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A careful analysis of the gravitational geon solution found by Brill and Hartle is made. The gravitational
wave expansion they used is shown to be consistent and to result in a gauge-invariant wave equation. It also
results in a gauge-invariant effective stress-energy tensor for the gravitational waves provided that a general-
ized definition of a gauge transformation is used. To leading order this gauge transformation is the same as the
usual one for gravitational waves. It is shown that the geon solution is a self-consistent solution to Einstein’s
equations and that, to leading order, the equations describing the geometry of the gravitational geon are
identical to those derived by Wheeler for the electromagnetic geon. An appendix provides an existence proof
for geon solutions to these equations.@S0556-2821~97!02220-0#

PACS number~s!: 04.40.Nr, 04.20.Jb

I. INTRODUCTION

Brill and Hartle@1# ~BH! developed a very useful method
for finding approximate solutions to Einstein’s equations that
correspond to high frequency gravitational waves propagat-
ing in a background geometry, which is created by the aver-
age stress energy of the waves themselves. In their paper
they applied this method to the case of a static spherically
symmetric background geometry and found that gravitational
waves can remain confined in a region for a time much
longer than the region’s light-crossing time. This so-called
gravitational geonis generated by a large number of high
frequency, small amplitude gravitational waves. The time av-
erage of the curvature due to these waves creates the back-
ground geometry of the geon, and this background geometry
traps the waves for a long time in a region of space called the
‘‘active’’ region.1 The BH solution is important because it
serves as an example in which the gravitational field both
creates and responds to its own effective stress energy. It is
also an example of a nontrivial~approximate! solution to the
vacuum Einstein equations that has no curvature singulari-
ties.

There are three reasons for analyzing the solution found
by BH in more detail than was done in their original paper.
The first is that BH did not investigate the question, is the
stress-energy tensor they used conserved or gauge invariant?
To have a self-consistent set of equations it is necessary that
the effective stress-energy tensor have these properties. Sec-
ond, the validity of the geon solution found by BH has been
questioned by Cooperstock, Faraoni, and Perry@4,5#. They
claim that the thin shell approximation used by BH to de-

scribe the active region is invalid, and that gravitational
geons due to high frequency, large angular momentum
waves do not exist. The third reason for analyzing the BH
solution in more detail is that, because they used a thin shell
approximation, BH did not determine the form of the geom-
etry within the active region. The active region is the only
region where the gravitational waves have a significant size,
and it is the region where spacetime is most strongly curved.
It is clearly important to know the geometry of the active
region, if one wishes to learn anything about the details of
the geon solution.

In this paper a thorough analysis of the geon solution
found by BH is presented. A self-consistent expansion of the
metric and curvature tensors is found. Using results recently
obtained regarding effective stress-energy tensors for gravi-
tational waves@6#, it is argued that, to leading order, the
wave equation and stress-energy tensor are gauge invariant.
It is also shown that the stress-energy tensor is conserved to
leading order with respect to the background geometry. The
wave and backreaction equations are explicitly derived in the
high frequency and large angular momentum limits. It is
shown that in and near the active region these equations can
be cast in a form which is mathematically identical to the
equations derived by Wheeler@2# for the electromagnetic
geon. Thus, to leading order, the background geometry of the
gravitational geon found by BH is identical to that of the
electromagnetic geon found by Wheeler.2 This means that
the details of the active region as discussed by Wheeler@2#
are identical~mutatis mutandis! to those of the gravitational
geon found by BH. There is of course a difference in the
wave equations. However, the effective time averaged stress-
energy of the gravitational waves is, to leading order, iden-
tical to that of the electromagnetic waves.

In Sec. II a review of the BH solution is given. In Sec. III1Gravitational geons are analogous to the original electromagnetic
geons of Wheeler@2#, which are virtual gravitationally bound states
of electromagnetic energy. As such, geons have a finite lifetime and
are not true nonradiative solutions. Gibbons and Stewart@3# have
shown that nonradiative geons, or other exactly periodic solutions,
cannot exist in Einstein’s theory.

2It is already clear from their paper that the geometry BH found in
the regions exterior to the active region is exactly the same as that
found by Ernst@7# for the electromagnetic geon.
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a self-consistent expansion of the wave equation and the ef-
fective stress-energy tensor for the gravitational waves is
presented. Explicit leading order equations are derived in
Sec. IV, and it is shown that in the active region the equa-
tions to leading order are those found by Wheeler for the
electromagnetic geon. Extension of the calculation beyond
the leading order is also discussed. Our conclusions are sum-
marized in Sec. V.

II. THE BRILL-HARTLE SOLUTION

The gravitational geon found by BH is a solution to Ein-
stein’s equations that consists of gravitational waves propa-
gating on a static spherically symmetric background, which
is created by the waves. There is a large number of waves,
each with a small amplitude, a high frequency, and a large
angular momentum. The waves have different angular orien-
tations and somewhat different frequencies. The stress en-
ergy of the waves is significant in and near a spherical shell
called the active region, and insignificant elsewhere. The so-
lution is self-consistent in that the geometry produced by the
stress energy of the waves traps them in the active region for
a long time.

