we have to take into account that, in the presence of la this context the renormalization can be achieved by shift-
boundary, coefficients with half integer numbers are noning the parameters i as5)0y an amount which cancels the

zero. As is well known and can be easily found from thedivergent contributions and removes completely the contri-
above formulas, in order to obtain the contribution of the firstbution of the corresponding heat kernel coefficients. In the

five coefficientsB; (i=0,%,12,2), one cannot simply put  first two models, we have

= —1 under the sign of the integral ify(s), respectivelys 4 9 3
=0 in the ener i i i m |1 1 4u m
= gy, because this leads to a divergent integral —pT T 4In oo+
coming from the lower integration bound. An appropriate 64m2lS 2 m2 )| 487’
analytical continuation is required. We will call the corre-
sponding contribution to the enerdg g, . It reads m? 4’ m
FHFiH g—l‘i"n — | k—)k—9—6, (17)
E A N ™ g " "
0T g2 s 2 m? )| 24n32 " 1 a2
+t——|——2+4+In| —
m2 4#2 m h—h 6307 s 2+1In > y
+ 5Bif s —1+In| —| |+ 358312 . .
32m m 6 where the upper sign corresponds to the first model and the

lower sign to the second. In the third model there are only

1 1 4p two contributions, which are divergent in some regulariza-
- By =—2+In| — (13 : ot
30772 s m2 tions. The renormalization reads
3
. . . o m m
A remark is here in order. The zeta functional regularization oo+ kK= —. (18)

used leaves the contributions of the coefficients with half 24w 48

integer index finite in the limis—0. This is a specific fea- " ) o o
ture of the regularization, often much appreciated. HoweverVithin the method of zeta function regularization this is a
in other regularizations, as for example the proper time cutlinite renormalization.

off [22], these contributions are divergent. Equatic8) After the s(liet:]t)raction c(:(fﬁvt)hese contributions frdfy we
then contains all contributions of the regularized zero poingdenote it byEy~"=E,—Ey"" and the complete energy be-
energy which will experience renormalization. comes

The heat kernel coefficients needed in EtR) are well (ren)
known (see for instancg36]). For the interior region, E=EcasstEo - (19
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In our renormalization scheme, we have defined a uniqueero-point energy is to perform a convenient analytical treat-
renormalized ground state energ§®". Often, the renor- ment of the zeta functiori8). A precise way to obtain an
malization arbitrariness is removed by imposing some noranalytical continuation off(s) to s=—1/2 has been de-
malization conditions. In this case a natural candidate wouldcribed in[25,26] in detail, what allows us to be brief here.
be the requirement, tha{®" vanishes forR—c. This is We may write the zeta function for the interior space in the
certainly fulfilled in our case. However, such a requirementform
does not fix completely the renormalization in the first two
models, since a finite renormalization lofis still possible. 3

With respect to this renormalization there is a qualitative L(inp(S) = N(im)(s)+_2 A(s), (20
difference between the first two and the third model. In the i=-1
latter one some divergences have been canceled when addin
up the contributions from the interior and exterior regions.where theA;’s are the contributions of the first five terms of
The corresponding terms in the classical energy do not nediie uniform asymptotic expansion of the modified Bessel
to be renormalized. In generaL as mentioned[zﬁ] and functions asv—« andk— o, with »/k fixed. It is sufficient
much earlier in connection with the renormalization of QED,t0 subtract these five contributions in order to absorb all
those contributions which need renormalization are not oPossible divergent contributions. A higher number of sub-
quantum nature, but have to be present in the classical part §fctions is possible in order to speed up the convergence of
the system and are to be determined from outsiite the  the remaining numerical expressions. We have calettie
electron mass and charge in QE® by the dynamics of the zeta function where all these asymptotic terms have been
classical part. For example, in the bag model one has to loogubtracted:
for a minimum of the complete energy while varying these
parameters. The contributions which do not need sm( xv\?2 s
renormalization—like the one resulting froBy, B4, or B, in Niint)(S) = (E) - mz}
the third model—may be absent in the classical part and can
be considered as pure quantum contributions. In this sense p evn
the third model contains only two classical parameters ( X - Inl (vX) In( \/2_771/(1+x2)1’4)

