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A careful analysis of the gravitational geon solution found by Brill and Hartle is made. The gravitational
wave expansion they used is shown to be consistent and to result in a gauge-invariant wave equation. It also
results in a gauge-invariant effective stress-energy tensor for the gravitational waves provided that a general-
ized definition of a gauge transformation is used. To leading order this gauge transformation is the same as the
usual one for gravitational waves. It is shown that the geon solution is a self-consistent solution to Einstein’s
equations and that, to leading order, the equations describing the geometry of the gravitational geon are
identical to those derived by Wheeler for the electromagnetic geon. An appendix provides an existence proof
for geon solutions to these equatiofiS0556-282(97)02220-0

PACS numbd(s): 04.40.Nr, 04.20.Jb

I. INTRODUCTION scribe the active region is invalid, and that gravitational
geons due to high frequency, large angular momentum
Brill and Hartle[1] (BH) developed a very useful method waves do not exist. The third reason for analyzing the BH
for finding approximate solutions to Einstein’s equations thatolution in more detail is that, because they used a thin shell
correspond to high frequency gravitational waves propagatapproximation, BH did not determine the form of the geom-
ing in a background geometry, which is created by the averetry within the active region. The active region is the only
age stress energy of the waves themselves. In their papeggion where the gravitational waves have a significant size,
they applied this method to the case of a static sphericalland it is the region where spacetime is most strongly curved.
symmetric background geometry and found that gravitationalt is clearly important to know the geometry of the active
waves can remain confined in a region for a time muchregion, if one wishes to learn anything about the details of
longer than the region’s light-crossing time. This so-calledthe geon solution.
gravitational geonis generated by a large number of high In this paper a thorough analysis of the geon solution
frequency, small amplitude gravitational waves. The time avfound by BH is presented. A self-consistent expansion of the
erage of the curvature due to these waves creates the baaketric and curvature tensors is found. Using results recently
ground geometry of the geon, and this background geometrgbtained regarding effective stress-energy tensors for gravi-
traps the waves for a long time in a region of space called th&ational waveg 6], it is argued that, to leading order, the
“active” region.! The BH solution is important because it wave equation and stress-energy tensor are gauge invariant.
serves as an example in which the gravitational field botht is also shown that the stress-energy tensor is conserved to
creates and responds to its own effective stress energy. It Isading order with respect to the background geometry. The
also an example of a nontrivighpproximatg solution to the  wave and backreaction equations are explicitly derived in the
vacuum Einstein equations that has no curvature singularhigh frequency and large angular momentum limits. It is
ties. shown that in and near the active region these equations can
There are three reasons for analyzing the solution foundbe cast in a form which is mathematically identical to the
by BH in more detail than was done in their original paper.equations derived by Wheel¢R] for the electromagnetic
The first is that BH did not investigate the question, is thegeon. Thus, to leading order, the background geometry of the
stress-energy tensor they used conserved or gauge invariamgfavitational geon found by BH is identical to that of the
To have a self-consistent set of equations it is necessary thatectromagnetic geon found by WheeteFhis means that
the effective stress-energy tensor have these properties. Seahe details of the active region as discussed by Whéde&ler
ond, the validity of the geon solution found by BH has beenare identicalmutatis mutandisto those of the gravitational
questioned by Cooperstock, Faraoni, and Pé4r$]. They geon found by BH. There is of course a difference in the
claim that the thin shell approximation used by BH to de-wave equations. However, the effective time averaged stress-
energy of the gravitational waves is, to leading order, iden-
tical to that of the electromagnetic waves.
!Gravitational geons are analogous to the original electromagnetic In Sec. Il a review of the BH solution is given. In Sec. llI
geons of Wheeldr2], which are virtual gravitationally bound states
of electromagnetic energy. As such, geons have a finite lifetime and

are not true nonradiative solutions. Gibbons and Ste{@&rhave 2t is already clear from their paper that the geometry BH found in
shown that nonradiative geons, or other exactly periodic solutionsthe regions exterior to the active region is exactly the same as that
cannot exist in Einstein’s theory. found by Erns{7] for the electromagnetic geon.
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a self-consistent expansion of the wave equation and the eBH obtained an expansion of the for) by first expanding
fective stress-energy tensor for the gravitational waves ig\G in powers ofh and its derivatives. They then considered
presented. Explicit leading order equations are derived ithe high frequency, large angular momentum limit of this
Sec. IV, and it is shown that in the active region the equaexpansion. Thus their leading order ternyG consists of
tions to leading order are those found by Wheeler for thehe high frequency large angular momentum limit of the
electromagnetic geon. Extension of the calculation beyonderms in the original expansion which are linearhinTheir
the leading order is also discussed. Our conclusions are sursecond-order term,G consists of the appropriate high fre-

