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Tensor perturbations in high-curvature string backgrounds
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We derive a generalized equation for the evolution of tensor perturbations in a cosmological background,
taking into account higher-curvature contributions and a tree-level coupling to the dilaton in the string frame.
The equation is obtained by perturbing the gravidilaton string effective action, expanded up to first arter in
The a' corrections can modify the low-energy perturbation spectrum, but the modifications are shown to be
small when the background curvature keeps constant in the string ff&0&56-282(197)04520-1
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[. INTRODUCTION dratic curvature corrections. Also, we shall work in a homo-
geneous and isotropic background, with flat 3 spatial di-
The generation of a primordial perturbation spectrum,mensions(see[10] for the possible influence of the higher-
able to explain the observed large scale anisotropy, is one éimensional dynamics on the scalar, tensor and akidi
the most celebrated aspects of the present inflationary coerturbation spectrum Already at this level, as we will
mological modelg1]. show, the amplification of the tensor fluctuations of the
Such a spectrum is obtained through the amplification o¥@cuum is governed by a modified perturbation equation. In
the quantum fluctuations of the metric and of the backgroun@ background with constant curvature and linearly evolving
sources around their initial configuratig®,3], and is usually  dilaton, like in the string phasgl2—14 typical of the pre-
computed in the context of a lowest-order, scalar-tensor ef8id Bang scenario, the differences between the corrected
fective theory of gravity. Higher-derivativéi.e., higher- higher-order equation and the approximated low-energy
curvatur@ corrections are usually neglected or, when in-€quation are small, however, and can be neglected for an
cluded, are parametrized by arbitrary functions of the scalaprder-of-magnitude estimate of the graviton spectrum. In
curvature[2,4] (see[5] for a possible exception without other_ backgrounds, with running curvature and_ I_ong enou_gh
consequence for the primordial spectrum since the effectiveluration of the high-curvature phase, the modified equation
perturbation equations are left unchanged. found in this paper may lead instead to important differences
The absence of higher-curvature contributions, however! the perturbation spectrum.
is hard to swallow for a perturbation spectrum that originates 1 h€ Paper is organized as follows. In Sec. Il we present
just in the primordial cosmological phase when the Universeth® background equations and we perturb the gravidilaton
according to the standard scenario, is highly curved and igffe_ctlve action, up to second o_rder in the tensor perturbe_ltlon
expected to approach the Planck scale and the quantum gra{@rable, including the quadratic curvature terms prescribed
ity regime. It would seem more appropriate, in such a conbY string theory. The. dlagonallzat|on of the pertgrbgd action
text, to include all possible high-curvature corrections intodefines a new canonical variable, for the normalization of the
the effective action, and ask whether their inclusion can irSPeCtrum to the quantum fluctuations of the vacuum. In Sec.
general modify the primordial spectrum obtained from thelll we discuss the time evolution of the normalized canonical
lowest-order perturbation equations. variable in a high-curvature string background, and we esti-
The answer to this question is, unfortunately, model demate the resulting tensor perturbation spectrum. Section IV
pendent, being subordinate to the explicit form of the highercontains a brief summary and our concluding remarks. The
order terms added to the action. The aim of this paper is t&etails Qf the perturbative computation are presented in the
discuss higher-curvature corrections to the tensor perturb#*PPendix.
tion spectrum, in the particular case of the gravidilaton ef-
fective action of string theor}6]. In the so-called “pre-Big Il. BACKGROUND AND PERTURBATION EQUATIONS

Bang” cosmological modelf7] obtained in that context, the In the string frame, and to first order in the high-
occurrence of a high-curvature string phase in which higherderivativea’ expansion, the effective action that reproduces

derivative corrections cannot be neglected is indeed an unhe gravidilaton sector of the tree-level striSgnatrix can be
avoidable consequence of the initial conditions, chosen tyritten in the form[9]

approach the string perturbative vacu[8h More generally,

high-curvature corrections should appear in any complete a

cosmological scenario based on string theory. Fortunately, in S= f d*x\—ge” ¢: —R—=4d,¢* ¢+ e

that case, the corrections cannot be added arbitrarily, but are

rigidly prescribed by the &' expansion” of the string ef-

fective action[9]. X[Rés—(ﬁﬂ¢5“¢)2]]- (6N
We shall limit, in this paper, to the first order ia’,

namely to the four-derivative terms corresponding to quaHere ¢ is the dilaton fielda’z)\ﬁ is the fundamental string-

!
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length parameter governing the importance of the higher- 90— 94+ 89,,, 89,,=h,,, V,h,=0=h,"
curvature correctiongs=1,2 for the bosonic and heterotic 7
string, respectively, and?GB— vap 4R2 +R2 is the

usual Gauss-Bonnet mvanavﬁtonventlons g =(+—- i ) . .