2 (21 +1) dx

mR/v

andk). J

Having in mind that only the complete energy has physi- 1 1 1
cal meaning, a'c_hange of th.e normallzatlon condltlons— — ZD4(t) == D,(t)— — Dy(t) (21)
respectively, a finite renormalization—would be equivalent

to a change of the classical parameters and should not influ-

ence issues like that of finding a minimum of the completepeing t=1/\1+x2 and =1+ X2+ IN[X(1+V1+x3)]. In
energy by varying the parameters of the classical part. s formula the parametercan be put equal te- 1/2 under
Special remarks are in order for the case of a masslese integration and summation signs. The evaluation of

guantum field. There, only contributions froB, remain N(1/2) is the remaining numerical task. The polynomi|s
(one performs the limitn— 0 in the regularized expressions, 5re

the B;’s are proportional tan*~2"). In the third model these
contrlbutlons are finite and can be considered as pure quan- 1 5
tum corrections. They yield, together with the finite contri- Dy(t)= 2, Xy tt"22=—t— 3,
butions (cf. the quantityN in the next sectiop the known a=0 8 24
1/R contributions to the Casimir energy for a sphere and a
massless field with various boundary conditions. However, 1 3 5
in the modeldi) and(ii) the B, contribution is divergent and Dy(t)= 2, Xpat? 2= —t2— —t*+ —t6, (22
, . . o “ 16" 8 16

the corresponding R/term in the energy must be considered
as a classical contribution. Thus, in these cases the ground
state energy for a massless field can be removed by a f|n|te 342 5, 531 221 1105
renormalization and the energy of the system remains for- Da(t)= 2 Xgal® " #= 382t et oot =

4" 640 128 1152
mally the classical one. In this sense there is no Casimir
effect. The same is true in the presence of a thick spherlcal

shell (interior and exterior regions are separated by a finite® nd, in terms of their coefficients; 5, the functionsA,(s)

distance, with no quantum fieldbecause here no cancella- are given by
tion between interior and exterior modes occurs. " _
Similar remarks hold not only for a spherical surface, but R%® (-1 o Tli+s—(1/2)]

also for an arbitrarily shaped one. For the infinitely thin sur- -1(s)= 2\l (s) ]Zo ji! (mR) S+
face a cancellation between interior and exterior modes does
occur, while if it has a finite thickness this is not true any- X{y(2]+25—2;1/2),

more.

IIl. CALCULATION OF THE GROUND STATE ENERGY Ao(s)= 2F(s Z ( ) L mRAT(s+])

First we consider the interior case. As it is easily seen
from Eq. (4), the task that remains for the evaluation of the X (2] +25—1;1/2), (23
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FIG. 1. Plot of the renormalized vacuum eneigy" measured

. ) : . FIG. 2. Plot of the renormalized vacuum eneig§" measured
in units of the inverse of the radius.

in units of the mass. The plot has been restricted to a domain around
the maximum value.

2RB 2 (—1)] .
Ai(s)=— ﬁzo (j—!)(mR)ngH(—lJri +2j

oo

Nex(S) = &:‘C’);O (21+ 1)f dx

mR/v

(-]
N )

