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Radiative multipole moments of scalar, electromagnetic, and linearized gravitational fields in Schwarzschild
spacetime are computed to third order inv in a weak-field, slow-motion approximation, wherev is a charac-
teristic velocity associated with the motion of the source. These moments are defined for all three types of

radiation by relations of the formC(t,xW )5r 21( lmMlm(u)Ylm(u,f), whereC is the radiation field at infinity
andMlm are the radiative moments, functions of retarded timeu5t2r 22M ln(r/2M21); M is the mass

parameter of the Schwarzschild spacetime and (t,xW )5(t,r ,u,f) are the usual Schwarzschild coordinates. For
all three types of radiation the moments share the same mathematical structure: To zeroth order inv, the

radiative moments are given by relations of the formMlm(u)}(d/du) l*r(u,xW )r l Ȳlm(u,f)dxW , wherer is the
source of the radiation. A radiative moment of orderl is therefore given by the corresponding source moment
differentiatedl times with respect to retarded time. To second order inv, additional terms appear inside the

spatial integrals, and the radiative moments becomeMlm(u)}(d/du) l*@11O(r 2]u
2)1O(M /r )#rr l Ȳlm dxW .

The term involvingr 2]u
2 can be interpreted as a special-relativistic correction to the wave-generation problem.

The term involvingM /r comes from general relativity. These correction terms of orderv2 are near-zone
corrections which depend on the detailed behavior of the source. Furthermore, the radiative multipole moments
are still local functions ofu, as they depend on the state of the source at retarded timeu only. To third order

in v, the radiative moments becomeMlm(u)→Mlm(u)12M*2`
u @ ln(u2u8)1const#M̈lm(u8) du8, where

overdots indicate differentiation with respect tou8. This expression shows that theO(v3) correction terms
occur outside the spatial integrals, so that they do not depend on the detailed behavior of the source. Further-
more, the radiative multipole moments now display a nonlocality in time, as they depend on the state of the
source atall timesprior to the retarded timeu, with the factor ln(u2u8) assigning most of the weight to the
source’s recent past.~The term involving the constant is actually local.! The correction terms of orderv3 are
wave-propagationcorrections which are heuristically understood as arising from the scattering of the radiation
by the spacetime curvature surrounding the source. The radiative multipole moments are computed explicitly
for all three types of radiation by taking advantage of the symmetries of the Schwarzschild metric to separate
the variables in the wave equations. Our calculations show that the truly nonlocal wave-propagation correction
— the term involving ln(u2u8) — takes a universal form which is independent of multipole order and field
type. We also show that in general relativity, temporal and spatial curvatures contributeequally to the wave-
propagation corrections. Finally, we produce an alternative derivation of the radiative moments of a scalar field
based on the retarded Green’s function of DeWitt and Brehme. This calculation shows that the tail part of the
Green’s function is entirely responsible for the wave-propagation corrections in the radiative moments.
@S0556-2821~97!03820-4#

PACS number~s!: 04.25.Nx, 04.30.Db, 04.40.Nr

I. INTRODUCTION AND SUMMARY

A. Tails in waves

It has long been known that, in general, the propagation of
massless fields in curved spacetime does not proceed along
characteristics only, but is accompanied by wave tails. Much
attention has been devoted to this topic since the ground-
breaking work by Hadamard@1#. Here are some of the high-
lights.

In 1952, Choquet-Bruhat@2# studied the initial value
problem of general relativity and showed that the gravita-
tional field at some eventP depends not only on the data put
on the intersection ofP’s past light cone with the initial
surface, but also on the data put inside this region. This result
indicates that in general relativity, field propagation proceeds
at all speeds less than, or equal to, the speed of light.

In 1960, DeWitt and Brehme@3# constructed Green’s
functions for the scalar and electromagnetic wave equations
in curved spacetime, and showed that these split naturally

into a direct part, with support on, and only on, the light
cone, and a tail part, with support within the light cone. A
similar Green’s function was also constructed for the Ein-
stein field equations@4#.

In 1968, Kundt and Newman@5# established that for hy-
perbolic partial differential equations in two dimensions, the
presence of wave tails is the rule rather than the exception.
This conclusion was extended by McLenaghan and co-
workers @6–9# to the case of conformally invariant wave
equations in four dimensions.

Wave tails are known to have important physical conse-
quences. For example, DeWitt and Brehme@3# have shown
that the tail part of the electromagnetic field is of paramount
importance in deriving the equations of motion for charged
particles in curved spacetime. Similarly, Mino, Sasaki, and
Tanaka@10#, as well as Quinn and Wald@11#, have recently
shown that tails are entirely responsible for the gravitational
radiation reaction force. And as a final example, Price@12#
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has shown that gravitational-wave tails play an integral part
in the physical process by which a recently formed black
hole relaxes to a stationary state, as is demanded by the
no-hair theorems.

The presence of tails in the gravitational waves produced
by an isolated source was first demonstrated in 1965 by Bon-
nor and Rotenberg@13#. In 1968, this work was extended by
Couch et al. @14#, who showed that an initially outgoing
wave will be partly backscattered by the spacetime curvature
surrounding the source, thereby creating an incoming wave.
A further extension of this work has appeared very recently
@15#.

In 1992, Blanchet and Damour@16# considered for the
first time the effect of tails on the behavior of gravitational
waves at infinity, thereby concentrating on effects that could
potentially be observed directly. They found that gravita-
tional waves at timet depend not only on the state of the
source at the corresponding retarded timeu @essentiallyu
5t2r /c, wherer is the distance to the source, but see Eq.
~1.2! for a more precise definition#, but also on the state of
the source atall timesprior to the retarded time.~Once again,
this indicates that wave propagation proceeds at all speeds
less than, or equal to, the speed of light.! Subsequently@17–
20#, it was shown that tails play an important role in the
generation of gravitational waves by the orbital inspiral of a
compact binary system. These waves are among the most
promising for detection by future kilometer-scale interferom-
eters such as the American Laser Interferometer
Gravitational-wave Observatory@21# ~LIGO! and the
French-Italian VIRGO@22#.

Given the physical relevance of tails in the propagation of
radiation in curved spacetime, it appeared to us worthwhile
to seek a deeper understanding of this phenomenon by ask-
ing how it depends on the type of radiation being considered
and by digging further into the nature of its physical origin.
This paper reports on the results of such an investigation, in
which we study the influence of tails on those properties of
massless fields that are directly measurable to an observer at
infinity: the radiative multipole moments. We consider the
cases of scalar, electromagnetic, and gravitational radiation
generated by an isolated source and propagating to infinity in
a spacetime curved by a nonrotating central massM . All of
our results are derived on the basis of a weak-field, slow-
motion approximation. Throughout this paper we use units
such thatG5c51, and we employ the definitions and con-
ventions of Misner, Thorne, and Wheeler@23#.

B. Scalar radiation

We begin the summary of our results with the simplest
case, that of a scalar fieldF(x) obeying the wave equation
hF524pr, whereh5gab¹a¹b , gab is the Schwarzs-
child metric andr(x) a given source. The symbolx collec-
tively designates all Schwarzschild coordinates$t,r ,u,f%.
As is shown in Sec. III, the radiative part of the scalar field,
which dominates at infinity, can be written as

F rad~ t,xW !5
1

r (l 50

`

(
m52 l

l

Zlm~u!Ylm~u,f!, ~1.1!

whereZlm(u) are radiative multipole moments, depending
on retarded time

u5t2r 22M ln~r /2M21!, ~1.2!

andYlm(u,f) are the usual spherical harmonics. The symbol
xW collectively designates all spatial coordinates$r ,u,f%.

In a leading-order calculation in a weak-field, slow-
motion approximation, the radiative multipole moments are
found to be given by

Zlm
~0!~u!5

4p

~2l 11!!! S d

duD lE r~u,xW !r l Ȳlm~u,f!dxW ,

~1.3!

wheredxW5r 2 dr d cosu df and the integration is over the
region of space occupied by the source; we assume that this
region is bounded. Equation~1.3! shows that the radiative
moments are obtained from the source moments*rr l ȲlmdxW
by taking a number of time derivatives equal to the multipole
order.

In a more accurate calculation, incorporating corrections
of orderv2 with respect to the leading-order results~with v
!1 a characteristic velocity associated with the motion of
the source!, we find

Zlm
~2!~u!5

4p

~2l 11!!! S d

duD lE F11
~r ]u!2

2~2l 13!
2 l

M

r G
3r~u,xW !r l Ȳlm~u,f!dxW . ~1.4!

It is easy to see that the correction terms are indeed of order
v2. The term involving (r ]u)2 is of order (r c /tc)

2, wherer c
is a characteristic radius within the source andtc a charac-
teristic time scale associated with its motion; the ratior c /tc
definesthe characteristic velocityv. This term can be under-
stood as arising from special-relativistic corrections to the
wave-generation problem. On the other hand, the term pro-
portional toM /r comes from general relativity, and is also of
orderv2 by virtue of the virial theorem for bound motion in
a gravitational field. It should be noted that in Eq.~1.4!, the
correction terms occurinside the spatial integrals, so that
they depend on the detailed behavior of the source. Further-
more, these corrections are purelylocal in time, asZlm

(2)(u)
depends on the state of the source at the timeu only. The
terms of orderv2 are thereforenear-zonecorrections that
have nothing to do with the tail effect discussed previously.

