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Department of Theoretical Physics, Faculty of Mathematics and Physics, Charles University, V Holesˇovičkách 2,
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We present the Lagrangian and Hamiltonian framework which incorporates null dust as a source into
canonical gravity. Null dust is a generalized Lagrangian system which is described by six Clebsch potentials of
its four-velocity Pfaff form. The Dirac–Arnowitt-Deser-Misner decomposition splits these into three canonical
coordinates~the comoving coordinates of the dust! and their conjugate momenta~appropriate projections of
four-velocity!. Unlike the ordinary dust of massive particles, null dust therefore has three rather than four
degrees of freedom per space point. These are evolved by a Hamiltonian which is a linear combination of
energy and momentum densities of the dust. The energy density is the norm of the momentum density with
respect to the spatial metric. The coupling to geometry is achieved by adding these densities to the gravitational
super-Hamiltonian and supermomentum. This leads to appropriate Hamiltonian and momentum constraints in
the phase space of the system. The constraints can be rewritten in two alternative forms in which they generate
a true Lie algebra. The Dirac constraint quantization of the system is formally accomplished by imposing the
new constraints as quantum operator restrictions on state functionals. We compare the canonical schemes for
null and ordinary dust and emphasize their differences.@S0556-2821~97!02420-X#

PACS number~s!: 04.60.Ds, 04.20.Cv, 04.20.Fy

I. INTRODUCTION

Null dust has been widely used as a simple matter source
both in classical and semiclassical gravity. Its equations of
motion follow directly from the conservation of the energy-
momentum tensor. However, the inclusion of null dust as a
source into canonical gravity requires careful identification
of its own dynamical degrees of freedom. For this purpose,
one needs to construct a spacetime action depending on ap-
propriate Eulerian variables and bring it into canonical form
by the Dirac-ADM~Arnowitt-Deser-Misner! procedure. The
coupling to gravity, like that of other nonderivative systems,
is then entirely straightforward. The ordinary dust of massive
particles was treated in this manner by Brown and Kucharˇ
@1#. Our goal is to develop a similar formalism for null dust.

The main application which we have in mind is minisu-
perspace and midisuperspace quantization of canonical mod-
els which include null dust as a source. The specific models
based on null dust are both numerous and simple. After the
discovery of Vaidya’s ‘‘radiating Schwarzschild metric’’@2#,
there were found many other, more general exact solutions
of Einstein’s equations with null dust as a matter source.
Above all, such models have recently been used to clarify the
formation of naked singularities during a spherical gravita-
tional collapse, to describe mass inflation inside black holes,
and to model the formation and Hawking evaporation of
black holes. We briefly review these topics in Appendix B.
Our formalism is designed for studying such issues in quan-
tum rather than in classical or semiclassical contexts.

Null dust is intimately connected with the behavior of
zero-rest-mass fields in geometrical optics limit. The energy-
momentum tensor of such fields takes in that limit the form
of the energy-momentum tensor of null dust. One can then
reinterpret some exact solutions of Einstein’s equations with
null dust as spacetimes produced by zero-rest-mass~in par-
ticular, electromagnetic! fields. Careful studies of the high-
frequency limit of the gravitational radiation itself revealed
that it also can be described by the energy-momentum tensor
of null dust. Moreover, which is especially relevant for the
present paper, such a connection can be established at the
level of a variational principle. All of this indicates that null
dust is much more closely related to fundamental fields than
ordinary dust formed by phenomenological massive par-
ticles. We explain some of these connections in Appendix A.

We start our exposition by reviewing how the dynamics
of incoherent dust follows from the conservation law of the
energy-momentum tensor~Sec. II!. This enables us to pin-
point at the very beginning the main difference between or-
dinary dust and null dust: The normalization of timelike
four-velocity selects its parametrization by proper time, the
null normalization of lightlike four-velocity leaves its param-
etrization arbitrary. This is of paramount importance both for
the Lagrangian and Hamiltonian descriptions of null dust.

Since null geodesics are somewhat less intuitive than
timelike geodesics, we briefly summarize the basic proper-
ties of null congruences in Sec. III. We explain how to obtain
an affine parametrization of such congruences, but stress its
essential ambiguity which prevents the unique separation of
mass distribution of null dust particles from their four-
velocity. When it comes to producing the gravitational field,
the mass distribution can simply be reabsorbed into four-
velocity, which is the reason why it does not naturally occur
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as a separate variable either in the Lagrangian or Hamil-
tonian frameworks. We formulate a spacetime variational
principle from which the null geodesic equations of motion
follow in Sec. IV. The variational principle for null dust is
quite similar to the variational principle for ordinary dust
given by Brown and Kucharˇ @1#, but there are several char-
acteristic differences. The most important one was already
mentioned: Null world lines have no natural parametrization
and hence the null velocity appears in the variational prin-
ciple as the Pfaff form of six scalars~the Clebsch potentials!
rather than seven scalars which characterize the timelike ve-
locity. Consequences of this distinction can be traced
throughout the whole formalism. In Appendix C we illustrate
on explicit examples the decomposition of null covector
fields into Clebsch potentials which is a prerequisite of our
variational principle. In Sec. V we show that any solution of
the Euler equations of the variational principle provides
enough building blocks to reconstruct an affinely param-
etrized four-velocityka and the associated mass distribution
M . We also discuss other special parametrizations. In Sec.
VI, we cast our covariant spacetime action into Hamiltonian
form by following the Dirac-ADM algorithm. The details of
this process are substantially different from the steps which
need to be taken for ordinary dust. We express the energy
and momentum densities of null dust in terms of appropriate
canonical variables. The energy density turns out to be the
norm of the momentum density with respect to the spatial
metric. It transpires that null dust has only three degrees of
freedom per space point, one less than ordinary dust which
has four. The missing degree of freedom is a privileged sca-
lar parameter~like proper time! along lightlike geodesics.
The missing canonically conjugate momentum is the mass
distribution which has been reabsorbed into the four-velocity
form. We conclude this section by writing down the standard
Hamiltonian and momentum constraints for geometry
coupled to null dust. In Sec. VII, we rewrite these constraints
in two alternative forms in which they generate a true Lie
algebra. In this process, the Hamiltonian constraint is re-
placed by alternative constraints which contain only geomet-
ric variables. This feature of the constraint is related to a
Rainich-type ‘‘already unified theory’’ for geometry coupled
to null dust. In Sec. VIII, we show how one can formally
impose the new form of constraints as quantum operator re-
strictions on state functionals. The outcome of this procedure
is a single functional differential equation for physical state
functionalsC@g# which depend solely on the spatial metricg
in the dust frame. In Sec. IX, we compare the canonical
formalism and the ensuing quantum theory for null dust with
those for ordinary dust and emphasize their differences.

Our conventions follow those of Misner, Thorne, and
Wheeler@3#, except for our choice of units which are such
that 16pG515c.

II. DUST AS A SOURCE OF GRAVITY

Incoherent dust is one of the simplest phenomenological
sources of gravity in general relativity. Its energy-
momentum tensor

Tab5MUaUb, ~2.1!

UaUa521, ~2.2!

curves the spacetime according to Einstein’s law of gravita-
tion

Gab :5Rab2
1

2
Rgab5

1

2
Tab. ~2.3!

Dust is described by the four-velocityUa of its particles
and the~rest! mass densityM of their distribution. The equa-
tions of motion of the dust are entirely contained in the
energy-momentum conservation law

¹bTab50, ~2.4!

which follows from the Einstein law~2.3! through the Bian-
chi identities. The structure~2.1! of the energy-momentum
tensor allows us to write Eq.~2.4! in the form

MUb¹bUa1¹b~MUb!Ua50. ~2.5!

One sees that

MUb¹bUa } Ua, ~2.6!

i.e., that the dust particles move along geodesics. The nor-
malization~2.2! of the four-velocity tells us that the particle
world lines are parametrized by proper time. When one mul-
tiplies the geodesic equation byUa , the normalization con-
dition ~2.2! implies the rest mass conservation

¹b~MUb!50. ~2.7!

By using Eq.~2.7! back in Eq.~2.5! one learns that proper
time is an affine parameter:

Ub¹bUa50. ~2.8!

These facts describe in full detail the motion of ordinary dust
of massive particles.

Null dust has the same energy-momentum tensor~2.1! as
ordinary dust, but its particles are assumed to follow lightlike
world lines:

UaUa50. ~2.9!

The energy-momentum conservation law~2.4! still implies
that those world lines are geodesics, Eqs.~2.5! and ~2.6!.
However, the null normalization~2.9! no longer enforces
either the conservation law~2.7! or affine parametrization
~2.8!.

For ordinary dust, the decomposition of the energy-
momentum tensor into the mass densityM and four-velocity
Ua is unique due to the timelike normalization~2.2!. For null
dust, the lightlike normalization~2.9! is preserved by an ar-
bitrary scaling ofUa :

Ūa5LUa, L.0. ~2.10!

~The limitation L.0 is needed to preserve the future-
pointing orientation of the world lines.! By simultaneously
rescaling the scalarM ,

M̄5L22M , ~2.11!
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one preserves the form~2.1! of the energy-momentum ten-
sor. This shows that the decomposition ofTab into M and
Ua is arbitrary. In particular, by takingL5M1/2, one can
eliminate the scalarM altogether and writeTab entirely in
terms of a single null vector

l a :5M1/2Ua ~2.12!

as

Tab5 l al b. ~2.13!