\/Z(l_’_XZ)lM
It is easy to see that the above series are convergent for
ImR<1. Alternative representations valid for arbitrary val- I }D (t)—iD (t) + iD (t)
ues of mR are derived in the Appendix. Using the above v 272 e
formulas, or alternatively, the ones given in the Appendix,
we can perform the renormalization and calculate the renor-

malized ground state energy num_erically. The result for théxs is clear, one just needs to substitute the Bessel function
ground state energy is shown in Fig. 1 ®=1 as afunction k for | . The asymptotic contributions, as compared with
of m. For very small values of the argumempR, the func-  {hose for the interior space, get an alternating sign coming
tion goes to a finite, negative valyeemember that we are fom the asymptotics of the Bessel functikiy —which ex-
plotting RES®", not E{*"), whereas for large values of the nipit this sign when compared with those of the functign
argument the function goes to zero. (see Ref.[37]). By construction,Ne,(s) is finite at s=
The dependence d&; " on the radius for fixed mass is —1/2. The results foA(s= — 1/2) are given in the Appen-
depicted in Fig. 2. This plot also exhibits a maximum for dix. They are the same as in the previous case. Again, the
mR=0.023, and here we have restricted the domain to @enormalized ground state energy can be calculated. The re-
region around it. sult is shown in Fig. 3. It is apparent that the slope is always
The zero-point energy in the exterior of the spherical surnegative and that the plot always gives positive values. It is
face can be calculated in a much similar manner. Indeedlear that, had we plotted the same quantity in units of the
only a few changes are necessary. Subtracting thenass, a curve with both these properties would have been
Minkowski space zeta function from the zeta function assogbtained too. In particular, it would not develop a maximum
ciated with the field outside the surface, the starting pointgs the one observed for the interior case.
here reads In the case of the third model, i.e., for the quantum field
extending to both regions altogether, we just have to add the
3 two results above. As shown in Fig. 4, there is an interval
i where the slope is positive. This would seem to leave open
Lo S) = NeX‘(SHi;l (=D'Als), (24 the possibility,pthat §p|0t in units of the mass could exhibi?a
maximum. We have carefully investigated this possibility,
but the answer is negative. In other words, such alternative
with plot is always monotonically decreasing.

I'[s+a+j+(i/l2
+25,1/2) >, Xi a [ 1+ (/12)]
a=0

T[a+(i/2)]

X —
oX

InK ,(vXx) — In(

. (25)
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Eren *R like to remark that the appearance of this attractive force is

sensitive to the normalization conditions chosen. For in-
' stance, it can be removed by performing a suitable finite
0.0050 ] renormalization oth [cf. formula (17)]. Here the consider-
ation of a massive field allows for a physical justification of
the normalization prescription chosen. The point is that the
0.0040 . complete subtraction of the contributions resulting from the
corresponding heat kernel coefficientas it is done by
means of (17)] automatically removes all contributions
which do not vanish in the infinite mass limit. But the latter
is a physically reasonable requirement—a field with infinite
mass should not produce quantum effects.

The appearance of attractive forces in this kind of situa-
tion is not new, however, and has been found also when
dealing with spinorg19] and with the electromagnetic field
on a dielectric cylindef38].

Our analysis presents the first complete treatment of the
0.0000 : massive Casimir effect in the presence of nonplanar bound-

0.0 R*m 10 aries and it shows specific properties not encountered before.
If one considers planar boundaries, the only case completely

FIG. 3. Plot of the renormalized vacuum energy in units of thesolved up to now(see, i.e.[8]), for the rangemR>1 the

inverse of the radius. Casimir energy is exponentially small and thus of very short
range. This is due to the vanishing extrinsic curvature of

IV. CONCLUSIONS planar boundaries.
In our case the above remarks do not hold anymore. Us-

In this paper we have developed a systematic approach {g Eq. (11) in Eq. (12) one easily obtains the asymptotic
the calculation of the Casimir energy of a massive fieldseries form— o of ¢(s) in the form

obeying Dirichlet boundary conditions on a spherical sur-
face. The models corresponding to the quantum field con- .
fined to the interior and to the exterior regions of the surface, {(S)= ———-—— > I(s+j—32Bm* 4%,
respectively, have been discussed separately, and the differ- (4m)T(s)i=0121. ..

