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We present the Lagrangian and Hamiltonian framework which incorporates null dust as a source into
canonical gravity. Null dust is a generalized Lagrangian system which is described by six Clebsch potentials of
its four-velocity Pfaff form. The Dirac—Arnowitt-Deser-Misner decomposition splits these into three canonical
coordinategthe comoving coordinates of the dusind their conjugate momentappropriate projections of
four-velocity). Unlike the ordinary dust of massive particles, null dust therefore has three rather than four
degrees of freedom per space point. These are evolved by a Hamiltonian which is a linear combination of
energy and momentum densities of the dust. The energy density is the norm of the momentum density with
respect to the spatial metric. The coupling to geometry is achieved by adding these densities to the gravitational
super-Hamiltonian and supermomentum. This leads to appropriate Hamiltonian and momentum constraints in
the phase space of the system. The constraints can be rewritten in two alternative forms in which they generate
a true Lie algebra. The Dirac constraint quantization of the system is formally accomplished by imposing the
new constraints as quantum operator restrictions on state functionals. We compare the canonical schemes for
null and ordinary dust and emphasize their differenf86556-282(197)02420-X]

PACS numbds): 04.60.Ds, 04.20.Cv, 04.20.Fy

[. INTRODUCTION Null dust is intimately connected with the behavior of
zero-rest-mass fields in geometrical optics limit. The energy-
Null dust has been widely used as a simple matter sourcemomentum tensor of such fields takes in that limit the form
both in classical and semiclassical gravity. Its equations obf the energy-momentum tensor of null dust. One can then
motion follow directly from the conservation of the energy- reinterpret some exact solutions of Einstein’s equations with
momentum tensor. However, the inclusion of null dust as awll dust as spacetimes produced by zero-rest-rfiagsar-
source into canonical gravity requires careful identificationticular, electromagnetjcfields. Careful studies of the high-
of its own dynamical degrees of freedom. For this purposefrequency limit of the gravitational radiation itself revealed
one needs to construct a spacetime action depending on agrat it also can be described by the energy-momentum tensor
propriate Eulerian variables and bring it into canonical formof null dust. Moreover, which is especially relevant for the
by the Dirac-ADM (Arnowitt-Deser-Misner procedure. The present paper, such a connection can be established at the
coupling to gravity, like that of other nonderivative systems,level of a variational principle. All of this indicates that null
is then entirely straightforward. The ordinary dust of massivedust is much more closely related to fundamental fields than
particles was treated in this manner by Brown and Kuchaordinary dust formed by phenomenological massive par-
[1]. Our goal is to develop a similar formalism for null dust. ticles. We explain some of these connections in Appendix A.
The main application which we have in mind is minisu-  We start our exposition by reviewing how the dynamics
perspace and midisuperspace quantization of canonical modf incoherent dust follows from the conservation law of the
els which include null dust as a source. The specific modelenergy-momentum tens¢Bec. ). This enables us to pin-
based on null dust are both numerous and simple. After thpoint at the very beginning the main difference between or-
discovery of Vaidya’s “radiating Schwarzschild metri¢2],  dinary dust and null dust: The normalization of timelike
there were found many other, more general exact solutionfour-velocity selects its parametrization by proper time, the
of Einstein’s equations with null dust as a matter sourcenull normalization of lightlike four-velocity leaves its param-
Above all, such models have recently been used to clarify thetrization arbitrary. This is of paramount importance both for
formation of naked singularities during a spherical gravita-the Lagrangian and Hamiltonian descriptions of null dust.
tional collapse, to describe mass inflation inside black holes, Since null geodesics are somewhat less intuitive than
and to model the formation and Hawking evaporation oftimelike geodesics, we briefly summarize the basic proper-
black holes. We briefly review these topics in Appendix B.ties of null congruences in Sec. Ill. We explain how to obtain
Our formalism is designed for studying such issues in quanan affine parametrization of such congruences, but stress its
tum rather than in classical or semiclassical contexts. essential ambiguity which prevents the unigue separation of
mass distribution of null dust particles from their four-
velocity. When it comes to producing the gravitational field,
*Electronic address: bicak@mbox.troja.mff.cuni.cz the mass distribution can simply be reabsorbed into four-
Electronic address: kuchar@mail.physics.utah.edu velocity, which is the reason why it does not naturally occur
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as a separate variable either in the Lagrangian or Hamil- ueu,=-1, (2.2
tonian frameworks. We formulate a spacetime variational

principle from which the null geodesic equations of motioncurves the spacetime according to Einstein’s law of gravita-
follow in Sec. IV. The variational principle for null dust is tion

quite similar to the variational principle for ordinary dust

given by Brown and Kuchal], but there are several char- GoB = ReB_ }Ryalgzl.raﬁ 2.3
acteristic differences. The most important one was already 2 2 ' '
mentioned: Null world lines have no natural parametrization

and hence the null velocity appears in the variational prin- Dust is described by the four-velocity* of its particles
ciple as the Pfaff form of six scalafthe Clebsch potentigls and the(res) mass density of their distribution. The equa-
rather than seven scalars which characterize the timelike véions of motion of the dust are entirely contained in the
locity. Consequences of this distinction can be tracecEne€rgy-momentum conservation law

throughout the whole formalism. In Appendix C we illustrate B

on explicit examples the decomposition of null covector VpT*"=0, (2.4
fields into Clebsch potentials which is a prerequisite of ou

;’ﬁ;agolr;?l gr'n:tpéi' InOfSetﬁéV V;?ai%%glthiFninyI(fOIurt(')o.r:jgfchi identities. The structur€.l) of the energy-momentum
uler equations vanatl Principie provides,q,qqr allows us to write Ed2.4) in the form
enough building blocks to reconstruct an affinely param-

etrized four-velocityk® and the associated mass distribution MUPV gU%+V 4(MUF)U=0. (2.5
M. We also discuss other special parametrizations. In Sec.

VI, we cast our covariant spacetime action into HamiltonianOne sees that

form by following the Dirac-ADM algorithm. The details of

this process are substantially different from the steps which MUPY gU®oc U*, (2.6
need to be taken for ordinary dust. We express the energy

and momentum densities of null dust in terms of appropriatd€- that the dust particles move along geodesics. The nor-

canonical variables. The energy density turns out to be thE'alization(2.2) of the four-velocity tells us that the particle

norm of the momentum density with respect to the spatialV0rld lines are parametrized by proper time. When one mul-

metric. It transpires that null dust has only three degrees dfP!ies the geodesic equation ty,, the normalization con-

freedom per space point, one less than ordinary dust whicHition (2.2) implies the rest mass conservation

has four. The missing degree of freedom is a privileged sca- v ,(MU#)=0 2.7

lar parameter(like proper time along lightlike geodesics. B ' '

The missing canonically conjugate momentum is the masgy, sing Eq.(2.7) back in Eq.(2.5 one learns that proper

distribution which has been reabsorbed into the four-veloCityime is an affine parameter:

form. We conclude this section by writing down the standard

Hamiltonian and momentum constraints for geometry Uﬂvﬁuazo_ (2.9

coupled to null dust. In Sec. VII, we rewrite these constraints

in two alternative forms in which they generate a true LieThese facts describe in full detail the motion of ordinary dust

algebra. In this process, the Hamiltonian constraint is reof massive particles.

placed by alternative constraints which contain only geomet- Null dust has the same energy-momentum ter8dy as

ric variables. This feature of the constraint is related to eordinary dust, but its particles are assumed to follow lightlike

Rainich-type “already unified theory” for geometry coupled world lines:

to null dust. In Sec. VIII, we show how one can formally

impose the new form of constraints as quantum operator re- U“U,=0. 2.9

strictions on state functionals. The outcome of this procedurel.

is a single functional differential equation for physical state

functionalsW[ g] which depend solely on the spatial mefgic

in the dust frame. In Sec. IX, we compare the canonical

formalism and the ensuing quantum theory for null dust with

those for ordinary dust and emphasize their differences.
Our conventions follow those of Misner, Thorne, and

Wheeler[3], except for our choice of units which are such

that 16mG=1=c.

"which follows from the Einstein law2.3) through the Bian-

he energy-momentum conservation la%4) still implies
that those world lines are geodesics, E(s5 and (2.6).
f—|owever, the null normalizatioi2.9) no longer enforces
either the conservation la2.7) or affine parametrization
(2.9.