A calculation carried out to orderv3 in a weak-field,
slow-motion approximation does reveal the influence of the
tails. Indeed, the radiative multipole moments are now given
by

Zlm
~3!~u!5Zlm

~2!~u!12ME
2`

u F lnS u2u8

4M D1b l
scalar1gG

3Z̈lm
~0!~u8!du8, ~1.5!

which clearly displays a nonlocality in time. Here, overdots
indicate differentiation with respect tou8, and

b l
scalar5c~ l 11!1

1

2
, ~1.6!
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where c( l 11)52g1(k51
l k21 is the digamma function

(g.0.577 21 is Euler’s number!. We notice that the correc-
tion terms of orderv3 occuroutsidethe spatial integrals, so
that they do not depend on the detailed behavior of the
source. These arewave-propagationcorrections, which are
readily associated with the occurrence of wave tails in
curved spacetime. We must point out that of the threeO(v3)
terms in Eq.~1.5!, two are actuallyinstantaneous, as they are
equal to 2M (b l

scalar1g)Żlm
(0)(u). The remaining term is truly

nonlocal, and the factor ln(u2u8) assigns most of the weight
to the source’s recent past.

Equations ~1.1!–~1.6! were derived by integrating the
wave equation for a scalar field in Schwarzschild spacetime,
for which the variables can conveniently be separated.~The
actual work of integrating the radial equation is carried out in
Sec. II.! But because our calculations use only the weak-field
behavior of the Schwarzschild solution, our results are insen-
sitive to the detailed form of the metric. Although we rely
heavily on the symmetries of the Schwarzschild metric to
separate the variables in the wave equation, our results rely
only on the fact that the field is spherically symmetric at
large distances. Our results would therefore hold also in
more general, nonrotating spacetimes, with spherical sym-
metry holding only approximately at large distances. Static-
ity, however, is a crucial assumption, and our results would
not be valid if the spacetime were rotating. Although the
wave-propagation corrections to the radiative multipole mo-
ments would take the same form as in Eq.~1.5!, the space-
time’s rotation would create additional terms of orderv3.
These would occur inside the spatial integrals, and would
describe near-zone corrections of the spin-orbit type@24–
27#.

C. Electromagnetic radiation

In Sec. IV we turn to the case of electromagnetic radiation
produced by a given current densityJa(x) in Schwarzschild
spacetime.~The remarks of the preceding paragraph, regard-
ing the generality of our results, apply equally well here.!
The radiative part of the vector potential is given by

Aa
rad~ t,xW !5

1

r (l 51

`

(
m52 l

l

@Ilm~u!Ya
E,lm~u,f!

1Slm~u!Ya
B,lm~u,f!#, ~1.7!

whereIlm(u) andSlm(u) are charge and current multipole
moments, respectively, whileYa

E,lm(u,f) and Ya
B,lm(u,f)

are the vectorial spherical harmonics described in Appendix
A. In a calculation accurate to orderv3 in a weak-field, slow-
motion approximation, we find

Ilm
~3!~u!5Ilm

~2!~u!12ME
2`

u F lnS u2u8

4M D1b l
em1gG

3Ïlm
~0!~u8!du8 ~1.8!

and

Slm
~3!~u!5Slm

~2!~u!12ME
2`

u F lnS u2u8

4M D1b l
em1gG

3S̈lm
~0!~u8!du8, ~1.9!

where

b l
em5c~ l 11!1

1

2
2

1

2l ~ l 11!
. ~1.10!

These relations are analogous to Eq.~1.5! and have the same
physical interpretation. The second-order multipole moments
are given by

Ilm
~2!~u!5

4p

~2l 11!!!
Al 11

l S d

duD l

3E F11
l 13

2~ l 11!~2l 13!
~r ]u!2

2~ l 21!
M

r Gs~u,xW !r l Ȳlm~u,f!dxW ~1.11!

and

Slm
~2!~u!52

4p

~2l 11!!! S d

duD lE F11
~r ]u!2

2~2l 13!

2
l 221

l

M

r GJa~u,xW !r l Ȳa
B,lm~u,f!dxW ,

~1.12!

where s[Jt2r ]uJr /( l 11). These relations are analogous
to Eq. ~1.4! and have the same physical interpretation. Fi-
nally, the zeroth-order momentsIlm

(0)(u) andSlm
(0)(u) are ob-

tained from Eqs.~1.11! and ~1.12! by discarding allO(v2)
terms; in this limit,s5Jt.

D. Gravitational radiation

The case of gravitational radiation is conceptually very
different from the previous cases, because of the fact that the
spacetime metric is now dynamical. However, if we assume
that Tab(x), the given stress-energy tensor responsible for
the radiation, is small, then the Einstein field equations may
be linearized in the small deviation of the metric with respect
to the Schwarzschild form. This results in a wave equation
for the metric perturbation@28#, and mathematically, the
gravitational-radiation problem ends up resembling closely
the scalar and electromagnetic analogues. This is the prob-
lem considered in Sec. V.

The traceless-transverse gravitational-wave field is given
by @29#

hab
rad~ t,xW !5

1

r (
l 52

`

(
m52 l

l

@Ilm~u!Tab
E2,lm~u,f!

1Slm~u!Tab
B2,lm~u,f!#, ~1.13!

where Ilm(u) and Slm(u) are mass and current multipole
moments, respectively, whileTab

E2,lm(u,f) and Tab
B2,lm(u,f)
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are the tensorial spherical harmonics described in Appendix
A. The weak-field, slow-motion approximations to the mul-
tipole moments are

Ilm
~3!~u!5Ilm

~2!~u!12ME
2`

u F lnS u2u8

4M D1b l
grav,mass1gG

3Ïlm
~0!~u8!du8 ~1.14!

and

Slm
~3!~u!5Slm

~2!~u!12ME
2`

u F lnS u2u8

4M D1b l
grav,current1gG

3S̈lm
~0!~u8!du8, ~1.15!

where

b l
grav,current5c~ l 11!1

1

2
2

2

l ~ l 11!
~1.16!

and

b l
grav,mass5b l

grav,current2
6

~ l 21!l ~ l 11!~ l 12!
. ~1.17!

The second-order moments are given by

Ilm
~2!~u!5

16p

~2l 11!!!
A~ l 11!~ l 12!

2~ l 21!l S d

duD l

3E F11
l 19

2~ l 11!~2l 13!
~r ]u!2

2~ l 12!
M

r Gs~u,xW !r l Ȳlm~u,f!dxW ~1.18!

and

Slm
~2!~u!52

16p

~2l 11!!!
A2~ l 12!

l 21 S d

duD l

3E F11
l 14

2~ l 12!~2l 13!
~r ]u!2

2
~ l 21!~ l 12!

l

M

r GJa~u,xW !r l Ȳa
B,lm~u,f!dxW ,

~1.19!

where s[Ttt1Trr 1r 2Tuu1r 2sin2uTff24r]uT
tr/(l11), Ja

[Tta2r ]uTra/( l 12). Finally, the zeroth-order expressions
are recovered by discarding allO(v2) terms from Eqs.~1.18!
and ~1.19!; in this limit, s5Ttt andJa5Tta.

Equations~1.14!–~1.19! were previously derived~in a dif-
ferent representation involving symmetric tracefree tensors!
by Blanchet@30# ~see also Refs.@16# and @19#! on the basis
of post-Newtonian theory. The physical interpretation of
these results is the same as in the previous cases, and the

results share the same degree of generality as the previous
ones~see the concluding paragraph of Sec. I B!.

E. Universality of the tail correction

A survey of the preceding subsections reveals that the
multipole moments of scalar, electromagnetic, and gravita-
tional radiation fields all share the same mathematical struc-
ture, with terms of orderv2 near-zone corrections depending
on the detailed behavior of the source and with terms of
order v3 wave-propagation corrections independent of the
detailed behavior of the source. And while the near-zone
corrections are local in time, the wave-propagation correc-
tions introduce a nonlocality.

We also observe that the tail corrections depend on the
multipole orderl and on the field’s type only through the
terms involving the variousb l ’s. These terms are actually
instantaneous, because after integration overdu8, they are
found to be proportional to the first derivative of the zeroth-
order moments evaluated atu. The truly nonlocal tail correc-
tions, which involve the weighting function ln(u2u8), are
independentof multipole order and field type. This remark-
able result, that the tail correction has auniversal form, is
one of the main new contributions of this paper.

F. Physical origin of the tail term

The nonlocality~in time! of the radiative multipole mo-
ments is heuristically understood as arising from the scatter-
ing of the radiation field by the spacetime curvature sur-
rounding the massM , and a survey of our previous results
indeed reveals that the tail terms are proportional toM . Now,
the mass parameter enters twice in the metric of an asymp-
totically flat spacetime: Assuming that the weak-field metric
is expressed in Schwarzschild-like coordinates, we havegtt

;2112M /r and grr ;112M /r at large distances. Be-
cause of this degeneracy, it is impossible to tell whether it is
‘‘ gtt’s mass’’ which is ‘‘mostly responsible’’ for the tail ef-
fect or whether it is ‘‘grr ’s mass,’’ or whether both are
‘‘equally responsible.’’ In other words, we cannot tell how
the temporal and spatial curvatures separately contribute to
the tail effect.

We examine this question in Sec. VI for the specific case
of scalar radiation. To lift the degeneracy, we artificially in-
troduce an additional mass parameterĝM in the description
of our spacetime. This is defined so that the metric functions
are now given bygtt;2112M /r and grr ;112ĝM /r in
the weak-field limit. General relativity is recovered by set-
ting ĝ51.

Integrating the scalar wave equation for the modified
spacetime yields Eq.~1.1! with

Zlm
~3!~u!5Zlm

~2!~u!1~11ĝ !ME
2`

u F lnS u2u8

4M D1b l
scalar1gG

3Z̈lm
~0!~u8!du8, ~1.20!

whereb l
scalar5c( l 11)1ĝ/(11ĝ),

4792 56STEPHEN W. LEONARD AND ERIC POISSON



Zlm
~2!~u!5

4p

~2l 11!!! S d

duD lE F11
~r ]u!2

2~2l 13!

2
~2l 11!ĝ21

2

M

r
Gr~u,xW !r l Ȳlm~u,f!dxW ,

~1.21!

andZlm
(0)(u) is given by Eq.~1.3!. These expressions reduce

to Eqs.~1.5! and~1.4!, respectively, whenĝ51. We see that
in the modified spacetime, the tail terms are proportional to
(11ĝ). This allows us to conclude that in general relativity,
the temporal and spatial curvatures contributeequally to the
tail effect. This intriguing observation is another main con-
tribution of this paper.