—), Rye=R,,.*, andR mﬁ a,T, B, Note that we where V , denotes covariant differentiation with respect to

have chosen a field redefinition that removes terms wittdx»+ @nd the indices o, are raised and lowered with the

higher-than-second derivatives from the effective equatlonémperturbe_d metridy,,”=g"*h,,, . By expanding, up to sec-
[9,15]. Also, we are considering the case of criti¢aliper- ond order inh, the controvariant components of the metric

)strings, in which no effective cosmological term appears inf€NSor;

the action. This means, id=3 spatial dimensions, that
some “passive” sector is assumed to be present to cancel the
central charge deficit (3d.)/a’. All the computations of SUgrv=—hur,  §Dgur=puap v ®)
this paper can be easily extended, however, to include a non- ' “
vanishing cosmological constant.

We shall consider perturbations aroundia3, spatially  (5A denotes théth term in the expansion of a variable
flat background, parametrized by in powers ofh), of the volume density,

d?=N2(t)dt?—a(t)dx?, ¢=¢(1), a(t)=efV

1
@ §9V=g=0, §2V=g=-7V=gh.h*, @

(1,j=1,2,3). For such a background the acti@hbecomes,

after integration by partésee the Appendix and of the components of the Riemann and Ricci tensor

(see the Appendjx we will obtain from Eq.(1) an action
quadratic in the perturbation variabte,”, governing the
3 4 dynamic of tensor perturbations in the corresponding
f dte®” ¢[ (6'8¢ 6’8 ¢ )+ (84)'8 ¢ |- gravidilaton background. The method is exactly the same as
(3)  the one first used ifil6] for determining the effective action
of tensor perturbations in a cosmological background
A dot denotes differentiation with respectttoand we have (see alsd2,17)), with the only difference that in the present
put k=1, for simplicity. By varying the action with respect case the perturbed action includes higher-curvature
to N, 3, and ¢, and imposing the cosmic time gaulje=1,  terms, and a nonminimal coupling of the metric to the dilaton

we get, respectively, the equations field.
It is convenient to work in the synchronous gauge,
where
. .3 ) )
6H?+ ¢p?—6H p— Za’(8¢H3—gb4):O, (4)

goo=1, 90i=0, gj=—2a%s,

—18H%—3¢2+12H p+6h— 12H + o' (12¢H3+ 3 ¢p*

. . L. — = iip. = hl=
_6H2¢2+6H2¢)+12¢HH):O, (5) hOO 01 hOI Or g hIJ Ov a]hl 0. (10)

After repeated use of the identitiésee the Appendjx
12H2+ ¢p?— 6Hp— 2+ 6H+ a’ (BHA+ 24— 3H o3

+BH2H —3d%d) = . . ,
6H<“H 3(}5 (f)) 0 (6) g]khik:hi]+2HhiJ1

(we have adopted the usual notation for the Hubble param-

eter,H=a/a= g, H= ). Their solutions provide the gravi-

djlaton background for the propagation. of metrip perturba- gjkﬁikzhij+2|;|hij+4Hhij+4H2hij7 (12)

tions. Note that only two of these equations are independent

[14] (unless¢p=38), and that the first equation, following

from the variation of the lapse function, can be used as ave can express the second-order variation of the a¢tipas

“non-dynamical” constraint on the set of initial conditions. a quadratic form depending on the first and second deriva-
In this paper we shall restrict our attention to tensor metdives of the symmetric, trace-free mattire=h; I, with time-

ric perturbations, parametrized by the transverse, trace-fredependent coefficients fixed by the background fiel@s,

variableh &(1):
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os= f d'xe™?| = 52(=gR — 52(\=07,65" $)+ 7 9 (V=aREa)— 7 52 (/= 0(d, 49" $)?)

VZ

fd“xe *a3 Tr| h ( - H 3H) hh— 4Hhh——h2+ yileedl

( 4 —6HH2— 6H) 4H2hh—hh(8HH + 16H3) —h2(H + 7H?)