We begin by reviewing the BH gravitational wave expan-
sion and the BH definition of an effective stress-energy ten-
sor for the gravitational waves. Consider a separation of the
metric into a background partgmn and a perturbationhmn :

gmn5gmn1hmn . ~1!

The Einstein tensor can also be divided into a part describing
the curvature due to the background geometry and that due
to the perturbation:

Gmn~gab!5Gmn~gab!1nGmn~gab ,hab!. ~2!

It is important to note thatnGmn is defined by this equation.
One way to specify the separation~1! is to use some

smoothing or averaging procedure^ & acting onGmn , and
demand that this procedure not affect the value ofGmn(gab).
In addition, one demands both the exact and the averaged
Einstein equations for vacuum. This leads to

nGmn~g,h!5^nGmn~g,h!&, ~3a!

Gmn~g!52^nGmn~g,h!&. ~3b!

~Here and hereafter the indices of the arguments ofGmn and
nGmn are suppressed for notational simplicity.! The first
equation is regarded as a wave equation, which gives the
behavior of the perturbed geometry. The second equation is
the backreaction equation, which describes how the back-
ground geometry is affected by the perturbed geometry.
From the backreaction equation it is natural to define an
effective stress-energy tensor for the gravitational waves as

^Tmn&52
1

8p
^nGmn~g,h!&. ~4!

For any valid perturbation expansionnGmn can be writ-
ten in the form

nGmn5n1Gmn1n2Gmn1•••. ~5!

BH obtained an expansion of the form~5! by first expanding
nG in powers ofh and its derivatives. They then considered
the high frequency, large angular momentum limit of this
expansion. Thus their leading order termn1G consists of
the high frequency large angular momentum limit of the
terms in the original expansion which are linear inh. Their
second-order termn2G consists of the appropriate high fre-
quency, large angular momentum limits of the terms in the
original expansion which are quadratic inh.3 BH used a time
averaging for their stress-energy tensor. This plus the high
frequency of the waves resulted in a stress-energy tensor
consisting of the time average of the high frequency large
angular momentum limits of the quadratic terms in the origi-
nal expansion ofnG in powers ofh and its derivatives. To
completely fix the value of the stress-energy tensor they im-
plicitly made the choice4 ^n1Gmn&50. The resulting wave
and backreaction equations are

n1Gmn~g,h!50, ~6a!

Gmn~g!52^n2Gmn~g,h!&. ~6b!

The background metric for the geon solution is static and
spherically symmetric, so it can be written in the form

gmn5diag ~2en,el,r 2,r 2sin2u!. ~7!

BH used a variational approach to find their solution, the
essence of which is to show that the effective averaged
stress-energy tensor has vanishing trace to leading order.
This suffices to define the metric outside the active region,
which is nearr 5a. The value ofa depends on the ratio of
the angular momentum to the frequency of the waves. In the
infinite frequency and angular momentum limits the active
region shrinks to an infinitely thin shell atr 5a. BH’s self-
consistent treatment found in this limit that

en5
1

9
, e2l51, r ,a,

en5e2l512
2M

r
,r .a, ~8!

and that the mass of the geon isM5(4/9)a. Examination of
Eq. ~8! suggests that, in the active region,]l/]r is large
while ]n/]r is of order unity.5

3It also contains certain terms from the original expansion that are
linear in h. However these vanish when a time average is taken.

4It is shown in @6# that Eq.~4! does not completely specify the
definition of the stress-energy tensor. An extra condition must be
imposed to determine uniquely the value of^nG&. Although not
presented as such in their paper, the condition^n1G&50 imposed
by BH served to fix the value of^nG& in the gauge they worked in.
See Sec. III A for further discussion.

5We use the term ‘‘unity’’ to mean the poweran of the geon
radiusa, with n adjusted so ‘‘unity’’ has the same dimension as the
quantity with which it is being compared.
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III. CONSISTENCY OF THE GRAVITATIONAL
WAVE EXPANSION

Several consistency questions must be answered to vali-
date the BH solution to Eqs.~6a! and~6b!. First, the effective
stress-energy tensor of the gravitational waves, Eq.~4!, must
be conserved with respect to the background geometryg in
order to be a source of this background geometry. Second,
the solution ansatz for the wave equation must be sufficiently
general so that this set of equations can be simultaneously
solved. Third it is necessary to investigate gauge invariance.
For the wave and backreaction equations to be consistent, the
effective stress-energy tensor must be at least approximately
gauge invariant if the wave equation is. Also BH used a
gauge transformation to reduce the number of components of
hmn . Finally it is necessary to show that the expansion of
nG used by BH is a valid one for the geon solution.

It is appropriate to note that we are here constructing one
particular type of geon, as described in the beginning of Sec.
II. No attempt is made to discuss other possible gravitational
geons, such as thick-shell ones@9#. To show existence of
geon solutions it is only necessary to establish that one par-
ticular, carefully selected, set of waves does form a geon.