marized in Sec. V. guency, large angular momentum limits of the terms in the
original expansion which are quadratichr’ BH used a time
Il. THE BRILL-HARTLE SOLUTION averaging for their stress-energy tensor. This plus the high

o ) . . frequency of the waves resulted in a stress-energy tensor
The gravitational geon found by BH is a solution to Ein- ¢onsisting of the time average of the high frequency large
stein’s equations that consists of gravitational waves propasngylar momentum limits of the quadratic terms in the origi-
gating on a static spherically symmetric background, which,5"exhansion of\G in powers ofh and its derivatives. To
is created by the waves. There is a large number of waveggmpjetely fix the value of the stress-energy tensor they im-

each with a small amplitude, a high frequency, and a larg%licitly made the choick(A,G,,)=0. The resulting wave
angular momentum. The waves have different angular oriens 4 packreaction equations are

tations and somewhat different frequencies. The stress en-
ergy of the waves is significant in and near a spherical shell

called the active region, and insignificant elsewhere. The so- A1Guu(7,1)=0, (63
lution is self-consistent in that the geometry produced by the
stress energy of the waves traps them in the active region for G y)=—(L2G,,(y.h). (6b)

a long time.
We begin by reviewing the BH gravitational wave expan- The background metric for the geon solution is static and
sion and the BH definition of an effective stress-energy tenspherically symmetric, so it can be written in the form
sor for the gravitational waves. Consider a separation of the
metric into a background pa#t,, and a perturbatioh,,, : ywzdiag(_ev,ek,rZ,rZSirﬁg)_ (7)

v = Var T N @ BH used a variational approach to find their solution, the

The Einstein tensor can also be divided into a part describin§SS€nce of which is to show that the effective averaged
the curvature due to the background geometry and that dui'€SS-energy tensor has vanishing trace to leading order.

to the perturbation: Thi_s sgffices to define the metric outside the active _region,
which is near =a. The value ofa depends on the ratio of
G948 =G Yap) + AG(Vap Nap). (20  the angular momentum to the frequency of the waves. In the

infinite frequency and angular momentum limits the active
It is important to note thab\ G, is defined by this equation. region shrinks to an infinitely thin shell at=a. BH's self-
One way to specify the separatiqft) is to use some consistent treatment found in this limit that

smoothing or averaging procedufg acting onG,,, and

demand that this procedure not affect the valu&gf(y.z)- 1
In addition, one demands both the exact and the averaged e”=§, e r=1, r<a,
Einstein equations for vacuum. This leads to
AG,, (y,h)=(AG,,(y,h)), (3a 2M
pr Y =(AC (v, ) e”=e‘*=1—7,r>a, (8)

(Here and hereafter the indices of the argument§ pf and and that the mass of the geonNis=(4/9)a. Examination of
AG,, are suppressed for notational simplicitythe first ~ Ed- (8) suggests that, in the active regiom/Jr is large
equation is regarded as a wave equation, which gives thwhile dv/ar is of order unity>

behavior of the perturbed geometry. The second equation is

the backreaction equation, which describes how the back-

ground geometry is affected by the perturbed geometry. 31t also contains certain terms from the original expansion that are
From the backreaction equation it is natural to define aninear inh. However these vanish when a time average is taken.

effective stress-energy tensor for the gravitational waves as “It is shown in[6] that Eq.(4) does not completely specify the
definition of the stress-energy tensor. An extra condition must be

1 imposed to determine uniquely the value (@t G). Although not
<T;w>: - §<AGM( v.h)). (4) presented as such in their paper, the condiionG)=0 imposed
by BH served to fix the value gfA G) in the gauge they worked in.
For any valid perturbation expansiahG ,, can be writ-  See Sec. Il A for further discussion.
ten in the form SWe use the term “unity” to mean the powe" of the geon
radiusa, with n adjusted so “unity” has the same dimension as the
AG,,=01G,,+ A6, + . (5)  quantity with which it is being compared.
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Ill. CONSISTENCY OF THE GRAVITATIONAL ond order in his expansion. It is not hard, using an argument
WAVE EXPANSION similar to that used by Isaacson, to show that the wave equa-

. . tion for the gravitational geon solution is also invariant to
Several consistency questions must be answered to valj-

: ; . Second order under gauge transformations of the f@&nso
date the BH solution to Eq$6a) ar_1d(_6b). First, the effective long as¢ and its derivatives are no larger in magnitude than
stress-energy tensor of the gravitational waves,(Eg.must : -