G. Spacetime approach

The final section of the paper, Sec. VII, contains an alter-
native derivation of Eqs.~1.1!–~1.6! based on the spacetime
approach of DeWitt and Brehme@3#. For simplicity, we
again restrict attention to the case of scalar radiation.

The mathematical methods employed in Secs. III, IV, and
V to derive expressions for the radiative multipole moments
of integer-spin fields are based upon a separation of variables
approach made possible by the symmetries of the Schwarzs-
child solution. These methods, though convenient for practi-
cal computations, do not reflect closely the physical picture
of wave propagation in curved spacetime. In particular, the
distinction between direct terms~which are local in time! and
tail terms~which are nonlocal! emerges only at the very end
of the calculation.

The spacetime approach of Sec. VII is based instead on
G(x,x8), the DeWitt-Brehme retarded Green’s function for
the scalar wave equation@3#. As was mentioned in Sec. I A,
G(x,x8) is expressed as a sum of two parts. The first part has
support on, and only on, the past light cone of the field point
x, and gives rise to the direct terms in the waves. The second
part has support inside the past light cone ofx, and gives rise
to the tail terms. In the spacetime approach of DeWitt and
Brehme, the mathematics reflects the physical picture quite
closely.

The radiative multipole moments calculated in Sec. VII
agree precisely with those calculated in Sec. III. Therefore,
the calculation based on the spacetime approach tells us
nothing new in terms of the final answer. Nevertheless, this
alternative derivation is very instructive, because of the fact
that the mathematical origin of the tail correction is clear
from the outset. We regard this as another important contri-
bution of this paper.

H. Organization of this paper

The remaining sections of the paper contain the detailed
derivations of the results summarized above. After laying
some preliminary ground work in Sec. II, we integrate the
wave equations for scalar, electromagnetic, and gravitational
radiation in Schwarzschild spacetime in Secs. III, IV, and V,
respectively. All calculations are carried out in a weak-field,
slow-motion approximation. In Sec. VI we integrate the sca-
lar wave equation for the artificially modified spacetime.

And, finally, in Sec. VII we integrate the scalar wave equa-
tion using the spacetime approach of DeWitt and Brehme
@3#. Various technical details are relegated to five Appen-
dixes.

II. GENERALIZED REGGE-WHEELER EQUATION

The generalized Regge-Wheeler equation@31#

H d2

dr* 2
1v22 f F l ~ l 11!

r 2
2

2~s221!M

r 3 G J Xl~v;r !50

~2.1!

has long been known to govern the evolution of integer-spin
fields in Schwarzschild spacetime. Here,r is the usual
Schwarzschild coordinate,f 5122M /r ~with M denoting
the mass of the spacetime!, andd/dr* 5 f d/dr. Also, v de-
notes the frequency of the field,l its multipole order, ands
5$0,1,2% its spin. The precise relation between the mode
functionsXl(v,r ) and the corresponding scalar, electromag-
netic, and gravitational fields will be described in Secs. III,
IV, and V, respectively. In this section we consider the
purely mathematical problem of integrating Eq.~2.1! in the
low-frequency limit.

We first examine the question of boundary conditions. It
is easy to check thatXl(v;r ) must behave ase6 ivr* , where

r * 5r 12M ln~r /2M21!, ~2.2!

in the asymptotic limitsr→2M , r→`. It will become clear
in the following sections that the desired solution is the one
which describes purely incoming waves at the black-hole
event horizon. We therefore select the functionXl

H(v;r ),
such that

Xl
H~v;r→2M !;~const!e2 ivr* . ~2.3!

The constant appearing in front ofe2 ivr* determines the
overall normalization of the Regge-Wheeler function. Be-
cause our final results will be independent of this normaliza-
tion, we shall leave this constant arbitrary. At infinity,
Xl

H(v;r ) describes a superposition of incoming and outgoing
waves. Consequently,

Xl
H~v;r→`!;Al

in~v!e2 ivr* 1Al
out~v!eivr* . ~2.4!

The amplitudesAl
in(v) andAl

out(v) are determined by solv-
ing the differential equation.

We wish to integrate Eq.~2.1! in the low-frequency limit,
for M uvu!1. Without loss of generality, we henceforth take
v to be positive; the negative-frequency case can easily be
recovered from the relationXl

H(2v)5 X̄l
H(v), where an

overbar denotes complex conjugation. To facilitate the cal-
culations, we define the small~positive! quantity

«[2Mv, ~2.5!

and introduce a new dependent variable

z5vr . ~2.6!
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After substitution and expansion in powers of«, the gener-
alized Regge-Wheeler equation becomes

H d2

dz2
112

l ~ l 11!

z2
1

«

zF1

z

d

dz
122

l ~ l 11!112s2

z2 G
1O~«2!J Xl~z!50. ~2.7!

It should be noted that when expanding in powers of«, it
was implicitly assumed thatz@«. Our low-frequency solu-
tion will therefore be restricted to the domainr @2M . Our
task is now to integrate Eq.~2.7! to first order in«. We
proceed by iteration, by writingXl5Xl

(0)1«Xl
(1)1O(«2),

substituting into Eq.~2.7!, and solving order by order@32#.
Because we are restricted to the domainz@«, which ex-

cludes the event horizon atz5«, Eq. ~2.3! cannot be im-
posed directly, and the issue of boundary conditions must be
reexamined. This question was addressed by Poisson and
Sasaki@33#, who integrated thes52 Regge-Wheeler equa-
tion in the domainz!1 ~which includes the horizon!, im-
posed the correct boundary condition atz5«, and then
matched the resulting function to the general solution of Eq.
~2.7! in the common domain«!z!1. Such an analysis will
not be repeated here. It suffices to state the conclusion: To be
compatible with the incoming-wave boundary condition at
the horizon, the solution to Eq.~2.7! must be regular in the
~unphysical, and unrealized! limit z→0.

With this in mind, the desired zeroth-order solution to Eq.
~2.7! is

Xl
H~0!~z!5z jl~z!, ~2.8!

where j l(z) are the spherical Bessel functions of the first
kind. It should be noted that Eq.~2.8! provides a particular
choice for the overall normalization ofXl

H(z). The first-order
solution is then determined by solving

F d2

dz2
112

l ~ l 11!

z2 GXl
~1!~z!52Wl~z!, ~2.9!

where

Wl~z!5
1

zF1

z

d

dz
122

l ~ l 11!112s2

z2 Gz jl~z!.

~2.10!

The general solution to Eq.~2.9! is

Xl
~1!~z!5z jl~z!Fa1Ez

z8nl~z8!Wl~z8!dz8G
1znl~z!Fb2Ez

z8 j l~z8!Wl~z8!dz8G ,
~2.11!

wherenl(z) are the spherical Bessel functions of the second
kind, anda andb are constants which must be chosen so that
Xl

(1)(z) satisfies the regularity condition atz50.

The integrations of Eq.~2.11! can be carried out explic-
itly. First, we use the recurrence relations among spherical
Bessel functions~Ref. @34#, p. 439! to write Wl(z) in the
form

zWl~z!52z jl~z!2
~ l 2s!~ l 1s!

2l 11
j l 21~z!

2
~ l 2s11!~ l 1s11!

2l 11
j l 11~z!. ~2.12!

Second, we evaluate the integrals using the results found in
the Appendix of Ref.@35#. After straightforward manipula-
tions, we arrive at

Xl
~1!~z!5@a2Al~z!#z jl~z!1@b1g1Bl~z!#znl~z!

2
~ l 2s!~ l 1s!

2l ~2l 11!
z jl 21~z!

1
~ l 2s11!~ l 1s11!

2~ l 11!~2l 11!
z jl 11~z!, ~2.13!

where

Al~z!5Si~2z!1z2n0~z! j 0~z!

1 (
p51

l 21 S 1

p
1

1

p11D z2np~z! j p~z! ~2.14!

and

Bl~z!5Ci~2z!2g2 ln~2z!1z2 j 0
2~z!

1 (
p51

l 21 S 1

p
1

1

p11D z2 j p
2~z!. ~2.15!

Here, Si and Ci are the sine and cosine integral functions,
respectively, andg.0.577 21 is Euler’s number.

In Appendix B, the functionsAl(z) andBl(z) are evalu-
ated in the limitz→0. We find

Al~z!5
z

l
1O~z3!,

Bl~z!52
z2l 12

l ~ l 11!~2l 21!!! ~2l 11!!!
1O~z2l 14!.

~2.16!

It follows that X(1)(z) goes to zero in the limitz→0 pro-
vided thatb52g. Otherwise, the function diverges. This
choice forb therefore selectsXl

H(1)(z), the desired solution.
The constanta remains arbitrary, because it affects only the
overall normalization of the solution;a can be set to zero
without loss of generality.

Integration of the generalized Regge-Wheeler function, to
first order in«, is now completed. We have pointed out that
our answer incorporates a specific choice of overall normal-
ization which is provided by Eq.~2.8!. We now wish to form
a normalization-independent quantityXl

H(z)/Al
in , which will

be required in the following sections of this paper. We must
therefore calculateAl

in . This involves the evaluation of
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Xl
H(z), as given by Eqs.~2.8! and~2.13!–~2.15!, in the limit

z→`, and a comparison with the low-frequency limit of Eq.
~2.4!. Such a calculation is carried out in Appendix C. The
final result is quoted here:

Xl
H~z!

Al
in

52~2 i ! l 11ei«~ ln2«2b l !S 11
p

2
« D zH @12«Al~z!# j l~z!

1«Bl~z!nl~z!2«
~ l 2s!~ l 1s!

2l ~2l 11!
j l 21~z!

1«
~ l 2s11!~ l 1s11!