For ordinary dust, the decomposition of the energy-
momentum tensor into the mass dengityand four-velocity
U, is unique due to the timelike normalizati¢.2). For null
dust, the lightlike normalizatiof2.9) is preserved by an ar-
bitrary scaling ofU ,:

Il. DUST AS A SOURCE OF GRAVITY U'=AU® A>O0. (2.10
Incoherent dust is one of the simplest phenomenological

sources of gravity in general relativity. Its energy- (The limitation A>0 is needed to preserve the future-
momentum tensor pointing orientation of the world linesBy simultaneously

rescaling the scalavl,

TeB=MU“U”, (2.1 M=A"2M, (2.1
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one preserves the forit2.1) of the energy-momentum ten- 1 o

sor. This shows that the decomposition 2 into M and de(z" )= 55"B75U,az',ﬁzj,yzk,ﬁijk?&0- (3.9
U® is arbitrary. In particular, by taking\=M2, one can '

eliminate the scalaM altogether and writd “# entirely in  The mappingZ: M— RX S given locally by Eqs(3.3) and

terms of a single null vector (3.1 can thus be inverted into the mappidg RXS— M
[@ =MLy (2.12) given locally by

as Y=Y %(u,z). (3.6)
TeB=]|B. (2.13 Here,z distinguish different curves of the congruergand

u specifies the point on a given curve. The four vectors
In terms ofl¢, the geodesic equatioi2.5) takes the form

Ue=Ye,, Z¢=Y“, (3.7
18Y 5l %+ (V 5l #)1=0. (2.14

) _ ) o form a basis inT M dual to the cobasis
We shall see later that this choice maximally simplifies the

form of the null dust action and its canonical decomposition. ZK,a:(U,ar Zk,a) (3.9
IIl. NULL GEODESIC CONGRUENCES in T* M. The basig3.7) and cobasi$3.8) satisfy the stan-

] ] S dard orthonormality and completeness relations. In particular
In a region of spacetimeM, which is filled by dust

whose world lines do not intersect, the vector fiéld de- ziazk a:g{{ (3.9
fines a line congruencs. This congruence can be viewed as '
an abstract three-dimensional space, the “dust space,” So far, everything applies equally well both to timelike
whose points are the individual world lines. The world linesand null congruences. Brown and Kuchat specialized the
ze S can be locally labeled by three parametei@) which  formalism to timelike congruences and applied it to a La-
introduce a coordinate chart . We shall use the indices grangian description of ordinary dust. In this paper, we first
i,j,k from the middle of the Latin alphabet to denote thebriefly recapitulate how to specialize the formalism to null
components of the objects # they take the values 1, 2, 3. geodesic congruencésee, e.g.[4], [5] for more detailsand
(A global standpoint replacing this local description is dis-then use it for Lagrangian description of null dust.
cussed if1].) A geodesic null congruendd® must satisfy the geodesic
Through each event of the region there passes one argbndition(2.6) and the null conditiori2.9). These conditions
only one world line. One can uniquely assign to each eyent still hold when the vector field)* is scaled by an arbitrary
the labelsz® of that world line: factor, Eq.(2.10. Instead of using that scaling for eliminat-
ok ing M from the energy-momentum tensor, Eq2.11)—
Z'=Z%(y). 3.9 (2.13, one can use it for enforcing affine parametrization. In
terms of 14, the geodesic equation takes the fofthl4).
Unlessl“ happens to be divergence free, it is not affinely
parametrized. Let us first show that there exists a positive
scaling factor

Our interpretation of the scalar fiel@&(y) presupposes that
their valuesz* constitute a good chart is. Therefore, the
three gradientsZk,a must be three linearly independent
covectors:

N IOV, Ay)=e) (3.10
U e 2300707 y7) 7% 56 # 0. (3.2
: such that

Paramet_rize the curves _6’f by a parameteu whose rate c_>f VB(A*IB):O. (3.11
change judged by the size tf* is unity. In other words, if

Condition (3.11) amounts to a linear inhomogeneous equa-

u=U(y) (3.3 tion
is the value ofu on the curve ofS which passes through the By v I8
eventy, it holds that 1PV A=Vl (312
uev, u=1. (3.4) for \. In the adapted coordinatesz¥, Eq. (3.12 assumes
the form
Equations(3.2) and (3.4) imply that ZX=(U, Z*) are four
independent functions of spacetime coordinatés IN(u,2) —(V)(u.2) (3.13
au e '

The contravariant tensor densigy?”® of weight 1 is the alter- tS general solution
nating symbol inM. The covariant tensor density;, of weight "
— 1.is the alternating symbol i§. The Levi-Civita pseudotensor in Au,z)= J du (Vﬁlﬁ)(u,z) +N\o(2) (3.19
M is denoted bye®#7?, 0
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depends on an arbitrary function(z) of z. By writing Egs.
(2.13, (2.14), and(3.1)) in terms of the new variables

(3.15

one learns that the vector fiekf is affinely parametrized,

(3.19

the mass distributioM satisfies the continuity equation

(3.17)

k®*=Al* and M =A"2

kPYV 5k@=0,

V4(MkP)=0,
and the energy-momentum tensor takes the form

TeB=Mk*KA. (3.18

The affine parametev is a monotonically increasing

function of the old parametar:

v(u,z)=fouduAfl(u,z)ijo(z). (3.19

When we define a new mappingarr : RXS—M by
Y are(v,2) =Y *(u(v,z),u) (3.20
we obtain

_ &YXFF( v ,Z)
dv '

ke (3.21

The affine parametrizatiof3.19 depends on two arbi-

trary functions\ o(z) andvy(z). This means that along each
geodesic the affine parameter is determined only up to

linear transformation

v=Ay(2v+vy, Ay(2)>0. (3.22

When we change the affine parameter by 822, the null
vector fieldk*(y) is scaled into

K(y)=AoZ(y)) k*(y). (3.23

The affinely parametrized null vector fiekf(y) is thus de-

4881
1
k=5 PV gk, (3.27)
If k, is proportional to a gradient,
Ko(Y)=&(Y) #ha(Y), (3.28

the geodesics ofS form null hypersurfaces/=const to
which k* is orthogonal. A null geodesic congruence is hy-
persurface orthogonal if and only if it has a vanishing twist:
w=0.

Under the changé3.23 of affine parametrization, the ro-
tation, expansion, and shear all scale by the same factor:

lo[=Aqla]l.  (3.29

Also, by using Eqs(3.10—(3.12 and(3.15, one can reex-
press them in terms of* and its derivatives, and of the
undifferentiated scaling factdB.10 and(3.14):

0_: Aoa,

w_=A0w,

1 1 1/2
w=A(§V[a|B]V“IB+ Z(Vala)z) . (330

0=A(V 9, (3.3

1 5 21/2
o] =A| 5Vl pVIP=Z (V2] . (332

The scalar$3.30—(3.32 allow us to introduce other special
parametrizations of null geodesic congruences. Consider-
ations about the rate of expansion of a shadow image,
e.g.,[4], [5]) lead to the concept of luminosity distande

;Il'his is defined as any solution of the equation

1dA o 33
Adv 7 (3.33
wherev is an affine parameter artl(assumed to be nonva-
nishing is the expansioii3.25. Equationg3.15 and(3.23
ensure that the luminosity distance is identical with the scal-
ing factor(3.10 and(3.12. The luminosity distance played

a prominent role in several classical works in radiation
theory [6] and in cosmology7]. The mass distributior

termined only up to an arbitrary positive multiplicative factor introduced by Eq(3.19 is the inverse squarbl=A"? of

A, which is a function of comoving coordinate$=Z(y).

A congruence of affinely parametrized null geodesics is

characterized by its twidfor rotation w, expansiond, and
shearo. The corresponding scalars are given by

1 1/2
w:(EV[akB]Vak'B) y (324)
1
0=75(Vak), (3.29
1 1/2
|a|=(iv(akﬁ,vakﬁ’— 02> : (3.26

where the square brackefgsarenthesgsaround indices de-
note antisymmetrizatioeymmetrizatioh The twist can also
be determined from the relation

the luminosity distance. The parallax distange

p=6"1, (3.34

is also occasionally useful.

IV. SPACETIME ACTION AND THE EULER EQUATIONS

We describe null dust by six spacetime scalafs W, .
The interpretation of our state variabl@, W, emerges
from the form of the action and the resulting equations of
motion. We shall see that* are comoving coordinates of
null dust particles. By specifying the valug$of the scalars
Z¥(y), we choose a particular null geodesic of the congru-
enceS. The three gradientzk,a are assumed to be three
independent covectors. We shall see later that none of them
can be timelike.