. ! h and its derivatives. Here and hereafter i order we
be conserved with respect to the background geomgetiry . .
. mean of the same order as,G(y,h) in a self-consistent
order to be a source of this background geometry. Second .
. ' -~ expansion of the fornt5).
the solution ansatz for the wave equation must be sufficientl

y . . . ) :
general so that this set of equations can be simultaneousg Gauge invariance of the effective stress-energy tensor is a

solved. Third it is necessary to investigate gauge invariance ifferent matter. For Eqs(63) and (6b) to be consistent, the

For the wave and backreaction equations to be consistent, tﬁéress-energy tensor must at least be gauge 'f?"a”a”.t to sec-
d order. However, Isaacson showed thaiG is not in-

effective stress-energy tensor must be at least approximate Lriant under transformations of the fori®). The only case

gauge invariant if the wave equation is. Also BH used : . )
gauge transformation to reduce the number of components"j‘(‘g\‘e fo_und In Wh.'Ch the stress energy t_ensor and thus the b_ack
. S : eaction equatior6b) are gauge invariant to second order is
h,,. Finally it is necessary to show that the expansion of ;
© the case of high frequency, large momentum waves when the
averaging is over a region of spacetime which is large com-

AG used by BH is a valid one for the geon solution.
It is appropriate to note that we are here constructing ong ared to the wavelengths of the waves but small compared to
he scale on which the background geometry varies.

particular type of geon, as described in the beginning of Se{
II. No attempt is made to discuss other possible gravitationa One might hope that in the geon case, where high fre-
guency, large angular momentum waves are used, that the

geons, such as thick-shell ong®]. To show existence of

geon solutions it is only necessary to establish that one pars'tress—energy tensor would similarly be gauge invariant to
ticular, carefully selected, set of waves does form a geon.

second order. However, an explicit calculation using the
_ S gauge transformatiofil7) below shows that this is not the
A. Conservation and gauge invariance case. In fact, even when the background geometry is a solu-

Conservation of the effective stress-energy tensor fofion to the vacuum Einstein equatiofiscluding the case of
gravitational waves can be established in a straightforwarghe flat space solutionthe stress-energy tensor is not gauge
manner. If we have a solution of E(Bb), then the Bianchi invariantif ime averaging rather than spacetime averaging is
identity satisfied byG,,(y) implies that the exact stress- Used. Thus it appears that Eq6a) and (6b), which were
energy tensor4) is conserved with respect to the back- implicitly solved by BH to obtain the geon solution, are in-
ground geometryy,,,. Thus the approximate stress-energyConsistent when time averaging is used. S
tensor is similarly conserved to leading order so long as a 1he resolution to this very serious problem is given in
self-consistent expansion is used for the gravitational wavedRef. [6]. It is as follows: First Eqs(6a) and (6b) must be

The question of whether the wave equation and the effecteplaced by the equations that result from substituting(gq.
tive stress-energy tensor are gauge invariant is much mor8to Eqs(3a and(3b). The result tonth order is
difficult to answer. It is useful in this regard to discuss some
general results, first for the wave equation and then for the NG+ -+ AG=(AG+---+AG), (113
stress-energy tensor.

If the background geometry is a solution to the vacuum
Einstein equations then it can be shown that if an expansion
of the form(5) is used withA G consisting of terms ofith . o ] )
order inh and its derivatives, then the wave equati6g) is Then a generalized gauge transformation is used. It is arrived

exactly invariant under gauge transformations of the form at by using the coordinate transformatid®) and not allow-
ing the functional form of the background geometry to

G(y)=—(A,G+ -+ A,G). (11b

B () =100 = V40D E = Yau(X)E® i = Vun ab® change under this E)ordinfa\te 'tran.s,l‘.ormation, that is
9uv=Yurt h,,. Thenh,, is given implicitly by the equa-
tion

Here ¢ results from an arbitrary coordinate transformation of
the form -
Y;LV(X) + h/.LV(X) = ')/,uv( X)+ h,lLV( X)

_/": K EH 1 — T —a

X#=xttg (10 [ 1,01,
If the same type of expansion is used but the background [ Yar(X)+ N (X)]EY
geometry is a solution of Eq6b) and if the transformations _
are restricted so tha§ and its derivatives are no larger in [ Yap(X)+ h o p(Xx)]1E% ,E° .
magnitude tharh and its derivatives, then it can be shown (12