2~ l 11!~2l 11!
j l 11~z!1O~«2!J , ~2.17!

where

b l5c~ l 11!1
1

2
2

s2

2l ~ l 11!
, ~2.18!

with c( l 11)52g1(k51
l k21 denoting the digamma func-

tion.
Finally, we evaluate Eq.~2.17! in the limit z!1, to a

degree of accuracy sufficient for our purposes in the follow-
ing sections of this paper. For this, we use Eq.~2.16! and the
series expansions for the spherical Bessel functions. We ar-
rive at

Xl
H~v;r !

Al
in~v!

5
2

~2l 11!!!
e2iM v~ ln4M uvu2b l !~11pM uvu!

3~2 ivr ! l 11H 12
~vr !2

2~2l 13!
2

~ l 2s!~ l 1s!

l

M

r

1O@~vr !4,Mv2r ,~M /r !2#J . ~2.19!

This equation holds both for positive and negative frequen-
cies.

III. SCALAR RADIATION

A. Wave equation

We begin our study of radiative multipole moments in
curved spacetime with the simplest case, that of a real scalar
field F(x) obeying the wave equation

hF~x!524pr~x!. ~3.1!

Here,h5gab¹a¹b is the curved spacetime wave operator,
r(x) is an unspecified source function, andx collectively
designates all spacetime coordinates. The spacetime is as-
sumed to be Schwarzschild~with massM ), and the usual
coordinates$t,r ,u,f% are adopted.

Because the spacetime is static and spherically symmetric,
the scalar field can be decomposed according to

F~x!5
1

r E dv(
lm

Rlm~v;r !Ylm~u,f!e2 ivt, ~3.2!

where the sums overl andm are restricted byl>0, umu< l .
Substituting this into Eq.~3.1!, we obtain the following or-
dinary differential equation for the radial functionRlm(v;r ):

H d2

dr* 2
1v22 f F l ~ l 11!

r 2
1

2M

r 3 G J Rlm~v;r !5 f Tlm~v;r !,

~3.3!

whered/dr* 5 f d/dr and f 5122M /r . The source term is
given by

Tlm~v;r !524pr E r̃ ~v,xW !Ȳlm~u,f!dV, ~3.4!

wheredV5d cosu df, an overbar denotes complex conjuga-
tion, and

r̃ ~v,xW !5
1

2pE r~ t,xW !eivtdt ~3.5!

is the Fourier transform ofr(x). The symbolxW collectively
designates all spatial coordinates.

B. Solution

Equation ~3.3! has a Sturm-Liouville form, and it can
therefore be solved in terms of a Green’s function con-
structed from two linearly independent solutions to the ho-
mogeneous problem. Which solutions are selected depends
on the boundary conditions we wish to impose onRlm(v;r ).
The appropriate choice here is dictated by the physical re-
quirement that the scalar field must represent waves which
are purely ingoing at the black hole horizon (r 52M ) and
purely outgoing atr 5`. This amounts to integrating Eq.
~3.1! with a no-incoming-radiation initial condition.

We therefore seek functionsRl
H(v;r ) and Rl

`(v;r ), so-
lutions to

H d2

dr* 2
1v22 f F l ~ l 11!

r 2
1

2M

r 3 G J Rl~v;r !50, ~3.6!

and such that

Rl
H~v;r→2M !;e2 ivr* ,

Rl
H~v;r→`!;Ql

in~v!e2 ivr* 1Ql
out~v!eivr* , ~3.7!

Rl
`~v;r→`!;eivr* ,

where r * 5r 12M ln(r/2M21). Equation ~3.7! indicates
that Rl

H(v;r ) describes waves which are purely ingoing at
the black-hole horizon, whileRl

`(v;r ) describes waves
which are purely outgoing at infinity. The behavior of
Rl

`(v;r ) nearr 52M will not be needed.
In terms of these functions, the solution to Eq.~3.3! takes

the form
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Rlm~v;r !5
1

2ivQl
in~v!

3FRl
`~v;r !E

2M

r

Tlm~v;r 8!Rl
H~v;r 8!dr8

1Rl
H~v;r !E

r

`

Tlm~v;r 8!Rl
`~v;r 8!dr8G ,

~3.8!

where the factor 2ivQl
in(v) is the conserved Wronskian of

the functionsRl
H(v;r ) andRl

`(v;r ).
We are interested in the radiative part of the field, which

dominates at large distances from the source. More precisely,
we define the radiative field byrF rad(x)5 limr→`rF(x),
which expresses the fact that at large distances,F(x)
5F rad(x)1O(1/r 2). Evaluating Eq.~3.8! in the limit r→`
@assuming thatTlm(v;r ) has compact support#, we obtain

Rlm~v;r→`!;Z̃lm~v!eivr* , ~3.9!

where

Z̃lm~v![
1

2ivQl
in~v!

E
2M

`

Tlm~v;r !Rl
H~v;r !dr.

~3.10!

Finally, substituting this into Eq.~3.2! yields

F rad~ t,xW !5
1

r (lm Zlm~u!Ylm~u,f!, ~3.11!

whereu5t2r * is retarded time, and

Zlm~u!5E Z̃lm~v!e2 ivudv. ~3.12!

The quantitiesZlm(u), or their Fourier transformZ̃lm(v),
will be referred to as theradiative multipole momentsof the
scalar fieldF(x).

C. Slow-motion approximation

In Eq. ~3.10!, the radiative multipole moments are written
in exact form in terms of the sourceTlm(v;r ) and the func-
tion Rl

H(v;r )/Ql
in(v). While the source function will be left

unspecified, we now wish to find an expression for
Rl

H(v;r )/Ql
in(v). To do this we must resort to approxima-

tions, because Eq.~3.6! cannot be integrated in closed form.
We will derive approximate expressions for the radiative

multipole moments, and these will be valid in weak-field,
slow-motion situations. To formulate this approximation pre-
cisely, we introduce a characteristic radiusr c , to be thought
of as the radial coordinate of a typical portion of the source.
@In other words,Tlm(v;r ) is assumed to be appreciably dif-
ferent from zero only for values ofr comparable tor c .# We
introduce also a characteristic time 1/vc , to be thought of as
the typical time scale over which the source moves.@In other
words,Tlm(v;r ) is assumed to be appreciably different from
zero only for values ofv comparable tovc .# Finally, we

introduce a characteristic velocityv!1, which will be the
smallness parameter of our approximation. In terms of these
quantities, the requirement that the source motions must be
slow translates to

vcr c5O~v !. ~3.13!

The virial theorem for gravitationally bound systems then
implies that the gravitational field must be weak inside the
source:

M /r c5O~v2!. ~3.14!

Finally, the slow-motion approximation implies that the sca-
lar waves produced by the source’s motion must have low
frequencies:

Mvc5O~v3!. ~3.15!

Our calculation of the radiative multipole moments will be
carried out to orderv3 beyond the leading-order expressions.

We now proceed. It is evident that Eq.~3.6! is nothing but
Eq. ~2.1!, the generalized Regge-Wheeler equation, withs
50. So we have, immediately,

Rl
H~v;r !

Ql
in~v!

5
Xl

H~v;r !

Al
in~v!

. ~3.16!

Equation~2.19! may therefore be substituted into Eq.~3.10!.
After using Eq.~3.4!, we obtain

Z̃lm~v!5
4p

~2l 11!!!
e2iM v~ ln4M uvu2b l !~11pM uvu!~2 iv! l

3E F12
~vr !2

2~2l 13!
2 l

M

r
1O~v4!G

3 r̃ ~v,xW !r l Ȳlm~u,f!dxW , ~3.17!

where

b l5c~ l 11!1
1

2
~3.18!

anddxW5r 2drdV.
The physical interpretation of this result comes more eas-

ily if we first invert the Fourier transform. Thev-dependent
prefactors complicate this procedure slightly, but an explicit
expression forZlm(u) can nevertheless be found~see Appen-
dix D!. We obtain

Zlm~u!5Zlm~u!12ME
2`

u F lnS u2u8

4M D1b l1gG
3Z̈lm~u8!du8, ~3.19!

where overdots indicate differentiation with respect tou8 and

Zlm~u!5
4p

~2l 11!!! S d

duD lE F11
~r ]u!2

2~2l 13!
2 l

M

r

1O~v4!Gr~u,xW !r l Ȳlm~u,f!dxW . ~3.20!
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Equation ~3.20! indicates that to leading order,Zlm(u) is
given by thel th retarded-time derivative of*rr l ȲlmdxW . This
justifies our referring to these quantities as multipole mo-
ments. Equation~3.20! also shows that all corrections of or-
derv2 appearinsidethe spatial integral, and that they depend
on the detailed behavior of the source function. These cor-
rections arenear-zonecorrections, and they are purely local
in time: As with the leading-order term, they involve the
value of the source at the retarded timeu only. This is not so
for the corrections of orderv3, as is shown by Eq.~3.19!:
These involve the value of the source atall timesprior to the
retarded timeu. Furthermore, theO(v3) corrections appear
outsidethe spatial integral, and they are independent of the
detailed behavior of the source. These arewave-propagation
corrections. Equations~3.19! and ~3.20!, with b l given by
Eq. ~3.18!, are equivalent to Eqs.~1.4!–~1.6!.

We recognize the important distinction between near-zone
and wave-propagation corrections. Near-zone corrections de-
pend on the detailed behavior of the source and are local in
time. Wave-propagation corrections, on the other hand, do
not depend on the detailed behavior of the source, and are
nonlocal in time. This nonlocality is heuristically understood
as arising from the scattering of the radiation by the space-
time curvature surrounding the source. This scattering causes
part of the information about the state of the source to be
delayed further than what is strictly required by causality.
The integral term in Eq.~3.19! is often called thetail term,
and wave-propagation corrections are often calledtail cor-
rections.