In terms ofl a, the geodesic equation~2.5! takes the form

l b¹bl a1~¹bl b!l a50. ~2.14!

We shall see later that this choice maximally simplifies the
form of the null dust action and its canonical decomposition.

III. NULL GEODESIC CONGRUENCES

In a region of spacetime,M, which is filled by dust
whose world lines do not intersect, the vector fieldUa de-
fines a line congruenceS. This congruence can be viewed as
an abstract three-dimensional space, the ‘‘dust space,’’
whose points are the individual world lines. The world lines
zPS can be locally labeled by three parameterszk(z) which
introduce a coordinate chart inS. We shall use the indices
i , j ,k from the middle of the Latin alphabet to denote the
components of the objects inS; they take the values 1, 2, 3 .
~A global standpoint replacing this local description is dis-
cussed in@1#.!

Through each event of the region there passes one and
only one world line. One can uniquely assign to each eventy
the labelszk of that world line:

zk5Zk~y!. ~3.1!

Our interpretation of the scalar fieldsZk(y) presupposes that
their valueszk constitute a good chart inS. Therefore, the
three gradientsZk

,a must be three linearly independent
covectors:1

Ua }
1

3!
dabgdZi

,bZj
,gZk

,dd i jk Þ 0. ~3.2!

Parametrize the curves ofS by a parameteru whose rate of
change judged by the size ofUa is unity. In other words, if

u5U~y! ~3.3!

is the value ofu on the curve ofS which passes through the
eventy, it holds that

Ua¹aU51. ~3.4!

Equations~3.2! and ~3.4! imply that ZK5(U, Zk) are four
independent functions of spacetime coordinatesya:

det~ZK
,a!5

1

3!
dabgdU ,aZi

,bZj
,gZk

,dd i jkÞ0. ~3.5!

The mappingZ:M→ R3S given locally by Eqs.~3.3! and
~3.1! can thus be inverted into the mappingY: R3S→M
given locally by

ya5Ya~u,zk!. ~3.6!

Here,zk distinguish different curves of the congruenceS and
u specifies the point on a given curve. The four vectors

Ua5Ya
,u , Zk

a5Ya
,k ~3.7!

form a basis inTM dual to the cobasis

ZK
,a5~U ,a , Zk

,a! ~3.8!

in T*M. The basis~3.7! and cobasis~3.8! satisfy the stan-
dard orthonormality and completeness relations. In particular

Zi
aZk

,a5d i
k . ~3.9!

So far, everything applies equally well both to timelike
and null congruences. Brown and Kucharˇ @1# specialized the
formalism to timelike congruences and applied it to a La-
grangian description of ordinary dust. In this paper, we first
briefly recapitulate how to specialize the formalism to null
geodesic congruences~see, e.g.,@4#, @5# for more details! and
then use it for Lagrangian description of null dust.

A geodesic null congruenceUa must satisfy the geodesic
condition~2.6! and the null condition~2.9!. These conditions
still hold when the vector fieldUa is scaled by an arbitrary
factor, Eq.~2.10!. Instead of using that scaling for eliminat-
ing M from the energy-momentum tensor, Eqs.~2.11!–
~2.13!, one can use it for enforcing affine parametrization. In
terms of l a, the geodesic equation takes the form~2.14!.
Unless l a happens to be divergence free, it is not affinely
parametrized. Let us first show that there exists a positive
scaling factor

L~y!5el~y! ~3.10!

such that

¹b~L21l b!50. ~3.11!

Condition ~3.11! amounts to a linear inhomogeneous equa-
tion

l b¹bl5¹bl b ~3.12!

for l. In the adapted coordinatesu,zk, Eq. ~3.12! assumes
the form

]l~u,z!

]u
5~¹bl b!~u,z!. ~3.13!

Its general solution

l~u,z!5E
0

u

du ~¹bl b!~u,z!1l0~z! ~3.14!

1The contravariant tensor densitydabgd of weight 1 is the alter-
nating symbol inM. The covariant tensor densityd i jk of weight
21 is the alternating symbol inS. The Levi-Civita pseudotensor in
M is denoted byeabgd.
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depends on an arbitrary functionl0(z) of z. By writing Eqs.
~2.13!, ~2.14!, and~3.11! in terms of the new variables

ka :5L l a and M :5L22 ~3.15!

one learns that the vector fieldka is affinely parametrized,

kb¹bka50, ~3.16!

the mass distributionM satisfies the continuity equation

¹b~Mkb!50, ~3.17!

and the energy-momentum tensor takes the form

Tab5Mkakb. ~3.18!

The affine parameterv is a monotonically increasing
function of the old parameteru:

v~u,z!5E
0

u

duL21~u,z!1v0~z!. ~3.19!

When we define a new mappingYAFF
a : R3S→M by

YAFF
a ~v,z! :5Ya

„u~v,z!,u… ~3.20!

we obtain

ka5
]YAFF

a ~v,z!

]v
. ~3.21!

The affine parametrization~3.19! depends on two arbi-
trary functions,l0(z) andv0(z). This means that along each
geodesic the affine parameter is determined only up to a
linear transformation

v̄ 5L0
21~z!v1 v̄ 0 , L0~z!.0 . ~3.22!

When we change the affine parameter by Eq.~3.22!, the null
vector fieldka(y) is scaled into

k̄ a~y!5L0„Z~y!… ka~y!. ~3.23!

The affinely parametrized null vector fieldka(y) is thus de-
termined only up to an arbitrary positive multiplicative factor
L0 which is a function of comoving coordinateszk5Zk(y).

A congruence of affinely parametrized null geodesics is
characterized by its twist~or rotation! v, expansionu, and
shears. The corresponding scalars are given by

v5S 1

2
¹ [akb]¹

akbD 1/2

, ~3.24!

u5
1

2
~¹aka!, ~3.25!

usu5S 1

2
¹~akb)¹

akb2u2D 1/2

, ~3.26!

where the square brackets~parentheses! around indices de-
note antisymmetrization~symmetrization!. The twist can also
be determined from the relation

vka5
1

2
eabgdkb¹dkg . ~3.27!

If ka is proportional to a gradient,

ka~y!5f~y!c ,a~y!, ~3.28!

the geodesics ofS form null hypersurfacesc5const to
which ka is orthogonal. A null geodesic congruence is hy-
persurface orthogonal if and only if it has a vanishing twist:
v50 .

Under the change~3.23! of affine parametrization, the ro-
tation, expansion, and shear all scale by the same factor:

v̄5L0v, ū 5L0u, u s̄ u5L0usu. ~3.29!

Also, by using Eqs.~3.10!–~3.12! and ~3.15!, one can reex-
press them in terms ofl a and its derivatives, and of the
undifferentiated scaling factor~3.10! and ~3.14!:

v5LS 1

2
¹ [al b]¹

al b1
1

4
~¹al a!2D 1/2

, ~3.30!

u5L~¹al a!, ~3.31!

usu5LS 1

2
¹~al b)¹

al b2
5

4
~¹al a!2D 1/2

. ~3.32!

The scalars~3.30!–~3.32! allow us to introduce other special
parametrizations of null geodesic congruences. Consider-
ations about the rate of expansion of a shadow image~see,
e.g., @4#, @5#! lead to the concept of luminosity distanceL.
This is defined as any solution of the equation

1

L

dL

dv
5u, ~3.33!

wherev is an affine parameter andu ~assumed to be nonva-
nishing! is the expansion~3.25!. Equations~3.15! and~3.23!
ensure that the luminosity distance is identical with the scal-
ing factor ~3.10! and ~3.12!. The luminosity distance played
a prominent role in several classical works in radiation
theory @6# and in cosmology@7#. The mass distributionM
introduced by Eq.~3.15! is the inverse squareM5L22 of
the luminosity distance. The parallax distancep,

p5u21, ~3.34!

is also occasionally useful.

IV. SPACETIME ACTION AND THE EULER EQUATIONS

We describe null dust by six spacetime scalarsZk, Wk .
The interpretation of our state variablesZk, Wk emerges
from the form of the action and the resulting equations of
motion. We shall see thatZk are comoving coordinates of
null dust particles. By specifying the valueszk of the scalars
Zk(y), we choose a particular null geodesic of the congru-
enceS. The three gradientsZk

,a are assumed to be three
independent covectors. We shall see later that none of them
can be timelike.

The four-velocity covectorl a of a lightlike particle is
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given by its componentsWk in the cobasisZk
,a :

l a5WkZ
k
,a . ~4.1!

This relation expresses the one-forml 5 l adya as a Pfaff
form

l 5WkdZk ~4.2!

of six scalar fieldsZk andWk . According to Pfaff’s theorem
@8#, four scalar potentialsA,B,C,D are sufficient to describe
an arbitrary covector in a four-dimensional space:

l a5AB,a1CD,a . ~4.3!

However, the representation ofl a by six potentialsWk , Zk is
more useful because it has a clear physical interpretation@9#.

The null dust action

SND@Zk,Wk ;gab#5E d4y LND~y! ~4.4!

is a functional of our six state variables, and of the metric
gab . The Lagrangian densityLND is taken in the form

LND52
1

2
ugu1/2gabl al b , ~4.5!

wherel a is an abbreviation for expression~4.1!.
The equations of motion follow from the variation of the

action with respect toWk andZk:

05
dSND

dWk
52ugu21/2Zk

,al a, ~4.6!