that the wave equation is invariant@(h?) under the above

type of gauge transformation. For high frequency, large mo- _

mentum gravitational waves and the same restrictiong,on Here derivatives of are with respect ta not x. The gen-
Isaacsori10] showed that the leading order wave equation iseralized ‘gauge transformation is defined as one in which the
invariant under gauge transformations of the fd@nto sec-  quantity h(x) is substituted folh(x) into the expression of
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interest. Ifh, £ and their derivatives are small enough, thenCondition (13) can be imposed by requiring that
to leading order this gauge transformation reduces to théA,G(y,h(W))=0 for all n. Then to lowest order Egs.
usual transformation9). (158—(150 are equivalent to Eq&a) and(6b) with the sub-
It is proven in Ref[6] that, when the vacuum field equa- stjtution h— h®),
tions are satisfied\G,, is invariant under this generalized |t js important to emphasize that it is the original equa-
gauge transformation. It is also argued in that paper that thgy,g (113 and (11b that are gauge invariant toth order
quantity and that Eqs(158—(15¢) and thus Eqs(6a) and(6b) are in
AG 4. +AG general only correct in a particular gauge. The procedure
1°u n> uv . . T .
being followed here is the usual one for finding solutions to
is gauge invariant tmth order. This implies that Eq$l1a  Einstein's equations. First the equations are written down in
and(11b) are invariant tanth order under generalized gauge a particular coordinate system and then they are sdlvece
transformations. Thus there is no problem with gauge invariin an approximate mannein that coordinate system.
ance to any order so long as generalized gauge transforma-
tions are used.
In the same paper it was shown that there is a large B. A valid expansion of the Einstein tensor
amount of freedom available in choosing the form of the
effective stress-energy tensor for gravitational waves. Thi§1i
freedom is related to the freedom one has in choosing in the

split between the background and the perturbed geometrsary to find an expansion of the Einstein tensor that is appro-
Thus, as noted above, the BH ansatz )f)rlate for these waves. The key point for a thin-shell geon is,

that while the waves’ amplitudes are much smaller than
(74G,,)=0 (13) unity, their derivatives are large compared to unity. Further,
while the background metric is of order unity, some, but not
is simultaneously a choice of the form of the stress-energy||, of its derivatives are much larger than unity in the active
tensor and a definition of the separation between the backggion (although they are of order unity or smaller well out-
ground and perturbed geometry that is to be used. From thgqe of the active regionThus, whether a term is of leading
above discussion it is clear that the conditids) is, in gen- order will be determined not only by the powertobut also

eral, or_1|y gauge i_nvari_ant to fi_rst (_)rder. The_lack of exactby the power of the frequency or of the harmonic order
gauge invariance in this condition is a reflection of the factl* that it contains

that the splitting between the background and the perturbed What must be done is to find a self-consistent expansion

metric is inherently gauge dependent. of the Einstein tensor with the above constraints on the back-

As mentioned above, an explicit calculation which we . . . o
have made using the gauge transformatib) below shows ground metric and the perturbations. Since some derivatives
of the background metric are large in the active region but of

that, even after time averaging/\,G,,) is not separately : . e .
gauge invariant. The problem is simply that the conditionorder unity outside of it, this is a complicated task. It clearly

(13) was used along with the expansit8) in the derivation ~depends on the solutions to both the wave equation and back
of Eqgs. (6a) and (6b). However, this condition can only be eaction equation which in turn depend on the expansion
imposed in a particular gauge since it is not exactly gaugé!sed.

invariant. Since BH solved Eq$6a) and (6b) and since we Fortunately, as is shown by direct calculation in Sec. IV,
also use those equations as the starting point of the deriv4e second order the method used by BH and discussed in
tions in Sec. IV, it is necessary to show that these equationSec. Il works. However for the reasons discussed above, it
are consistent with the second-order version of E4ad  would be significantly more difficult to compute the third-

Since the gravitational waves making up the BH geon are
gh frequency, large angular momentum waves, it is neces-

and(11b. and higher-order terms in the correct expansion\@3.
To begin note that to actually solve Ed41a and(11b)
in a particular gauge one can follow Isaac$@fi] and make IV. THE WAVE AND BACKREACTION EQUATIONS

the following expansion foh:
Derivations of the wave and backreaction equations have
h=h®+h@ ... (14)  been attempted at the time of the BH pap@f and subse-
) ) _ guently by us and independently §$]. Our version pro-
whereh(™ is defined such that;G(y,h(") is of the same yides a correct, independent treatment of these important

order asA ,G(y,h"). Then to second order Eqd.1a and  equations. We begin with the wave equation.
(11b) can be written

A1G(y,h ) =(A,G(y,hY)), (153 A. The wave equation
A1G(7,h2)+ AL,G(y,h(D) The geon is composed of a large number of gravitational
waves and the equations for each are the same. BH used the
=(A1G(y,h®)+ A,G(y,hD)), equationsA;R,,,=0, with R, the Ricci tensor. BH showed

(15h  that to leading order these equations are equivalent to Eq.
(6a). We first expandAR,,, in powers ofh ,, and its deriva-
G(7)=—(A1G(y,hY)+ A G(y,h?)+ A,G(y,hV)). tives, so the wave equation is the high frequency and large
(150 angular momentum limit of
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|*2 -\

BN,y apt Naguv—Nuavg—Nyai sl =0. 16 dhy 2h e 2
Yl pnviaB Bin ravp :M.B] (16) iwe_”(—o— 0)+ 1[?2‘_‘1’29_1}"‘7()%_74_?”