+— f d*xe ?a3Tr h

V 2
—2Hhh+ (2h+Hh+4Hh+H2h) 2h+2h zh} (12)

HereV?= 5”&&,— is the flat-space Laplace operatorhis hijhj‘, and so orthe explicit computation of the various terms is
reported in the Appendjx Integrating by parts the terms with more than two partial derivatives acting, @s well as the
terms inhh andhh, we can put the action in the convenient form

2) 4 3 2 ) 1 ve w2
52s= | d*xe %a’Tr h (1—a’H¢)+Zh¥h[1+a’(¢ - )]

/

3 1
¢+H¢——¢2 H—§H2+— ¢*+2H2¢—2H ¢2+4¢HH+4¢H3>

] (13

The absence of terms with more than two derivatives follows from the fact that the higher-curvature corrections appear in the
action as an Euler forrtthe Gauss-Bonnet invarignfNote also that alk’ corrections disappear in the limfi= const, since
in that case the higher-curvature part of the actibnreduces(in d=3) to a total derivative that does not contribute to the
variation.

The coefficient of thén? term in Eq.(13) is identically vanishing, thanks to the background equat®nBy decomposing
the matrixh;! into the two physical polarization modes of tensor perturbatibnsandh, ,

Trh?=hih;'=2(h% +h%), (14)

we can finally write the action, for each polarization mdde,t), as

2
<2>sh=; d4xe—¢a3[ hz(l—a’H¢)+h§2—h[1+ a' (%= )11, (15)

whereh is now a scalar variable standing for either one of the two polarization amplitudeb . The variation of the action
with respect tch gives then the modified perturbation equation:

2
h(1-a’He)+h[BH—¢—a' (3H2¢—Hp>+Hp+Hep)]— ;h[lm’(é&—@]:o. (16)

In the absence of’ corrections, and for a constant dilaton 1
background, we recover the well-known resilh=0, de- 5(2)Sh:§ f d*xdy[Z%(n)h'?+y*(n)hV?h], (17)
scribing the propagation of a massless scalar degrees of free-
dom minimally coupled to the background meti#;16—-19
Whenea'=0, and¢+0, we recover instead the perturbation
equation in a Brans-Dicke background9], C1h— ¢h=0,
describing the propagation of gravity waves in the string 2(n)=e¢
frame according to the lowest-order string effective action.

Equation(16) controls the time evolution of the Fourier
componentsh, of the two polarization modes. In order to 5
normalize the spectrum to the quantum fluctuations of the y“(n)=e
vacuum, however, we need the canonical variable that diago-
nalizes the perturbed acti$8,20], and that represents in this
case the normal modes of tensor oscillations of our gravi-
dilaton background. We note, to this purpose, that introduc- 1 z” y2
ing the conformal time coordinats, defined bya=dt/d#, Qe _— 3 2,2 20 g2
the action(15) can be written in the form 0 Sh_z f d an( LA ¥V lp)' (19

where a prime denotes differentiation with respecyt@and

’
a2_a/ a_¢r
a 1

¢'2—¢"+a—’¢'”. (18
a

Y a’+a’

By settingy=zh the action becomes
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For each Fourier mode we can thus define a canonical vari 1.4}
able, y,.=zh,, that diagonalizes the kinetic part of the ac- ae/dt
tion, and that satisfies an evolution equation of the usua 1.2¢
form [2,18], 1
P+ K= Vi) 1h=0, 0.8
0.6}
7 Ko, H
Vi =— = (y*=2), (20) 0.4}
Q
with the only difference that the effective potentigl( ») is, ___,,-/
in generalk dependent. a0 ~20 20 40 60 ©

This equation, that encodes into the effective potential the
higher-curvature correctionghrough Eq.(18)], represents _ _ o _
the main result of this paper, and will be used in Sec. Il to _F'C- 1. Time evolution of the gravidilaton background, with the
discuss the amplification of tensor fluctuations in the grayiPerturbative vacuum as initial condition &t —22 (in units «

. . . =1). The plot shows the results of a numerical integration of the
dilaton background of a typical string cosmology model. string cosmology equation(d)—(6).

