
Tensor perturbations in high-curvature string backgrounds

M. Gasperini
Dipartimento di Fisica Teorica, Universita` di Torino, Via P. Giuria 1, 10125 Turin, Italy

and Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Turin, Italy
~Received 15 April 1997!

We derive a generalized equation for the evolution of tensor perturbations in a cosmological background,
taking into account higher-curvature contributions and a tree-level coupling to the dilaton in the string frame.
The equation is obtained by perturbing the gravidilaton string effective action, expanded up to first order ina8.
The a8 corrections can modify the low-energy perturbation spectrum, but the modifications are shown to be
small when the background curvature keeps constant in the string frame.@S0556-2821~97!04520-7#

PACS number~s!: 04.30.Db, 98.80.Cq

I. INTRODUCTION

The generation of a primordial perturbation spectrum,
able to explain the observed large scale anisotropy, is one of
the most celebrated aspects of the present inflationary cos-
mological models@1#.

Such a spectrum is obtained through the amplification of
the quantum fluctuations of the metric and of the background
sources around their initial configuration@2,3#, and is usually
computed in the context of a lowest-order, scalar-tensor ef-
fective theory of gravity. Higher-derivative~i.e., higher-
curvature! corrections are usually neglected or, when in-
cluded, are parametrized by arbitrary functions of the scalar
curvature@2,4# ~see @5# for a possible exception!, without
consequence for the primordial spectrum since the effective
perturbation equations are left unchanged.

The absence of higher-curvature contributions, however,
is hard to swallow for a perturbation spectrum that originates
just in the primordial cosmological phase when the Universe,
according to the standard scenario, is highly curved and is
expected to approach the Planck scale and the quantum grav-
ity regime. It would seem more appropriate, in such a con-
text, to include all possible high-curvature corrections into
the effective action, and ask whether their inclusion can in
general modify the primordial spectrum obtained from the
lowest-order perturbation equations.

The answer to this question is, unfortunately, model de-
pendent, being subordinate to the explicit form of the higher-
order terms added to the action. The aim of this paper is to
discuss higher-curvature corrections to the tensor perturba-
tion spectrum, in the particular case of the gravidilaton ef-
fective action of string theory@6#. In the so-called ‘‘pre-Big
Bang’’ cosmological models@7# obtained in that context, the
occurrence of a high-curvature string phase in which higher-
derivative corrections cannot be neglected is indeed an un-
avoidable consequence of the initial conditions, chosen to
approach the string perturbative vacuum@8#. More generally,
high-curvature corrections should appear in any complete
cosmological scenario based on string theory. Fortunately, in
that case, the corrections cannot be added arbitrarily, but are
rigidly prescribed by the ‘‘a8 expansion’’ of the string ef-
fective action@9#.

We shall limit, in this paper, to the first order ina8,
namely to the four-derivative terms corresponding to qua-

dratic curvature corrections. Also, we shall work in a homo-
geneous and isotropic background, with flatd53 spatial di-
mensions~see@10# for the possible influence of the higher-
dimensional dynamics on the scalar, tensor and axion@11#
perturbation spectrum!. Already at this level, as we will
show, the amplification of the tensor fluctuations of the
vacuum is governed by a modified perturbation equation. In
a background with constant curvature and linearly evolving
dilaton, like in the string phase@12–14# typical of the pre-
Big Bang scenario, the differences between the corrected
higher-order equation and the approximated low-energy
equation are small, however, and can be neglected for an
order-of-magnitude estimate of the graviton spectrum. In
other backgrounds, with running curvature and long enough
duration of the high-curvature phase, the modified equation
found in this paper may lead instead to important differences
in the perturbation spectrum.

The paper is organized as follows. In Sec. II we present
the background equations and we perturb the gravidilaton
effective action, up to second order in the tensor perturbation
variable, including the quadratic curvature terms prescribed
by string theory. The diagonalization of the perturbed action
defines a new canonical variable, for the normalization of the
spectrum to the quantum fluctuations of the vacuum. In Sec.
III we discuss the time evolution of the normalized canonical
variable in a high-curvature string background, and we esti-
mate the resulting tensor perturbation spectrum. Section IV
contains a brief summary and our concluding remarks. The
details of the perturbative computation are presented in the
Appendix.