Here indices as usual are raised and lowered by the back- dr '

ground metricy . =0, (193
Following BH we analyze the angular behavior of solu-

tions to these equations for static spherically symmetric

spacetimes by the method of Regge and Whedl&}, and ) N dh;
limit ourselves to azimuthally symmetric, odd-parity func- fohge™"+e Y o (v —A)hy + 5=/=0,  (19H
tions. In the gauge of Regge and Wheeler the perturbdtion
is obtained from the generhlvia a gauge transformation of
the form d’h, . [dh, . 2 1 1 dh,
W—Hw W-f— i E()\r—f— V) || — E()\r-l- Vr)F
g=¢=0, eM*2 2y,
- /2 —T hOZO. (19C)

et 9 Lo _ Here we have put*2=I(l+1), and denoted radial deriva-
gi=e WA (r e @Y' (0) (wv=6,4). 17 tives of the background metric by subscripts. From @§b)
it is clear that if we takeh; to be real therhg is imaginary.
Here A(r) is some function ofr, €*” is an antisymmetric Taking note of the complex conjugate term in Ef8) it is
tensor withe>?=(r2sing) %, and Y,%(#) is a spherical har- then seen that the part of the disturbance associatedhyith
monic. In their gauge the “odd” solutions are then written in has a time dependence of the form sit)(while the part of
the form the disturbance associated whh has a time dependence of
the form cosgt).
By using Eq.(19b) the functionh, can be eliminated from

. dy,°(o) i
hﬂy=rwe"‘°‘sin0 (ljg(r +ecc., Eqgs.(199 and(19¢). Then the change of variables
dr* =eM/20=nqr, (20a
r 1) =ho(r)[8,°8,%+5,%8,21+hy(r)[8,15,%+6,25,°].
(18
. . . o120 M
When these equations are substituted into @6), and Q=e ra (20b)
when the background metric is of the forf), there result
the following three equations fdry andhy: results in the two equatiofs
sz |*2 3N+ 3+
2_ AV a—MN2+wI2 r —M2+w2 T _
dr*2+ w°—e -z e T +e o Q=0, (219
d®Q 3]d2Q |*2 3N\, * 3+ dQ |*2
_ —\2+v/2 — 2_aV A= N2+w2 r —N2+v/2 r _ .2 _ A= MN2+3v/2 ____
dr*3+ Vix T € r}dr*ﬁ_ w°—e 2 e o > ldr* W Vx—€ 3
i 2V i N R LA VP T v ? M2+ u2PTErE 242 2
+e —rz—‘l'e T_ T—e T+e T+e 3 wilr Q:O

(21b

5By taking the derivative of Eq218 with respect ta * it is easy to show that the two equations are not consistent unless the background
metric y,,, is an exact solution to the vacuum Einstein equations. This is because for a general background the lack of exact gauge invariance
does not allow the simplifying gauge transformatidY), as explained above. However, the approximate gauge invariance of the wave
equation results in the equations being consistent to leading ordi&r iinthe background geometry satisfies the backreaction equations to

leading order.
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To ascertain the correct limiting form of these equations weg6b) it is clear that the stress-energy tensor should have these

take a hint from the EM geon’s background and put same symmetries. Time averaging automatically makes it
. static over the geon lifetime. Spherical symmetry is a more
w~I difficult problem. Arranging the waves so that the stress-

' energy tensor is spherically symmetric has been discussed in
detail by Wheeler[2] in the case of the electromagnetic
dQ ~1*Q geon. The arrangements are identical for the gravitational

dr* geon. They are briefly summarized here.
First, as can be seen from E(L8), to have spherical
dx o(l* symmetry in the largé* limit it is necessary to have many
W< (=, gravitational waves with different angular orientations. Thus
we put
d?v
—52<0("). (22)
dr h/u}:zi (h,uv)i (24)

(In the following subsections we show that this indeed al
lows self-consistent solutionsTo leading order I¢*2), Egs.
(21a and(21b) are