The four-velocity covectol, of a lightlike particle is
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given by its componentgV, in the cobasisZk,a: Zk,a, k fixed, can also become null on a three-dimensional
. null hypersurfac&*= const on which the two remaining co-
lo=WiZ" . (4.1 efficients W,, i#k, vanish: W,=0. Then, of course,

IaocZkya simultaneously lies in this hypersurface and is or-
thogonal to it.
In Appendix C, we give two examples of twisting null
| =W, dZ¥ (4.2 congruencegone of them is the familiar ingoing principal
null congruence in the Kerr spacetimend illustrate the

of six scalar fieldZ* andW, . According to Pfaff's theorem decomposition(4.1) of their tangent null covectors. The
[8], four scalar potential,B,C,D are sufficient to describe SPacelike character of the covectd, is exhibited every-

This relation expresses the one-folmx|,dy* as a Pfaff
form

an arbitrary covector in a four-dimensional space: where except in regions where the twist vanishes.
It now becomes understandable why it would not be use-
l,=AB,+CD,,. (4.3  ful to represent , by more than six potentials. If, say, we

_ _ _ ‘. wrotel ,=WsZ® ,, s=1,2,3,4, one of the spatial vecta§ ,
However, the representation lof by six potentialV, Z*is  could always be written as a linear combination of the re-
more useful because it has a clear physical interpretféibn  maining three vectorgX ,, k=1,2,3, and the decomposition

The null dust action (4.1) would be regained.
The variation of the actiof¥.4) and (4.5 with respect to
SND[Zk,Wk;,yaB]:f d4y LN(y) (4.4  the metricy,, yields the energy-momentum tensor
i i i i i TP =2|y| 2551 5y 5. (4.1
is a functional of our six state variables, and of the metric Y Yap

Yap- The Lagrangian density"® is taken in the form
Becausd “ is null, Eq. (4.8), this tensor has the structure

a 13. . tit
LND— _ §|y|1/zy B| Jg, (4.5 (2.13. The Pfaff form(4.1) satisfies the identity
wherel , is an abbreviatipn for expressida.l). o Vﬁ(|a|ﬁ): —W, (Z¥ B|B)+Zk oV 5(Wl B+ EVaUg'B)-
The equations of motion follow from the variation of the ' ' ' 2
action with respect taV, andz*: (4.12
0= s = |—1/2Zk |« (4.6) The equations of motiofd.6)—(4.8) then imply the energy-
SWy 4 s ' momentum conservation law. In fact, it is well known that
the energy-momentum conservation follows from the equa-
SSNP y tions of motion because of the invariance of the actibd)
0= 57K =([7[" Wl ) o - (4.7 and (4.5 under spacetime diffeomorphisnisee, e.g.[1]).

We have already seen that the energy-momentum conserva-
tion implies that the particles of the null dust move along
geodesics, Eq2.14). This demonstrates that our actiGh4)
and (4.5 correctly reproduces the motion of the null dust on
1?1 =0. (4.8 a given background A1, y).

The null dust is coupled to gravity by adding its action
Equation (4.6) reasserts thaf* are comoving coordinates. S\P to the Hilbert action
Equation(4.7) tells us that the three currents

By multiplying Eq. (4.6) by W, we learn that“ is a null
vector field:

I =Wl (4.9 SO Yapl= f d%y LG, (4.13
M
satisfy the continuity equations

G_ 1/2, .
Vo Ji=V (W% =0. (4.10 LE=[y["*R(y; 7] (4.14

Because each of the three covectﬁFgI is perpendicular to  constructed from the curvature scal{y; y].? The variation
the null vectorl ¢, none of them can be timelike. If only one of the total actionS=S®+ S\P with respect to the metric
of the coefficientsw, in the decompositiori4.1) of |“ does v, yields the Einstein law of gravitatiof2.3) with the null
not vanish, the congruence is hypersurface orthogfefal dust sourcg4.11). The conservation law2.4) then follows
Eq. (3.28] and thus nontwisting. The covectdf , is then  independently of the equations of motion directly from Egs.
null. In the general case of a twisting congruence, all thre€2.3) through the Bianchi identities.

covectorsZ¥ , must be spacelike: If ang® ,, k fixed, was

null in an open neighborhodd, thenI“Zk =0 would imply

| O<Zk in U, and the congruence Would not be twisting4n 2The mixed brackets iR(y; y] indicate that the curvature scalar
Some covectorsZk can possibly become null only in Ris a function ofy and a functional ofy,(y'). This convention is
lower-dimensional Q 0,1,2) regions of M. A covector used throughout the paper.



V. SPECIAL PARAMETRIZATIONS
AND NULL DUST ACTION

The geodesic equatiaf2.14 which follows from the ac-
tion (4.4 and (4.5 is not given in affine parametrization.
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K*V W, =0. (5.9

Equations(3.7), (3.9), and (5.5 enable us to interpret,
geometrically as projections of the null fielg, into the hy-

Rather, the vector fielt*(y) is chosen such that it absorbs Persurfacey“=Y xer(v,2), v=const, of affine foliation:

the mass distributioM of the dust and leads thereby to the

energy-momentum tens@2.13. Let us now show that from
any solutionW,(y) and zZX(y) of the Euler equation$4.6)
and(4.7) of the action(4.4), (4.5 one can construct a vector
field k*(y) given in generic affine parametrization.

Start on a spacelike hypersurfatetransverse to the dust
lines |*. Parametrize® by the dust space coordinate’s of
pointsze S. As long as there is any dust @y W,(z) cannot
be a zero covector if*S. Choose an arbitrary vector field
AX(z) e TS such that A¥(z)W,(z)>0. Evolve the fields
Z¥(y),W,(y) from their initial valuesz andW,(z) on S by
the Euler equation$4.6), (4.7) and define

A(y) =[AMZ(y)Wi(y)] ™ (5.1)
The Euler equations imply that
V(A HY=0. (5.2

By comparing Eq(5.2) with Eqg. (3.11), one sees thaA(y)
is a scaling facto(3.10 which takes “ into an affinely pa-
rametrizedk®. We already know, Eq(3.23), that the most
general scaling factoA (y) can differ from our particular
scaling factorA(y) only by a multiplicative functiom\ ¢(z)
of comoving coordinates:

A(y)=Ao(Z(y)) A(y).

Equations(5.1) and (5.3) specify an algebraic procedure
by which, from any solutio@*(y), W,(y) of the Euler equa-

(5.3

Wk: ka 3Zk

(5.9

Notice that whilek,, in affine parametrization is built from a
solutionZ¥(y), W, (y) of the Euler equations by differentia-
tions (5.5 and algebraic manipulation$.1) and (5.3, the
construction of the affine parameter=V(y) itself requires
solving a differential equatiok*V ,=1, i.e., an integration
(3.19.

The other special parameters, the luminosity distance
(3.33 and the parallax distan¢8.34), can be obtained from
Z¥(y), Wi(y) by algebraic operations and differentiations.
The luminosity distance\(y) is simply the scaling factor
(5.3). The parallax distancp is the reciprocal value of

0=A(V 1%

= Ay VA APy PWZ ) - (5.10

So far, we have shown how to construct the covector fgld

in affine parametrization from a solutiatf(y), W,(y) of the
Euler equation44.6) and (4.7) of the action principle4.4)
and(4.5) written in thel , parametrization. Let us now show
how to enforce affine parametrization directly from an action
principle. Require one of the potentialg, in the action(4.4)
and (4.5, sayM =W;, to be positive, and drop the index
from the associated comoving coordinaZe=Z3. Introduce

tions (4.6) and(4.7), one can construct the most general scal-Wa -=Wa/Ws in place of the remaining two potential§, ,

ing factor A(y) which takes the covector fiell:LszZk,a
into a covector field

Ka(Y)=A(Y)Io(y)

in affine parametrization. Equatidb.4) simultaneously tells
us how to scale the potential®/, into the corresponding
potentialsw, of the Pfaff form ofk,:

(5.9

kKe=wW,ZK,, with w=AW,. (5.5

The mass distribution

M=A?2 (5.6)
associated with the affine parametrizatitB4) satisfies a
continuity equation3.17). The potentialdV, associated with
I, also satisfy the continuity equatiqd.10. However, be-
cause in generd ,|“+# 0, the potentialdV, do not stay the
same along the dust lines:

1%V W, #0. (5.7

A=1,2, and write the Lagrangia@.5) in terms of the new
variablesM, Z, ZA, w,

1
LN = — S|y M y*Pk kg (5.1

with

Ky '=Z o+ WaZA . (5.12
The Pfaff form corresponding tl, is now constructed only
from five potentialsZ, Z*, w,, though the action4.4),
(5.11), and(5.12 still depends on six scalar variables, due to
the presence ol in the Lagrangiar(5.11). By varying the
action with respect t& one obtains the continuity equation
(3.17). By using the other field equations, one easily derives
Eq. (3.16 for affinely parametrized geodesics.