lll. HIGHER-CURVATURE CONTRIBUTIONS 2=(1-cicy), yP=E(1+cd). 22)
TO THE GRAVITON SPECTRUM

The only change of Eq21) is thus an effective shift of the

In the context of the pre-Big Bang scenafig8|, typical comoving frequency:

of string cosmology, the background equatidds—(6) de-

scribe the evolution of the Universe from an asymptotic ini- &
tial state with H=0 and ¢=0 (the string perturbative i+ k2(1+c)——} # =0, ¢=ae %2, (23
vacuum). 3
As long as the space-time curvature and the dilaton ki- S 5
netic energy are small in string unite, H><1, o' ¢*<1, c=a Hotd” _ CaCat = const.
the higher-ordera’ corrections can be neglected, and the l1-a’'H¢p 1-cqCy

low-energy solutiong21] of the background equations de-

scribe an accelerated growth of the curvature and of the The important consequence of the above equations is that,
string coupling, withH>0, H>0, #>0. As soon as the for the whole class of background that we are considering,
curvature reaches the string scale, however, the effect of tH&? modification is induced by the high-curvature terms on
«' corrections tends to stabilize the background in a phase dhe evolution ofyy outside the horizorii.e., for [ky|<1).
constant curvature and linearly evolving dilatdth= const, Such an evolution is U_nlquely dete_rmlned, b(_)th in the low-
¢=const, as recently discussed[it4]. The final transition and high-curvature regime, by the time behavior of the back-
to the standard, decelerated evolution eventually oc:curground variableg(n), according to the asymptotic solutions

when the radiation backreaction becomes important, an8f Egs.(21) and(23):

generates quantum loop corrections to the effective action .

[22] (the duration of the constant curvature phase, however, Ue=Aé(n)+BL & n)f dn' & %(n") (24
is presently unknown and appears into the equations as a

phenomenological parame)eThe typical accelerated evolu- (Ay,By are integration constantsHence, no modification is

tion of H and ¢, obtained through a numerical integration of jhqyced in the perturbation spectruimoth for modes cross-
Egs. (4)—(6) with the perturbative vacuum as initial condi- jng the horizon in the dilaton-driven and in the string phase

tion att— —o, is shown in Fig. 1. S _ compared with the spectrum determined without dtiecor-
As clearly shown in the figure, the inflationary evolution actions in the perturbation equation.

of this class of backgrounds can be sharply divided into two | ot s consider, in particular, the string phase, assuming
distinct regimes: an initial dilaton-driven phase, in which the,5¢ W)~ E(n)~(— )¢ a=<1/2, is the dominant term in

a’ corr_ectior_ls are negligiblle, and a high curvature gt_ringthe asymptotic solutiori24) for 7—0_ . By using the cor-
phase, in which the’ corrections are dominant and stabilize act normalization of the canonical varial2] at horizon

the background curvature at the string scale. In the first phasg o ssina(he —1/Jk. we find indeed. forn—0_ . the
Eq. (20) reduces to the usual perturbation equatimrciud- power géeth’rLl’rbrlthc k, P
ing a tree-level coupling to the dilatda9])

"

k?— g—) $ =0, &=ae 2 (21)

k%7 zpk|=k—; =k|kny1+c|*~kite, (25)
hc
£

Pt
_ which is exactly the same as that provided by the low-energy
In the second phase the' corrections cannot be neglected, perturbation equation. The only effect of the high-curvature

but the background curvature is constati=a’'/a’®  terms is the shift\ gy /¢ of the asymptotic amplitude, due
=c,/\a’ andgp=¢’'la=c,/\/a’, so that to a shift of the horizon crossing scale,
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FIG. 3. Time evolution of|h,(t)| outside the horizon, for a
mode of comoving frequendy?=0.005(in units o’ =1). The evo-
|ution is obtained through a numerical integration of ELf), with
and withouta' corrections, in the backgrourm=(—t) %2 ¢=

FIG. 2. Time evolution ofh,(t)| for a mode of comoving fre-
qguencyk=1 (in units «’=1), in the background solution corre-
sponding to Fig. 1. The evolution is obtained through a numerica
integration of the perturbation equatioh6), with and withouta’

corrections. —3In(=1).
A power-law backgrouné=(—1t) 2 ¢=—3In(~t) (which
ﬂ: |(V1+c)*—1]. (26) corresponds, in the low-energy limit, to a background domi-
| nated by a perfect gas of unstable, stretched stifidgxl],

with equation of statg= —p/3). In the absence o&’ cor-

Such a shift is the same for all modes, and is of order one iftections the solution of Eq16) gives an amplituden,(t)
as expected, the constant valuedtofnd ¢ are of order one  Which grows, asymptotically, like {t)~*2 With the o'
in string units[unlessc, andc, are both exactly equal to terms included, the asymptotic behavior of the amplitude is
one, in which case—x, see Eq(23)]. significantly different, and the differences dredependent,