05
dSND

dZk
5~ ugu1/2Wkl

a! ,a . ~4.7!

By multiplying Eq. ~4.6! by Wk , we learn thatl a is a null
vector field:

l al a50. ~4.8!

Equation~4.6! reasserts thatZk are comoving coordinates.
Equation~4.7! tells us that the three currents

Jk
a5Wkl

a ~4.9!

satisfy the continuity equations

¹aJk
a5¹a~Wkl

a!50 . ~4.10!

Because each of the three covectorsZk
,a is perpendicular to

the null vectorl a, none of them can be timelike. If only one
of the coefficientsWk in the decomposition~4.1! of l a does
not vanish, the congruence is hypersurface orthogonal@cf.
Eq. ~3.28!# and thus nontwisting. The covectorZk

,a is then
null. In the general case of a twisting congruence, all three
covectorsZk

,a must be spacelike: If anyZk
,a , k fixed, was

null in an open neighborhoodU, thenl aZk
,a50 would imply

l a}Zk
,a in U, and the congruence would not be twisting inU.

Some covectorsZk
,a can possibly become null only in

lower-dimensional (d50,1,2) regions ofM. A covector

Zk
,a , k fixed, can also become null on a three-dimensional

null hypersurfaceZk5const on which the two remaining co-
efficients Wi , iÞk, vanish: Wi50 . Then, of course,
l a}Zk

,a simultaneously lies in this hypersurface and is or-
thogonal to it.

In Appendix C, we give two examples of twisting null
congruences~one of them is the familiar ingoing principal
null congruence in the Kerr spacetime!, and illustrate the
decomposition~4.1! of their tangent null covectors. The
spacelike character of the covectorsZk

,a is exhibited every-
where except in regions where the twist vanishes.

It now becomes understandable why it would not be use-
ful to representl a by more than six potentials. If, say, we
wrote l a5WsZ

s
,a , s51,2,3,4, one of the spatial vectorsZs

,a
could always be written as a linear combination of the re-
maining three vectorsZk

,a , k51,2,3, and the decomposition
~4.1! would be regained.

The variation of the action~4.4! and~4.5! with respect to
the metricgab yields the energy-momentum tensor

Tab52ugu21/2dSND/dgab . ~4.11!

Becausel a is null, Eq. ~4.8!, this tensor has the structure
~2.13!. The Pfaff form~4.1! satisfies the identity

¹b~ l al b!52Wk,a~Zk
,bl b!1Zk

,a¹b~Wkl
b!1

1

2
¹a~ l bl b!.

~4.12!

The equations of motion~4.6!–~4.8! then imply the energy-
momentum conservation law. In fact, it is well known that
the energy-momentum conservation follows from the equa-
tions of motion because of the invariance of the action~4.4!
and ~4.5! under spacetime diffeomorphisms~see, e.g.,@1#!.
We have already seen that the energy-momentum conserva-
tion implies that the particles of the null dust move along
geodesics, Eq.~2.14!. This demonstrates that our action~4.4!
and~4.5! correctly reproduces the motion of the null dust on
a given background (M,g).

The null dust is coupled to gravity by adding its action
SND to the Hilbert action

SG@gab#5E
M

d4y LG, ~4.13!

LG5ugu1/2R~y;g# ~4.14!

constructed from the curvature scalarR(y;g#.2 The variation
of the total actionS5SG1SND with respect to the metric
gab yields the Einstein law of gravitation~2.3! with the null
dust source~4.11!. The conservation law~2.4! then follows
independently of the equations of motion directly from Eqs.
~2.3! through the Bianchi identities.

2The mixed brackets inR(y;g# indicate that the curvature scalar
R is a function ofy and a functional ofgab(y8). This convention is
used throughout the paper.
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V. SPECIAL PARAMETRIZATIONS
AND NULL DUST ACTION

The geodesic equation~2.14! which follows from the ac-
tion ~4.4! and ~4.5! is not given in affine parametrization.
Rather, the vector fieldl a(y) is chosen such that it absorbs
the mass distributionM of the dust and leads thereby to the
energy-momentum tensor~2.13!. Let us now show that from
any solutionWk(y) and Zk(y) of the Euler equations~4.6!
and~4.7! of the action~4.4!, ~4.5! one can construct a vector
field ka(y) given in generic affine parametrization.

Start on a spacelike hypersurfaceS transverse to the dust
lines l a. ParametrizeS by the dust space coordinateszk of
pointszPS. As long as there is any dust onS, Wk(z) cannot
be a zero covector inT*S. Choose an arbitrary vector field
Lk(z)PTS such that Lk(z)Wk(z).0 . Evolve the fields
Zk(y),Wk(y) from their initial valueszk andWk(z) on S by
the Euler equations~4.6!, ~4.7! and define

L~y! :5@Lk
„Z~y!…Wk~y!#21. ~5.1!

The Euler equations imply that

¹a~L21l a!50. ~5.2!

By comparing Eq.~5.2! with Eq. ~3.11!, one sees thatL(y)
is a scaling factor~3.10! which takesl a into an affinely pa-
rametrizedka. We already know, Eq.~3.23!, that the most
general scaling factorL(y) can differ from our particular
scaling factorL(y) only by a multiplicative functionL0(z)
of comoving coordinates:

L~y!5L0„Z~y!… L~y!. ~5.3!

Equations~5.1! and ~5.3! specify an algebraic procedure
by which, from any solutionZk(y), Wk(y) of the Euler equa-
tions~4.6! and~4.7!, one can construct the most general scal-
ing factor L(y) which takes the covector fieldl a5WkZ

k
,a

into a covector field

ka~y!5L~y!l a~y! ~5.4!

in affine parametrization. Equation~5.4! simultaneously tells
us how to scale the potentialsWk into the corresponding
potentialswk of the Pfaff form ofka :

ka5wkZ
k
,a , with wk5LWk . ~5.5!

The mass distribution

M5L22 ~5.6!

associated with the affine parametrization~5.4! satisfies a
continuity equation~3.17!. The potentialsWk associated with
l a also satisfy the continuity equation~4.10!. However, be-
cause in general¹al aÞ0, the potentialsWk do not stay the
same along the dust lines:

l a¹aWkÞ0. ~5.7!

On the other hand, by virtue of the continuity equations
~4.10! and ~3.17!, the potentialswk associated with an af-
finely parametrizedka of Eq. ~5.4! do stay the same along
the dust lines:

ka¹awk50. ~5.8!

Equations~3.7!, ~3.9!, and ~5.5! enable us to interpretwk
geometrically as projections of the null fieldka into the hy-
persurfacesya5YAFF

a (v,z), v5const, of affine foliation:

wk5ka

]YAFF
a ~v,z!

]zk
. ~5.9!

Notice that whileka in affine parametrization is built from a
solutionZk(y), Wk(y) of the Euler equations by differentia-
tions ~5.5! and algebraic manipulations~5.1! and ~5.3!, the
construction of the affine parameterv5V(y) itself requires
solving a differential equationkaV,a51 , i.e., an integration
~3.19!.

The other special parameters, the luminosity distance
~3.33! and the parallax distance~3.34!, can be obtained from
Zk(y), Wk(y) by algebraic operations and differentiations.
The luminosity distanceL(y) is simply the scaling factor
~5.3!. The parallax distancep is the reciprocal value of

u5L~¹al a!

5Lugu21/2~ ugu1/2gabWkZ
k
,b! ,a . ~5.10!

So far, we have shown how to construct the covector fieldka
in affine parametrization from a solutionZk(y), Wk(y) of the
Euler equations~4.6! and ~4.7! of the action principle~4.4!
and~4.5! written in thel a parametrization. Let us now show
how to enforce affine parametrization directly from an action
principle. Require one of the potentialsWk in the action~4.4!
and ~4.5!, sayM :5W3 , to be positive, and drop the index
from the associated comoving coordinate:Z :5Z3. Introduce
wA :5WA /W3 in place of the remaining two potentialsWA ,
A51,2 , and write the Lagrangian~4.5! in terms of the new
variablesM , Z, ZA, wA :

LND52
1

2
ugu1/2Mgabkakb ~5.11!

with

ka :5Z,a1wAZA
,a . ~5.12!

The Pfaff form corresponding toka is now constructed only
from five potentialsZ, ZA, wA , though the action~4.4!,
~5.11!, and~5.12! still depends on six scalar variables, due to
the presence ofM in the Lagrangian~5.11!. By varying the
action with respect toZ one obtains the continuity equation
~3.17!. By using the other field equations, one easily derives
Eq. ~3.16! for affinely parametrized geodesics.

The Lagrangian~4.5! is special because it leads to the
simplified form of the energy-momentum tensor, while the
Lagrangian~5.11! is special because it leads to an affinely
parametrizedka. By building an additional redundancy into
the Lagrangian, one can reach the generic form~2.1! and
~2.9! of the energy-momentum source. One simply intro-
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duces the seventh scalarM while keepingUa as the Pfaff
form of six scalar fieldsZk, Wk :3

LND52
1

2
ugu1/2MgabUaUb ~5.13!

with

Ua :5WkZ
k
,a . ~5.14!