II. BACKGROUND AND PERTURBATION EQUATIONS

In the string frame, and to first order in the high-
derivativea8 expansion, the effective action that reproduces
the gravidilaton sector of the tree-level stringS matrix can be
written in the form@9#

S5E d4xA2ge2fH 2R2]mf]mf1
ka8

4

3@RGB
2 2~]mf]mf!2#J . ~1!

Heref is the dilaton field,a85ls
2 is the fundamental string-
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length parameter governing the importance of the higher-
curvature corrections,k51,2 for the bosonic and heterotic
string, respectively, andRGB

2 [Rmnab
2 24Rmn

2 1R2 is the
usual Gauss-Bonnet invariant@conventions:gmn5(122
2), Rna5Rmna

m, andRmna
b5]mGna

b2•••]. Note that we
have chosen a field redefinition that removes terms with
higher-than-second derivatives from the effective equations
@9,15#. Also, we are considering the case of critical~super-
!strings, in which no effective cosmological term appears in
the action. This means, ind53 spatial dimensions, that
some ‘‘passive’’ sector is assumed to be present to cancel the
central charge deficit (32dcrit)/a8. All the computations of
this paper can be easily extended, however, to include a non-
vanishing cosmological constant.

We shall consider perturbations around ad53, spatially
flat background, parametrized by

ds25N2~ t !dt22a2~ t !dxi
2 , f5f~ t !, a~ t !5eb~ t !

~2!

( i , j 51,2,3). For such a background the action~1! becomes,
after integration by parts~see the Appendix!,

S5E dte3b2fF 1

N
~6ḃḟ26ḃ22ḟ2!1

a8

4N3 ~8ḟḃ32ḟ4!G .
~3!

A dot denotes differentiation with respect tot, and we have
put k51, for simplicity. By varying the action with respect
to N, b, andf, and imposing the cosmic time gaugeN51,
we get, respectively, the equations

6H21ḟ226Hḟ2
3

4
a8~8ḟH32ḟ4!50, ~4!

218H223ḟ2112Hḟ16f̈212Ḣ1a8~12ḟH31 3
4 ḟ4

26H2ḟ216H2f̈112ḟHḢ !50, ~5!

12H21ḟ226Hḟ22f̈16Ḣ1a8~6H41 3
4 ḟ423Hḟ3

16H2Ḣ23ḟ2f̈ !50 ~6!

~we have adopted the usual notation for the Hubble param-
eter,H5ȧ/a[ḃ, Ḣ5b̈!. Their solutions provide the gravi-
dilaton background for the propagation of metric perturba-
tions. Note that only two of these equations are independent
@14# ~unlessḟ53ḃ!, and that the first equation, following
from the variation of the lapse function, can be used as a
‘‘non-dynamical’’ constraint on the set of initial conditions.

In this paper we shall restrict our attention to tensor met-
ric perturbations, parametrized by the transverse, trace-free
variablehmn :

gmn→gmn1dgmn , dgmn5hmn , ¹nhm
n505hm

n,
~7!

where ¹m denotes covariant differentiation with respect to
gmn , and the indices ofhmn are raised and lowered with the
unperturbed metric,hm

n5gnahma . By expanding, up to sec-
ond order inh, the controvariant components of the metric
tensor,

d~1!gmn52hmn, d~2!gmn5hmaha
n ~8!

~d (k)A denotes thekth term in the expansion of a variableA
in powers ofh!, of the volume density,

d~1!A2g50, d~2!A2g52
1

4
A2ghmnhmn, ~9!

and of the components of the Riemann and Ricci tensor
~see the Appendix!, we will obtain from Eq.~1! an action
quadratic in the perturbation variablehm

n, governing the
dynamic of tensor perturbations in the corresponding
gravidilaton background. The method is exactly the same as
the one first used in@16# for determining the effective action
of tensor perturbations in a cosmological background
~see also@2,17#!, with the only difference that in the present
case the perturbed action includes higher-curvature
terms, and a nonminimal coupling of the metric to the dilaton
field.

It is convenient to work in the synchronous gauge,
where

g0051, g0i50, gi j 52a2d i j ,

h0050, h0i50, gi j hi j 50, ] jhi
j50. ~10!