A. Conservation and gauge invariance

Conservation of the effective stress-energy tensor for
gravitational waves can be established in a straightforward
manner. If we have a solution of Eq.~3b!, then the Bianchi
identity satisfied byGmn(g) implies that the exact stress-
energy tensor~4! is conserved with respect to the back-
ground geometrygmn . Thus the approximate stress-energy
tensor is similarly conserved to leading order so long as a
self-consistent expansion is used for the gravitational waves.

The question of whether the wave equation and the effec-
tive stress-energy tensor are gauge invariant is much more
difficult to answer. It is useful in this regard to discuss some
general results, first for the wave equation and then for the
stress-energy tensor.

If the background geometryg is a solution to the vacuum
Einstein equations then it can be shown that if an expansion
of the form~5! is used withnnG consisting of terms ofnth
order inh and its derivatives, then the wave equation~6a! is
exactly invariant under gauge transformations of the form

h̄mn~x!5hmn~x!2gma~x!ja
,n2gan~x!ja

,m2gmn,aja.
~9!

Herej results from an arbitrary coordinate transformation of
the form

x̄ m5xm1jm. ~10!

If the same type of expansion is used but the background
geometry is a solution of Eq.~6b! and if the transformations
are restricted so thatj and its derivatives are no larger in
magnitude thanh and its derivatives, then it can be shown
that the wave equation is invariant toO(h2) under the above
type of gauge transformation. For high frequency, large mo-
mentum gravitational waves and the same restrictions onj,
Isaacson@10# showed that the leading order wave equation is
invariant under gauge transformations of the form~9! to sec-

ond order in his expansion. It is not hard, using an argument
similar to that used by Isaacson, to show that the wave equa-
tion for the gravitational geon solution is also invariant to
second order under gauge transformations of the form~9! so
long asj and its derivatives are no larger in magnitude than
h and its derivatives. Here and hereafter bynth order we
mean of the same order asnnG(g,h) in a self-consistent
expansion of the form~5!.

Gauge invariance of the effective stress-energy tensor is a
different matter. For Eqs.~6a! and ~6b! to be consistent, the
stress-energy tensor must at least be gauge invariant to sec-
ond order. However, Isaacson showed thatn2G is not in-
variant under transformations of the form~9!. The only case
he found in which the stress-energy tensor and thus the back
reaction equation~6b! are gauge invariant to second order is
the case of high frequency, large momentum waves when the
averaging is over a region of spacetime which is large com-
pared to the wavelengths of the waves but small compared to
the scale on which the background geometry varies.

One might hope that in the geon case, where high fre-
quency, large angular momentum waves are used, that the
stress-energy tensor would similarly be gauge invariant to
second order. However, an explicit calculation using the
gauge transformation~17! below shows that this is not the
case. In fact, even when the background geometry is a solu-
tion to the vacuum Einstein equations~including the case of
the flat space solution!, the stress-energy tensor is not gauge
invariant if time averaging rather than spacetime averaging is
used. Thus it appears that Eqs.~6a! and ~6b!, which were
implicitly solved by BH to obtain the geon solution, are in-
consistent when time averaging is used.

The resolution to this very serious problem is given in
Ref. @6#. It is as follows: First Eqs.~6a! and ~6b! must be
replaced by the equations that result from substituting Eq.~5!
into Eqs.~3a! and ~3b!. The result tonth order is

n1G1•••1nnG5^n1G1•••1nnG&, ~11a!

G~g!52^n1G1•••1nnG&. ~11b!

Then a generalized gauge transformation is used. It is arrived
at by using the coordinate transformation~10! and not allow-
ing the functional form of the background geometry to
change under this coordinate transformation, that is
ḡmn5gmn1 h̄mn . Then h̄mn is given implicitly by the equa-
tion

gmn~x!1hmn~x!5gmn~ x̄ !1 h̄mn~ x̄ !

1@gma~ x̄ !1 h̄ma~ x̄ !#ja
,n

1@gan~ x̄ !1 h̄an~ x̄ !#ja
,m

1@gab~ x̄ !1 h̄ab~ x̄ !#ja
,mjb

,n .

~12!

Here derivatives ofj are with respect tox not x̄ . The gen-
eralized gauge transformation is defined as one in which the
quantity h̄ (x) is substituted forh(x) into the expression of
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interest. Ifh, j and their derivatives are small enough, then
to leading order this gauge transformation reduces to the
usual transformation~9!.

It is proven in Ref.@6# that, when the vacuum field equa-
tions are satisfied,nGmn is invariant under this generalized
gauge transformation. It is also argued in that paper that the
quantity

n1Gmn1•••1nnGmn

is gauge invariant tonth order. This implies that Eqs.~11a!
and~11b! are invariant tonth order under generalized gauge
transformations. Thus there is no problem with gauge invari-
ance to any order so long as generalized gauge transforma-
tions are used.

In the same paper it was shown that there is a large
amount of freedom available in choosing the form of the
effective stress-energy tensor for gravitational waves. This
freedom is related to the freedom one has in choosing in the
split between the background and the perturbed geometry.
Thus, as noted above, the BH ansatz

^n1Gmn&50 ~13!

is simultaneously a choice of the form of the stress-energy
tensor and a definition of the separation between the back-
ground and perturbed geometry that is to be used. From the
above discussion it is clear that the condition~13! is, in gen-
eral, only gauge invariant to first order. The lack of exact
gauge invariance in this condition is a reflection of the fact
that the splitting between the background and the perturbed
metric is inherently gauge dependent.