The new Lagrangian density and all equations of motion are
then invariant under the gauge transformation~2.10! and
~2.11!,

Wk→Wk5LWk ~5.15!

and

M→M̄5L22M , ~5.16!

whereL(y).0 is an arbitrary scaling factor.
The canonical form of the action is the same whether one

starts from the original Lagrangian~4.5! and ~4.1! or the
redundant Lagrangian~5.13! and~5.14!. The canonical vari-
ables recombine the redundant potentials in such a way that
the information about the split ofl a into M andUa gets lost:
From the canonical variables one can reconstruct onlyl a . It
is thus not worth the effort to complicate the spacetime La-
grangian by striving to achieve a superfluous generality.
Having learned this lesson, we take the spacetime action
~4.4! and ~4.5! with l a given by Eq.~4.1! as our starting
point.

VI. CANONICAL DESCRIPTION OF NULL DUST

The familiar ADM algorithm for casting a covariant ac-
tion into Hamiltonian form works for the null dust in a simi-
lar way as for the ordinary dust of massive particles@1#. One
foliates the spacetimeM by spacelike hypersurfacesS,

Y:R3S→M by ~ t,x!°y5Y~ t,x!. ~6.1!

In local coordinatesxa, a51,2,3, onS andya, a50,1,2,3,
onM, the foliation is represented by

~ t,xa!°ya5Ya~ t,xa!. ~6.2!

A transition from one leafS of the foliation to another is
described by the deformation vectorẎa :5]Ya/]t. Its de-
composition into the normalna and tangentialYa

,a direc-
tions to the leaves yields the lapse functionN' and the shift
vectorNa:

Ẏa5N'na1NaYa
,a . ~6.3!

On each leaf, the spacetime metricgab(y) induces the in-
trinsic metric

gab~ t,x!5gab„Y~ t,x!…Ya
,a~ t,x!Yb

,b~ t,x!. ~6.4!

The spacetime metric is reconstructed as

gab52nanb1gabYa
,aYb

,b , ~6.5!

wheregab is the inverse ofgab , and the determinantsugu of
gab and ugu of gab are related by

ugu1/25N'ugu1/2. ~6.6!

Scalar fields onM, such as the null-dust variablesZk, Wk
can be pulled back toR3S by the mapping~6.1!. By using
Eq. ~6.3! we obtain

Zk
,a na5~N'!21Vk, ~6.7!

where we have introduced the normal velocities

Vk :5Żk2Zk
,aNa, Zk

,a5Zk
,aYa

,a . ~6.8!

This allows us to write the null-dust action~4.4! and ~4.5!,
with l a given by ~4.1!, as an integral overR3S, i.e., in the
~311!-split form:

SND@Zk,Wk ; gab , N', Na#5E
R
dtE

S
d3x LND. ~6.9!

The Lagrangian densityLND on R3S is a quadratic form
of the Lagrange multipliersWk :

LND5
1

2
ugu1/2

„~N'!21ViVj2N'gi j
… WiWj . ~6.10!

The metric

gi j ~ t,x!5gabZi
,aZj

,b ~6.11!

is the induced metric onS expressed in the basisZi
,a of

comoving coordinatesZi .
By varying the action with respect toWi , we get a system

of linear homogeneous equations forWj :

„gi j 2~N'!22ViVj
… Wj50. ~6.12!

This has a nontrivial solution only if the determinant

det„gi j 2~N'!22ViVj
…5„12~N'!22gi j V

iVj
… det~gi j !

~6.13!

vanishes. This imposes the constraint

gi j V
iVj2~N'!250 ~6.14!

on the velocitiesŻi . ~Here,gi j is the inverse ofgi j . We can
use it for lowering the dust space indices.!

If the constraint~6.14! is satisfied, Eq.~6.12! has a solu-
tion Wj}Vj . Of course, the homogeneous equation~6.12!
determines only the direction ofWj , leaving W5gi j WiWj
undetermined. We write the general solution in the form

Wj5AW Vj~ViV
i !21/2, ~6.15!

whereW is an arbitrary positive factor.
By substituting this solution~6.15! back into the Lagrang-

ian ~6.10!, we eliminate from the action the multipliersWj ,
replacing them by a single multiplierW:

3By comparing Eqs.~5.13! and ~5.14! with Eqs. ~4.2! and ~4.5!,
we see thatWk5M1/2Wk .
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LND5
1

2
ugu1/2W„~N'!21gi j V

iVj2N'
…. ~6.16!

The reduced action is a functional ofW andZk. Its variation
with respect toW reproduces the constraint~6.14! which
enabled us to expressWj in terms of W and Zj , Żj , Eq.
~6.15!. Its variation with respect toZk gives an equation
which, modulo the constraint~6.14! and Eq.~6.15! consid-
ered as a definition ofWj , is equivalent to the equations of
motion obtained by varying the original action~6.9! and
~6.10! with respect toZk. The reduced action

SND@Zk,W;gab ,N',Na#5E
R
dtE

S
d3xLND ~6.17!

with the Lagrangian~6.16! is thus entirely equivalent to the
original action~6.9! with the Lagrangian~6.10!.

In order to bring the reduced action to canonical form, we
perform the Legendre dual transformation from (Zk, Żk) to
(Zk, Pk), leavingW as a multiplier. First, we introduce the
momenta

Pk :5
]LND

]Żk
5ugu1/2W~N'!21Vk . ~6.18!

To clarify their physical meaning, we return to the defi-
nition ~6.15! of Wj , the decomposition~4.1! of l a , and Eqs.
~6.7! and~6.8! for the normal velocity. In this way we learn
that Pk are normal projections of the currentsJk

a introduced
in Eq. ~4.9!:

Pk5ugu1/2Jk
ana . ~6.19!

Equation~6.18! can be inverted to obtain the velocities

Żk5N'ugu21/2W21gk jPj1NaZk
,a . ~6.20!

This leads to the Hamiltonian

HND :5PkŻ
k2LND5N'H'

ND1NaHa
ND ~6.21!

which is a linear combination of the momentum density

Ha
ND5PkZ

k
,a ~6.22!

and the energy density

H'
ND5

1

2
W21ugu21/2gi j Pi Pj1

1

2
Wugu1/2 ~6.23!

5
1

2
W21ugu21/2gabHa

NDHb
ND1

1

2
Wugu1/2

~6.24!

of the dust. The canonical form of the action then reads

SND@Zk,Pk ,W; gab , N', Na#

5E
R
dtE

S
d3x ~PkŻ

k2N'H'
ND2NaHa

ND!, ~6.25!

whereHa
ND andH'

ND are given by Eqs.~6.22! and ~6.24!.

At this stage, we are finally able to eliminate the last
remaining multiplierW. By varying the action~6.22!–~6.25!
with respect toW, we obtain an equation

dSND

dW
52N'

]H'
ND

]W
50 ~6.26!

which determinesW in terms of the canonical data:

W5ugu21/2Agi j Pi Pj

5ugu21/2AgabHa
NDHb

ND. ~6.27!

By substituting this solution back intoH'
ND we obtain

H'
ND5AgabHa

NDHb
ND. ~6.28!

We see thatW is just the scalar formW5ugu21/2H'
ND of the

Hamiltonian densityH'
ND . The final expressions~6.22! for

the momentum density and~6.28! for the energy density are
simple: The form of the momentum density is dictated by
the requirement that it generate the Lie derivative change
of the scalarsZk(x) and scalar densitiesPk(x) under spatial
diffeomorphisms LDiffS @10#. The energy density is the
norm of the momentum density with respect to the spatial
metric. The resulting reduced canonical action
SND@Zk, Pk ; gab , N', Na#, with Eqs.~6.22! and~6.28! yields
the Hamilton equations forZk(t,x) and Pk(t,x). These de-
scribe the evolution of the null dust on a given geometrical
backgroundgab↔ „N'(t,x), Na(t,x), gab(t,x)….4

From the solution of the Hamilton equations we can re-
construct the null vectorl a which provides the spacetime
description of the dust. It holds that

l a5 l'na1 l aYa
,a , ~6.29!

wherel' and l a are expressed as functions of the canonical
variables:

l'52 l ana52W1/2, ~6.30!

l a5 l aYa
,a5W21/2ugu21/2Ha

ND . ~6.31!

Here, of course,W stands for the scalar form~6.27! of the
energy-momentum density. One can check thatl a is a null
vector by virtue of its construction~6.29!–~6.31!:

l al a52~ l'!21 l al a50 . ~6.32!

The background variablesN'(t,x), Na(t,x), andgab(t,x)
in the dust actionSND@Zk, Pk ; gab , N', Na# are not to be
varied. The Hamiltonian formalism for null dust on a given

4Our Lagrangian and Hamiltonian formalisms can easily be gen-
eralized to several mutually noninteracting species~streams! of null
dust. This may be useful for the canonical treatment of spherical
collapse, in which the ingoing null dust is turned into an outgoing
null dust at the center of symmetry, or for the canonical treatment
of models involving colliding streams of dust with plane or cylin-
drical symmetry~see references in@34#!.
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background is thus entirely unconstrained. To couple null
dust to geometry, we must add its actionSND to the gravita-
tional Dirac-ADM action

SG@gab , pab; N', Na#

5E
R
dtE

S
d3x ~pabġab2N'H'

G2NaHa
G! ~6.33!

with the standard gravitational super-Hamiltonian and super-
momentum densities

H'
G~x; gab , pab#5Gabcd~x;g!pab~x!pcd~x!2ugu1/2R~x;g#,

~6.34!

Gabcd5
1

2
ugu21/2~gacgbd1gadgbc2gabgcd!, ~6.35!

and

Ha
G~x; gab , pab#522Dbpa

b~x!, ~6.36!

whereDb is the spatial covariant derivative.
The variation of the total action with respect to the lapse

N' and the shiftNa then leads to the familiar Hamiltonian
and momentum constraints

H' :5H'
G1H'

ND50, ~6.37!