After repeated use of the identities~see the Appendix!

gjkḣik5ḣi
j12Hhi

j ,

gjkḧik5ḧi
j12Ḣhi

j14Hḣi
j14H2hi

j , ~11!

we can express the second-order variation of the action~1! as
a quadratic form depending on the first and second deriva-
tives of the symmetric, trace-free matrixh[hi

j , with time-
dependent coefficients fixed by the background fieldsa(t),
f(t):
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d~2!S[E d4xe2fF2d~2!~A2gR!2d~2!~A2g]mf]mf!1
a8

4
d~2!~A2gRGB

2 !2
a8

4
d~2!

„A2g~]mf]mf!2
…G

5E d4xe2fa3 TrFh2X1
4

ḟ22
3

2
Ḣ23H2C2hḧ24Hhḣ2

3

4
ḣ21

1

4
h

¹2

a2 hG
1

a8

4 E d4xe2fa3TrFh2X1
4

ḟ426ḢH226H4C24H2hḧ2hḣ~8HḢ116H3!2ḣ2~Ḣ17H2!

22Hḣḧ1~2ḧ1Ḣh14Hḣ1H2h!
¹2

a2 h12ḣ
¹2

a2 ḣG . ~12!

Here¹25d i j ] i] j is the flat-space Laplace operator, Trh2[hi
jhj

i , and so on~the explicit computation of the various terms is
reported in the Appendix!. Integrating by parts the terms with more than two partial derivatives acting onh, as well as the
terms inhḣ andhḧ, we can put the action in the convenient form

d~2!S[E d4xe2fa3TrH 1

4
ḣ2~12a8Hḟ !1

1

4
h

¹2

a2 h@11a8~ḟ22f̈ !#

1h2F1

2
f̈1Hḟ2

1

4
ḟ22Ḣ2

3

2
H21

a8

4 S 1

4
ḟ412H2f̈22H2ḟ214ḟḢH14ḟH3D G J . ~13!

The absence of terms with more than two derivatives follows from the fact that the higher-curvature corrections appear in the
action as an Euler form~the Gauss-Bonnet invariant!. Note also that alla8 corrections disappear in the limitf5const, since
in that case the higher-curvature part of the action~1! reduces~in d53! to a total derivative that does not contribute to the
variation.

The coefficient of theh2 term in Eq.~13! is identically vanishing, thanks to the background equation~5!. By decomposing
the matrixhi

j into the two physical polarization modes of tensor perturbations,h1 andh3 ,

Trh2[hi
jhj

i52~h1
2 1h3

2 !, ~14!

we can finally write the action, for each polarization modeh(x,t), as

d~2!Sh5
1

2 E d4xe2fa3H ḣ2~12a8Hḟ !1h
¹2

a2 h@11a8~ḟ22f̈ !#J , ~15!

whereh is now a scalar variable standing for either one of the two polarization amplitudesh1 , h3 . The variation of the action
with respect toh gives then the modified perturbation equation:

ḧ~12a8Hḟ !1ḣ@3H2ḟ2a8~3H2ḟ2Hḟ21Ḣḟ1Hf̈ !#2
¹2

a2 h@11a8~ḟ22f̈ !#50. ~16!

In the absence ofa8 corrections, and for a constant dilaton
background, we recover the well-known resulthh50, de-
scribing the propagation of a massless scalar degrees of free-
dom minimally coupled to the background metric@2,16–18#
Whena850, andḟÞ0, we recover instead the perturbation
equation in a Brans-Dicke background@19#, hh2ḟḣ50,
describing the propagation of gravity waves in the string
frame according to the lowest-order string effective action.

Equation~16! controls the time evolution of the Fourier
componentshk of the two polarization modes. In order to
normalize the spectrum to the quantum fluctuations of the
vacuum, however, we need the canonical variable that diago-
nalizes the perturbed action@2,20#, and that represents in this
case the normal modes of tensor oscillations of our gravi-
dilaton background. We note, to this purpose, that introduc-
ing the conformal time coordinateh, defined bya5dt/dh,
the action~15! can be written in the form

d~2!Sh5
1

2 E d3xdh@z2~h!h821y2~h!h¹2h#, ~17!

where a prime denotes differentiation with respect toh, and

z2~h!5e2fS a22a8
a8

a
f8D ,

y2~h!5e2fFa21a8S f822f91
a8

a
f8D G . ~18!