As mentioned above, an explicit calculation which we
have made using the gauge transformation~17! below shows
that, even after time averaging,^n2Gmn& is not separately
gauge invariant. The problem is simply that the condition
~13! was used along with the expansion~5! in the derivation
of Eqs. ~6a! and ~6b!. However, this condition can only be
imposed in a particular gauge since it is not exactly gauge
invariant. Since BH solved Eqs.~6a! and ~6b! and since we
also use those equations as the starting point of the deriva-
tions in Sec. IV, it is necessary to show that these equations
are consistent with the second-order version of Eqs.~11a!
and ~11b!.

To begin note that to actually solve Eqs.~11a! and ~11b!
in a particular gauge one can follow Isaacson@10# and make
the following expansion forh:

h5h~1!1h~2!1•••, ~14!

whereh(n) is defined such thatn1G(g,h(n)) is of the same
order asnnG(g,h(1)). Then to second order Eqs.~11a! and
~11b! can be written

n1G~g,h~1!!5^n1G~g,h~1!!&, ~15a!

n1G~g,h~2!!1n2G~g,h~1!!

5^n1G~g,h~2!!1n2G~g,h~1!!&,
~15b!

G~g!52^n1G~g,h~1!!1n1G~g,h~2!!1n2G~g,h~1!!&.
~15c!

Condition ~13! can be imposed by requiring that
^n1G(g,h(n))&50 for all n. Then to lowest order Eqs.
~15a!–~15c! are equivalent to Eqs.~6a! and~6b! with the sub-
stitution h→h(1).

It is important to emphasize that it is the original equa-
tions ~11a! and ~11b! that are gauge invariant tonth order
and that Eqs.~15a!–~15c! and thus Eqs.~6a! and~6b! are in
general only correct in a particular gauge. The procedure
being followed here is the usual one for finding solutions to
Einstein’s equations. First the equations are written down in
a particular coordinate system and then they are solved~here
in an approximate manner! in that coordinate system.

B. A valid expansion of the Einstein tensor

Since the gravitational waves making up the BH geon are
high frequency, large angular momentum waves, it is neces-
sary to find an expansion of the Einstein tensor that is appro-
priate for these waves. The key point for a thin-shell geon is,
that while the waves’ amplitudes are much smaller than
unity, their derivatives are large compared to unity. Further,
while the background metric is of order unity, some, but not
all, of its derivatives are much larger than unity in the active
region~although they are of order unity or smaller well out-
side of the active region!. Thus, whether a term is of leading
order will be determined not only by the power ofh but also
by the power of the frequencyv or of the harmonic order
l * that it contains.

What must be done is to find a self-consistent expansion
of the Einstein tensor with the above constraints on the back-
ground metric and the perturbations. Since some derivatives
of the background metric are large in the active region but of
order unity outside of it, this is a complicated task. It clearly
depends on the solutions to both the wave equation and back
reaction equation which in turn depend on the expansion
used.

Fortunately, as is shown by direct calculation in Sec. IV,
to second order the method used by BH and discussed in
Sec. II works. However for the reasons discussed above, it
would be significantly more difficult to compute the third-
and higher-order terms in the correct expansion ofnG.

IV. THE WAVE AND BACKREACTION EQUATIONS

Derivations of the wave and backreaction equations have
been attempted at the time of the BH paper@8# and subse-
quently by us and independently by@5#. Our version pro-
vides a correct, independent treatment of these important
equations. We begin with the wave equation.

A. The wave equation

The geon is composed of a large number of gravitational
waves and the equations for each are the same. BH used the
equationsn1Rmn50, with Rmn the Ricci tensor. BH showed
that to leading order these equations are equivalent to Eq.
~6a!. We first expandnRmn in powers ofhmn and its deriva-
tives, so the wave equation is the high frequency and large
angular momentum limit of
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gab@hmn;ab1hab;mn2hma;nb2hna;mb#50. ~16!

Here indices as usual are raised and lowered by the back-
ground metricgab .

Following BH we analyze the angular behavior of solu-
tions to these equations for static spherically symmetric
spacetimes by the method of Regge and Wheeler@11#, and
limit ourselves to azimuthally symmetric, odd-parity func-
tions. In the gauge of Regge and Wheeler the perturbationh
is obtained from the generalh via a gauge transformation of
the form

j t5j r50,

jm5e2 ivtL~r !emn
]

]xn
Yl

0~u! ~m,n5u,f!. ~17!

Here L(r ) is some function ofr , emn is an antisymmetric
tensor withe325(r 2sinu)21, and Yl

0(u) is a spherical har-
monic. In their gauge the ‘‘odd’’ solutions are then written in
the form

hmn5r mne2 ivtsinu
dYl

0~u!

du
1c.c.,

r mn~r !5h0~r !@dm
0dn

31dn
0dm

3#1h1~r !@dm
1dn

31dn
1dm

3#.