Ha :5Ha
G1Ha

ND50 ~6.38!

for the coupled system.

VII. NULL DUST CONSTRAINTS THAT GENERATE
A LIE ALGEBRA

By using the supermomentum constraint, one can replace
the momentum densityHa

ND of the dust by the gravitational
densityHa

G in the expression~6.28! for the dust energy den-
sity H'

ND . This brings the constraint system~6.38! and~6.37!
into an equivalent form~6.38! and

H':5H'
G1AgabHa

GHb
G50. ~7.1!

Only the supermomentum constraint~6.38! contains the dust
variables. The new Hamiltonian constraint~7.1! is con-
structed solely from the gravitational variablesgab , pab. Al-
ternatively, one can get rid of an inconvenient square root by
rewriting Eq.~7.1! in the form

G :5~H'
G!22gabHa

GHb
G50. ~7.2!

Under the positivity condition

2H'
ND5H'

G<0, ~7.3!

the constraint~7.2! is equivalent to the constraint~7.1!.
Brown and Kucharˇ @1# proved a remarkable fact that the

densities~7.2! have strongly vanishing Poisson brackets:

$G~x!, G~x8!%50. ~7.4!

By coupling gravity to other simple sources, Kucharˇ and
Romano@11# and Brown and Marolf@12# produced other

densitized expressions constructed from the scalar variables
ugu21/2H'

G andugu21gabHa
GHb

G which also have strongly van-
ishing Poisson brackets. Markopoulou@13# posed the ques-
tion of what is the most general density

F5uguw/2F~ ugu21/2H'
G , ugu21gabHa

GHb
G! ~7.5!

of weight w constructed from these variables which has the
strongly vanishing Poisson brackets

$F~x!, F~x8!%50. ~7.6!

She found an algorithm for generating all such densities. The
density ~7.2! of weight 2 still seems to be the simplest.
Among others, there is the scalar form

GA :5ugu21/2~H'
G1AgabHa

GHb
G!50 ~7.7!

of the constraint~7.1! which, as we have just seen, describes
null dust.

The constraintsHa
G505H'

G of vacuum gravity can be
replaced by an alternative system

Ha
G505G ~or Ha

G505GA!. ~7.8!

Unlike the original constraints,Ha
G and G ~or Ha

G and GA)
generate a true Lie algebra. Unfortunately, in vacuum gravity
the new constraints~7.2! @and similarly Eq.~7.7!# do not
generate the evolution of the geometric datagab , pab into a
Ricci-flat spacetime. Expression~7.2! is flawed because its
Hamiltonian vector field vanishes on the constraint surface
~7.8!, while expression~7.7! is flawed because its Hamil-
tonian vector field is ill defined forHa

G50.
No such difficulty exists for null dust. The momentum

constraint ~6.38! is different from the vacuum constraint
Ha

G50 and, as long as there is any dust at the point in ques-
tion, Ha

ND and henceHa
G cannot vanish. The Hamiltonian

vector fields of the dynamical variables~7.2! or ~7.7! then do
not vanish on the constraint surface~6.37! and ~6.38! of the
null dust coupled to geometry. The new constraints~7.2! or
~7.7! correctly generate the evolution of geometry produced
by null dust. Moreover, as in vacuum spacetime, the con-
straints~6.38! and ~7.2!, or ~6.38! and ~7.7!, generate a true
Lie algebra. It is thus advantageous to bring the constraints
to one of these forms before attempting to quantize the
coupled system.

Why is it that the presence of the null dust does not affect
Eqs. ~7.2! and ~7.7! that hold in vacuum gravity? The
energy-momentum tensor of the null dust satisfies the condi-
tion

Ta
gTgb50. ~7.9!

Conversely, any symmetric tensorTab which satisfies Eq.
~7.9! must either vanish, or there exists a null vectorl a such
that

Tab5 l al b. ~7.10!

The Einstein law of gravitation~2.3! then implies thatl a is a
geodesic vector field, i.e., the Euler equations of motion for
the null dust. The simple tensor equation
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Ga
gGgb50 ~7.11!

imposed on the Einstein tensor thus ensures that the geom-
etry gab is necessarily produced by null dust according to
Einstein’s law of gravitation.5

The'' projection of Eq.~7.11! gives

~G''!22gabG'aG'b50. ~7.12!

Because the'' and'i projections of the Einstein tensor
yield the gravitational super-Hamiltonian and supermomen-
tum @10#,

G''52
1

2
ugu21/2H'

G , G'a5
1

2
ugu21/2Ha

G, ~7.13!

Eq. ~7.12! is equivalent to the constraint~7.2!. We have al-
ready noticed that under the energy positivity condition~7.3!
the constraint~7.2! is equivalent to the constraint~7.7!. The
Rainich-type condition~7.11! thus connects the new form
~7.2! or ~7.7! of the Hamiltonian constraint with the space-
time picture.

VIII. CONSTRAINT QUANTIZATION OF GEOMETRY
COUPLED TO NULL DUST

We have cast the constraint system for geometry coupled
to null dust into a form in which it generates a Lie algebra. In
this process, the Hamiltonian constraint has been replaced
either by the constraint~7.2! or by the constraint~7.7!. Either
of these constraints have vanishing Poisson brackets~7.4!.
The momentum constraint is left in its original form~6.38!
and ~6.22!:

Ha~x! :5Pk~x!Zk
,a~x!1Ha

G~x!50. ~8.1!

The momentum constraints~8.1! close in the way character-
istic for the Lie algebra LDiffS of the diffeomorphism group
Diff S. The Poisson brackets ofG(x) @or GA(x)] with
Ha(x8) close intoG(x) or @GA(x)# in the way which reflects
the transformation behavior ofG(x) @or GA(x)] under spatial
diffeomorphisms DiffS: G(x) is a density of weight 2, while
GA(x) is a scalar.

As for ordinary dust, the constraint system can be vastly
simplified by the introduction of an alternative set of canoni-
cal variables which reflect the fact that the dust particles
define a preferred system of coordinates onS. The mapping
Z:S→S which, in local coordinates, assumes the form

zk5Zk~xa!, ~8.2!

takes the tensorial variablesgab(x) and pab(x) on S into
corresponding tensorsgi j (z) andpi j (z) on the dust spaceS:

gi j ~z! :5Xa
,i~z!Xb

, j~z!gab„X~z!…, ~8.3!

pi j ~z! :5U ]X~z!

]z U Zi
,a„X~z!…Zj

,b„X~z!…pab
„X~z!….

~8.4!

Here, thet-dependent mappingX:S→S is simply the in-
verse ofZ,

X :5Z21, ~8.5!

and u]X(z)/]zu is the Jacobian for the change of variables
xa5Xa(z).

We rewrite the supermomentum constraint~8.1! in the
form

H↑k~x! :5Ha~x!Zk
a~x!

5Pk~x!1Ha
G~x!Zk

a~x!50. ~8.6!

Here,

Zk
a~x! :5Xa

,k„Z~x!… ~8.7!

is the inverse matrix toZk
,a(x):

Zj
,a~x!Zk

a~x!5dk
j . ~8.8!

The new supermomentumH↑k(x) smeared by a new shift
N↑k(x),

H↑@NW ↑# :5E
S
d3x N↑k~x!H↑k~x!, ~8.9!

generates through the Poisson bracket the change

Żk~x! :5$Zk~x!, H↑@NW ↑#%5N↑k~x! ~8.10!

of the dust coordinatesZk(x) by the amountN↑k(x) @1#.
One can prove that theS variablesgi j (z), pi j (z) along

with the dust frame variablesZk(x) and the new supermo-
mentumH↑k(x) form a canonical chart@1#. In particular, this
means that the new constraint functions Pk(x) :5H↑k(x)
have vanishing Poisson brackets among themselves and are
the momenta Pk(x) canonically conjugate to the dust frame
variablesZk(x). Further, because the Poisson brackets of the
S tensorsgi j (z), pi j (z) with the smeared supermomentum
~8.9! vanish, theseS tensors are invariant under the shifts
~8.6!.

In terms of the new canonical variablesgi j (z), pi j (z), and
Zk(x), Pk(x) the momentum constraint~8.6! reduces to the
condition that the canonical momentum Pk(x) vanishes:

Pk~x!50. ~8.11!

The Hamiltonian constraints~7.2! or ~7.7! can then be
mapped to the dust spaceS according to their weight:

G~z! :5U ]X~z!

]z U2

G„X~z!…50 , ~8.12!

5Equation~7.11! is perhaps the simplest example of the Rainich-
type geometrization of a source field. The general task is to find
equations for the Einstein tensor which are equivalent to the Ein-
stein law of gravitation together with the field equations for a given
source. The problem was first formulated for the Einstein-Maxwell
system by Rainich and solved by him under the assumption that the
electromagnetic field is not algebraically special~null! @14#, @15#.
The Rainich problem for the null electromagnetic field was solved
by Hlavatý @16#. The much simpler scalar field case was analyzed
by Peres@17# and by Kucharˇ @18#. The spinor field was treated by
Kuchař @19# and the Proca field by Bicˇák @20#.
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GA~z! :5GA„X~z!…50. ~8.13!