The above conclusions are confirmed by a numerical inleading to a final modified spectrum. Note that the induced
tegration of the system formed by the background equationshift is amplified in time when the comoving amplitude is
(4)—(6) and by the exact perturbation equatid®). The re-  not asymptotically constant, like for the case illustrated in
sults are shown in Fig. 2 where we have compared, for &ig. 3.
mode crossing the horizon in the string phase, the evolution We come back, finally, to the case in which the high-
in cosmic time of the amplitudéh,(t)| obtained from the curvature phase is frozen at the string scale, and the cor-
exact perturbation equatigfi6), with the amplitude that one rected perturbation equation takes the fd@8). The pertur-
would obtain(for the samemodek and in thesameback-  bation spectrum, for modes crossing the horizon in the string
ground neglecting thea’ corrections in the perturbation Phase, is determined by the corresponding evolutiog( gf.
equation. In both cases the amplitude oscillates outside thBy using the asymptotic values &f and ¢ given by the
horizon, and the oscillations are damped outside the horizormodel of background discussed in this paper,
as expected. The effect of the’ corrections, when they .
become important, is to induce an effective shift of the co- c;=Va'H=0616..., c,=\a'¢p=140..., (27
moving frequency, with a resulting shift of the final . )
asymptotic amplitude, as clearly shown by the figure. SincéS€€ Fig- 1, and alsg4)), we find

the shift is typically of order one, the previous computations 1 Ja
[13] concerning graviton production during the string phase a(p)=——o—=——,
(see alsd8,23,24), performed withouta’ corrections, re- Hxz Ci7m
main valid as an order of magnitude estimate. 412 cfen —1 0.136
It is important to stress that this conclusion is valid pro- é(p)=ae P~ (=)~ (=) (28)

vided H and ¢ stay constant for the whole duration of the
high-curvature string phase. In the opposite casentheor-
rections may affect the time-evolution outside the horizon k3/2| | ~ k38 (29)
and, as a consequence, the perturbation spectrum. Of course,
in a general background in which the growth of the curvaturds thus flatter than the slope of the low-energy dilatonic
scale is unbounded, our modified perturbation equation cabranch(~ k32 see[7,25)), as anticipated ifi13,26].
only be applied fora’H¢<1 (at higher scales, higher pow-  The particular powe(29) obtained in this simple example
ers of the curvature should be adiethe importance of the should not be taken, however, as a firm prediction for the
a' corrections can be consistently checked, however, evedtring branch of the graviton spectrum. The constant
inside the range of validity of our equations, as illustrated inasymptotic values dfl and ¢, parametrizing in phase space
Fig. 3. the fixed points of ther-model 8 functions associated to the
The figure shows the result of a numerical integration ofstring effective actiof14], may indeed differ from those
Eqg. (16), with and withouta’ corrections, for the typical given in Eq.(27) when a more “realistic” model of back-

The resulting slope of the string branch of the spectrum,
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ground (including dilaton potential, quantum loop correc- APPENDIX: SECOND-ORDER PERTURBATION
tions) is considered. It may be interesting to point out, in OF THE ACTION

particgllar, that for H=const and ¢—0 we have ff . Consider the homogeneous and isotropic gravidilaton
(= #) "7, and the spectrum tends to be flat, i.e., scale 'nva”background, parametrized =3 by

ant. The fact that a flat perturbation spectrum may emerge
from a high-curvature string phase provides an important d2=N2(t)d2—a2(t)dx?, é=d(1) (A1)
counterexample to the expectation that, in string cosmology, e
the perturbation spectra grow in general too {&&,27] to (i.j=1.2.3). We define, as usua=a/a and F=N/N
have observable effects at large angular scales. With the conventionsg,,—(+———), Ry,.f=d,T,.?
-+, andR,,=R,,,*, we compute the scalar curvature
IV. CONCLUSION

In this paper we have perturbed the gravidilaton string R= —12(6HF—6H—12|—|2), (A2)
effective action around a spatially flat gravidilaton back- N

ground, and we have found the higher-derivative corrections, . .