~18!

When these equations are substituted into Eq.~16!, and
when the background metric is of the form~7!, there result
the following three equations forh0 andh1:

ive2nS dh0

dr
2

2h0

r D1h1F l * 2

r 2 2v2e2n1
e2l

r S l r2n r2
2

r D G
50, ~19a!

ivh0e2n1e2lF1

2
~n r2l r !h11

dh1

dr G50, ~19b!

d2h0

dr2 1 ivFdh1

dr
1h1S 2

r
2

1

2
~l r1n r ! D G2

1

2
~l r1n r !

dh0

dr

2Fell * 2

r 2 2
2n r

r Gh050. ~19c!

Here we have putl * 2[ l ( l 11), and denoted radial deriva-
tives of the background metric by subscripts. From Eq.~19b!
it is clear that if we takeh1 to be real thenh0 is imaginary.
Taking note of the complex conjugate term in Eq.~18! it is
then seen that the part of the disturbance associated withh0
has a time dependence of the form sin(vt) while the part of
the disturbance associated withh1 has a time dependence of
the form cos(vt).

By using Eq.~19b! the functionh0 can be eliminated from
Eqs.~19a! and ~19c!. Then the change of variables

dr* 5e~1/2!~l2n!dr, ~20a!

Q5e~1/2!~n2l!
h1

r
~20b!

results in the two equations6

d2Q

dr* 2
1Fv22en

l * 2

r 2 2e2l/21n/2
3 l r*
2 r

1e2l/21n/2
3n r*
2r GQ50, ~21a!

d3Q

dr* 3
1F2n r* 1e2l/21n/2

3

r G d2Q

dr* 2 1Fv22en
l * 2

r 2 2e2l/21n/2
3l r*
2r

1e2l/21n/2
3n r*
2r G dQ

dr*
1F2v2 n r* 2e2l/213 n/2

l * 2

r 3

1e2l1n
2 n r*

r 2 1e2l/21n/2
l r*

2

4r
2e2l/21n/2

l r* r*
2r

2e2l/21n/2
n r*

2

4r
1e2l/21n/2

n r* r*
2r

1e2l/21n/2 3 v2/r GQ50.

~21b!

6By taking the derivative of Eq.~21a! with respect tor * it is easy to show that the two equations are not consistent unless the background
metricgmn is an exact solution to the vacuum Einstein equations. This is because for a general background the lack of exact gauge invariance
does not allow the simplifying gauge transformation~17!, as explained above. However, the approximate gauge invariance of the wave
equation results in the equations being consistent to leading order inl * if the background geometry satisfies the backreaction equations to
leading order.
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To ascertain the correct limiting form of these equations we
take a hint from the EM geon’s background and put

v; l *
,

dQ

dr*
; l * Q,

dl

dr*
!O~ l * !,

d2n

dr* 2!O~ l * !. ~22!

~In the following subsections we show that this indeed al-
lows self-consistent solutions.! To leading order (l * 2), Eqs.
~21a! and ~21b! are

d2Q

dr* 2 1Fv22
enl * 2

r 2 GQ50, ~23a!

d3Q

dr* 3
1Fv22

enl * 2

r 2 G dQ

dr*
50. ~23b!

Note that these equations are consistent to leading order
in l * . Note also that it is not being assumed here that
dl/dr* andd2n/dr* 2 are of order unity or less, simply that
they are not of orderl * . It turns out that for the geon solution
both of these quantities are of order unity outside of the
active region, but they are of orderl * 2/3 inside the active
region. It also turns out thatdQ/dr* is of orderl * Q outside
the active region, but is of orderl * 2/3Q inside the active
region. Thus Eqs.~23a! and~23b! describe the leading order
behavior of the gravitational waves, both inside and outside
of the active region.

B. The backreaction equations

The next step in deriving the equations that result in a
gravitational geon solution is to consider the effective stress-
energy tensor, Eq.~4!, for the gravitational waves. As with
the wave equation, the easiest way to derive the stress-energy
tensor to leading order is to consider the linear and quadratic
terms in an expansion of the Einstein tensor in powers of
hmn . The largel * limit of these terms is to be taken in the
same way as it was for the wave equation in the previous
subsection. The result is averaged over times which are long
compared with the gravitational wave period.

The background metric for the geon solution is static and
spherically symmetric, so from the backreaction equation

~6b! it is clear that the stress-energy tensor should have these
same symmetries. Time averaging automatically makes it
static over the geon lifetime. Spherical symmetry is a more
difficult problem. Arranging the waves so that the stress-
energy tensor is spherically symmetric has been discussed in
detail by Wheeler@2# in the case of the electromagnetic
geon. The arrangements are identical for the gravitational
geon. They are briefly summarized here.

First, as can be seen from Eq.~18!, to have spherical
symmetry in the largel * limit it is necessary to have many
gravitational waves with different angular orientations. Thus
we put

hmn5(
i

~hmn! i ~24!

with each (hmn) i a solution to Eq.~6a! with a different value
of v, a different phase, and a different polar axis. If the
phases are random and the values ofv, while different, are
all approximately equal and large, then after the time aver-
aging is done, to leading order inv the cross terms in
^n2Gmn& vanish and

^n2Gmn& '(
i

^~n2Gmn! i&. ~25!