TheS constraints~8.12! and~8.13! are the same functionals
of theS tensorsgi j (z) andpi j (z) as theS constraints~7.2! or
~7.7! were of theS tensorsgab(x) and pab(x). In other
words, G(z) is obtained fromG(x) and GA(z) is obtained
from GA(x) by replacing theS tensorsgab(x), pab(x) by the
correspondingS tensorsgi j (z), pi j (z). The S constraints
~8.12! and ~8.13! have strongly vanishing Poisson brackets,
i.e., they generate an Abelian algebra.

In the Dirac method of quantization, constraints are
turned into operators and imposed as restrictions on the state
functionals of the system. We choose to work with the dust
space variables, so the quantum states of the system are func-
tionals C@Z,g# of the canonical coordinatesZk(x) and

gi j (z), and the constraint operators Pˆ
k(x) and Ĝ(z) @or

ĜA(z)] are obtained by quantizing the classical expressions
~8.11!–~8.13!. The transition is easy for the momenta~8.11!
which are simply replaced by the variational derivatives

P̂k~x!52 i
d

dZk~x!
. ~8.14!

The operators~8.14! automatically commute,

@P̂i~x!, P̂j~x8!#50. ~8.15!

It is far from clear how to replace the remaining class-
ical constraints by operators which not only commute
with P̂k(x), but also among themselves. We shall pro-
ceed under the assumption that there exists a factor ordering

and regularization of Ĝ :5G(z; ĝi j (z), p̂i j (z)# and/or

ĜA
:5GA(z; ĝi j (z), p̂i j (z)# which achieves this goal. If so,

the constraint operators can consistently annihilate the physi-
cal states. The momentum constraint

P̂k~x!C@Z,g#50, ~8.16!

where P̂k(x) is interpreted as the variational derivative
~8.14!, means that the state functionalC@Z,g# cannot de-
pend onZk(x):

C5C@g#. ~8.17!

The constraint system is thereby reduced to a single

`3 nontrivial condition that Ĝ :5G(z; ĝi j (z), p̂i j (z)# or

(ĜA
:5GA(z; ĝi j (z), p̂i j (z)#) annihilates the state functional:

G~z; ĝi j ~z!, p̂i j ~z!#C@g#50. ~8.18!

The caveats which need to be born in mind when implement-
ing such a formal procedure for gravity coupled to ordinary
dust are carefully spelled out in@1#. An additional difficulty
with null dust is that there is no natural variable which would
play the role of internal time. As a result, unlike for ordinary
dust, the quantum constraint~8.18! does not have the form of
a functional Schro¨dinger equation. It is thus unclear how,
even formally, to turn the space of its solutions into a Hilbert
space.

IX. COMPARING NULL DUST WITH ORDINARY DUST

Ordinary dust coupled to gravity was turned into a Hamil-
tonian system and formally quantized by Brown and Kucharˇ
@1#. This scheme turns out to be both similar to and charac-
teristically different from the description of null dust given in
this paper. We shall outline the basic similarities and empha-
size the differences.

The spacetime action

SD@T,Zk; M ,Wk ;gab#5E
M

d4y LD~y! ~9.1!

of ordinary dust is constructed from eight scalar fieldsZk,
Wk andT, M . The Lagrangian densityLD(y) has the form

LD52
1

2
ugu1/2M ~gabUaUb11!. ~9.2!

The four-velocityUa is expressed as the Pfaff form

Ua52T,a1WkZ
k
,a ~9.3!

of seven scalar fieldsWk , Zk andT. The matter equations of
motion are obtained by varying the dust action~9.1!–~9.3!
with respect to the state variablesM , Wk , T, andZk:

05
dSD

dM
52

1

2
ugu1/2~gabUaUb11!, ~9.4!

05
dSD

dWk
52ugu1/2MZk

,aUa, ~9.5!

05
dSD

dT
52~ ugu1/2MUa! ,a , ~9.6!

05
dSD

dZk
5~ ugu1/2MWkU

a! ,a . ~9.7!

They lead to the interpretation of the state variables. Equa-
tion ~9.5! is analogous to Eq.~4.6! for null dust. It ensures
that the three vector fieldsZk are constant along the flow
lines ofUa and therefore their valueszk can be interpreted as
comoving coordinates for the dust. Equation~9.4! ensures
that the four-velocityUa is a unit timelike vector field. It is
analogous to Eq.~4.8! which guarantees that the four-
velocity l a of null dust is lightlike. Equation~9.6! allows us
to interpretM as the rest mass density of the dust and ex-
presses the law of mass conservation. It is analogous to Eq.
~3.17! for the null dust in affine parametrization. Equation
~9.7! can be interpreted as the momentum conservation law.
It is analogous to Eq.~4.10! for the null dust written again in
affine parametrization. By multiplying Eq.~9.3! by Ua and
using the field equations~9.4! and ~9.5!, we learn that

T,aUa51 , ~9.8!

i.e., thatT is the proper time between a fiducial hypersurface
T50 and an arbitrary hypersurfaceT5const along the dust
world lines. From Eq.~9.3! we see that theWk variables are
the projections of the four-velocityUa to the hypersurfaces
of constantT expressed in the dust space cobasisZk

,a . Due
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to the conservation laws~9.6! and ~9.7!, these projections
remain the same along a flow line ofUa. In comparison,Wk
for the null dust is the component of the null covectorl a in
the dust space cobasisZk

,a . These components arenot con-
served along the flow lines, Eq.~5.7!. However, when one
rescalesl a into an affinely parametrizedka by Eqs.~5.4! and
~5.5! and projectska into hypersurfaces of constant affine
parameterv, one obtains the componentswk of Eq. ~5.9!
which are conserved along the flow lines, Eq.~5.8!.

The main difference between the actionsSD and SND is
that the dust action depends on eight variablesT, M andZk,
Wk , while the null dust action depends only on six variables
Zk, Wk . The interpretation of the variablesZk as the comov-
ing coordinates andWk as the projections of the four-
velocitiesUa ~or l a) into hypersurfaces of constantT ~or U)
is analogous. The variablesT and M do not appear in the
null dust action~4.1!, ~4.4!, and ~4.5!. This reflects the fact
that the mass functionM of the null dust is not uniquely
determined and it was absorbed into the definition ofl a.
Similarly, the affine parameter along the null geodesics is not
uniquely determined. If one chooses to enforce the affine
parametrization by taking the null dust Lagrangian in the
form ~5.11!, the correspondingM occurs in the action, but
the Pfaff form of an affinely parametrizedka , Eq. ~5.12!,
contains only two independent scalars wA . One can work in
a totally arbitrary parametrization by letting the Lagrangian
density to depend on seven variablesM , Zk, Wk instead of
six, Eqs. ~5.13! and ~5.14!, but then the action becomes
gauge invariant under the scalings~5.15! and ~5.16!, which
makes it effectively dependent only on six of these variables.

These similarities and differences are reflected in the ca-
nonical form of the action. For ordinary dust, the energy
densityH'

D and momentum densityHa
D depend onfour pairs

of canonical variables,T and P, andZk, Pk . They take the
form

Ha
D5PT,a1PkZ

k
,a ~9.9!

and

H'
D5AP21gabHa

DHb
D. ~9.10!

On the other hand, similar expressions for null dust, Eqs.
~6.22! and ~6.28!, depend only onthree pairs of canonical
variables,Zk andPk . This difference is vital. While ordinary
dust has four degrees of freedom per space pointxPS, null
dust has only three.

The rest mass densityM of ordinary dust is directly re-
lated to the momentumP:

M5ugu21/2
P2

AP21gabHa
DHb

D
. ~9.11!

The mass function and affine parametrization of null dust are
ambiguous and their only invariant combination is the null
vectorl a. This can be reconstructed from the canonical data,
Eqs. ~6.29!–~6.31!, rather than the mass function and the
four-velocity separately.

Formally, the momentum and energy densities~6.22! and
~6.28! of the null dust are obtained from the corresponding
expressions~9.9! and~9.10! for ordinary dust simply by put-

ting P50 and forgetting all about its conjugate variableT.
This should not hide the fundamentally different ways in
which the Dirac-ADM action is obtained from the spacetime
action. The Lagrangian~9.2! and ~9.3! for ordinary dust is
nondegenerate in the velocitiesṪ, Żk. The expressions for
the momentaP, Pk can be inverted to yield the velocities.
The momenta are in a one-to-one correspondence with the
multipliers M and Wk and hence their variation yields
equivalent equations. The spacetime action, so to speak, is in
an ‘already parametrized form.’’

To cast the spacetime action~4.4! and ~4.5! of the null
dust into canonical form requires an entirely different proce-
dure. The null dust Lagrangian~6.8! and~6.10! is singular in
the velocitiesŻk. The definition equations for the momenta
Pk cannot be inverted. They yield three constraints

d i jkWj Pk50 ~9.12!

demanding that the multipliersWk be parallel to the mo-
mentaPk , which leaves the magnitude ofWk undetermined.
The variation of the action with respect toWk leads to the
constraint~6.14! on the velocitiesŻk. If this constraint is
satisfied, the multipliersWk can be replaced by a single mul-
tiplier W and the LagrangianLND cast into an equivalent
form ~6.16! which is regular in the velocities. This allows
one to perform the Legendre dual transformation to the ca-
nonical form of the action. The final elimination of the mul-
tiplier W ~analogous to the final elimination of the mass mul-
tiplier M from the canonical action for ordinary dust! leads
to the null dust momentum and energy densities~6.22! and
~6.28!. To summarize, though these final expressions have
similar structure as the densities~9.9! and~9.10! for ordinary
dust from which they can be obtained by puttingP50, their
derivation is fundamentally different.