IV. ELECTROMAGNETIC RADIATION

A. Teukolsky equation

In this section, we derive expressions for the radiative
multipole moments of an electromagnetic field in Schwarzs-
child spacetime. The Maxwell equations for this spacetime
have been cast, by Teukolsky@36#, in a form convenient for
our purposes. In the Teukolsky formalism, the radiative part
of the electromagnetic field is represented by the complex
quantity F25Fabm̄anb , whereFab is the field tensor,na
521/2(f ,1,0,0) a null vector pointing radially inward, and
m̄a5(0,0,r ,2 ir sinu)/A2 a spatial vector with zero norm. As
before, an overbar denotes complex conjugation.

The field F2(x) has spin weights521 ~see Appendix
A!, and it can be decomposed according to

F2~x!5
1

r 2E dv(
lm

Rlm~v;r !21Ylm~u,f!e2 ivt,

~4.1!

where 21Ylm(u,f) are spherical harmonics of spin weight
21 ~see Appendix A!. The sums overl andm are restricted
by l>1, umu< l . The radial function then satisfies the inho-
mogeneous Teukolsky equation@36#

H r 2f
d2

dr2
1

1

f
@~vr !222ivr ~123M /r !#2 l ~ l 11!J

3Rlm~v;r !5Tlm~v;r !, ~4.2!

where f 5122M /r .
The source termTlm(v;r ) is constructed as follows from

Ja(x), the ~unspecified! current density. One first forms the
contractions

0J52Jana , 21J52Jam̄a , ~4.3!

then evaluates the Fourier transforms

sJ̃ ~v,xW !5
1

2pE sJ~ t,xW !eivtdt, ~4.4!

and takes the projections

sJ̃ lm~v;r !5E sJ̃ ~v,xW !sȲlm~u,f!dV. ~4.5!

The source term is finally given by@36#

Tlm~v;r !52p(
s

splsDsJ̃ lm~v;r !, ~4.6!

where the sum runs froms50 to s521,

spl5HA2l ~ l 11!, s50

1, s521,
~4.7!

and

sD5H r 3, s50,

rLr 3, s521,
~4.8!

with L5 f d/dr1 iv.

B. Solution

Equation~4.2! is integrated by means of a Green’s func-
tion, in a manner similar to what was done in Sec. III. We
introduce two functionsRl

H(v;r ) andRl
`(v;r ), solutions to

the homogeneous Teukolsky equation@Eq. ~4.2! with
Tlm(v;r )50#, with asymptotic behavior@36#

Rl
H~v;r→2M !; f e2 ivr* ,

Rl
H~v;r→`!;Ql

in~v!~ ivr !21e2 ivr* 1Ql
out~v!~ ivr !eivr* ,

~4.9!

Rl
`~v;r→`!;~ ivr !eivr* ,

wherer * 5r 12M ln(r/2M21). In terms of these, the radial
function is given by

Rlm~v;r !5
1

2ivQl
in~v!

3FRl
`~v;r !E

2M

r Tlm~v;r 8!Rl
H~v;r 8!

r 82f 8
dr8

1Rl
H~v;r !E

r

`Tlm~v;r 8!Rl
`~v;r 8!

r 82f 8
dr8G ,

~4.10!
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where f 85122M /r 8.
As before, we are mostly interested in the behavior of the

radial function nearr 5`. Equation~4.10! gives

Rlm~v;r→`!;Z̃~v!~ ivr !eivr* , ~4.11!

where

Z̃lm~v![
1

2ivQl
in~v!

E
2M

` Tlm~v;r !Rl
H~v;r !

r 2f
dr.

~4.12!

These quantities are the~Fourier transform of the! radiative
multipole moments of the electromagnetic field.

C. Adjoint operators and Chandrasekhar transformation

Equation~4.12! will not be our final expression for the
radiative multipole moments. In Eq.~4.12!, Tlm(v;r ) is ob-
tained by applying the differential operatorssD on

sJ̃ lm(v;r ), the projections of the current density. To have to
take derivatives of these functions is an inconvenience, and
we would like to express the moments directly in terms of

sJ̃ lm(v;r ). It is easy to show, by straightforward integration
by parts, that if we define the adjoint operators

sD†5H r 3, s50,

2r 5L̄r 21, s521,
~4.13!

whereL̄5 f d/dr2 iv, then Eq.~4.12! is equivalent to

Z̃lm~v!5
p

ivQl
in~v!

(
s

splE
2M

` sJ̃ lm~v;r ! sD†Rl
H~v;r !

r 2f
dr.

~4.14!

Although Z̃lm(v) is now expressed directly in terms of

sJ̃ lm(v;r ), Eq. ~4.14! still will not be our final expression
for the radiative multipole moments. We now want to write
Rl

H(v;r ) in terms ofXl
H(v;r ), the solution to the general-

ized Regge-Wheeler equation~with s51) considered in Sec.
II. The relationship between these functions was trivial in the
case of scalar radiation@cf. Eq. ~3.16!#. That such a relation-
ship exists in the case of gravitational radiation was shown
by Chandrasekhar@37#, who also provided it explicitly. We
show in Appendix E that for the case of electromagnetic
radiation, the Chandrasekhar transformation is given by

Rl
H~v;r !

Ql
in~v!

5
22

l ~ l 11!
rL

Xl
H~v;r !

Al
in~v!

. ~4.15!

Substituting this into Eq.~4.14! and taking into account the
fact thatL̄L5 l ( l 11) f /r 2 when acting onXl

H(v;r ), we ar-
rive at

Z̃lm~v!5
22p

l ~ l 11!ivAl
in~v!

(
s

spl

3E
2M

`

sJ̃ lm~v;r !sGXl
H~v;r !dr, ~4.16!

where we have introduced the operators

sG5H r 2f 21L, s50,

2 l ~ l 11!r , s521.
~4.17!

We emphasize thatXl
H(v;r ) denotes the solution to thes

51 generalized Regge-Wheeler equation with boundary
conditions~2.3! and ~2.4!. Equation~4.16! will be our final
expression for the radiative multipole moments.

D. Vector potential

The physical meaning of the quantitiesZ̃lm(v) becomes
more transparent if we use Eqs.~4.1! and~4.11! to construct
Aa

rad(x), the vector potential describing the radiative part of
the field.@This is defined similarly toF rad(x), encountered in
Sec. III.#

We may choose a gauge in whichAa
rad(x) is purely trans-

verse to the direction of propagation, which, at large dis-
tances from the source, is radially outward. This implies that
the vector potential may be expressed as

Aa
rad5Ama1 Ām̄a , ~4.18!

wherema5(0,0,r ,ir sinu)/A2 is complex conjugate tom̄a .
It should be noted that the quantityA(x) is complex, but that
Aa

rad(x) is real.
The radiative part of the electromagnetic field tensor,

F rad
ab(x), can easily be computed from Eq.~4.18!, and the

Teukolsky field F2(x)5F rad
abm̄anb follows immediately.

Keeping in mind that we are working nearr 5`, we find

F252A,ana52
]A

]u
, ~4.19!

whereu5t2r * . Combining this with Eqs.~4.1! and ~4.11!
yields

A~ t,xW !5
1

r (lm Zlm~u!21Ylm~u,f!, ~4.20!

where

Zlm~u!5E Z̃lm~v!eivudv. ~4.21!

This shows thatZlm(u) are indeed the radiative multipole
moments of the electromagnetic field.

The vector potential is obtained by substituting Eq.~4.20!
into Eq. ~4.18!. The spin-weighted spherical harmonics then
combine with the vectorsma and m̄a to form the vectorial
spherical harmonics described in Appendix A.@See Eq.
~A16!; Eq. ~A15! must also be used.# We find

4798 56STEPHEN W. LEONARD AND ERIC POISSON



Aa
rad~ t,xW !5

1

r (lm @Ilm~u!Ya
E,lm~u,f!1Slm~u!Ya

B,lm~u,f!#,

~4.22!

where we have introduced thechargemultipole moments

Ilm~u!5
1

A2
@Zlm~u!1~21!mZ̄l ,2m~u!# ~4.23!

and thecurrent multipole moments

Slm~u!5
i

A2
@Zlm~u!2~21!mZ̄l ,2m~u!#. ~4.24!

The reason for using this terminology will become clear be-
low. For the time being we may mention that the first group

of terms in Eq.~4.22!, that involving the charge moments,
has electric-type parity, while the second group, involving
the current moments, has magnetic-type parity~see Appen-
dix A!. The fact that two sets of multipole moments are
needed to formAa

rad(x) is related to the fact that the electro-
magnetic field possesses two radiative degrees of freedom.

E. Slow-motion approximation

We now compute the radiative multipole moments~4.16!
in the slow-motion approximation. The calculation is similar
to the one presented in Sec. III C.

We begin by substituting Eq.~2.19!, with s51, into Eq.
~4.16!. After using Eqs.~4.3!, ~4.5!, ~4.7!, and ~4.17!, we
obtain the lengthy expression

Z̃lm~v!5
4p

~2l 11!!!
Tl~v! ~2 iv! lSAl 11

2l E H 12
l 13

2~ l 11!~2l 13!
~vr !22~ l 21!

M

r

1
ivr

l 11F12
~vr !2

2~2l 13!
2

l 222l 21

l

M

r G1O~v4!J ~ f r̃ 1 J̃ r !r l
0ȲlmdxW

2E F12
~vr !2

2~2l 13!
2

l 221

l

M

r
1O~v4!G

21

J̃ r l
21ȲlmdxW D . ~4.25!

Here, r̃ (v,xW )[ J̃ t(v,xW ) is the Fourier transform of the charge density, and

Tl~v!5e2iM v~ ln4M uvu2b l !~11pM uvu!, ~4.26!

whereb l is given by Eq.~2.18! with s51:

b l5c~ l 11!1
1

2
2

1

2l ~ l 11!
. ~4.27!