It is useful to denote (n2Gmn) I as the wave which has a
pole atu50. Wheeler@2# has shown that if the distribution
of the polar axes of the waves is uniform, then when the
waves are all added together one has

^n2Gt
t&5

1

2E0

p

^~n2Gt
t! I&sin u du,

^n2Gr
r&5

1

2E0

p

^~n2Gr
r ! I&sin u du,

^n2Gu
u&5

1

4E0

p

@^~n2Gu
u! I&1^~n2Gf

f! I&#sin u du.

~26!

Finally there is the question of conservation. From the
discussion of Sec. III A it is clear that^Tmn& should be auto-
matically conserved to leading order. Since the geon is here
treated to leading order, that is in the largel * limit, one
expects conservation to hold. Direct calculation shows that
the stress-energy tensor is conserved to leading order in this
limit.

In the largel * limit the backreaction equations coming
from the (t,t), (r ,r ), and (u,u) components of Eq.~6b! in an
orthonormal frame are

2
1

r 2 1e2l
1

r 2 2e2l/22n/2
l r*
r

5
2 l * 4

8 ~2 l 11! v2 r 4F l * 2 Q21e2nv2 r 2 Q21e2nr 2 S dQ

dr*
D 2G , ~27a!
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2
1

r 2
1e2l

1

r 2 1
e2l/22n/2 n r*

r
5

l * 4

8 ~2 l 11! v2 r 4F2 l * 2 Q21e2nv2 r 2 Q22e2l/22n/26rQ
dQ

dr*
1e2l/223n/2

8v2r 3

l * 2
Q

dQ

dr*

1e2nr 2 S dQ

dr*
D 2G , ~27b!

e2~l1n!/2 S n r* 2l r*
2r D1e2n

n r* r*
2

5
l * 4

8~2l 11!v2r 4F22l * 2Q21e2n7v2r 2Q22e22n
4 v4 r 4

l * 2
Q22e2n3r 2 S dQ

dr*
D 2

1e22n
4 v2 r 4

l * 2 S dQ

dr*
D 2G . ~27c!

In arriving at these equations the following identities were
used:

1

2E21

1

@Pl~x!#2dx5
1

2l 11
,

1

2E21

1

@xPl~x!Pl8~x!#dx5
l

2l 11
,

1

2E21

1

@Pl8~x!#2dx5
l ~ l 11!

2
,

1

2E21

1

~12x2!@Pl8~x!#2dx5
l ~ l 11!

~2l 11!
. ~28!

HerePl(x) is a Legendre polynomial.
The combined set of Eqs.~23a!, ~23b!, ~27a!, ~27b!, and

~27c! completely specifies the background geometry and the
gravitational waves in the high frequency and angular mo-
mentum limit. In the next subsection Wheeler’s expansion is
used to show that in and near the active region it is possible
to arrive at a set of equations which are independent of both
v and l * .

C. Wheeler’s expansion for the active region

The active region is defined as the region in which the
gravitational waves undergo radial oscillations7 rather than
radial damping, and where their amplitudes are significant.
As can be seen from Eq.~23a!, the waves will radially os-
cillate wheneverv2.enl * 2/r 2. This happens at larger , but
in order to construct a geon that lasts for a long time, we

must use waves whose amplitudes are completely negligible
there. Radial oscillation also happens nearr 5a, where from
Eqs.~8! and ~23a! one finds8

a;
l *

v
. ~29!

By expanding all of the relevant quantities in powers of
l * 1/3, Wheeler was able to arrive at a set of equations which
describe the electromagnetic geon in and near the active re-
gion and which do not explicitly depend on the value ofl * .
A similar derivation is presented here. Before making the
expansions it is useful first to change to new variables,

r 5
r

v
, ~30a!

e2l512
2L~r!

r
, ~30b!

en5S 12
2L~r!

r DS2~r!, ~30c!

Q5
@8~2l 11!#1/2

l * 2
f ~r!. ~30d!

To remove the dependence onl * a new radial variablex is
defined such that

x5~r* 2 l * !l * 21/3, ~31a!

dx5 l * 21/3dr* . ~31b!

Then the following expansions are made:

r5 l * 1 l * 1/3r 0~x!1•••, ~32a!

7By radial oscillations we mean here that the waves oscillate as a
function of the radius, not that they oscillate in the radial direction.

8Until the equations are solved, the location of the active region is
unknown. Wheeler@2# initially expanded aboutr5 l * . After solv-
ing the equations he found the active region was nearr5 l * /3. He
used a scale invariance present in the original equations for the EM
geon @and also present in Eqs.~23a!, ~23b!, and ~27a!–~27c!# to
rescale the solutions accordingly. To facilitate comparison with the
equations derived by Wheeler we also expand aboutr5 l * .
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L5 l * l0~x!1 l * 2/3l1~x!1 l * 1/3l2~x!1•••, ~32b!