After the dust is coupled to geometry, the parallels and
differences between ordinary and null dust are brought into a
new perspective. The momentum and Hamiltonian con-
straints for ordinary dust can be resolved with respect to the
four dust momentaP, Pk which brings them to an equivalent
form

H↑k :5Pk1Zk
aHa

G1AGT,aZk
a50, ~9.13!

H↑ :5P2AG50, ~9.14!

whereG is given by Eq.~7.2!. The new constraint functions
H↑K5(H↑ , H↑k) have strongly vanishing Poisson brackets:

$H↑K~x!, H↑L~x8!%50. ~9.15!

The imposition of the constraints~9.13! and~9.14! as op-
erator restrictions on the statesC@T, Zk; gab , pab# leads to a
functional Schro¨dinger equation with formally conserved in-
ner product. By mapping the constraints into the dust space,
the momentum constraint is eliminated and what remains is a
single functional differential Schro¨dinger equation

„P̂~z!2AG~z;ĝ,p̂] …C@T~z!,g~z!#50. ~9.16!

The null dust constraints in the form~8.6! and ~7.2! can
again be obtained from the ordinary dust constraints~9.13!
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and ~9.14! by disregarding the canonical pairT, P @and
squaring Eq.~9.14!#. By mapping them into dust space, the
momentum constraint is again eliminated. By imposing the
only remaining constraint as an operator restriction on quan-
tum states, one again gets a single functional differential
equation~8.18!. However, and this is an important differ-
ence, Eq.~8.18! is not a Schro¨dinger equation like Eq.~9.16!
because there is no internal timeT(z). It is thus not clear
how to introduce an inner product in the space of its solu-
tions.

Both ordinary dust and null dust provide a standard of
space in canonical gravity because the dust particles intro-
duce into spacetime a privileged dust frameS labeled by
comoving coordinatesZk(x). The crucial difference is that
ordinary dust also provides a standard of time: It has an
additional degree of freedomT(x) which can be physically
interpreted as the proper time along the dust world lines.
Null dust does not have any corresponding degree of free-
dom because affine parametrization of null geodesics is am-
biguous. It thus fails to provide a standard of time to the
spacetime in which it moves. The story of ordinary dust is
that of time regained. The story of null dust is that of time
lost again.
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APPENDIX A: NULL DUST AND GEOMETRICAL OPTICS

If at each spacetime point all the energy is transported in
one direction with the speed of light, it is appropriate to
describe the matter by the energy-momentum tensor of null
dust,

Tab5Mkakb. ~A1!

The energy-momentum tensor~A1! may be considered as
representing an incoherent superposition of waves with ran-
dom phases and polarizations but moving in a single
direction.6 It is also called the ‘‘geometrical-optics’’ or
‘‘pure radiation’’ energy-momentum tensor.

As an example, consider the Maxwell theory.~See, in
particular, @3#, Sec. 22.5, for a detailed exposition of geo-
metrical optics in curved spacetime.! If the electromagnetic
waves canlocally be regarded as plane waves propagating
through spacetime of negligible curvature, one can write the
electromagnetic vector potentialAa in the form

Aa5Re~aa eiQ!. ~A2!

Here, in the first approximation, the complex amplitude
aa(y) is independent of the wavelength and is slowly chang-
ing as a function of spacetime positiony, while the scalar
function Q(y) is a rapidly changing phase. Following the
standard procedure@3#, one introduces the wave vector

ka5Q ,a , ~A3!

the ~real! scalar amplitude

A5~AaAa!1/25~aa āa!1/2, ~A4!

and the~complex! unit polarization vector

ea5A21aa . ~A5!

As a consequence of the source-free wave equation and the
Lorentz gauge condition, both written in the first order of the
geometrical optics approximation, the quantities~A3!–~A5!
obey the following set of equations:

kaka50, ~A6!

kb¹bka50, ~A7!

¹a~A2ka!50, ~A8!

and

kaea50, kb¹bea50. ~A9!

From Eq. ~A7! we see that the null vectorka is affinely
parametrized. The electromagnetic field tensor is given by

Fab52Re~ iAeiQk[aeb] !. ~A10!

It represents the electromagnetic field of typeN ~the null
field! since it satisfies the relations

~Fab1 iF ab* !kb50,

FabFab5FabF* ab50, ~A11!

whereFab* is dual toFab . Equations~A7! and ~A8! imply
the covariant conservation law for the electromagnetic
energy-momentum tensor

Tab5A2kakb. ~A12!

We see that the phenomenological null dust equations
~2.9! and~3.16!–~3.18! are the same as Eqs.~A6!–~A8! and
~A12! of the high-frequency limit of the Maxwell theory if
the null vector fieldka is defined by Eq.~A3! and the mass
distributionM is identified with the square of the scalar am-
plitude A:

M5A2. ~A13!

Null dust thus exhibits all features of the geometrical op-
tics limit of Maxwell’s theory except for the polarization
properties. However, starting from a solution of the null dust
equations one can always construct a polarization vectorea
such that Eqs.~A9! are also satisfied. This yields the tensor
~A10! which can be regarded as an electromagnetic field ten-
sor in the geometrical optics approximation.

6This is different from the energy-momentum tensor of a perfect
fluid with the equation of statep5M /3, which represents the su-
perposition of waves with random propagation directions.
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The laws of geometrical optics can also be interpreted as
describing photons that move along null rays with the flux
vector which is determined by the amplitudeA and the null
vectorka ~see@3# for details!.

The lightlike particles need not necessarily be photons. It
is quite obvious that similar conclusions can be reached for
all zero-rest-mass fields in a high-frequency limit. For ex-
ample, by employing the geometrical optics form~A1! of the
energy-momentum tensor, several authors@21# studied the
gravitational collapse with escaping neutrinos.

A somewhat special case is the gravitational field itself.
Careful studies of the high-frequency limit of the gravita-
tional radiation by Isaacson and others@22# have shown that
the energy-momentum tensor~A12! and the null vector field
ka which satisfy Eqs.~A6!–~A8! also describe the behavior
of high-frequency gravitational waves. The metric tensor
perturbations representing high-frequency waves are given
by

hab5Re„(aab2 1
2 ag

0
ab)eiQ

…,

a :5gab0
aab , ~A14!

whereg
0

ab is the background metric~the source of which
may be the high-frequency waves themselves!. By applying
the geometrical optics approximation to the perturbed Ein-
stein’s equations, one arrives again at Eqs.~A3!, ~A6!–~A8!,
and~A12!. Instead of the scalar amplitude~A4! one now gets

A5~ 1
2 aab āab!1/2. ~A15!

One also obtains the equations for the polarization tensor
eab5aab /A, analogous to Eqs.~A9! ~see @3#, @22#!. The
Riemann tensor of the metric~A14! has the Petrov typeN.
The gravitational field in the high-frequency limit is null,
similarly as the electromagnetic field. The well-known
peeling-off property of exact radiative~zero-rest-mass! fields
in asymptotically flat spacetimes@4# implies that at large
distances from the source these fields are null, having the
structure of plane waves. In asymptotic regions one can even
describeexact solutions of the field equations in terms of
null dust. In such situations, one can usually find a natural
parametrization of null rays, for example, by the proper time
of distant observers at rest with respect to an isolated source.

The variational approach of MacCallum and Taub@23# to
the high-frequency gravitational waves is especially relevant
for the present paper. By applying the ‘‘averaged Lagrangian
technique’’ of Witham to the second variation Lagrangian
for the perturbations of vacuum gravitational field, these au-
thors give a variational principle for approximately periodic
gravitational wave described by metric perturbation of the
form ~A14!. Their principle, derived by perturbing and aver-
aging the Hilbert action, implies the geometrical optics equa-
tions ~A3!, ~A6!–~A8!, and ~A12!, with A given by Eq.
~A15!. This principle is closely related to our variational
principle for null dust@given in Eqs.~4.4! and ~4.5!#, in the
special case of the hypersurface orthogonal vector fieldl a.

APPENDIX B: EXACT SOLUTIONS WITH NULL DUST:
EXAMPLES AND SOME RECENT APPLICATIONS

As an illustration, we shall give a few examples of known
exact spacetimes with null dust.~A detailed survey of such
solutions found before 1980 is given in@24#. The cosmologi-
cal solutions with null dust were recently reviewed in@25#,
and the solution representing colliding plane gravitational
waves accompanied by null dust in@26#.!

Among the simplest solutions directly related to the fields
arising in the geometrical optics limit are conformally flat
null dust solutions representing special plane waves. They
are described by the line element~see, e.g.,@24#!

ds252
1

4
F2~u2!~x21y2!du2

2 22du1du21dx21dy2,

~B1!

whereF is an arbitrary function of a retarded timeu2 . The
corresponding energy-momentum tensor is

Tab5F2kakb ; ~B2!

the only nonvanishing component of the null covectorka is
ku2

51. These solutions can always be interpreted as exact
solutions of the Einstein-Maxwell equations with the null
electromagnetic field given byFab52F(u2)k[aeb] , where
ea5(0, 0, cosc, sinc) contains an arbitrary function
c5c(u2) @cf. Eq. ~A10!#. Cylindrical gravitational waves
accompanied by null dust are also known@27#.