By settingc5zh the action becomes

d~2!Sh5
1

2 E d3xdhS c821
z9

z
c21

y2

z2 c¹2c D . ~19!
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For each Fourier mode we can thus define a canonical vari-
able, ck5zhk , that diagonalizes the kinetic part of the ac-
tion, and that satisfies an evolution equation of the usual
form @2,18#,

ck91@k22Vk~h!#ck50,

Vk~h!5
z9

z
2

k2

z2 ~y22z2!, ~20!

with the only difference that the effective potentialVk(h) is,
in general,k dependent.

This equation, that encodes into the effective potential the
higher-curvature corrections@through Eq.~18!#, represents
the main result of this paper, and will be used in Sec. III to
discuss the amplification of tensor fluctuations in the gravi-
dilaton background of a typical string cosmology model.

III. HIGHER-CURVATURE CONTRIBUTIONS
TO THE GRAVITON SPECTRUM

In the context of the pre-Big Bang scenario@7,8#, typical
of string cosmology, the background equations~4!–~6! de-
scribe the evolution of the Universe from an asymptotic ini-
tial state with H50 and ḟ50 ~the string perturbative
vacuum!.

As long as the space-time curvature and the dilaton ki-
netic energy are small in string units,a8H2!1, a8ḟ2!1,
the higher-ordera8 corrections can be neglected, and the
low-energy solutions@21# of the background equations de-
scribe an accelerated growth of the curvature and of the
string coupling, withH.0, Ḣ.0, ḟ.0. As soon as the
curvature reaches the string scale, however, the effect of the
a8 corrections tends to stabilize the background in a phase of
constant curvature and linearly evolving dilaton,H5const,
ḟ5const, as recently discussed in@14#. The final transition
to the standard, decelerated evolution eventually occurs
when the radiation backreaction becomes important, and
generates quantum loop corrections to the effective action
@22# ~the duration of the constant curvature phase, however,
is presently unknown and appears into the equations as a
phenomenological parameter!. The typical accelerated evolu-
tion of H andḟ, obtained through a numerical integration of
Eqs. ~4!–~6! with the perturbative vacuum as initial condi-
tion at t→2`, is shown in Fig. 1.

As clearly shown in the figure, the inflationary evolution
of this class of backgrounds can be sharply divided into two
distinct regimes: an initial dilaton-driven phase, in which the
a8 corrections are negligible, and a high curvature string
phase, in which thea8 corrections are dominant and stabilize
the background curvature at the string scale. In the first phase
Eq. ~20! reduces to the usual perturbation equation~includ-
ing a tree-level coupling to the dilaton@19#!

ck91S k22
j9

j Dck50, j5ae2f/2. ~21!

In the second phase thea8 corrections cannot be neglected,
but the background curvature is constant,H5a8/a2

5c1 /Aa8 and ḟ5f8/a5c2 /Aa8, so that

z25j2~12c1c2!, y25j2~11c2
2!. ~22!

The only change of Eq.~21! is thus an effective shift of the
comoving frequency:

ck91Fk2~11c!2
j9

j Gck50, j5ae2f/2, ~23!

c5a8
Hḟ1ḟ2

12a8Hḟ
5

c1c21c2
2

12c1c2

5const.

The important consequence of the above equations is that,
for the whole class of background that we are considering,
no modification is induced by the high-curvature terms on
the evolution ofck outside the horizon~i.e., for ukhu!1!.
Such an evolution is uniquely determined, both in the low-
and high-curvature regime, by the time behavior of the back-
ground variablej~h!, according to the asymptotic solutions
of Eqs.~21! and ~23!:

ck5Akj~h!1Bkj~h!Eh
dh8j22~h8! ~24!

~Ak ,Bk are integration constants!. Hence, no modification is
induced in the perturbation spectrum~both for modes cross-
ing the horizon in the dilaton-driven and in the string phase!,
compared with the spectrum determined without thea8 cor-
rections in the perturbation equation.