‘with each f,,); a solution to Eq(6a) with a different value
of w, a different phase, and a different polar axis. If the
phases are random and the valuesvofwhile different, are
all approximately equal and large, then after the time aver-

d2Q eV|*2 aging is done, to leading order i® the cross terms in
WJF w2— = }on, (239  (A,G,,) vanish and

d3Q ev|*2 dQ
dr*3+{w2_ 2 larr =0. (23D (A5GL,) “Z ((A2G,,)i)- (25

Note that these equations are consistent to leading order 't is useful to denote £,G,,,), as the wave which has a
in I*. Note also that it is not being assumed here thafole atd=0. Wheelel{2] has shown that if the distribution
dr/dr* andd?v/dr*2 are of order unity or less, simply that of the polar axes of the waves is uniform, then when the

they are not of ordel* . It turns out that for the geon solution Waves are all added together one has

both of these quantities are of order unity outside of the 1w

active region, but they are of ordét?? inside the active (DG = _f ((D,GY))sin 6 d,
region. It also turns out thatQ/dr* is of orderl* Q outside 2Jo

the active region, but is of ordd*?3Q inside the active
region. Thus Eqs.239 and(23b) describe the leading order
behavior of the gravitational waves, both inside and outside
of the active region.

1(= .
(026" = EJO ((A2G,"))sin 6 do,

1 (=
B. The backreaction equations (N ,G0= Zfo [((A2G90)|>+<(A2G¢¢)|)]Sin 0 dé.

The next step in deriving the equations that result in a (26)
gravitational geon solution is to consider the effective stress-
energy tensor, Eq4), for the gravitational waves. As with Finally there is the question of conservation. From the
the wave equation, the easiest way to derive the stress-energiscussion of Sec. lll A it is clear th&T ,,) should be auto-
tensor to leading order is to consider the linear and quadratimatically conserved to leading order. Since the geon is here
terms in an expansion of the Einstein tensor in powers ofreated to leading order, that is in the lartfe limit, one
h,,. The largel* limit of these terms is to be taken in the expects conservation to hold. Direct calculation shows that
same way as it was for the wave equation in the previoushe stress-energy tensor is conserved to leading order in this
subsection. The result is averaged over times which are lonigmit.
compared with the gravitational wave period. In the largel* limit the backreaction equations coming
The background metric for the geon solution is static androm the ¢,t), (r,r), and (¢, ) components of E¢6b) in an
spherically symmetric, so from the backreaction equatiororthonormal frame are

|
>

_|*4 2
_eM2-u2 BrF I—* 1*2 Q24+ e w2 r2 Q%+e "r2 d—Q (273
2 I 8(21+1) wirt ’



4830 PAUL R. ANDERSON AND DIETER R. BRILL 56

1 1 e M2vzy, |*4 [ dQ 8wx3  dQ
_ __’_e*)\__i_ — _|*2 Q2+efvw2 r2 Q2_67A/27V/26rQ +e*)\/273vl2
r2 r? r 8(21+1) w?r4 dr %2 gr*
2
d
te 2 ( QU (27b)
dr*
Vex — Npx Vik |*4 ’V 4w4r4 dQ 2
—(N+w)/2 r r —y_ Tt __n1*2Nn2 — v 2,22 _ o2V 2_a—var2
e +e = 21*°Q°+e "Twr°Q —e Q“—e "3r
( 2r 2 g2+1)wrd |*2 dr
40%r* [ dQ 2
—-2v
+e %2 (dr* . (2790

In arriving at these equations the following identities weremust use waves whose amplitudes are completely negligible

used: there. Radial oscillation also happens neara, where from
Egs.(8) and (233 one find$§
1 1 I
1
- 20y a~—. (29
5| rPooTax- 5 -

111 |
EI_I[XPKX)PV(X)]CIXZ STF1’

By expanding all of the relevant quantities in powers of
I*13 Wheeler was able to arrive at a set of equations which
describe the electromagnetic geon in and near the active re-
gion and which do not explicitly depend on the valud bf
A similar derivation is presented here. Before making the
expansions it is useful first to change to new variables,

1t I(1+1 P
5| P oorax- oy = e
e_)‘=1—L(p), (30b
p
12 I(1+1)
2| ot v G e ”=(1—%(”))sz<p), (309

Here P|(x) is a Legendre polynomial.

The combined set of Eq$233), (23b), (273, (27b), and

o- [8(2I+1)]1’2f

=), (30d

(270 completely specifies the background geometry and th . . .
gravitational waves in the high frequency and angular mozgﬁ:]eergogfcah?hgtependence tha new radial variable is

mentum limit. In the next subsection Wheeler's expansion is

used to show that in and near the active region it is possible x=(p* —I*)|* 18 (319
to arrive at a set of equations which are independent of both '
w andl*. dx=1*"3dp*. (31b

C. Wheeler’s expansion for the active region Then the following expansions are made:

The active region is defined as the region in which the p=1*+1*Yr () + - - -, (329
gravitational waves undergo radial oscillatibniather than

radial damping, and where their amplitudes are significant.—

As can be seen from E@233g, the waves will radially os-
cillate whenevew?>e"I*?/r2, This happens at largg but  unknown. Wheelef2] initially expanded aboup=1*. After solv-

in order to construct a geon that lasts for a long time, weng the equations he found the active region was peat* /3. He