. - ; (26)
ences in the renormalization of these models with respect to
the case where the field is present in the whole space havehe contributions coming fronj=0,1/2,1,3/2,2 were in-
been investigated in detail. volved in the renormalization procedufsee Sec. )| the

Figures 1-4 show the quantum contribution to the renorremaining finite pieces behave likenl/ These pieces are
malized ground state energy. This quantum ground state epresent due to the nonvanishing of the higher coefficients
ergy of the interior region exhibits a maximum for variable Bj, j=5/2,3 ..., which is a result of the nonvanishing ex-
radius and fixed mass, as is clear from Fig. 2. Thus, we matinsic curvature in our example. For that reason, in general
say that if the surface is small enough, the quantum part ofne cannot say that the Casimir force for the massive case is
the vacuum energy induces an attractive force. We woul@f very short range or that the contributions due to the mass

are negligibly small compared to the massless case. These
Er *R comments may all be realized in Figs. 1 to 4 of our paper.

A remark must be added. Having in mind a Greens func-
tion treatment of the considered problem and methods like
the multireflection expansion of the Greens function, one
would expect that the Casimir energy is exponentially small
for large masses. How this is related to the global calculation
presented here should be clarified by an investigation of the
local energy density.

Robin boundary conditions can be treated in complete
analogy, as has been described in detail in Rgf6—28.

Also the interior and exterior regions can be considered sepa-
rately, and adding up the contributions coming from each
region the same cancellation of divergences appear. The
ground state energy of the electromagnetic field subject to
superconductor boundary conditiofi., vanishing normal
component of the magnetic field and vanishing tangential
0.0000 . s component of the electric fields the sum of the ground state

0.0 O pey 2 80 energy of two scalar fields satisfying, respectively, Dirichlet

boundary conditions and Robin boundary conditi6fA& and

FIG. 4. The renormalized vacuum energy represented in units of M modes. The B4, heat kernel coefficient has opposite
the inverse of the radius. sign for Dirichlet and Robin boundary conditions, what leads
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to a partial cancellation of divergences between the TE and 1 sin(ms) ,
TM modes(in the massive caseDoing the same kind of Al,l(s, S)=——— 2 vf dae @™
calculation as the one presented here and taking the massless Vo ™ =0
limit, previous results are reobtain¢d,5], what provides a "
further check of the procedure. Xf dpB 312+ dg= A +REm?)

0

Along the same lines, it would be interesting to perform
the calculations for higher spin fields and to apply the results -
to realistic physical models, as the MIT bag model for in- xf dtt~Se @t BRY)
stance. Furthermore, in complete analogy, the case of two 0
concentric spherical shells can be treated with our method
too. and

o0

sin(ms
LS )E Vf dae @™ st

T 1=0

1
2 _
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1-26
Al (s,8)=— ——=—T(s+6-1/2
APPENDIX: REPRESENTATIONS 2\wI(s)
FOR THE ASYMPTOTIC CONTRIBUTIONS S 21258
INSIDE THE SURFACE xS o[ dyy ¥ m24y ﬁ) } _
1=0 0

In this appendix we derive explicit representations of the
Ai(s), i=—1,...,3[see Eq(23)], which are valid for ar- (A4)
bitrary mR. Let us start withA_,(s), which is actually the

o ; For A% ,(s,4), one gets
most difficult piece to treat. Instead of E@3), one may use ~1(5:9) 9

the representatiof25,26 m-—2s >
A% (s,6)= 2J_r(ts—l/z)z p2=20
. =
sin(7s) o [ [xv)? s 1+x%—-1 &
™= Jmenll R X _ R rsre-12)
(A1) 2\7l(s)
of which we need the analytical continuation se — 1/2. - SO P A L b
With the substitutiont=(x»/R)?>—m?, this expression re- X|:Eo "1, dxo¢™ | mex+ R
sults in the following one:
(A5)
Sin(7s) < © 7S And adding up Eqs(A4) and (A5) yields
A (9= 2T 7 (W RATT ) - v} g up EgsiA4) and(AS) y
™ =0 Jo t+m R
. o A_i(s)=——TI'(s—1/2
1 sin(rs) * 4t [ dae-ett+m 9 s
=—— 2 v| dtt dae™ @
2\/; T 1=0 Jo o0 1 p\ 2]12=s
XIZO VJO dxx®™ Y m?x+ R , (AB)

xjwdﬂﬂ—s/z{e—mv%R2[t+m2]>_e—ﬁvz}, (A2)
0
a form suited for the treatment of the angular momentum

I : . sum.
where the Mellin integral representation for the single factors To perform the summation ovér we will use
has been used. As we see, tBeintegral is well defined.