A more complicated class of radiative solutions with
‘‘spherical’’ gravitational waves and null dust is formed by
the Robinson-Trautman solutions@28#. The energy-
momentum tensor again has the form~B2!, but the function
F is now given byF25n2(z, z̄ ,u2)/v2, wherez is a com-
plex spatial coordinate,v is an affine parameter along the
rays, andu2 is a retarded time. The functionn may be
arbitrary. If, however, these solutions should represent exact
Einstein-Maxwell fields,n must have the formn252h h̄P2,
whereh(z, z̄ ,u2) and P(z, z̄ ,u2) satisfy certain additional
conditions@24#. The Robinson-Trautman solutions with null
dust include Vaidya’s spherically symmetric metric as a spe-
cial case. In fact, if the evolving null dust is homogeneous,
all such Robinson-Trautman spacetimes approach Vaidya’s
metric as the retarded time goes to infinity@29#.

The null vector fieldka in the solutions we have men-
tioned is hypersurface orthogonal and the corresponding null
congruence is thus nontwisting. The twisting null dust solu-
tions are discussed in@30#, the best known simple example
being the ‘‘radiating Kerr metric.’’

Some exact solutions with null dust can also be inter-
preted as exact solutions of Einstein’s equations coupled to a
massless scalar field@31#. However, given a conserved
energy-momentum tensor in the form~A1!, it is not neces-
sarily true that the mass distributionM and the null vector
field ka represent an electromagnetic or a massless scalar
field. However, if the null vector fieldka is shear free, a
corresponding nontrivial solution of Maxwell’s equations
can be found by virtue of the Mariot-Robinson theorem@32#.

Recently, certain exact solutions with null dust which can
be interpreted as ‘‘relativistic rockets’’ have been explored in
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connection with the properties of gravitational radiation@33#.
A number of studies have also been devoted to colliding
plane, cylindrical, and spherical systems with null dust@34#.

Above all, as we have already stated in the Introduction,
the null dust models have been recently used to clarify the
formation of naked singularities during a spherical gravita-
tional collapse@35#, in the studies of the mass inflation inside
black holes@36#, and in the models attempting to describe
the formation and Hawking evaporation of black holes@37#.

APPENDIX C: DESCRIPTION OF TWISTING NULL
CONGRUENCES BY PFAFF FORMS: TWO EXAMPLES

Since null congruences are somewhat unusual, we give
here two examples of twisting null congruences described by
the scalar potentialsZi andwi .

~I! In a flat spacetime with Lorentzian coordinates
(t,x,y,z), consider a system of lightlike particles which, in
each plane perpendicular to thez axis, move in mutually
parallel straight lines. As one passes from one planez5const
to another, the anglea between particle trajectories and thex
axis smoothly changes withz: a5a(z)P@0,2p). It is easy
to see that the null world lines form a twisting null congru-
ence:

t5v1t0 ,

x5vcosa~z!1x0 ,
~C1!

y5vsina~z!1y0 ,

z5z0 ,

wherevPR is an affine parameter. The tangent null vectors
ka5dxa/dv are given by

ka5„1, cosa~z!, sina~z!, 0…. ~C2!

One can readily check that

kaka50 , kb¹bka50 , ~C3!

confirming that Eq.~C1! is a congruence of null geodesics
affinely parametrized byv.

The first comoving coordinate

Z15z ~C4!

is trivial: It determines the plane in which the geodesic lies.
The second comoving coordinateZ2 is the coordinatey8 of
the Cartesian system (x8, y8, z) obtained from (x,y,z) by
the rotation about thez axis by the anglea(z):

Z252xsina~z!1ycosa~z!. ~C5!

In the rotated Cartesian systems (x8, y8, z), the particles
move along thex8 axes, withy85const. The third comoving
coordinateZ3 is the retarded timeu2 corresponding to that
direction:

Z35u25t2x85t2xcosa~z!2ysina~z!. ~C6!

From Eqs.~C4!–~C6! we obtain the covectorsZk
,a :

Z1
,a5~0, 0, 0, 1!,

Z2
,a5„0, 2sina~z!, cosa~z!,

2xa8~z!cosa~z!2ya8~z!sina~z!…, ~C7!

Z3
,a5„1, 2cosa~z!, 2sina~z!,

xa8~z!sina~z!2ya8~z!cosa~z!…,

wherea8:5da/dz. It is easy to see thatZk
,a are independent

covectors. Since

ka5„21, cosa~z!, sina~z!, 0…, ~C8!

the decomposition~5.5! is obtained with the coefficients

w15xa8~z!sina~z!2ya8~z!cosa~z!,

w250, w3521 . ~C9!

One can easily check thatwk are constant along the geode-
sics, Eq.~5.8!. This also follows from Eq.~C1! which allows
us to write w1 in the form w15a8(z0)„x0sina(z0)
2y0cosa(z0)…. Similarly, one can check thatkaZk

,a50 , as
given by Eq.~4.6!. One can also check the fact mentioned in
Sec. IV, that for a twisting congruence all vectorsZk

,a are
spacelike~except perhaps a set of measure zero!. The space-
like character of the vectorsZ1

,a and Z2
,a is evident; for

Z3
,a we have

habZ3
,aZ3

,b5a8~z!2
„xsina~z!2ycosa~z!…2. ~C10!

The vectorZ3
,a is thus spacelike unlessa850. Calculating

the twistv of our congruence@see Eq.~3.24!#, we find

v5
1

2
ua8u. ~C11!

Hence, if the congruence is twisting, all the three vectors
Zk

,a are spacelike. Whena850, ka5Z3
,a , so that the con-

gruence is hypersurface orthogonal.
Instead of the comoving coordinatesZk, one can, of

course, use other comoving variablesZk85Zk8(Zi). Also,
one can parametrize the geodesics by a labelu different from
the affine parameterv. When one changes the parametriza-
tion, v5v(u,Zk), the null vectors are rescaled:

ka→ Ua5
dxa

du
5

]v
]u

ka. ~C12!

This leads to a new decomposition, namely

Ua5W2Z2
,a1W3Z3

,a , ~C13!

where W25(]v/]u)w2, W35]v/]u. As discussed in Sec.
V, if the congruence is not affinely parametrized, i.e., if
]v/]uÞconst, the coefficients Wk are not necessarily co-
moving.

~II ! The second example will be described only briefly. It
is the familiar ingoing principal null congruence in Kerr
spacetime. In the ingoing Kerr coordinates (Ṽ,r ,u,w̃) which
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generalize the ingoing Eddington-Finkelstein coordinates of
the Schwarzschild metric, the Kerr metric reads~our notation
follows @3#!

ds252~122Mrr22!dṼ212dr dṼ1r2du2

1r22@~r 21a2!22Da2sin2u#sin2u dw̃2

22asin2u dw̃ dr24aMrr22sin2u dw̃ dṼ.

~C14!

Here, the constant parametersM and a are the mass and
angular momentum per unit mass, and the functionsD andr
have the form

D5r 222Mr 1a2, r25r 21a2cos2u. ~C15!

The ingoing null Kerr congruence is given by

Ṽ5const, r 52v, u5const, w̃5const, ~C16!

where we have absorbed a constant energy parameter
into the affine parameterv ~cf. @3#!. The coordinates
Z1 :5Ṽ, Z2:5u, Z3:5w̃ are clearly comoving. We can eas-
ily form the basis vectorsZk

,a :

Z1
,a5~1, 0, 0, 0!,

Z2
,a5~0, 0, 1, 0!, ~C17!

Z3
,a5~0, 0, 0, 1!.

The covariant components of the tangent null vector
ka5dxa/dv are

ka5~21, 0, 0,asin2u!. ~C18!

Its decomposition into the three covectorsZk
,a yields the

coefficients

w1521, w250, w35asin2u, ~C19!

which are constant along the null geodesics~C16!, in accor-
dance with Eq.~5.8!. The covariant metric can be read off
from Eq. ~C14!. The norms of the vectorsZk

,a are

gabZ1
,a Z1,b5r22a2sin2u,

gabZ2
,a Z2

,b5r22, ~C20!

gabZ3
,a Z3

,b5~rsinu!22,

wherer2 is given by Eq.~C15!. We see that all the vectors
Zk

,a are spacelike as long asaÞ0, i.e., when the congruence
is twisting. The twistv, given by Eq.~3.24!, is

v5uacosuur22. ~C21!

The congruence~C16! is twisting even in the flat-space
limit of the Kerr metric, obtained by puttingM50. In fact,
Eqs.~C20! and~C21! are independent ofM . With a50, the
vectorZ1

,a becomes null and the congruence is hypersurface
orthogonal,ka52Z1

,a , i.e., nontwisting.
The comoving coordinatesZ25u, Z35w̃ are simple, but

they become singular at the axisu50 andu5p, the mag-
nitude of the vectorZ3

,a becoming infinite, Eq.~C20!. It is
easy, however, to cure this defect by going over to another
pair of comoving coordinates,Z28 andZ38, e.g.,

Z285sinw̃ sinu, Z385cosw̃ sinu. ~C22!

Then

ka52Z1
,a1asinu cosw̃ Z28

,a2asinu sinw̃ Z38
,a ,

~C23!

and

gabZ28
,a Z28

,b5r22~12sin2w̃ sin2u!,

gabZ38
,a Z38

,b5r22~12cos2w̃ sin2u! ~C24!

are regular atu50 andu5p.
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