S5
1

k~x!
1 l * 21/3q1~x!1 l * 22/3q2~x!1•••, ~32c!

f 5 l * 1/3f~x!1f1~x!1 l * 21/3f2~x!1•••, ~32d!

F12S l * S

r D 2S 12
2L

r D G5 l * 22/3j ~x!k~x!1 . . . . ~32e!

It is next useful to derive several intermediate identities. Us-
ing Eqs.~32a!–~32c! in Eq. ~32e! one finds

l05
1

2
~12k2!, ~33a!

l15q1k3. ~33b!

Combining Eqs.~20a!, ~30a!, ~31b!, ~32a!, and ~33a! one
finds

dr0

dx
5k ~33c!

Finally Eqs. ~23a!, ~27a!, ~27b!, ~30a!–~30d!, ~31a!, ~31b!,
~32a!–~32e!, ~33a!–~33c! can be combined to obtain, to lead-
ing order inl * , the equations

d2f

dx2
1 jkf50, ~34a!

dk

dx
1f250, ~34b!

d j

dx
231

1

k2F11S df

dx D 2G50. ~34c!

These equations are exactly the same equations that
Wheeler@2# found for the electromagnetic geon.9 Thus we
see that, to leading order, the geometry of the gravitational
geon is exactly the same as that for the electromagnetic geon.
This was already found to be the case by BH for the space-
time outside of the active region. It has now been shown to
be true for the geometry inside of the active region.

This result was hinted at when BH noted that in the large
frequency and angular momentum limit the equation of mo-
tion for the gravitational waves is identical to that for elec-
tromagnetic waves. It is also consistent with the result of

Isaacson@10# that when the effective stress-energy tensor for
high frequency, large momentum gravitational waves is av-
eraged over a small region of spacetime, it is of the same
form as that for electromagnetic waves.

For a thin-shell geon it is necessary that the solution to the
wave equation~34a! fall off rapidly on both sides of the
active region. Equations~34! are therefore similar to an ei-
genvalue problem in which the amplitude off ~as measured,
for example, by its peak value! plays the role of the eigen-
value: through Eqs.~34b! and ~34c! the amplitude deter-
mines the strength of the ‘‘potential’’jk, which must be just
right to havef as a zero energy eigenfunction. For the case
of the lowest eigenfunction these equations have been dis-
cussed numerically by Wheeler@2#, and more recently by
Cooperstocket al. @5#. The geon metric outside the active
region, Eq. ~8!, was first derived from the numerical
solution.10 Work is currently in progress to investigate the
properties of the other solutions. The results will be pre-
sented elsewhere.

Although the numerical results constitute strong evidence
for the existence of geon solutions, without an existence
proof of exact solutions to the basic equations~34! the vi-
ability of any type of geon is open to doubt@5#. We provide
the existence proof in the Appendix.

A few words are in order about extensions to higher or-
ders in the expansion. In the present approximation the
waves are a kind of ‘‘null fluid’’ that can be isotropically
distributed in the active region. If the expansion of the Ein-
stein tensor is carried out to higher order inl * the ‘‘graini-
ness’’ of the stress-energy due to non-negligible cross terms
of finite wavelength in the stress-energy tensor becomes ap-
parent. This invalidates Eq.~25! and makes the stress-energy
tensor much more difficult to compute. The background ge-
ometry could however remain spherically symmetric by a
different choice of splitting between waves and background.

V. CONCLUSIONS

We have obtained a correct self-consistent set of equa-
tions for the gravitational geon, which describes the gravita-
tional waves and the background geometry. These equations
are accurate in the high frequency, large angular momentum
limit. In and near the active region they have been shown to
be the same set of equations as those found by Wheeler for
the electromagnetic geon. Thus, to leading order, the geom-
etry both inside and outside of the active region of the gravi-
tational geon is identical to that of the electromagnetic geon.
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9Cooperstocket al. @5# found a different set of equations. Part of
the difference is related to the fact that they used a different nor-
malization for the variablef in Eq. ~30d!. This does not lead to
qualitatively different solutions. However, sign errors in their equa-
tions do result in qualitatively different solutions. The right-hand
sides of their Eqs.~4.22! and~4.23! have the wrong signs given the
sign conventions used in their paper. These sign errors result in
overall sign errors on the right hand sides of their Eqs.~4.30!, ~4.31!
and ~4.46!. They also result in a sign error in the last term on the
right-hand side of Eq.~4.47!.

10Wheeler founden'0.11, and Ernst@7# showeden51/9 exactly.
The method of BH yields the same exact result for all fields that
form geons and whose~effective! stress-energy tensor has vanish-
ing trace. Our development in the Appendix yields yet another way
to derive the exact result.
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APPENDIX: DISCUSSION OF THE GEON EQUATION

Our geons are taken to be governed by Eqs.~34!. These
equations focus on the active region, and neglect the other
oscillating region@beyondr;2.67M , wherev2.evl * 2/r 2,
according to Eq~8!#. We can therefore solve Eq.~34a! as a
true bound state problem in the effective potentialjk, rather
than a virtual bound state. The appropriate boundary condi-
tion on f(x) is therefore

f~2`!5f~1`!50, ~A1!