The Lagrangian4.5) is special because it leads to the
simplified form of the energy-momentum tensor, while the

On the other hand, by virtue of the continuity equationsLagrangian(5.11) is special because it leads to an affinely

(4.10 and (3.17), the potentialsw, associated with an af-
finely parametrizedk, of Eq. (5.4) do stay the same along
the dust lines:

parametrizeck®. By building an additional redundancy into
the Lagrangian, one can reach the generic f¢ghi) and
(2.9 of the energy-momentum source. One simply intro-
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duces the seventh scalkt while keepingU , as the Pfaff
form of six scalar fieldz¥, W,:3

1
LND:—§|7|1’2M y*PU,Ug (5.13

with

U, =W, Z*,. (5.14

The new Lagrangian density and all equations of motion ar

then invariant under the gauge transformati@l10 and
(2.13),

Wy— W= AW, (5.15
and

M—M=A"2M, (5.16

whereA(y)>0 is an arbitrary scaling factor.
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The spacetime metric is reconstructed as
,yaB: _ nanB+ gabYa,aYB,b ,

(6.5

whereg?® is the inverse ofj,,, and the determinants| of

Yap @and|g| of g,;, are related by
|y[Y2=N*|g| "™ (6.6

Scalar fields on\, such as the null-dust variabl&k, W,
can be pulled back t& X3, by the mapping6.1). By using

%q. (6.3) we obtain

Z¥ , no=(NH) "1k, (6.7
where we have introduced the normal velocities
VK =Zk—ZK N3, ZK =ZK Yo . (6.8

This allows us to write the null-dust actig#.4) and (4.5),
with |, given by(4.1), as an integral oveR X3, i.e., in the
(3+1)-split form:

The canonical form of the action is the same whether one

starts from the original Lagrangia@.5 and (4.1) or the
redundant Lagrangiafb.13 and(5.14). The canonical vari-

sND[zk,wk;gab,Nl,Na]=J dtJ d*x LNP. (6.9
R 3

ables recombine the redundant potentials in such a way that

the information about the split ¢f, into M andU , gets lost:
From the canonical variables one can reconstruct bplyit

The Lagrangian density"® on RX S is a quadratic form
of the Lagrange multipliersV, :

is thus not worth the effort to complicate the spacetime La-

grangian by striving to achieve a superfluous generality.
Having learned this lesson, we take the spacetime action

(4.4 and (4.5 with 1, given by Eq.(4.1) as our starting
point.

VI. CANONICAL DESCRIPTION OF NULL DUST

The familiar ADM algorithm for casting a covariant ac-
tion into Hamiltonian form works for the null dust in a simi-
lar way as for the ordinary dust of massive partidles One
foliates the spacetim@1 by spacelike hypersurfaces,

Y:RXZ—M by (t,x)—y=Y(t,x). (6.1

In local coordinates®, a=1,2,3, on%, andy?, «=0,1,2,3,
on M, the foliation is represented by

(1,Xx3)—>y*=Y*(t,x?). (6.2

A transition from one lea® of the foliation to another is
described by the deformation vect¥* :=4gY?/t. Its de-
composition into the normah® and tangentialy® , direc-
tions to the leaves yields the lapse functidh and the shift
vector N2:

Ye=N-ne+Naye . (6.3

On each leaf, the spacetime metigs(y) induces the in-
trinsic metric

Gab(1,X) = Yap(Y(£,X)Y (6,0 YP h(t,x). (6.4

3By comparing Eqs(5.13 and (5.14) with Egs. (4.2) and (4.5),
we see thaw,=MY2w, .

1 . y
LNP=Z1glM (N*)"'V'VI-N'g!) Wiw;. (6.10

The metric

gl (tx)=g*Z' .2}, (6.1
is the induced metric o expressed in the basBi,a of
comoving coordinateZ'.

By varying the action with respect ¥, , we get a system
of linear homogeneous equations b :

(@' —(NH)~2viVi) w;=0. (6.12

This has a nontrivial solution only if the determinant

det(g' — (N*) ~2V'Vi)=(1—(N*)~?g; V'V)) detg")
6.13

vanishes. This imposes the constraint

g;V'VI—(N+)2=0 (6.14
on the velocitiesZ'. (Here, gj; is the inverse ofy'l. We can
use it for lowering the dust space indides.

If the constraint(6.14) is satisfied, Eq(6.12 has a solu-
tion W;«V;. Of course, the homogeneous equatiénl?
determines only the direction &#;, leavingW=g"W;W;
undetermined. We write the general solution in the form

W= W Vi(Vivh) 2, (6.19
whereW is an arbitrary positive factor.

By substituting this solutio6.15 back into the Lagrang-
ian (6.10, we eliminate from the action the multiplieW; ,
replacing them by a single multipliét:



1 o
LNP=Z]gl"W(N") 1g VIVI-N). (6.19
The reduced action is a functional ¥f andZ. Its variation
with respect toW reproduces the constrairi6.14 which

enabled us to expresd/; in terms of W and Z!, Z!, Eq.
(6.15. Its variation with respect t&¥ gives an equation
which, modulo the constrair6.14) and Eq.(6.15 consid-
ered as a definition diV;, is equivalent to the equations of
motion obtained by varying the original actid6.9) and
(6.10 with respect taz*. The reduced action

sND[zk,w;gab,NL,Na]=fRdtLoﬁxLND (6.17

with the Lagrangian6.16) is thus entirely equivalent to the
original action(6.9) with the Lagrangian(6.10.
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At this stage, we are finally able to eliminate the last
remaining multiplielW. By varying the actior(6.22—(6.25
with respect toW, we obtain an equation

ssNP L oHTP 0 6.2
SW oW (6.26
which determinedV in terms of the canonical data:
w=|g|"**Jg" PP,
— |g| -2/ gHIPHL®. 627

By substituting this solution back intd*® we obtain

NP~ | GTHTCH®. (6.28

In order to bring the reduced action to canonical form, weWe see thaw is just the scalar fornw=|g|~2H''° of the

perform the Legendre dual transformation froﬁf,('zk) to
(Z%, P, leavingW as a multiplier. First, we introduce the
momenta

aLND

o oazk

=[g|"W(N*) v, (6.18

Py :

To clarify their physical meaning, we return to the defi-
nition (6.15 of W; , the decompositiof.1) of | ,, and Egs.
(6.7) and(6.8) for the normal velocity. In this way we learn
that P, are normal projections of the currert$ introduced
in Eq. (4.9:

P.=|g|Y23¢n,. (6.19
Equation(6.18 can be inverted to obtain the velocities
Zk=N*{g| VAW tgkiP;+ N3ZX . (6.20
This leads to the Hamiltonian
HNP = P Z*— LNP=N'HYP+N2HYP  (6.20)
which is a linear combination of the momentum density
HYP=p,ZK . (6.22

and the energy density

1 N 1
HTD: W 1g|~ Y3yl Pin+§ng|l/2 (6.23

2

1 1
EW_1|9|_1/29abH21DHBID+ EW|g|1/2

(6.29
of the dust. The canonical form of the action then reads

SO ZK Py W: gap, NY, N3]
:f dtf d3x (P ZKk—N*HP—NaHND) - (6.25
R 3

whereH)P andH''® are given by Eqs(6.22 and (6.24.

Hamiltonian densityH"?. The final expression.22 for

the momentum density an@.28 for the energy density are
simple: The form of the momentum density is dictated by
the requirement that it generate the Lie derivative change
of the scalarg¥(x) and scalar densitieB,(x) under spatial
diffeomorphisms LDiff, [10]. The energy density is the
norm of the momentum density with respect to the spatial
metric. The resulting reduced canonical action
SNPIZX, Py 9ap, N*, N2], with Egs.(6.22 and(6.28 yields

the Hamilton equations far*(t,x) and P,(t,x). These de-
scribe the evolution of the null dust on a given geometrical
backgroundy,z < (N*(t,x), N3(t,X), gap(t,x)).*

From the solution of the Hamilton equations we can re-
construct the null vectot® which provides the spacetime
description of the dust. It holds that

[*=1"n*+12Y* ., (6.29
wherelt andl, are expressed as functions of the canonical
variables:

IL_ _Iana: _W1/2,

(6.30

la=1,Y* ;=W 3g| /240D, (6.30)
Here, of courseW stands for the scalar forr{6.27) of the
energy-momentum density. One can check tifais a null
vector by virtue of its constructio(6.29—(6.31):
1%l ,=—(1+)2+13,=0. (6.32
The background variablés" (t,x), N&(t,x), andg,p(t,x)
in the dust actionS\[Z¥, Py; gap, N*, N3] are not to be
varied. The Hamiltonian formalism for null dust on a given

4Our Lagrangian and Hamiltonian formalisms can easily be gen-
eralized to several mutually noninteracting spe¢sseams of null
dust. This may be useful for the canonical treatment of spherical
collapse, in which the ingoing null dust is turned into an outgoing
null dust at the center of symmetry, or for the canonical treatment
of models involving colliding streams of dust with plane or cylin-
drical symmetry(see references if84]).
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background is thus entirely unconstrained. To couple nulbensitized expressions constructed from the scalar variables

dust to geometry, we must add its acti®¥ to the gravita-  |g|~?H® and|g| ~1g2°HSH which also have strongly van-

tional Dirac-ADM action ishing Poisson brackets. Markopoulpl3] posed the ques-
tion of what is the most general densit

SG[gab1 pab; NJ', Na] g %

F=[g|"?F(g| %1%, |g|'g**HZHD) (7.9
— 3 aby _ nLlpgG_njayG
JRdtJEd X (PP0ap~NTHI=NHZ) - (6.33 of weightw constructed from these variables which has the
strongly vanishing Poisson brackets
with the standard gravitational super-Hamiltonian and super-
momentum densities {F(x), F(x")}=0. (7.9