Inspecting Eq.~4.25!, we notice that it does not have the same mathematical structure as Eq.~3.17!, which gives the
radiative multipole moments of a scalar field. In particular, we see thatZ̃lm(v) possesses correction terms that are linear inv
@the termsivr r̃ /( l 11) andJ̃ r , the latter being one power ofv smaller thanr̃ #, as well as many third-order terms that depend
explicitly on r , and which cannot be taken outside the integral. This apparently contradicts our expectation thatZ̃lm(v) should
come with only near-zone corrections of orderv2 and wave-propagation corrections of orderv3.

However, expression~4.25! is not unique, and we may use the continuity equationJ ;a
a 50 to remove the unwanted terms.

When written out explicitly, this reads

r ,t52
1

r 2
~r 2Jr ! ,r2

1

A2r
~ ]̂21J1 ]̌1J!, ~4.28!

where]̂ and ]̌ are the ‘‘edth’’ differential operators described in Appendix A, and

1J52Jama . ~4.29!

The continuity equation gives rise to an integral identity if we multiply both sides byr n
0Ȳlm(u,f) and integrate overdxW . After

a Fourier transform and several partial integrations@using Eqs.~A13! and ~A14!#, we obtain

2 ivE r̃ r n
0ȲlmdxW5nE J̃ r r n21

0ȲlmdxW2Al ~ l 11!

2 E ~21 J̃ 21Ȳlm21 J̃1Ȳlm!r n21dxW . ~4.30!

We now use this identity to remove all terms proportional toiv r̃ (v,xW ) in Eq. ~4.25!. After some remarkable cancellations,
wherein all unwanted terms disappear, we arrive at our final expression for the radiative multipole moments:
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Z̃lm~v!5
4p

~2l 11!!!
Tl~v! ~2 iv! l HAl 11

2l E F12
l 13

2~ l 11!~2l 13!
~vr !22~ l 21!

M

r
1O~v4!G S r̃ 1

ivr

l 11
J̃ r D r l

0ȲlmdxW

2
1

2E F12
~vr !2

2~2l 13!
2

l 221

l

M

r
1O~v4!G~21 J̃ 21Ȳlm11 J̃1Ȳlm!r ldxW J . ~4.31!

We see that this expression has the expected form, with allO(v2) corrections occurring inside the spatial integrals, and all
O(v3) corrections occurring outside.

We now separateZ̃lm(v) into charge and current moments, according to the Fourier transform of Eqs.~4.23! and ~4.24!.
This gives

Ĩlm~v!5
4p

~2l 11!!!
Al 11

l
Tl~v!~2 iv! lE F12

l 13

2~ l 11!~2l 13!
~vr !22~ l 21!

M

r
1O~v4!G

3F r̃ ~v,xW !1
ivr

l 11
J̃ r~v,xW !G r l

0Ȳlm~u,f!dxW ~4.32!

and

S̃lm~v!52
2A2ip

~2l 11!!!
Tl~v!~2 iv! lE F12

~vr !2

2~2l 13!
2

l 221

l

M

r
1O~v4!G@21 J̃ ~v,xW !21Ȳlm~u,f!

11 J̃ ~v,xW !1Ȳlm~u,f!#r ldxW . ~4.33!

The corresponding expressions in the time domain~see Appendix D! are

Ilm~u!5I lm~u!12ME
2`

u F lnS u2u8

4M D1b l1gG Ï lm~u8!du8 ~4.34!

and

Slm~u!5Slm~u!12ME
2`

u F lnS u2u8

4M D1b l1gG S̈lm~u8!du8, ~4.35!

where overdots indicate differentiation with respect tou8. We have defined

I lm~u!5
4p

~2l 11!!!
Al 11

l S d

duD lE F11
l 13

2~ l 11!~2l 13!
~r ]u!22~ l 21!

M

r
1O~v4!GFr~u,xW !2

r ]u

l 11
Jr~u,xW !G r l

0Ȳlm~u,f!dxW

~4.36!

and

Slm~u!52
2A2ip

~2l 11!!! S d

duD lE F11
~r ]u!2

2~2l 13!
2

l 221

l

M

r
1O~v4!G@21J~u,xW !21Ȳlm~u,f!11J~u,xW !1Ȳlm~u,f!#r ldxW .

~4.37!

Equations~4.34!–~4.37! have the same mathematical struc-
ture as Eqs.~3.19! and~3.20!, which give the radiative mul-
tipole moments of a scalar field. The physical meaning of
these equations is therefore exactly the same as in Sec. III,
and the discussion appearing at the end of Sec. III E need not
be repeated. Equations~4.34!–~4.37!, with b l given by Eq.
~4.27!, are equivalent to Eqs.~1.8!–~1.12!, once the spin-
weighted spherical harmonics have been converted into the
vectorial harmonics of Eq.~A16!.

V. GRAVITATIONAL RADIATION

A. Teukolsky equation

In this section, we derive expressions for the radiative
multipole moments of a gravitational-wave field in
Schwarzschild spacetime. Specifically, we consider a tensor
field hab(x), defined as the difference between the metric of
the perturbed spacetime and the Schwarzschild metric. Field
equations forhab(x) are obtained by linearizing the Einstein
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equations for the full metric. It is therefore assumed that the
perturbation is small. Teukolsky@36# has cast the field equa-
tions for hab(x) in a form convenient for our purposes. We
briefly summarize this formulation here.

In the Teukolsky formalism, the radiative part ofhab(x)
is represented by the complex-valued functionC45

2Cabgdnam̄bngm̄d, whereCabgd is the perturbed Weyl ten-
sor, andna and m̄a are defined as in Sec. IV. The field
C4(x) has spin weights522 ~see Appendix A!, and it can
be decomposed according to

C45
1

r 4E dv(
lm

Rlm~v;r !22Ylm~u,f!e2 ivt, ~5.1!

where 22Ylm(u,f) are spin-weighted spherical harmonics
~see Appendix A!. The sums overl andm are restricted by
l>2 andumu< l . The radial function then satisfies the inho-
mogeneous Teukolsky equation@36#

F r 2f
d2

dr2
22~r 2M !

d

dr
1U~v;r !GRlm~v;r !5Tlm~v;r !,

~5.2!

where f 5122M /r and U(v;r )5 f 21@(vr )224iv(r
23M )#2( l 21)(l 12).

The source term on the right-hand side of Eq.~5.2! is
constructed as follows fromTab(x), the~unspecified! stress-
energy tensor responsible for the perturbation. The first step
is to form the contractions

0T5Tabnanb, 21T5Tabnam̄b, 22T5Tabm̄am̄b.
~5.3!

One then evaluates the Fourier transforms

sT̃~v,xW !5
1

2pE sT~ t,xW ! eivt dt ~5.4!

and takes the projections

sT̃lm~v;r !5E sT̃~v,xW !sȲlm~u,f!dV. ~5.5!

Finally, Tlm(v;r ) is given by@36#

Tlm~v;r !52p(
s

splsDsT̃lm~v;r !, ~5.6!

where

spl5H 2A~ l 21!l ~ l 11!~ l 12!, s50,

2A2~ l 21!~ l 12!, s521,

1, s522,

~5.7!

and

sD5H r 4, s50,

r 2fLr 3f 21, s521,

r fLr 4f 21Lr , s522.

~5.8!

Here,L5 f d/dr1 iv.

B. Solution

The inhomogeneous Teukolsky equation~5.2! can be in-
tegrated by means of a Green’s function, in a manner similar
to what was done in Sec. IV. Here also, the form of the radial
function can be simplified by introducing adjoint operators

sD†, and by expressing it in terms ofXl
H(v;r )/Al

in(v),
whereXl

H(v;r ) is the solution to the Regge-Wheeler equa-
tion — Eq. ~2.1! with s52 — with boundary conditions
~2.3! and ~2.4!. These manipulations are described in detail
in Ref. @33#, and they will not be displayed here. The con-
clusion is that at large distances, the radial function is given
by

Rlm~v;r→`!;
1

2
v2Z̃lm~v!r 3eivr* , ~5.9!

where

Z̃lm~v!5
22p

ivk l~v!Al
in~v!

(
s

spl

3E
2M

`

r f 22
sT̃lm~v;r !sGXl

H~v;r !. ~5.10!

Here,

k l~v!5
1

4
@~ l 21!l ~ l 11!~ l 12!212iM v# ~5.11!

and

0G52~123M /r 1 ivr !r f
d

dr
1 f @ l ~ l 11!26M /r #

12ivr ~123M /r 1 ivr !,

21G52 f H @ l ~ l 11!12ivr #r f
d

dr

1 l ~ l 11!~ f 1 ivr !22~vr !2J ,

22G5 f 2H 2@~ l 21!~ l 12!16M /r #r f
d

dr

1~ l 21!~ l 12!@ l ~ l 11!12ivr #112f M /r J .

~5.12!

The quantitiesZ̃lm(v) are the multipole moments of the ra-
diative part ofhab(x).

C. Metric perturbation

The gravitational-wave fieldhab
rad(x) can be obtained from

the behavior ofC4(x) at large distances@33#. Choosing the
u andf directions as polarization axes, the two fundamental
polarizations of the gravitational waves are given by
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h1~ t,xW !2 ih3~ t,xW !5
1

r (lm Zlm~u!22Ylm~u,f!,

~5.13!

whereu5t2r * and

Zlm~u!5E
2`

`

Z̃lm~v!e2 ivudv. ~5.14!

This shows thatZlm(u) are indeed the multipole moments of
the radiative field. It should be noted that while these quan-
tities are complex,h1(x) andh3(x) are real.

In the traceless-transverse gauge, the gravitational-wave
tensor is given by

hab
rad5~h12 ih3!mamb1~h11 ih3!m̄am̄b ~5.15!

or, after substituting Eq.~5.13!,

hab
rad~ t,xW !5

1

r (lm @Ilm~u! Tab
E2,lm~u,f!

1Slm~u! Tab
B2,lm~u,f!#. ~5.16!

Here,hab
rad(x) is expressed in terms of the tensorial spherical

harmonics described in Appendix A. Themassmultipole
momentsIlm(u) and thecurrent multipole momentsSlm(u)
are related toZlm(u) by the same equations as Eqs.~4.23!
and ~4.24!.