Let us consider, in particular, the string phase, assuming
that c(h);j(h);(2h)a, a<1/2, is the dominant term in
the asymptotic solution~24! for h→02 . By using the cor-
rect normalization of the canonical variable@2# at horizon
crossing~hc!, uckuhc51/Ak, we find indeed, forh→02 , the
power spectrum

k3/2ucku5k
j

jhc
5kukhA11cua;k11a, ~25!

which is exactly the same as that provided by the low-energy
perturbation equation. The only effect of the high-curvature
terms is the shiftDck /ck of the asymptotic amplitude, due
to a shift of the horizon crossing scale,

FIG. 1. Time evolution of the gravidilaton background, with the
perturbative vacuum as initial condition att→2` ~in units a8
51!. The plot shows the results of a numerical integration of the
string cosmology equations~4!–~6!.
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uDcku
ucku

5u~A11c!a21u. ~26!

Such a shift is the same for all modes, and is of order one if,
as expected, the constant values ofH andḟ are of order one
in string units@unlessc1 and c2 are both exactly equal to
one, in which casec→`, see Eq.~23!#.

The above conclusions are confirmed by a numerical in-
tegration of the system formed by the background equations
~4!–~6! and by the exact perturbation equation~16!. The re-
sults are shown in Fig. 2 where we have compared, for a
mode crossing the horizon in the string phase, the evolution
in cosmic time of the amplitudeuhk(t)u obtained from the
exact perturbation equation~16!, with the amplitude that one
would obtain~for the samemodek and in thesameback-
ground! neglecting thea8 corrections in the perturbation
equation. In both cases the amplitude oscillates outside the
horizon, and the oscillations are damped outside the horizon,
as expected. The effect of thea8 corrections, when they
become important, is to induce an effective shift of the co-
moving frequency, with a resulting shift of the final
asymptotic amplitude, as clearly shown by the figure. Since
the shift is typically of order one, the previous computations
@13# concerning graviton production during the string phase
~see also@8,23,24#!, performed withouta8 corrections, re-
main valid as an order of magnitude estimate.

It is important to stress that this conclusion is valid pro-
vided H and ḟ stay constant for the whole duration of the
high-curvature string phase. In the opposite case thea8 cor-
rections may affect the time-evolution outside the horizon
and, as a consequence, the perturbation spectrum. Of course,
in a general background in which the growth of the curvature
scale is unbounded, our modified perturbation equation can
only be applied fora8Hḟ,1 ~at higher scales, higher pow-
ers of the curvature should be added!. The importance of the
a8 corrections can be consistently checked, however, even
inside the range of validity of our equations, as illustrated in
Fig. 3.

The figure shows the result of a numerical integration of
Eq. ~16!, with and withouta8 corrections, for the typical

power-law backgrounda5(2t)21/2, f523 ln(2t) ~which
corresponds, in the low-energy limit, to a background domi-
nated by a perfect gas of unstable, stretched strings@7,21#,
with equation of statep52r/3!. In the absence ofa8 cor-
rections the solution of Eq.~16! gives an amplitudehk(t)
which grows, asymptotically, like (2t)21/2. With the a8
terms included, the asymptotic behavior of the amplitude is
significantly different, and the differences arek dependent,
leading to a final modified spectrum. Note that the induced
shift is amplified in time when the comoving amplitude is
not asymptotically constant, like for the case illustrated in
Fig. 3.

We come back, finally, to the case in which the high-
curvature phase is frozen at the string scale, and the cor-
rected perturbation equation takes the form~23!. The pertur-
bation spectrum, for modes crossing the horizon in the string
phase, is determined by the corresponding evolution ofj~h!.
By using the asymptotic values ofH and ḟ given by the
model of background discussed in this paper,

c15Aa8H50.616 . . . , c25Aa8ḟ51.40 . . ., ~27!

~see Fig. 1, and also@14#!, we find

a~h!52
1

Hh
52

Aa8

c1h
,

j~h!5ae2f/2;~2h!c2/2c1 21;~2h!0.136. ~28!

The resulting slope of the string branch of the spectrum,

k3/2ucku;k1.36, ~29!

is thus flatter than the slope of the low-energy dilatonic
branch~;k3/2, see@7,25#!, as anticipated in@13,26#.