HE(X; Gap» P2%]= Gaped X;9) P2P(X) p°Y(x) — |g| ?R(x; 9], She found an algorithm for generating all such densities. The
(6.39 density (7.2) of weight 2 still seems to be the simplest.
Among others, there is the scalar form

1
Gabcdzi|g|7l/2(gacgbd+gadgbc_ Jabdca), (6.39 Gy = |g|*1/2(Hf+ ‘/gabH§H§)=O 7.7
and of the constraint7.1) which, as we have just seen, describes
G ab b null dust.
HZ(X; Gab, P*°]= —2Dppa(X), (6.36 The constraintsHS=0=H? of vacuum gravity can be

whereD,, is the spatial covariant derivative. replaced by an alternative system

LThe variation of the total action with respect to the lapse HS=0=G (orHS=0=G). (7.9
N+ and the shiftN® then leads to the familiar Hamiltonian

and momentum constraints Unlike the original constraintsd$ and G (or HS and G )

H =HS+HNP=p 6.37) generate a true Lie algebra. Unfortunately, in vacuum gravity
L ’ ' the new constraint$7.2) [and similarly Eq.(7.7)] do not
generate the evolution of the geometric dgig, p2° into a

. G ND_
Ha:=Hg+H,"=0 (6.39 Ricci-flat spacetime. Expressidi.2) is flawed because its
for the coupled system. Hamilton?an vector f_ield van_ishes on the constr_aint surface
(7.8), while expression7.7) is flawed because its Hamil-
VII. NULL DUST CONSTRAINTS THAT GENERATE tonian vector field is ill defined foH,=0.
A LIE ALGEBRA No such difficulty exists for null dust. The momentum

constraint (6.38 is different from the vacuum constraint
By using the supermomentum constraint, one can replacHG 0 and, as long as there is any dust at the point in ques-
the momentum densnyi of the dust by the gravitational tion, HND and henceHG cannot vanish. The Hamiltonian
denS|tyHG in the expression6.28 for the dust energy den- vector flelds of the dynam|cal variabl€s.2) or (7.7) then do
sity H'P . This brings the constraint systei®.39 and(6.37  not vanish on the constraint surfa@37) and(6.38 of the

into an equivalent forn{6.38 and null dust coupled to geometry. The new constraiit®) or
(7.7) correctly generate the evolution of geometry produced
H, =HS®+ Jg®"HSHE=0. (7.) by null dust. Moreover, as in vacuum spacetime, the con-

) straints(6.38 and (7.2), or (6.38 and(7.7), generate a true
Only the supermomentum constra{6t38 contains the dust | je algebra. It is thus advantageous to bring the constraints

structed solely from the gravitational variablgg, , p2°. Al- coupled system.
ternatively, one can get rid of an inconvenient square root by \why is it that the presence of the null dust does not affect
rewriting Eq.(7.1) in the form Egs. (7.2 and (7.7) that hold in vacuum gravity? The
energy-momentum tensor of the null dust satisfies the condi-
G =(Hf)?~g*HgHp=0. 72 gon

Under the positivity condition T“VTW:O. 7.9

—HP=HC<0, 7.3 . . -
L L 7.3 Conversely, any symmetric tens®f”? which satisfies Eq.
the constraint7.2) is equivalent to the constraif{.1). (7.9 must either vanish, or there exists a null vedtbsuch
Brown and Kuchaf1] proved a remarkable fact that the that
densities(7.2) have strongly vanishing Poisson brackets:
7.2 i g TeB= %8, (7.10
{G(x), G(x")}=0. (7.4 o . o .
The Einstein law of gravitatiof2.3) then implies that“ is a
By coupling gravity to other simple sources, Kuchemd geodesic vector field, i.e., the Euler equations of motion for
Romano[11] and Brown and Marolf12] produced other the null dust. The simple tensor equation
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G*,G=0 (7.12) Z*=7K(x¥), (8.2

imposed on the Einstein tensor thus ensures that the georfkes the tensorial variableg,,(x) and p*°(x) on 3 into
etry v,z is necessarily produced by null dust according tocorresponding tensoi;(z) andp'(z) on the dust spacé:
Einstein’s law of gravitation. " va b
The L L projection of Eq.(7.11) gives 6ij(2) =X%i(2)X° {(2)9an(X(2)), 8.3
2_ ~ab — . X(z . .
(6117~ 076126.p=0. (712 pi2) #‘%‘ Z' (X(2)Z) p(X(2)P*(X(2).
Because the. L and_| projections of the Einstein tensor (8.4

ield the gravitational super-Hamiltonian and supermomen-
%/um [10] g P P Here, thet-dependent mappin¥:S—2 is simply the in-

verse ofZ,

1 A R
GJ_J_:_§|g| 1/2HG’ GJ_a:§|g| quS’ (7-13) X=2", (8'5)

and |9X(z)/dz| is the Jacobian for the change of variables
Eq. (7.12 is equivalent to the constraiff.2). We have al- x3=X3(2).
ready noticed that under the energy positivity conditidr) We rewrite the supermomentum constraiBtl) in the
the constrain{7.2) is equivalent to the constraiff.7). The  form
Rainich-type condition(7.11) thus connects the new form

(7.2) or (7.7) of the Hamiltonian constraint with the space- Hk(X) =Ha(X)Zg(x)
time picture.
P = P(X) + HE(X)Z3(x) =0. 8.6
VIIl. CONSTRAINT QUANTIZATION OF GEOMETRY Here,

COUPLED TO NULL DUST

a - ya

We have cast the constraint system for geometry coupled Zix) =X7,(200) @7
to null dust into a form in which it generates a Lie algebra. Injs the inverse matrix t@* 4(x):
this process, the Hamiltonian constraint has been replaced o _
either by the constrairi7.2) or by the constraint7.7). Either Z) A(X)ZR(x) =5} (8.8
of these constraints have vanishing Poisson brackess. )
The momentum constraint is left in its original for(8.39  The new supermomentutd(x) smeared by a new shift
and (6.22: N'K(x),

Ha(X) = Py(x)Z* 4(x) +HF(x)=0. 8.1 H.[N'] = Ld3x NTK(X)H (), (8.9

The momentum constraint8.1) close in the way character-

istic for the Lie algebra LDifE of the diffeomorphism group

Diff%. The Poisson brackets o&(x) [or G (x)] with Sk [ 7K J17— N TK

Ha(x") close intoG(x) or [G (x)] in the way which reflects ZE(x) ={Z (%), Hi[N'J}=N"(x) (8.10

the transformation behavior @&(x) [or G (x)] under spatial  of the dust coordinateZ“(x) by the amountN'%(x) [1].

diffeomorphisms DifE.: G(x) is a density of weight 2, while One can prove that thé variablesg;;(2), p'(z) along

G (x) is a scalar. with the dust frame variableZX(x) and the new supermo-

As for ordinary dust, the constraint system can be vastlynentumH ,(x) form a canonical chaftL]. In particular, this

simplified by the introduction of an alternative set of canoni-means that the new constraint functiong(® =H;(x)

cal variables which reflect the fact that the dust particleggyve vanishing Poisson brackets among themselves and are

define a preferred system of coordinates>ariThe mapping  the momenta ®x) canonically conjugate to the dust frame

Z:X— & which, in local coordinates, assumes the form  variablesz¥(x). Further, because the Poisson brackets of the
S tensorsg;(2), p'(z) with the smeared supermomentum
(8.9 vanish, theseS tensors are invariant under the shifts

SEquation(7.11) is perhaps the simplest example of the Rainich- (8.6).
type geometrization of a source field. The general task is to find |n terms of the new canonical variablg§(z), pij(z)' and
equations for the Einstein tensor which are equivalent to the Ein-zk(x), P«(x) the momentum constrairg8.6) reduces to the

stein law of gravitation together with the field equations for a givencondition that the canonical momenturg(® vanishes:
source. The problem was first formulated for the Einstein-Maxwell

system by Rainich and solved by him under the assumption that the P(x)=0. (8.11
electromagnetic field is not algebraically spedialill) [14], [15]. . ) )
The Rainich problem for the null electromagnetic field was soIvedThe Hamiltonian ConStra'nt$7'2)_ or (7.7) . Can_ the_n be
by Hlavafy[16]. The much simpler scalar field case was analyzedmapped to the dust spaceaccording to their weight:

by Pered17] and by Kuchaf18]. The spinor field was treated by ’ 9X(2)

generates through the Poisson bracket the change

2
Kuchar[19] and the Proca field by Bak [20]. G(z) := G(X(z2))=0, (8.12

0z
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G.(2) =G (X(2))=0. (813  'X. COMPARING NULL DUST WITH ORDINARY DUST