8Until the equations are solved, the location of the active region is

used a scale invariance present in the original equations for the EM

geon[and also present in Eq$239), (23b), and (279—(270)] to

By radial oscillations we mean here that the waves oscillate as eescale the solutions accordingly. To facilitate comparison with the

function of the radius, not that they oscillate in the radial direction.equations derived by Wheeler we also expand alpeul* .
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L=1*Ng(X)+ I*2’3)\1(x) +* 1/3)\2()() +..., (32b Isaacsori10] that when the effective stress-energy tensor for
high frequency, large momentum gravitational waves is av-
eraged over a small region of spacetime, it is of the same

S= koo 1* =B () +1* ")+ -+, (320 form as that for electromagnetic waves.
For a thin-shell geon it is necessary that the solution to the
F=1% Y30 (x)+ by (X) +1* ~Ppy(x)+---, (320 Wwave equation(34g fall off rapidly on both sides of the

active region. Equation&4) are therefore similar to an ei-
genvalue problem in which the amplitude #f(as measured,
=1*"2B(x)k(x)+ .... (328  for example, by its peak valuglays the role of the eigen-
value: through Eqgs(34b and (34¢ the amplitude deter-

I*S)\? 2L
1-|—] [1-=
p p
It is next useful to derive several intermediate identities. UsMines the strength of the “potentialjk, which must be just

ing Egs.(329—(320) in Eq. (320 one finds right to haveg as a zero energy eigenfunction. For the case
of the lowest eigenfunction these equations have been dis-

1 ) cussed numerically by Wheel¢2], and more recently by
)\025(1—k )s (338  Cooperstocket al. [5]. The geon metric outside the active
region, Eq. (8), was first derived from the numerical
Ay= ke, (33D solution® Work is currently in progress to investigate the

properties of the other solutions. The results will be pre-
Combining Eqgs.(20a, (30a, (31b), (32a, and (333 one sented elsewhere.

finds Although the numerical results constitute strong evidence
for the existence of geon solutions, without an existence
drg proof of exact solutions to the basic equatidg) the vi-
Wzk (339 ability of any type of geon is open to dould]. We provide
the existence proof in the Appendix.
Finally Egs. (233, (279, (27b), (30a—(30d), (31a, (31b), A few words are in order about extensions to higher or-
(328—(328, (339—(330 can be combined to obtain, to lead- ders in the expansion. In the present approximation the
ing order inl*, the equations waves are a kind of “null fluid” that can be isotropically
distributed in the active region. If the expansion of the Ein-
d?¢ stein tensor is carried out to higher order fn the “graini-
] +jke=0, (348 ness” of the stress-energy due to non-negligible cross terms

of finite wavelength in the stress-energy tensor becomes ap-
parent. This invalidates E¢25) and makes the stress-energy

ﬂ(+ $%=0, (34p  tensor much more difficult to compute. The background ge-
dx ometry could however remain spherically symmetric by a
, different choice of splitting between waves and background.
di
R Wit —d’) ~0. (340
dx dx V. CONCLUSIONS

These equations are exactly the same equations that We have obtained a correct self-consistent set of equa-
Wheeler[2] found for the electromagnetic gedrithus we  tions for the gravitational geon, which describes the gravita-
see that, to leading order, the geometry of the gravitationdional waves and the background geometry. These equations
geon is exactly the same as that for the electromagnetic geo@f® accurate in the high frequency, large angular momentum
This was already found to be the case by BH for the spacdimit. In and near the active region they have been shown to
time outside of the active region. It has now been shown tde the same set of equations as those found by Wheeler for
be true for the geometry inside of the active region. the electromagnetic geon. Thus, to leading order, the geom-

This result was hinted at when BH noted that in the largeetry both inside and outside of the active region of the gravi-
frequency and angular momentum limit the equation of motational geon is identical to that of the electromagnetic geon.
tion for the gravitational waves is identical to that for elec-
tromagnetic waves. It is also consistent with the result of ACKNOWLEDGMENTS
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APPENDIX: DISCUSSION OF THE GEON EQUATION determined in terms o). It is appropriate to rewrite Eq.