D. Slow-motion approximation

We now calculate the radiative multipole moments in the
slow-motion approximation. We proceed as in Sec. IV E.
Substituting Eq.~2.19!, with s52, into Eq.~5.10!, and using
Eqs.~5.5!, ~5.7!, ~5.11!, and~5.12! yields

Z̃lm~v!5
16p

~2l 11!!!
Tl~v! ~2 iv! l(

s
sP̃lm~v!,

~5.17!

where

Tl~v!5e2iM v~ ln4M uvu2m l !~11pM uvu!, ~5.18!

with

m l5b l2
6

~ l 21!l ~ l 11!~ l 12!
, ~5.19!

while b l is given by Eq.~2.18! with s52:

b l5c~ l 11!1
1

2
2

2

l ~ l 11!
. ~5.20!

We have also introduced

0P̃lm~v!52A~ l 11!~ l 12!

~ l 21!l E H 12
l 19

2~ l 11!~2l 13!
~vr !22~ l 12!

M

r
1

2ivr

l 11 F12
l 14

2~ l 12!~2l 13!
~vr !2

2
l 313l 21 l 24

l ~ l 12!

M

r G1O~v4!J 0T̃

f 2
r l

0ȲlmdxW , ~5.21!

21P̃lm~v!522A2~ l 12!

l 21 E H 12
l 213l 16

2l ~ l 11!~2l 13!
~vr !22

~ l 21!~ l 12!

l

M

r
1

ivr

l F12
l 213l 16

2~ l 11!~ l 12!~2l 13!
~vr !2

2
l 313l 228

~ l 11!~ l 12!

M

r G1O~v4!J 21T̃

f
r l

21ȲlmdxW , ~5.22!

22P̃lm~v!5
l 12

l E F11
2ivr

~ l 11!~ l 12!
1O~v2!G

22

T̃r l
22ȲlmdxW . ~5.23!

To better keep track of the relative importance of each
term in Eq. ~5.17!, we decompose the stress-energy tensor
according to

r5Ttt, ~5.24!

0 j 5Ttr , 21 j 52Ttam̄a , 1 j 52Ttama , ~5.25!

0p5Trr , 21p52Tram̄a , 1p52Trama , ~5.26!

0t5Tabmam̄b , 22t5Tabm̄am̄b , 2t5Tabmamb .
~5.27!

Thus, if r is considered to be a quantity of order unity, then
sj 5O(v), sp5O(v2), and st5O(v2). Inspection of Eqs.
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~5.21!–~5.23! — in which we substitute 0T/ f 251/4(r
120 j / f 10p/ f 2), 21T/ f 5 1

2 (21 j 121p/ f ), and 22T522t

— then reveals that as it stands,Z̃lm(v) contains many un-
wanted terms of the sort encountered in Sec. IV E: terms
which are first order inv, andO(v3) terms that cannot be
pulled outside of the spatial integrals.

In Sec. IV E, the unwanted terms were removed by invok-
ing the continuity equationJ ;a

a 50. Here, they are removed
with the help of the energy-momentum conservation equa-
tions T ;b

ab 50. When written out explicitly, these become

r ,t1
1

r 2f
~r 2f 0 j ! ,r1

1

A2r
~ ]̂21 j 1 ]̌1 j !50, ~5.28!

0 j ,t1
Af

r 2 S r 2

Af
0pD

,r

1
1

A2r
~ ]̂21p1 ]̌1p!1

1

2
f f 8r2

2 f

r 0t

50, ~5.29!

21 j ,t1
1

r 3
~r 3

21p! ,r1
1

A2r
~ ]̂22t1 ]̌0t !50, ~5.30!

1 j ,t1
1

r 3
~r 3

1p! ,r1
1

A2r
~ ]̂0t1 ]̌22t !50, ~5.31!

where ]̂ and ]̌ are the ‘‘edth’’ differential operators de-
scribed in Appendix A andf 85d f /dr52M /r 2.

Equations~5.28!–~5.31! give rise to a number of integral
identities, which we write in the frequency domain, and
which are easily established by partial integration, using Eqs.
~A13! and~A14!. We shall need the following two identities,
which involve no approximation:

ivE r̃ r n
0Ȳlm dxW52E ~n2r f 8/ f !0 ̃ r n21

0ȲlmdxW

1Al ~ l 11!

2 E ~21 ̃ 21Ȳlm

21 ̃ 1Ȳlm!r n21dxW ~5.32!

and

ivE 21 ̃ r n
21ȲlmdxW

52~n21!E 21 p̃r n21
21ȲlmdxW

1A~ l 21!~ l 12!

2 E 22 t̃ r n21
22Ȳlm dxW

2Al ~ l 11!

2 E 0 t̃ r n21
0ȲlmdxW . ~5.33!

We shall also need the following identities, which are valid
in the slow-motion approximation:

E @~vr !22 lM /r #0 ̃ r l
0ȲlmdxW5

2Al ~ l 11!

2 E M

r
~21 ̃ 21Ȳlm21 ̃ 1Ȳlm!r ldxW

1E ivr @~ l 12!0 p̃120 t̃ #r l
0ȲlmdxW

2Al ~ l 11!

2 E ivr ~21 p̃21Ȳlm21 p̃1Ȳlm!r ldxW ,

~5.34!

where terms of orderv5 and higher~with r̃ taken to be of
order unity! have been discarded, and

E @ iM v1O~v5!#21 ̃ r l
21ȲlmdxW

52~ l 21!E @M /r 1O~v4!#21 p̃r l
21ȲlmdxW ,

~5.35!

which follows from Eq.~5.33! after multiplying both sides
by M .

These identities are used to remove all unwanted terms
from Z̃lm(v), as given by Eqs.~5.17!–~5.23!. After a rather
long calculation~which spans several pages!, we arrive at the
following expression for the radiative multipole moments:
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Z̃lm~v!5
8p

~2l 11!!!
T l~v!~2 iv! l HA~ l 11!~ l 12!

~ l 21!l E F12
l 19

2~ l 11!~2l 13!
~vr !22~ l 12!

M

r
1O~v4!G

3S r̃ 10 p̃120 t̃ 1
4ivr

l 11 0 ̃ D r l
0ȲlmdxW2A2~ l 12!

l 21 E F12
l 14

2~ l 12!~2l 13!
~vr !22

~ l 21!~ l 12!

l

M

r

2
24iM v

~ l 21!l ~ l 11!~ l 12!
1O~v4!G S 21 ̃ 1

ivr

l 1221 p̃ D r l
21ȲlmdxW2A2~ l 12!

l 21 E F12
l 14

2~ l 12!~2l 13!
~vr !2

2
~ l 21!~ l 12!

l

M

r
1O~v4!G S 1 ̃ 1

ivr

l 121 p̃ D r l
1ȲlmdxW J . ~5.36!

Notice that the second and third integrals differ by a term proportional toiM v. We see that this expression for the radiative
multipole moments has the expected form, with allO(v2) correction terms occurring inside the spatial integrals and allO(v3)
corrections occurring outside.

We now separateZ̃lm(v) into mass and current moments, according to the Fourier transform of Eqs.~4.23! and~4.24!. ~As
was pointed out in Sec. IV C, those equations are valid also in the case of gravitational radiation.! We find that the mass
moments are given by

Ĩlm~v!5
16p

~2l 11!!!
A~ l 11!~ l 12!

2~ l 21!l
Tl~v!~2 iv! lE F12

l 19

2~ l 11!~2l 13!
~vr !22~ l 12!

M

r
1O~v4!G

3F r̃ ~v,xW !10 p̃~v,xW !120 t̃ ~v,xW !1
4ivr

l 11 0 ̃ ~v,xW !G r l
0Ȳlm~u,f!dxW , ~5.37!

and that the current moments are given by

S̃lm~v!52
16p i

~2l 11!!!
Al 12

l 21
Tl

]~v!~2 iv! lE F12
l 14

2~ l 12!~2l 13!
~vr !22

~ l 21!~ l 12!

l

M

r
1O~v4!G

3H F21 ̃ ~v,xW !1
ivr

l 1221 p̃~v,xW !G 21Ȳlm~u,f!1F 1 ̃ ~v,xW !1
ivr

l 121 p̃~v,xW !G 1Ȳlm~u,f!J r ldxW , ~5.38!

where

T l
]~v!5e2iM v~ ln4M uvu2b l !~11pM uvu!. ~5.39!

Notice that different constants (m l for the mass moments,b l for the current moments! appear inTl(v) andTl
](v); these are

defined by Eqs.~5.19! and ~5.20!.
The corresponding expressions in the time domain~see Appendix D! are

Ilm~u!5I lm~u!12ME
2`

u F lnS u2u8

4M D1m l1gG Ï lm~u8!du8 ~5.40!

and

Slm~u!5Slm~u!12ME
2`

u F lnS u2u8

4M D1b l1gG S̈lm~u8!du8, ~5.41!

where overdots indicate differentiation with respect tou8. We have defined

I lm~u!5
16p

~2l 11!!!
A~ l 11!~ l 12!

2~ l 21!l S d

duD lE F11
l 19

2~ l 11!~2l 13!
~r ]u!22~ l 12!

M

r
1O~v4!G

3Fr~u,xW !10p~u,xW !120t~u,xW !2
4r ]u

l 110 j ~u,xW !G r l
0Ȳlm~u,f!dxW ~5.42!

and

Slm~u!52
16p i

~2l 11!!!
Al 12

l 21S d

duD lE F11
l 14

2~ l 12!~2l 13!
~r ]u!22

~ l 21!~ l 12!

l

M

r
1O~v4!G
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3H F21 j ~u,xW !2
r ]u

l 1221p~u,xW !G 21Ȳlm~u,f!1F 1 j ~u,xW !2
r ]u

l 121p~u,xW !G 1Ȳlm~u,f!J r ldxW . ~5.43!