up to first order ine’, to the low-energy equation of tensor @nd the Gauss-Bonnet invariant

perturbations. 5 I P
Applying the results to the pre-Big Bang cosmological RGe=RuvasR —4R,,R+R
models we have shown that the high-curvature terms, which 24 .
have a crucial influence on the evolution in time of the back- =W(HH2+ H4—FH?3). (A3)

ground, do not affect in a qualitative way the evolution in
time of the perturbations, both inside and outside the horizon ) o . Co
(modulo a constant shift of the final amplityde Summing up all contributions, and settiag-e”, H=, H

The low-energy perturbation equation thus remains valid= 8, the string effective actioril) becomes, in this back-
for an order-of-magnitude estimate of the spectrum. This reground,
sult, however, is a direct consequence of having a back- L ‘
ground with a high-curvature phase in whiehand ¢ stay :f 38— (a1 P2 _GRE_ 42 @
frozen at the string scale. In more general backgrounds the S dte [N(6'8+12’8 6BF ¢+ 4N3
time evolution of perturbations, and the final spectrum, may
be significantly a_ffected by thg high—curyature corrections. ><(24,B’BZ+24B4—24B‘°’F— ¢4) ' (A4)

The perturbative computations of this paper have been
explicitly performed in the string frame, and with an appro-
priate representation of the background fields that eliminate§he derivatives of the lapse function can be eliminated, by
higher-than-second derivatives from the effective equationgloting that
The results about the perturbation spectrum, however, should
be frame independent, and should remain invariant under
arbitrary field redefinitions, even when such redefinitions N
modify the explicit form of the action. To a modification of
the background should correspond indeed a modification of n E
the perturbation equation, in such a way that the solution of dt
the new perturbation equation, in the new background,
should be the same as the solution of the old equation in thand
old backgroundas explicitly checked if7] for the transfor- 5o
mation from the string to the Einstein frame, in the case of e o : :
the lowest order effective action NG (24557 +245° — 245°F)

Finally, the results reported in this paper about tensor per-
turbations are expected to be qualitatively valid also in the _8 ¢ B3e L2
case of scalar perturbations. For modes crossing the horizon N3 dt
during the string phase, in particular, the scalar perturbation
spectrum should be determined by the constant valué$ of Using these results into EGA4) we recover the actio(B),
and ¢, and should tend to a scale-invariant spectrum in theénodulo a total derivative that does not contribute to the
limit ¢—0, as discussed in Sec. Il for the graviton case. €quations of motion.

Let us now compute the second-order variation of the
action (1), for a transverse and traceless metric perturbation
89,,,=h,,(x,1), with h, #=0=V h,” (the indices ofh,,

This work was supported in part by EC Contract No.are raised with the unperturbed metgt”). We work in the
ERBCHRX-CT94-0488. | am grateful to Gabriele Venezianosynchronous gauge, where
for many useful discussions. Special thanks are due to Ed-
ward W. Kolb for raising stimulating questions about string Joo=1 doi=0, gjj=-—a%g;,
corrections to the graviton spectrum, that motivated in part B _
the work presented in this paper. hoo=0, hgi=0, g"h;;=0, g;h!=0. (A7)

’

e3ﬁ_¢ .. . e3ﬁ_¢ .. .
(65-65F)= ——(684—183%)

66— (A5)

_ e3ﬁ</>)

(AB)

B0 df . e
KENNC
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The nonvanishing components of the Christoffel connection At first order, and using the identitigd1), the nonvan-
and of the Ricci and Riemann tensor, for the unperturbedshing components of the Ricci tensor can be given in terms
metric, are given by of hy! as

Tol=H3l, Ty%=—Hgj,
2

. 5 . ) e i 1/.. . A Vi 1 )
Roo= —3(H+H?), R;=—g;(H+3H?), S >Ril=—E hi! +3Hh! = —h |=—S0h,
: Al4
Roioj=0ij(H+H?), R =H?(0ijg— ki) (Al4)
A8)
In this gauge, 1 . . ) V2
VohiJ:hiJ, VOhij:hij_ZHhij! V()V()hil:hil,

(whereV?2=§'19,9;). At second order,

(Vg is the covariant time derivative, while a dot denotes
partial time derivative From these equations one easily de-

rives the identitieg11), useful to express all perturbed quan- 6'®Rgo= 6'*'Ro°
tities in powers of the convenient variable! and of its 1 1
derivatives. =5 Hijh,-i+ 5 hijhji+2hijhji ,