The particular power~29! obtained in this simple example
should not be taken, however, as a firm prediction for the
string branch of the graviton spectrum. The constant
asymptotic values ofH andḟ, parametrizing in phase space
the fixed points of thes-modelb functions associated to the
string effective action@14#, may indeed differ from those
given in Eq.~27! when a more ‘‘realistic’’ model of back-

FIG. 2. Time evolution ofuhk(t)u for a mode of comoving fre-
quencyk51 ~in units a851!, in the background solution corre-
sponding to Fig. 1. The evolution is obtained through a numerical
integration of the perturbation equation~16!, with and withouta8
corrections.

FIG. 3. Time evolution ofuhk(t)u outside the horizon, for a
mode of comoving frequencyk250.005~in unitsa851!. The evo-
lution is obtained through a numerical integration of Eq.~16!, with
and withouta8 corrections, in the backgrounda5(2t)21/2, f5
23 ln(2t).
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ground ~including dilaton potential, quantum loop correc-
tions! is considered. It may be interesting to point out, in
particular, that for H5const and ḟ→0 we have j→
(2h)21, and the spectrum tends to be flat, i.e., scale invari-
ant. The fact that a flat perturbation spectrum may emerge
from a high-curvature string phase provides an important
counterexample to the expectation that, in string cosmology,
the perturbation spectra grow in general too fast@25,27# to
have observable effects at large angular scales.

IV. CONCLUSION

In this paper we have perturbed the gravidilaton string
effective action around a spatially flat gravidilaton back-
ground, and we have found the higher-derivative corrections,
up to first order ina8, to the low-energy equation of tensor
perturbations.

Applying the results to the pre-Big Bang cosmological
models we have shown that the high-curvature terms, which
have a crucial influence on the evolution in time of the back-
ground, do not affect in a qualitative way the evolution in
time of the perturbations, both inside and outside the horizon
~modulo a constant shift of the final amplitude!.

The low-energy perturbation equation thus remains valid
for an order-of-magnitude estimate of the spectrum. This re-
sult, however, is a direct consequence of having a back-
ground with a high-curvature phase in whichH and ḟ stay
frozen at the string scale. In more general backgrounds the
time evolution of perturbations, and the final spectrum, may
be significantly affected by the high-curvature corrections.

The perturbative computations of this paper have been
explicitly performed in the string frame, and with an appro-
priate representation of the background fields that eliminates
higher-than-second derivatives from the effective equations.
The results about the perturbation spectrum, however, should
be frame independent, and should remain invariant under
arbitrary field redefinitions, even when such redefinitions
modify the explicit form of the action. To a modification of
the background should correspond indeed a modification of
the perturbation equation, in such a way that the solution of
the new perturbation equation, in the new background,
should be the same as the solution of the old equation in the
old background~as explicitly checked in@7# for the transfor-
mation from the string to the Einstein frame, in the case of
the lowest order effective action!.

Finally, the results reported in this paper about tensor per-
turbations are expected to be qualitatively valid also in the
case of scalar perturbations. For modes crossing the horizon
during the string phase, in particular, the scalar perturbation
spectrum should be determined by the constant values ofH
and ḟ, and should tend to a scale-invariant spectrum in the
limit ḟ→0, as discussed in Sec. III for the graviton case.
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APPENDIX: SECOND-ORDER PERTURBATION
OF THE ACTION

Consider the homogeneous and isotropic gravidilaton
background, parametrized ind53 by

ds25N2~ t !dt22a2~ t !dxi
2 , f5f~ t ! ~A1!

( i , j 51,2,3). We define, as usual,H5ȧ/a and F5Ṅ/N.
With the conventionsgmn5(1222), Rmna

b5]mGna
b

2••• , andRna5Rmna
m, we compute the scalar curvature

R5
1

N2 ~6HF26Ḣ212H2!, ~A2!

and the Gauss-Bonnet invariant

RGB
2 5RmnabRmnab24RmnRmn1R2

5
24

N4 ~ḢH21H42FH3!. ~A3!