) ) Ordinary dust coupled to gravity was turned into a Hamil-

The S constraints(8.12) anic_i(8.139 are the same functionals 4nian system and formally quantized by Brown and Kichar
of the S tensorgy;; (z) andp’ (2) as theX cor;%tralnts(Y.Z) O [1]. This scheme turns out to be both similar to and charac-
(7.7) were of theX tensorsgas(x) and p®*(x). In other teristically different from the description of null dust given in
words, G(2) is obtained fromG(x) and G (2) is obtained  this paper. We shall outline the basic similarities and empha-
from G (x) by replacing thek tensorsy,(X), p°(x) by the  gize the differences.
correspondingS tensorsg;;(z), p'(z). The S constraints The spacetime action
(8.12 and(8.13 have strongly vanishing Poisson brackets,
i.e., they generate an Abelian algebra. 5 ‘. _ _ 4 D

In the Dirac method of quantization, constraints are ST.Z% Mka’?’aﬁ]_fMd y L°(y) 9.9)
turned into operators and imposed as restrictions on the state
functionals of the system. We choose to work with the dusbf ordinary dust is constructed from eight scalar fiekfs

space variables, so the quantum states of the system are furwk andT, M. The Lagrangian density®(y) has the form
tionals W[Z,g] of the canonical coordinateg“(x) and

gij(z), and the constraint operators(®) and é(z) [or LD=_%|,Y|1/2M(yaﬁUaUB+1)_ 9.2)

G,(z)] are obtained by quantizing the classical expressions
(8'.1])_(8'1?)’.' The transition Is easy fqr t.he momg—:-r(ﬁal]) The four-velocityU , is expressed as the Pfaff form
which are simply replaced by the variational derivatives “

Uy=—T ,+WZ", 9.3

Pu(x)=—i (8.14  of seven scalar field#/,, Z¥ andT. The matter equations of

— o
0Z%(x) motion are obtained by varying the dust acti@)—(9.3
The operatorg8.14 automatically commute, with respect to the state variablds, W, , T, andZX:
A ~ , 5SD 1 1/2
[P(x), Bi(x)]=0. (8.19 0= 5= 31MArUU+D, (99
It is far from clear how to replace the remaining class- 5D

ical constraints by operators which not only commute 0= = —|y|¥2mZk U (9.5
,a ’ .

with P(x), but also among themselves. We shall pro- Wi

ceed under the assumption that there exists a factor ordering 5P

and regularization of G '=G(z; g;(z), p'(z)] and/or 0= 7= —(|y|¥™MU®) ,, (9.6)

G, =G,z ;(2), p'(2)] which achieves this goal. If so,

the constraint operators can consistently annihilate the physi- 5P

cal states. The momentum constraint 0=— =(y"MWU*) ,. 9.7
P()W[Z,g]=0, (8.16

They lead to the interpretation of the state variables. Equa-
tion (9.5 is analogous to Eq4.6) for null dust. It ensures
that the three vector fieldg" are constant along the flow
lines of U and therefore their value can be interpreted as
comoving coordinates for the dust. Equatith4) ensures
W=y[g]. (8.17) that the four-velocityU* is a unit timelike vector field. It is
analogous to EQ.4.8 which guarantees that the four-
The constraint system is thereby reduced to a singleelocity | of null dust is lightlike. Equatior{9.6) allows us
%3 nontrivial condition that& = G(z: éij(z): pi(2)] or to interpretM as the rest mass der_15|ty of the dust and ex-
- - e o ) presses the law of mass conservation. It is analogous to Eq.
(G, =G (z gj(2), p'(2)]) annihilates the state functional: (3,17 for the null dust in affine parametrization. Equation
- n (9.7) can be interpreted as the momentum conservation law.
G(z; gij(2), p'(2)]¥[g]=0. (8.18  Itis analogous to Eq(4.10 for the null dust written again in
) . . affine parametrization. By multiplying E¢9.3) by U and
_The caveats which need to be born in mind when |mple_mentasing the field equation®.4) and (9.5), we learn that
ing such a formal procedure for gravity coupled to ordinary

dust are carefully spelled out [1]. An additional difficulty T U=1, 9.9
with null dust is that there is no natural variable which would '

play the role of internal time. As a result, unlike for ordinary i.e., thatT is the proper time between a fiducial hypersurface
dust, the quantum constraif@.18 does not have the form of T=0 and an arbitrary hypersurfade=const along the dust

a functional Schrdinger equation. It is thus unclear how, world lines. From Eq(9.3) we see that th&V, variables are
even formally, to turn the space of its solutions into a Hilbertthe projections of the four-velocity , to the hypersurfaces
space. of constanfT expressed in the dust space cobié‘iyg. Due

where Aa(x) is interpreted as the variational derivative
(8.14), means that the state functior#[Z,g] cannot de-
pend onZ(x):
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to the conservation law$9.6) and (9.7), these projections ting P=0 and forgetting all about its conjugate variafle
remain the same along a flow line Of*. In comparisonW,  This should not hide the fundamentally different ways in
for the null dust is the component of the null coveditin ~ which the Dirac-ADM action is obtained from the spacetime
the dust space cobast§ ,. These components ametcon-  action. The Lagrangiag9.2) and (9.3 for ordinary dust is

served along the flow lines, E¢5.7). However, when one nondegenerate in the velocitids zZ¥. The expressions for
rescales into an affinely parametrizekf* by Egs.(5.4) and  the momentaP, P, can be inverted to yield the velocities.
(5.5 and projectsk,, into hypersurfaces of constant affine The momenta are in a one-to-one correspondence with the
parameterv, one obtains the componentg of Eq. (5.9  multipliers M and W, and hence their variation yields

which are conserved along the flow lines, EG.8). equivalent equations. The spacetime action, so to speak, is in
The main difference between the actio®3 andS"° is  an ‘already parametrized form.”
that the dust action depends on eight variadled andZz¥, To cast the spacetime actidd.4) and (4.5) of the null

Wi, while the null dust action depends only on six variablesdust into canonical form requires an entirely different proce-
_Zk, Wi.. The interpretation of the van_abl;é as the comov-  dure. The null dust Lagrangia6.8) and(6.10 is singular in
ing coordinates andV, as the projections of the four- {he yelocitieszX. The definition equations for the momenta

velocitiesU* (or |%) into hypersurfaces of constaht(or U) P, cannot be inverted. They yield three constraints
is analogous. The variables and M do not appear in the

null dust action(4.1), (4.4), and(4.5). This reflects the fact 5iikwjpk=o (9.12
that the mass functioM of the null dust is not uniquely

determined and it was absorbed into the definitionlf  demanding that the multipliergv, be parallel to the mo-
Similarly, the affine parameter along the null geodesics is nomentaP, , which leaves the magnitude @, undetermined.
uniquely determined. If one chooses to enforce the affin@he variation of the action with respect W) leads to the

parametrization by taking the null dust Lagrangian in theconstraint(6.14) on the velocitiesZ¥. If this constraint is
form (5.11), the corresponding/ occurs in the action, but satisfied, the multipliersV, can be replaced by a single mul-
the Pfaff form of an affinely parametrized,, Eq.(5.12, tiplier W and the Lagrangian.\P cast into an equivalent
contains only two independent scalarg.wOne can work in  form (6.16) which is regular in the velocities. This allows
a totally arbitrary parametrization by letting the Lagrangianogne to perform the Legendre dual transformation to the ca-
density to depend on seven variabMs Z¥, W, instead of nonical form of the action. The final elimination of the mul-
six, Egs.(5.13 and (5.14), but then the action becomes tiplier W (analogous to the final elimination of the mass mul-
gauge invariant under the scalings15 and(5.16, which  tiplier M from the canonical action for ordinary duseads
makes it effectively dependent only on six of these variablesig the null dust momentum and energy densit@22 and
These similarities and differences are reflected in the ca 28. To summarize, though these final expressions have
nonical form of the action. For ordinary dust, the energysimilar structure as the densiti€x9) and(9.10 for ordinary
densityH? and momentum densityl? depend orfour pairs  dust from which they can be obtained by puttifg: 0, their
of canonical variablesT and P, andZX, P,. They take the derivation is fundamentally different.
form After the dust is coupled to geometry, the parallels and
b ‘ differences between ordinary and null dust are brought into a
Ha=PTatPiZ%4a 99 new perspective. The momentum and Hamiltonian con-
straints for ordinary dust can be resolved with respect to the
four dust moment#®, P, which brings them to an equivalent

HP= P2+ g H2HP. (919 form

On the other hand, similar expressions for null dust, Egs.
(6.22 and (6.28), depend only orthree pairs of canonical . _
variablesZX andP,. This difference is vital. While ordinary Hyi=P- JG=o, (9.1
dust has four degrees of freedom per space point,, null
dust has only three.