The nonvanishing controvariant components of the metric
tensor, at first and second ordertin are given by

shgil=—hil,  s@gi=hikn,J. (A10) H 1 1
) ) . 5(2)Rij=_gijhklh|k+ _gikhjlhlk+ _gjkhilhlk
For the determinant of the metric tensor we thus obtain 2 4 4

1 o 1 1
sV{J-g=0, &?y- =—Za3hi1hj'. (A11) _Zaihklajhlk+§akhil(9khljv

The nonvanishing components of the perturbed connection
are, at first order, 1 . . o oo
1 1 5(2)RiJ:§(hikhkj+3Hhikth+H5{hk|h|k+hikhkj
gl)FOijZE hij, 5(1)F,J0=—§h” y 1
- Eaih.kaihk') (A15)

5(1)Fijk=%(ﬁihjk+ﬁjhik—ﬁkhij), (A12)
(in the variation ofR;; we have neglected all terms that after
and, at second order, integration by parts do not contribute to the perturbed action,
because of the gauge conditiGrh,-‘zO).
ST i _ 1 b We can now compute the second-order perturbation of the
0i" = 5 i Tk various terms appearing in the string effective action. We
adopt, for simplicity, a matrix notation foh;, setting
1 hi’h;’=Trh?, h/’h;’=Tr(hh), and so on. From Eq$A10)—
5<2)Fijk:_Ehk|((9ihjl+(9jhil_(9lhij). (A13) (A15) we obtain

02(J=gd,dd"p)=— %a%zTrhz, (A16)

0D =0(d,49"$)*]= - %a3¢4nh2, (A7)
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8?(J-gR)=R&?\-g+-g(sVg*" PR, +R,, 68?9t +g " 8P R,,)

_ ot 2| 2 i1+ 312+ hive arnie S b= Vo A18
=a’Tr h? 5 2 23Zh) (A18)
8?(J-gR)=R?5?-g+2\-gR(8Wg*"s'VR,,,+R,,6Pg" "+ g 8 ?R,,,)
30 2 2 3. 2 v .3 2 h v
=—6a’(H+2H?)Tr h? 5 H+3H?| +2hh+8Hhh+ 2 h*~ 5 —h), (A19)
8P(=gR,,R*")=(R,,)?8? =g+ =g(§VR,"8 R+ 2R, "57R,*)
, o h2/ . 18 . . L h2
=a’Tr —hh(12HH+24H3)—7 5H+ZH2 —h2(3H2+9HH2+9H4)—hh(4H+6H2)+Z
S i [ Ton) = L aHh—fin—3H7h) o A20
FaHhhtglaen) —aht Jzh) (A20)

Finally, to complete the perturbation of the Gauss-Bonnet invariant, we need the perturbations of the Riemann tensor. We
find, to first order,

1. -
5(1)R0i°'=§(hi1+2Hhi'),

B .
5(1)R0ijk:§(t9]hik_t9khi’),

1 . .
gl)Rikolzz(aith_akhiJ)y
s j|1 P il I IjHj'Ij'I I'h I
At second order, what we need for the perturbatiorRﬁ;;aB are the mixed components
_ 1/. 1. . . _
5<2)R0i0]: - = hikhkj+ = hikth+2H hikth y (AZZ)
2 2

and the contraction

_ _ H2[. . N

R”Ikts(z)Rik”:_ ? hi]hj|+8Hhithl_hiJ¥hjl) (A23)

(we have neglected terms that, after integration by parts, vanish because of the trasversality ¢ofiléiefore
6<2)( \ _gR/Lva,BRMVQB):(R,U,vaﬂ)Zé(Z) V=gt _g((s(l)R,uvaB(s(l)Raﬂﬂv_FZRPLVQB‘S(Z)RQBMV)
=(Ryap) 20D =g+ V=0(48YRy % MRy % + 26MRy K SR, O + 26 VR, Y 5 PR

— a3 Tr h%(2H2—2H)— hh(4H2+4H) — h2(3H2+ 6HH2+ 6H*) — hh(8HH + 16H3) + h?

2 2 . VZ . . V2
+2h ¥h+(H2h—2Hh)¥h , (A24)

+4Hhh+| —h
a

modulo a total derivative that does not contribute to the action.
Summing up the resultd?\16)—(A20) and (A24) we finally obtain the actioril2) reported in Sec. Il.
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