Summing up all contributions, and settinga5eb, H5ḃ, Ḣ
5b̈, the string effective action~1! becomes, in this back-
ground,

S5E dte3b2fF 1

N
~6b̈112ḃ226ḃF2ḟ2!1

ka8

4N3

3~24b̈ḃ2124ḃ4224ḃ3F2ḟ4!G . ~A4!

The derivatives of the lapse function can be eliminated, by
noting that

e3b2f

N
~6b̈26ḃF !5

e3b2f

N
~6ḃḟ218ḃ2!

1
d

dt S 6ḃ
e3b2f

N D ~A5!

and

e3b2f

N3 ~24b̈ḃ2124ḃ4224ḃ3F !

58ḟḃ3
e3b2f

N3 1
d

dt S 8ḃ3
e3b2f

N3 D . ~A6!

Using these results into Eq.~A4! we recover the action~3!,
modulo a total derivative that does not contribute to the
equations of motion.

Let us now compute the second-order variation of the
action ~1!, for a transverse and traceless metric perturbation
dgmn5hmn(x,t), with hm

m505¹nhm
n ~the indices ofhmn

are raised with the unperturbed metricgmn!. We work in the
synchronous gauge, where

g0051, g0i50, gi j 52a2d i j ,

h0050, h0i50, gi j hi j 50, ] jhi
j50. ~A7!
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The nonvanishing components of the Christoffel connection
and of the Ricci and Riemann tensor, for the unperturbed
metric, are given by

G0i
j5Hd i

j , G i j
052Hgi j ,

R00523~Ḣ1H2!, Ri j 52gi j ~Ḣ13H2!,

R0i0 j5gi j ~Ḣ1H2!, Rik jl 5H2~gi j gkl2gk jgil !.
~A8!

In this gauge,

¹0hi
j5ḣi

j , ¹0hi j 5ḣi j 22Hhi j , ¹0¹0hi
j5ḧi

j ,

¹0¹0hi j 5ḧi j 22Ḣhi j 24Hḣi j 14H2hi j ~A9!

~¹0 is the covariant time derivative, while a dot denotes
partial time derivative!. From these equations one easily de-
rives the identities~11!, useful to express all perturbed quan-
tities in powers of the convenient variablehi

j and of its
derivatives.

The nonvanishing controvariant components of the metric
tensor, at first and second order inh, are given by

d~1!gi j 52hi j , d~2!gi j 5hikhk
j . ~A10!

For the determinant of the metric tensor we thus obtain

d~1!A2g50, d~2!A2g52
1

4
a3hi

jhj
i . ~A11!

The nonvanishing components of the perturbed connection
are, at first order,

d~1!G0i
j5

1

2
ḣi

j , d~1!G i j
052

1

2
ḣi j ,

d~1!G i j
k5

1

2
~] ihj

k1] jhi
k2]khi j !, ~A12!

and, at second order,

d~2!G0i
j52

1

2
ḣi

khk
j ,

d~2!G i j
k52

1

2
hk

l~] ihj
l1] jhi

l2] lhi j !. ~A13!

At first order, and using the identities~11!, the nonvan-
ishing components of the Ricci tensor can be given in terms
of hi

j as

d~1!Ri
j52

1

2 S ḧi
j13Hḣi

j2
¹2

a2 hi
j D[2

1

2
hhi

j ,

~A14!

d~1!Ri j 52
1

2
gikS ḧ j

k12Ḣhj
k13Hḣj

k16H2hj
k2

¹2

a2 hj
kD

~where¹25d i j ] i] j !. At second order,

d~2!R005d~2!R0
0

5
1

2 S ḧi
jhj

i1
1

2
ḣi

j ḣ j
i12ḣi

jhj
i D ,

d~2!Ri j 5
H

2
gi j hk

l ḣl
k1

1

4
gikḣj

l ḣl
k1

1

4
gjkḣi

l ḣl
k

2
1

4
] ihk

l] jhl
k1

1

2
]khi

l]khl j ,

d~2!Ri
j5

1

2 S hi
kḧk

j13Hhi
kḣk

j1Hd i
jhk

l ḣl
k1ḣi

kḣk
j

2
1

2
] ihl

k] jhk
l D ~A15!