From Eq.~34b! it is seen that we can follow Wheeler@2# and
choose the boundary condition onk to be

k~2`!51. ~A2!

@Sinceenur 50 5k2ux52` this contradicts Eq.~8!, and is due
to the use of Wheeler’s expansion before rescaling; see foot-
note 10. Nevertheless, the ratioenur 50 /enur 5`

5k2ux52` /k2ux5` will be correctly given.# A third condition
follows from Eq.~34c!,

j ~2`!52`. ~A3!

We cannot expect to solve Eqs.~34! with any more condi-
tions than these three; the integration of the equation itself
will tell us whether solutions of the geon type are possible,
and what their remaining properties are.

We reduce the system~34! to a single equation by con-
sideringk as the independent variable and using Eq.~34b! to
convert derivatives,d/dx52f2d/dk. We will denoted/dk
by a prime (8). The unknown functionj (k) can then be
eliminated between the two remaining equations. The result-
ing third-order equation is conveniently written in terms of a
new function

H5F2F92226k2,

where

F5f2, ~A4!

with the result

2H1kH850. ~A5!

This can be integrated to yieldH5Ak, with A a constant of
integration. Thus the equation to be solved is

F2F95Ak1216k2, ~A6!

To evaluate the constantA we use the boundary condi-
tions ~A1! and ~A2! at x52`. Because F2F9
5d2F/dx22F21(dF/dx)2, Eq. ~A6! must yield zero at
k51, henceA528. Next we use Eq.~A1! at x51` to
conclude that Eq.~A6! also vanishes fork(`), so that

k~`!5
1

3
. ~A7!

In view of Eqs.~30c! and~32c! and the rescaling this yields
the geon metric~8! outside the active region~with M not yet

determined in terms off). It is appropriate to rewrite Eq.
~A6! in terms of a shifted variable,u5k22/3 that exhibits
the symmetry of this equation,

F2F956u22
2

3
. ~A8!

The boundary conditions~A1! and ~34a! now show thatf,
F, and jk are even functions ofu, and by Eq.~34b! we can
choosex to be an odd function ofu. Thus our four boundary
conditions can be replaced by the more convenient form

F850 at u50, ~A9a!

F→0 when u→1/3, ~A9b!

x50 at u50, ~A9c!

2 jF 51 at u50. ~A9d!

Of course only Eqs.~A9a! and~A9b! are needed to solve Eq.
~A8!.

To show existence of solutions it is enough to concentrate
on the intervalI :0<u<1/3. Starting with some positive ini-
tial valueF(0) and condition~A9a!, we can always integrate
Eq. ~A8! to larger and largeru as long asF(u) remains
bounded away from zero. IfF(0) is sufficiently large, the
solution stays positive tou51/3. For example, the estimate
F2F956u222/3.22/3 shows thatF(0).1/3(16/p2)1/3

'0.392 is sufficient. We consider all solutions that are posi-
tive in the intervalI , and call them ‘‘solutions inI ’’ for
brevity. Because the right side of Eq.~A8! is negative inI ,
these solutions are decreasing functions inI . Also, if F1 and
F2 are two solutions inI with F2(0).F1(0), then the dif-
ferenceF22F1 is a finite, increasing function inI because it
satisfies

~F22F1!95S 2

3
26u2D S F2

22F1
2

F1
2F2

2 D .0.

Therefore solution curves do not cross inI , and the ‘‘final
value’’ F(1/3) specifies a unique solution inI @as does the
initial value,F(0)#. At eachu e I the solutions inI depend
continuously~and monotonically! on initial and on final val-
ues. Now consider the greatest lower bound~glb! of the final
values. If this were positive it could be lowered, for example,
by integrating from a smaller initial value, for the integration
will run to u51/3 unlessF(u) approaches zero at some
u,1/3; but this cannot happen for finite final values because
F(u) is a decreasing function. Hence the glb of final values
is zero. The corresponding limit of solutionsF(u) must
therefore be a solution that is positive in 0<u,1/3 and ap-
proaches zero atu51/3. This is the desired ‘‘eigenfunction’’
that satisfies the boundary condition~A9b!.11

It remains to be verified that the solution satisfying the
boundary conditions inu also satisfies the boundary condi-

11The corresponding ‘‘eigenvalue,’’ the glb of initial values
F(0)5f2(0), caneasily be found numerically to be 0.3556 . . . .
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tion in x. This follows from Eq.~34b!, du/dx52F(u). The
asymptotic form ofF(u) nearu561/3,

F~u!→~12!1/3S 1

3
2uuu D F2 lnS 1

3
2uuu D G1/3

can be integrated to yield

x→7
3

~96!1/3F2 lnS 1

3
2uuu D G2/3

1const.

Thusu571/3 does correspond tox56`. ~By deriving in-
tegral relationships from the differential equations the same
conclusion, as well as the fulfillment of the boundary condi-
tions by all the unknown functions, can be established with-
out using asymptotic forms. We refrain from displaying
these somewhat involved relationships.!
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