(A6) in terms of a shifted variablaj=k—2/3 that exhibits
Our geons are taken to be governed by E84d). These tpe symmetry of this equation,

equations focus on the active region, and neglect the othe
oscillating region[beyondr ~2.6™, where w?>e’|*?/r2,

according to Eq8)]. We can therefore solve E¢B43 as a F2F"=6u2— E (A8)
true bound state problem in the effective potential rather 3
than a virtual bound state. The appropriate boundary condi- .
tion on $(x) is therefore The bo_undary condltlon(_sAl) and (343 now show thatep,
F, andjk are even functions afi, and by Eq.(34b) we can
P(—)=(+%)=0, (A1) choosex to be an odd function afi. Thus our four boundary

conditions can be replaced by the more convenient form
From Eq.(34b) it is seen that we can follow Wheelg2] and

choose the boundary condition &nto be F'=0 at u=0, (A9a)
k(—o)=1. (A2) F—0 when u—1/3, (A9Db)
[Sincee”|,—, =k?|«-_., this contradicts Eq(8), and is due x=0 at u=0 (A90)

to the use of Wheeler's expansion before rescaling; see foot-
note 10. Nevertheless, the ratioe’|,—y/€"|,
=k?| 4~ _../k?|«—. will be correctly given] A third condition
follows from Eq. (340,

2jF=1 at u=0. (A9d)

Of course only EqsiA9a) and(A9b) are needed to solve Eq.
(A8).

To show existence of solutions it is enough to concentrate
We cannot expect to solve Eg@4) with any more condi- ©n the interval :0<u<1/3. Starting with some positive ini-
tions than these three; the integration of the equation itseffi@! valueF(0) and conditioriA92), we can always integrate
will tell us whether solutions of the geon type are possibleEd- (A8) to larger and largeu as long asF(u) remains

We reduce the systelf84) to a single equation by con- Solution stays positive ta=1/3. For example, the estimate
sideringk as the independent variable and using @) to ~ F-F'=6u?—2/3>—2/3 shows thatF(0)>1/3(16m%)"
convert derivativesg/dx= — ¢%d/dk. We will denoted/dk ~ ~0.392 is sufficient. We consider all solutions that are posi-
by a prime (). The unknown functionj(k) can then be tive in the intervall, and call them “solutions in™ for
eliminated between the two remaining equations. The resulfrevity. Because the right side of ECA8) is negative inl,
ing third-order equation is conveniently written in terms of athese solutions are decreasing functions.iAlso, if F, and

j(—oo)=—0e. (A3)

new function F, are two solutions il with F,(0)>F(0), then the dif-
ferenceF,—F; is a finite, increasing function ihbecause it
H=F2F"—2-6k?, satisfies
where 2 \(F3-Fi
—F)'=|5— >0.
(F2 Fl) 3 6u —Fifg— 0

F=¢? (Ad)

Therefore solution curves do not crosslinand the “final

value” F(1/3) specifies a unique solution In[as does the
—H+kH'=0. (A5) initial value, F(0)]. At eachu e | the solutions inl depend

continuously(and monotonicallyon initial and on final val-
This can be integrated to yield= Ak, with A a constant of ues. Now consider the greatest lower boigith) of the final

with the result

integration. Thus the equation to be solved is values. If this were positive it could be lowered, for example,
by integrating from a smaller initial value, for the integration
F2F"=Ak+ 2+ 6k?, (A6)  will run to u=1/3 unlessF(u) approaches zero at some

u<<1/3; but this cannot happen for finite final values because
To evaluate the constat we use the boundary condi- F(u) is a decreasing function. Hence the glb of final values
tions (A1) and (A2) at x=-». Because F?F” s zero. The corresponding limit of solutior&(u) must
=d?F/dx*—F~!(dF/dx)?, Eq. (A6) must yield zero at therefore be a solution that is positive ir<@< 1/3 and ap-
k=1, henceA=—8. Next we use Eq(Al) at x=+« to  proaches zero at=1/3. This is the desired “eigenfunction”
conclude that Eq(A6) also vanishes fok(«), so that that satisfies the boundary conditioh9b).
It remains to be verified that the solution satisfying the

1 . . . - ._
k(o) = = (A7) boundary conditions i also satisfies the boundary condi

In view of Egs.(300 and(32¢ and the rescaling this yields *'The corresponding “eigenvalue,” the glb of initial values
the geon metri¢8) outside the active regiofwith M notyet  F(0)= ¢?(0), caneasily be found numerically to be 0.3%5. . .
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tion in x. This follows from Eq.(34b), du/dx=—F(u). The
asymptotic form ofF(u) nearu= +1/3,

i

1/3

F(u)a(lz)m(%—lul)

can be integrated to yield

GRAVITATIONAL GEONS REVISITED
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2/3
+const.

—In(§—|u|

Thusu= ¥ 1/3 does correspond to= * . (By deriving in-
tegral relationships from the differential equations the same
conclusion, as well as the fulfillment of the boundary condi-
tions by all the unknown functions, can be established with-
out using asymptotic forms. We refrain from displaying
these somewhat involved relationshjps.

—
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