Introducing a regularization paramet&rA _,(s) can then be * ® = fivre)—f(—iv+e)
written as > f(v)=f dvf(v)—if dv ,
BV 0 0 1+e2™
A7
A= lim[AL (s,0)+ A2 (s,5)],  (A3) (A7
6-0 where e—0 is understood and appropriate analytic proper-

ties of the functionf(v) are assumed. When expanding the
with function f(») in a Taylor series, one arrives at the well
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known Euler-Maclaurin summation formuléa thorough This provides the immediate continuation of the sums to
treatment of the Euler-Maclaurin summation formula can be= —1/2. In fact, the infinite sum is convergent and in the

found in Ref.[39)). Hurwitz zeta function the analytical continuation &=
In order to get the Casimir energy we will need only the —1/2 is easily performed. All pieces i, i=1,2,3 have a
expansion ofA_(s) arounds=—1/2. Using Eq.(A7) one  similar aspect and may be treated in the same way. Tweas
finds, after a lengthy calculation, just write down the resulis
A 1 nR2 7 . m’R  m*R3
-19= 5512 "R )| To20mR T 287~ 2am L R? SO
A= grap T IR\ 28 ™R ToanR
i 7 . m?R m4R3) 7
n - 1
19207R 487 24w 19207R
ZR m4R3 1+4In(mR 1
~ 287 T agn L1 TAIN(MRY] + 54 MPR(=2+ 79+ 21In2)
1 (= v 1 & mR) 2 R\2
-—| d 2— m?R?)In| v?>— m?’R? = by B -
7R Jo Vl—f—ez"”’(v Jinlv | +87TR|§0V v Inj 1+ v
* 21-1 2
om2R ” / 5 mR) } (mR) }
_ 2_ m2R2 -2 V|1t — -1+ — i,
- fo dV1+e2’TV\ In|v4—m?R?| 127R<h v
v MR+ v ® 21-1/2
i 1 mR
+mR|nmR—v (A8) A2(5)=—2 1+ — -1
16R <% v
All other A(s) can be treated in a much easier way. As a 3 i mR)| 2] %2
starting point forAy(s) we choosd 25,26 - 16RS, 1+ v -1
m—zs *© v 21-2s o 21-5/2
=— — 15 m
Ao(s) 5 Z v 1+(mR) } : (A9) > 11+ —) } —1], (A11)
128R =0
Using Eq.(A7), this yields immediately
A 229 1 InR2
L R \/—Vz (9=~ 20320:R| s+ 172 "
Ao(s =—R2m3—mf d 1—(—) .
o(S) 6 o 1t+erm mR . 2152-687y— 2061In2+ 25
(A10) 604807R 1927R
For the remainingh;’s we proceed in a different way. Let us 1 mR\ 21-1
explain the method using one of the contributionsAgts), 2 — ) } —1]
say =0V v
177 < 1 _1+ mR\|?] 2 L
» p | 2]-s—12 B 16077R|=o; I v
2 v 21+ —)
=0 mR 221 & 1] (mR\2]°3
" 120nRS Z(»“ T) _1]
=[n(2s;1/2)— (s+ 112 (MR)2{y(25+2;1/2)
221 S 1 '1+ mR| %] ~* L
o . v \2 —-s—1/2 m|=o; | T ]
+|ZO 14 1+ ﬁ -1

5 This completes the list of expressions necessary for the
+(s+1/2) mR analysis of the massive scalar field inside the surface with
' Dirichlet boundary conditions.
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