The rest mass densityl of ordinary dust is directly re-

lated to the momenturR: {Hk(x), Hy (x")}=0. (9.15

2

and

Hiy =P+ ZEHS+ G T ,28=0, (9.13

whereG is given by Eq.(7.2). The new constraint functions
H.;x=(H;, Hy) have strongly vanishing Poisson brackets:

9.11) The imposition of the constraint9.13 and(9.14) as op-

\/WbHaDl‘“@' ' erator restrictions on the statdq T, Z¥, gap. p?°] leads to a
functional Schrdinger equation with formally conserved in-
The mass function and affine parametrization of null dust aré@er product. By mapping the constraints into the dust space,
ambiguous and their only invariant combination is the nullthe momentum constraint is eliminated and what remains is a
vector| ®. This can be reconstructed from the canonical datasingle functional differential Schdinger equation
Egs. (6.29—(6.31), rather than the mass function and the . __
four-velocity separately. (P(2)—VG(z;9,p)¥[T(2),9(2z)]=0. (9.1
Formally, the momentum and energy densiti@22 and

(6.28 of the null dust are obtained from the corresponding The null dust constraints in the for8.6) and(7.2) can
expression$9.9) and(9.10 for ordinary dust simply by put- again be obtained from the ordinary dust constra{ft43

M=]g| 42
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and (9.14 by disregarding the canonical palr, P [and Here, in the first approximation, the complex amplitude
squaring Eq(9.14]. By mapping them into dust space, the a,(y) is independent of the wavelength and is slowly chang-
momentum constraint is again eliminated. By imposing thang as a function of spacetime positign while the scalar
only remaining constraint as an operator restriction on quanfunction ®(y) is a rapidly changing phase. Following the
tum states, one again gets a single functional differentiastandard proceduré], one introduces the wave vector
equation(8.18. However, and this is an important differ-

ence, Eq(8.18 is nota Schralinger equation like Eq9.16) ko=0 ., (A3)
because there is no internal tifig¢z). It is thus not clear the (rea) scalar amplitude

how to introduce an inner product in the space of its solu- P

tions. a\1/2 a gy \1/2
. . A=(AA =(a"a ) A4
Both ordinary dust and null dust provide a standard of (AcAY) ( ) (Ad)

space in canonical gravity because the dust particles intrgand the(comple® unit polarization vector
duce into spacetime a privileged dust fraidabeled by
comoving coordinateZ¥(x). The crucial difference is that e,=A 'a,. (A5)

ordinary dust also provides a standard of time: It has an )
additional degree of freedoffi(x) which can be physically As a consequence of the source-free wave equation and the

interpreted as the proper time along the dust world linesLorentz gauge condition, both written in the first order of the

Null dust does not have any corresponding degree of fregde0metrical optics approximation, the quantitiés)—(AS)
dom because affine parametrization of null geodesics is anP€Y the following set of equations:

biguous. It thus fails to provide a standard of time to the a_

o S : . k,k“=0, (AB6)
spacetime in which it moves. The story of ordinary dust is
that of ti_me regained. The story of null dust is that of time kﬂVBk"=0, (A7)
lost again.

V (A%k*)=0, (A8)
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¥rom Eqg. (A7) we see that the null vectdt® is affinely
parametrized. The electromagnetic field tensor is given by

It represents the electromagnetic field of tylde(the null
field) since it satisfies the relations
If at each spacetime point all the energy is transported in

APPENDIX A: NULL DUST AND GEOMETRICAL OPTICS

one direction with the speed of light, it is appropriate to (FaptiFhpkP=0,

describe the matter by the energy-momentum tensor of null

dust, FaﬁF“ﬁ=FaﬁF*“ﬁ=0, (Al
TaB— MKaKE (A1) Whererﬁ is dual toF, ;. Equations(A7) and (A8) imply

the covariant conservation law for the electromagnetic

energy-momentum tensor
The energy-momentum tens¢Al) may be considered as

representing an incoherent superposition of waves with ran- TP = A%kKP. (Al12)
dom phases and polarizations but moving in a single ) i
direction® It is also called the “geometrical-optics” or  We see that the phenomenological null dust equations
“pure radiation” energy-momentum tensor. (2.9 and(3.16)_—(3.18) are the_sa_lme as Eq#\6)—(A8) and_

As an example, consider the Maxwell theofBee, in (A12) of the hlg_h-freqyency limit of the Maxwell theory if
particular, [3], Sec. 22.5, for a detailed exposition of geo- the null vector fieldk, is defined by Eq(A3) and the mass
metrical optics in curved spacetiméf the electromagnetic d|§tr|but|onM is identified with the square of the scalar am-
waves carlocally be regarded as plane waves propagating?litude A:
through spacetime of negligible curvature, one can write the

— A2
electromagnetic vector potential, in the form M=A (A13)

_ Null dust thus exhibits all features of the geometrical op-
A,=Rea, €9). (A2)  tics limit of Maxwell’s theory except for the polarization
properties. However, starting from a solution of the null dust
equations one can always construct a polarization vestor
5This is different from the energy-momentum tensor of a perfectsuch that Eqs(A9) are also satisfied. This yields the tensor
fluid with the equation of statp=M/3, which represents the su- (A10) which can be regarded as an electromagnetic field ten-
perposition of waves with random propagation directions. sor in the geometrical optics approximation.
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The laws of geometrical optics can also be interpreted asAPPENDIX B: EXACT SOLUTIONS WITH NULL DUST:
describing photons that move along null rays with the flux =~ EXAMPLES AND SOME RECENT APPLICATIONS

vector which is determined by the amplituBeand the null . . .
As an illustration, we shall give a few examples of known

vectork® (see[3] for details. {axact spacetimes with null dust detailed survey of such

The lightlike particles need not necessarily be photons. | . L X
is quite obvious that similar conclusions can be reached fo?OIU'[Ions found before 1980 is given[i24]. The cosmologi

. : . . cal solutions with null dust were recently reviewed[2b],
all zero-rest:mass fields in a high-frequency limit. For €%and the solution representing colliding plane gravitational
ample, by employing the geometrical optics fofAL) of the P g gp 9

X . waves accompanied by null dust[i26].)
energy-momentum tensor, several auth@ﬂs] studied the Among the simplest solutions directly related to the fields
gravitational collapse with escaping neutrinos.

A somewhat special case is the gravitational field itself.ﬁ[}ﬁ'%%sl? ;[Qli t%ei]osmreetrlr%aslecr)]gacssllneuéi;rel;:r?gfc\j\g:/aellsy fll_?]te
Careful studies of the high-frequency limit of the gravita- P 9 sp iy ’ y

tional radiation by Isaacson and oth§P2] have shown that are described by the line eleme(see, e.g.[24)

the energy-momentum tens@212) and the null vector field 1

k* which satisfy Eqs(A6)—(A8) also describe the behavior (ds?2=— —(I)Z(u,)(x2+y2)du3 —2du, du_+dx?+dy?,
of high-frequency gravitational waves. The metric tensor 4

perturbations representing high-frequency waves are given (B1)

by where® is an arbitrary function of a retarded tinnbe . The

corresponding energy-momentum tensor is

h,s=Re((a,5— % ay,z)e®),
p=Re((8up—327ap)€") Taﬁzq)zkakﬁ; (B2

a = ;)/aﬁ aup, (A14) the only nonvanishing component of the'null covedtris
k, =1. These solutions can always be interpreted as exact

0 solutions of the Einstein-Maxwell equations with the null
where y .4 is the background metri¢he source of which electromagnetic field given by ,z=2®(u_)k{,e4 , where
may be the high-frequency waves themselv8y applying e,=(0, 0, co%, sing) contains an arbitrary function
the geometrical optics approximation to the perturbed Einy=(u_) [cf. Eq. (A10)]. Cylindrical gravitational waves
stein’s equations, one arrives again at H4R), (A6)—(A8), accompanied by null dust are also knoy@].
and(Al12). Instead of the scalar amplitud&4) one now gets A more complicated class of radiative solutions with

“spherical” gravitational waves and null dust is formed by
- the Robinson-Trautman solutiong28]. The energy-
A=(5a"a,g'"2 (A15)  momentum tensor again has the fo(BR), but the function
® is now given by®2=n2(¢{, Z,u_)/v?, where/ is a com-

One also obtains the equations for the polarization tenso?lex spatial coordinate; is an affine parameter along the