~in the variation ofRi j we have neglected all terms that after
integration by parts do not contribute to the perturbed action,
because of the gauge condition] ihj

i50!.
We can now compute the second-order perturbation of the

various terms appearing in the string effective action. We
adopt, for simplicity, a matrix notation forhi

j , setting
hi

jhj
i5Trh2, hi

j ḣ j
i5Tr(hḣ), and so on. From Eqs.~A10!–

~A15! we obtain

d~2!~A2g]mf]mf!52
1

4
a3ḟ2Trh2, ~A16!

d~2!@A2g~]mf]mf!2#52
1

4
a3ḟ4Trh2, ~A17!
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d~2!~A2gR!5Rd~2!A2g1A2g~d~1!gmnd~1!Rmn1Rmnd~2!gmn1gmnd~2!Rmn!

5a3TrFh2S 3

2
Ḣ13H2D1hḧ14Hhḣ1

3

4
ḣ22

h

4

¹2

a2 hG , ~A18!

d~2!~A2gR2!5R2d~2!A2g12A2gR~d~1!gmnd~1!Rmn1Rmnd~2!gmn1gmnd~2!Rmn!

526a3~Ḣ12H2!TrFh2S 3

2
Ḣ13H2D12hḧ18Hhḣ1

3

2
ḣ22

h

2

¹2

a2 hG , ~A19!

d~2!~A2gRmnRmn!5~Rmn!2d~2!A2g1A2g~d~1!Rm
nd~1!Rn

m12Rm
nd~2!Rn

m!

5a3 TrF2hḣ~12ḢH124H3!2
ḣ2

2 S 5Ḣ1
18

4
H2D2h2~3Ḣ219ḢH219H4!2hḧ~4Ḣ16H2!1

ḧ2

4

1
3

2
Hḣḧ1

1

4 S ¹2

a2 hD 2

2
1

2
~ ḧ13Hḣ2Ḣh23H2h!

¹2

a2 hG . ~A20!

Finally, to complete the perturbation of the Gauss-Bonnet invariant, we need the perturbations of the Riemann tensor. We
find, to first order,

d~1!R0i
0 j5

1

2
~ ḧi

j12Hḣi
j !,

d~1!R0i
jk5

1

2
~] j ḣi

k2]kḣi
j !,

d~1!Rik
0 j5

1

2
~] i ḣk

j2]kḣi
j !,

d~1!Rik
jl 5

1

2
~] i]

jhk
l2]k]

jhi
l1]k]

lhi
j2] i]

lhk
j !1

H

2
~d i

j ḣk
l2dk

j ḣi
l1dk

l ḣi
j2d i

l ḣk
j !. ~A21!

At second order, what we need for the perturbation ofRmnab
2 are the mixed components

d~2!R0i
0 j52

1

2 S ḧi
khk

j1
1

2
ḣi

kḣk
j12Hḣi

khk
j D , ~A22!

and the contraction

Rjl
ikd~2!Rik

jl 52
H2

2 S ḣi
j ḣ j

i18Hhi
j ḣ j

i2hi
j
¹2

a2 hj
i D ~A23!

~we have neglected terms that, after integration by parts, vanish because of the trasversality condition!. Therefore

d~2!~A2gRmnabRmnab!5~Rmnab!2d~2!A2g1A2g~d~1!Rmn
abd~1!Rab

mn12Rmn
abd~2!Rab

mn!

5~Rmnab!2d~2!A2g1A2g~4d~1!R0i
0 jd~1!R0 j

0i12d~1!R0i
jkd~1!Rjk

0i12d~1!Rik
0 jd~1!R0 j

ik

1d~1!Rik
jl d~1!Rjl

ik18R0i
0 jd~2!R0 j

0i12Rjl
ikd~2!Rik

jl !

5a3 TrF ḣ2~2H222Ḣ !2hḧ~4H214Ḣ !2h2~3Ḣ216ḢH216H4!2hḣ~8HḢ116H3!1ḧ2

14Hḣḧ1S ¹2

a2 hD 2

12ḣ
¹2

a2 ḣ1~H2h22Hḣ!
¹2

a2 hG , ~A24!

modulo a total derivative that does not contribute to the action.
Summing up the results~A16!–~A20! and ~A24! we finally obtain the action~12! reported in Sec. II.
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