€.5=a.4/A, analogous to EqsA9) (see[3], [22]). The ra)é_s, andll;,h|s a retaLded tln?e._ The r1:un<|:(‘;|on may be
Riemann tensor of the metrid\14) has the Petrov typ#l. ar- |tra.ry. ' owe\{er, these solutions should represent exact
The gravitational field in the high-frequency limit is null, Einstein-Maxwell fieldsn must have the formm?=2hhP?,
similarly as the electromagnetic field. The well-known whereh(¢,,u_) andP({, {,u_) satisfy certain additional
peeling-off property of exact radiatigero-rest-magdields  conditions[24]. The Robinson-Trautman solutions with null
in asymptotically flat spacetimelgl] implies that at large dust include Vaidya’s spherically symmetric metric as a spe-
distances from the source these fields are null, having theial case. In fact, if the evolving null dust is homogeneous,
structure of plane waves. In asymptotic regions one can eveall such Robinson-Trautman spacetimes approach Vaidya’'s
describeexact solutions of the field equations in terms of metric as the retarded time goes to infinigg].
null dust. In such situations, one can usually find a natural The null vector fieldk® in the solutions we have men-
parametrization of null rays, for example, by the proper timetioned is hypersurface orthogonal and the corresponding null
of distant observers at rest with respect to an isolated sourceongruence is thus nontwisting. The twisting null dust solu-
The variational approach of MacCallum and T4@B] to  tions are discussed ir80], the best known simple example
the high-frequency gravitational waves is especially relevanbeing the “radiating Kerr metric.”
for the present paper. By applying the “averaged Lagrangian Some exact solutions with null dust can also be inter-
technique” of Witham to the second variation Lagrangianpreted as exact solutions of Einstein’s equations coupled to a
for the perturbations of vacuum gravitational field, these auimassless scalar fiell31]. However, given a conserved
thors give a variational principle for approximately periodic energy-momentum tensor in the fortAl), it is not neces-
gravitational wave described by metric perturbation of thesarily true that the mass distributidi and the null vector
form (A14). Their principle, derived by perturbing and aver- field k* represent an electromagnetic or a massless scalar
aging the Hilbert action, implies the geometrical optics equafield. However, if the null vector fielk® is shear free, a
tions (A3), (A6)—(A8), and (Al12), with A given by Eq. corresponding nontrivial solution of Maxwell's equations
(A15). This principle is closely related to our variational can be found by virtue of the Mariot-Robinson theor3g].
principle for null dusfgiven in Eqgs.(4.4) and(4.5], in the Recently, certain exact solutions with null dust which can
special case of the hypersurface orthogonal vector field  be interpreted as “relativistic rockets” have been explored in



4892 JIRI BICAK AND KAREL V. KUCHAR 56

connection with the properties of gravitational radiatiga]. z' ,=(0,0,0,0,
A number of studies have also been devoted to colliding
plane, cylindrical, and spherical systems with null dusst]. z2’a:(o, —sina(z), cos(z),
Above all, as we have already stated in the Introduction,
the null dust models have been recently used to clarify the —Xa'(z)cosn(z) —ya'(z)sina(z)),  (C7)
formation of naked singularities during a spherical gravita-
tional collapsd35], in the studies of the mass inflation inside Z% ,=(1, —cosx(z), —sina(2),

black holes[36], and in the models attempting to describe

the formation and Hawking evaporation of black hdl8g]. Xa'(Z)sina(z) —ya' (z)cos(2)),

wherea’'=da/dz. Itis easy to see thﬂ"‘a are independent
APPENDIX C: DESCRIPTION OF TWISTING NULL covectors. Since

CONGRUENCES BY PFAFF FORMS: TWO EXAMPLES

Since null congruences are somewhat unusual, we give Ko=(=1, cos(2), sina(z), 0), (C8)

here two examples of twisting null congruences described b
the scalar potentialg' andw; .

(I In a flgt spacetime with Lprentziap cooro_linatgs W, =xa' (2)sina(z) —ya' (2)cosa(z),
(t,x,y,2), consider a system of lightlike particles which, in
each plane perpendicular to tlzeaxis, move in mutually
parallel straight lines. As one passes from one planeonst

to another, the angle between particle trajectories and the  One can easily check that, are constant along the geode-

axis smoothly changes with a=a(z) €[0,2m). Itis easy sjcs, Eq.(5.8). This also follows from Eq(C1) which allows

to see that the null world lines form a twisting null congru- ys to write w; in the form w;=a’(zy)(XoSina(zo)

ence: —Y0C0sx(z)). Similarly, one can check th&*z* ,=0, as
given by Eq.(4.6). One can also check the fact mentioned in
Sec. IV, that for a twisting congruence all vecttﬁjé,a are
spacelike(except perhaps a set of measure refhie space-

(c1 like character of the vector&® , and Z? , is evident; for
Z3 , we have

Yhe decompositiont5.5) is obtained with the coefficients

W2:0, W3= -1. (Cg)

t=U+t0,
X=vcosx(z)+Xg,

y=vsina(z) +Yq,
n*PZ3 ,Z° y= a' (2)*(xsina(z) — ycosx(z))®. (C10)

Z:ZO,
The vectorZ3,a is thus spacelike unlesg’ =0. Calculating

wherev € R is an affine parameter. The tangent null vectorsy,a nvistw of our congruencésee Eq(3.24], we find

k*=dx%/dv are given by
. 1
k*=(1, cosx(z), sina(z), 0). (C2 w= §|a’|. (C1y

One can readily check that ) ) o
Hence, if the congruence is twisting, all the three vectors

k?k,=0, kBVBka=0 , (C3 Zk,a are spacelike. Whea’ =0, ka=23,a, so that the con-
gruence is hypersurface orthogonal.
confirming that Eq(C1) is a congruence of null geodesics Instead of the comoving coordinaté, one can, of
affinely parametrized by. course, use other comoving variablg§ =z (Z'). Also,
The first comoving coordinate one can parametrize the geodesics by a lalfifferent from
the affine parametar. When one changes the parametriza-

1_
=z (C4 tion, v=v(u,Z), the null vectors are rescaled:
is trivial: It determines the plane in which the geodesic lies. dx v
The second comoving coordinaZé is the coordinate/’ of k¢ > U¥=—-= — (C12
the Cartesian systenx(, y’, z) obtained from X,y,z) by du du
the rotation about the axis by the anglex(z): This leads to a new decomposition, namely
2: o .
Z xsina(z) +ycosx(z). (CH Ua=W222,a+W323,a , (13

In the rotated Cartesian systems'(y’, z), the particles
move along thex’ axes, withy’ =const. The third comoving
coordinateZ? is the retarded timei_ corresponding to that
direction:

where W= (dv/du)w,, W3=dv/du. As discussed in Sec.
V, if the congruence is not affinely parametrized, i.e., if
dvldu+#const, the coefficients Ware not necessarily co-
moving.
Z3=u_=t—x'=t—xcosw(z)—ysina(2). (C6) (II) The second example will be described only briefly. It
is the familiar ingoing principal null congruence in Kerr
From Eqgs.(C4)—(C6) we obtain the covectorgX ,: spacetime. In the ingoing Kerr coordinatéé K, 6,¢) which
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generalize the ingoing Eddington-Finkelstein coordinates ofvhich are constant along the null geodedic46), in accor-

the Schwarzschild metric, the Kerr metric re&dsr notation
follows [3])

ds’=—(1-2Mrp~2)dV2+2dr dV+ p2d6?
+p 2[(r2+a%)2— Aa®sirPg]sint6 dg?
—2asir’d do dr—4aMrp~2sirf6 dedV.
(C19

Here, the constant parametdvt and a are the mass and

angular momentum per unit mass, and the functidbrandp

have the form
A=r2—2Mr+a? p?=r?+a’cogs.

(C1H

The ingoing null Kerr congruence is given by

V=const, r=—v, 6#=const, 5= const, (C16

dance with Eq.(5.8). The covariant metric can be read off
from Eq.(C14). The norms of the vectoiz® , are

gfzt , 71, 5= p~%a’sirte,

9*Pz? , 2% y=p~ %, (C20

923, Z° g=(psing) 2,

wherep? is given by Eq.(C15). We see that all the vectors
Zk,a are spacelike as long as£ 0, i.e., when the congruence
is twisting. The twistw, given by Eq.(3.249), is

w=|acod|p 2. (C21)

The congruencé€C16) is twisting even in the flat-space
limit of the Kerr metric, obtained by puttinyl =0. In fact,
Egs.(C20 and(C21) are independent d¥l. With a=0, the

where we have absorbed a constant energy paramet¥gctorZ® , becomes null and the congruence is hypersurface

into the affine parametew (cf. [3]). The coordinates
7' =V, 7%=¢, 7%="¢ are clearly comoving. We can eas-
ily form the basis vectorg ,:

z',=(1,0,0,0,
z? ,=(0,0,1,0,

(C17

z3,=(0,0,0, 1.

The covariant components of the tangent null vector

k®=dx*/dv are

k,=(—1,0,0,asir’6). (C18
lts decomposition into the three covectd$ , yields the
coefficients

W2:0, W3=aSin26’,

W= _1, (Clg)

orthogonal k,,= —Zlya, i.e., nontwisting.

The comoving coordinateg®= 6, Z3='¢ are simple, but
they become singular at the ax#s=0 and 6= 7, the mag-
nitude of the vectorZ3,a becoming infinite, Eq(C20. It is
easy, however, to cure this defect by going over to another

pair of comoving coordinateg? andz®’, e.g.,

Z?' =sing sing, 73 =cosp sing. (C22
Then
k,=—2" ,+asing cosp z%' ,—asind sing 2%’ ,,
(Cc23
and
9°fz? , 7% 5=p 1-sirfe sirfh),
9°fz% 7% s=p Y1—cody sirfh)  (C24

are regular ap=0 and = 1.
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