The interpretation of these results is exactly the same as for
the cases~scalar and electromagnetic radiation! considered
previously. Equations~5.40!–~5.43!, with b l[b l

grav,currentand
m l[b l

grav,massgiven by Eqs.~5.20! and ~5.19!, respectively,
are equivalent to Eqs.~1.14!–~1.19!, once the spin-weighted
spherical harmonics have been converted into the vectorial
harmonics of Eq.~A16!.

VI. PHYSICAL ORIGIN OF THE TAIL TERM

A survey of Secs. III, IV, and V reveals that for scalar,
electromagnetic, and gravitational radiation, the tail correc-
tion to the radiative multipole moments takes the universal
form @cf. Eqs.~3.19!, ~4.34!, ~4.35!, ~5.40!, and~5.41!#

Mlm~u!5Mlm~u!12ME
2`

u F lnS u2u8

4M D1cl1gG
3M̈ lm~u8!du8. ~6.1!

Here,Mlm(u) stands forZlm(u) in the case of scalar radia-
tion, and forIlm(u) andSlm(u) in the case of electromag-
netic and gravitational radiation. Similarly,Mlm(u) stands
for eitherZlm(u), I lm(u), or Slm(u). The constantcl stands
for b l @cf. Eq. ~2.18!#, except for the mass multipole mo-
ments of the gravitational-wave field, for whichcl stands for
m l @cf. Eq. ~5.19!#.

The physical interpretation of Eq.~6.1! is clear, and was
first given at the end of Sec. III C. Equation~6.1! shows that
while the correction terms of orderv2 that appear inMlm(u)
are near-zone corrections that depend on the detailed behav-
ior of the source, the correction terms of orderv3 — the
terms under the integral sign, or tail terms — are due to
wave-propagation effects, and are independent of the de-
tailed behavior of the source. And while theO(v2) correc-
tions are local in time, theO(v3) corrections introduce a
nonlocality in the radiative multipole moments. This nonlo-
cality is understood as arising from the scattering of the ra-
diation field off the spacetime curvature generated by the
massM , and as Eq.~6.1! shows, the tail term is indeed
proportional toM .

The mass parameter appears in two places in the
Schwarzschild metric,

ds252 f dt21 f 21dr21r 2~du21sin2u df2!, ~6.2!

where f 5122M /r . It enters ingtt and in grr , which are
both involved in the calculation of the tail correction. Be-
cause the mass parameter is the same in both components of
the metric, it is impossible to tell, on the basis of our previ-
ous calculations, whether it isgtt that is ‘‘mostly respon-
sible’’ for the tail effect or whether it isgrr , or whether both
components are ‘‘equally responsible.’’ In other words, our
previous calculations cannot tell us how the temporal and
spatial curvatures separately contribute to the tail effect. This
is the question we now wish to examine. We shall answer it

by artificially introducing an additional mass parameter in
the description of our spacetime. The resulting metric, of
course, will no longer be a solution to the Einstein equations.
This, however, does not prevent us from examining the sca-
lar wave equation in this spacetime. Extension of the follow-
ing considerations to the case of electromagnetic radiation
would be straightforward. However, in the absence of field
equations, an eventual extension to the case of gravitational
waves would be ambiguous.

We consider a static, spherically symmetric spacetime
with a line element of the most general form

ds252 f dt21g21dr21r 2~du21sin2u df2!, ~6.3!

where f and g are two arbitrary functions ofr obeying the
following restrictions. First, the spacetime must be asymp-
totically flat, so that the metric functions must behave as

f ;122M /r , g;122ĝM /r , ~6.4!

at large distances (r @M ). Here,M is the gravitational mass
of the system responsible for the gravitational field, andĝ is
a parameter that measures the failure of the metric to match
the Schwarzschild form at large distances;ĝM can be
thought of as the system’s inertial mass, and the Schwarzs-
child behavior is recovered by puttingĝ51. ~This parameter
has the same meaning asg in the parametrized post-
Newtonian formalism@38#. We nevertheless use the notation
ĝ to distinguish this quantity from the Euler numberg.!
Second, we assume for concreteness that the metric describes
a black-hole spacetime, so that bothf (r ) andg(r ) vanish at
a common radiusr 0. Regularity of the spacetime at the event
horizon further demands that the ratiof /g be finite and non-
vanishing atr 5r 0. ~Our conclusions are insensitive to this
second set of assumptions.! Apart from these requirements,
f (r ) andg(r ) will be left unspecified.

We consider the scalar wave equationhF(x)5
24pr(x) in a spacetime with line element~6.3!. After sepa-
ration of the variables, according to Eqs.~3.2!, ~3.4!, and
~3.5!, the radial function is found to satisfy

H d2

dr* 2
1v22 f F l ~ l 11!

r 2
1Ag

f

~Af g!8

r G J Rlm~v;r !

5 f Tlm~v;r !, ~6.5!

whered/dr* 5Af g d/dr and a prime indicates differentia-
tion with respect tor . This equation is integrated by means
of a Green’s function, constructed from two linearly inde-
pendent solutions to the homogeneous equation. These are
denotedRl

H(v;r ) and Rl
`(v;r ), and are defined as in Eq.

~3.7!, with r * 5*dr/Af g, and withr 5r 0 replacingr 52M .
The solution at large distances is then given by Eq.~3.9!,
with
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Z̃lm~v!5
1

2ivQl
in~v!

E
r 0

`
Af /gTlm~v;r !Rl

H~v;r !dr.

~6.6!

Substituting this into Eq.~3.2! yields

F rad~ t,xW !5
1

r (lm Zlm~u!Ylm~u,f!, ~6.7!

whereZlm(u) is the inverse Fourier transform ofZ̃lm(v)
andu5t2r * is retarded time. According to Eqs.~6.4!, r * is
now given by

r * ;r 12sM ln~r /2M ! ~6.8!

at large distances, where

s5
1

2
~11ĝ !. ~6.9!

Equation ~6.8! agrees with the Schwarzschild definition
when ĝ5s51.

We now wish to calculateZ̃lm(v), the radiative multipole
moments, in the slow-motion approximation. The first step is
to integrate the homogeneous version of Eq.~6.5! in the
low-frequency limit. The calculation proceeds as in Sec. II
and Appendix C, and uses the approximations~6.4! for f (r )
and g(r ); these steps will not be duplicated here. Defining
«52Mv andz5vr , we eventually find

Rl
H~z!

Ql
in

52~2 i ! l 11eis«~ ln2«2b l !S 11
p

2
s« D

3zH @12s«Al~z!# j l~z!1s«Bl~z!nl~z!

2«
~ l 11!ĝ2s

2~2l 11!
j l 21~z!1«

l ĝ1s

2~2l 11!
j l 11~z!

1O~«2!J , ~6.10!

whereAl(z) andBl(z) are defined by Eqs.~2.14! and~2.15!,
respectively, and

b l5c~ l 11!1
ĝ

2s
. ~6.11!

Evaluating Eq.~6.10! for z!1 yields

Rl
H~v;r !

Ql
in~v!

5
2

~2l 11!!!
e2isMv~ ln4M uvu2b l !~11psM uvu!

3~2 ivr ! l 11H 12
~vr !2

2~2l 13!
2@~ l 11!ĝ2s#

M

r

1O~v4!J . ~6.12!

The second step is to substitute Eq.~6.12! into Eq. ~6.6!,
using Eq.~6.4! once more. We obtain

Z̃lm~v!5
4p

~2l 11!!!
e2isMv~ ln4M uvu2b l !~11psM uvu!

3~2 iv! lE F12
~vr !2

2~2l 13!
2

~2l 21!ĝ11

2

M

r

1O~v4!G r̃ ~v,xW !r l Ȳlm~u,f!dxW . ~6.13!

The corresponding expression in the time domain is

Zlm~u!5Zlm~u!12sME
2`

u F lnS u2u8

4M D1b l1gG
3Z̈lm~u8!du8, ~6.14!

where

Zlm~u!5
4p

~2l 11!!! S d

duD lE F11
~r ]u!2

2~2l 13!

2
~2l 21!ĝ11

2

M

r
1O~v4!G

3r~u,xW !r l Ȳlm~u,f!dxW . ~6.15!

These are the radiative multipole moments of a scalar field in
a spacetime with line element~6.3!. Equations~6.14! and
~6.15!, with b l given by Eq.~6.11!, are equivalent to Eqs.
~1.20! and ~1.21!.

We see from Eqs.~6.14! and ~6.15! that ĝ and s both
appear in the near-zone and wave-propagation correction
terms. In particular, the tail integral is now proportional to
s[1/2(11ĝ). This allows us to conclude that in general
relativity, temporal and spatial curvatures contributeequally
to the tail correction. This result is striking, because the same
conclusion is known to hold in two other situations: the de-
flection and time delay of light by the gravitational field of a
massive body. Indeed, in a parametrized post-Newtonian cal-
culation@38#, the deflection angle and the time delay are both
found to be proportional to 1/2(11g). ~Here, g is the pa-
rameter that measures how much spatial curvature is pro-
duced by a unit rest mass; it is equal to unity in general
relativity.! The statement that temporal and spatial curva-
tures contribute equally therefore applies to two very differ-
ent physical situations. While the deflection and time delay
of light are both high-frequency, geometric-optics phenom-
ena, the tail effect is very much a low-frequency, wavelike
phenomenon, and the discovery of such a similarity in such
different situations could not have been expected on physical
grounds. However, this similarity is not entirely surprising
on mathematical grounds: The factor ofs that appears in
front of the tail integral is essentially the sames that appears
in the new definition ofr * , Eq. ~6.8!; since radial light rays
propagate along curves of constantt2r * or t1r * , it is per-
haps not surprising thats should also appear in expressions
for the deflection angle and the time delay.
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VII. SPACETIME APPROACH

A. DeWitt-Brehme Green’s function

The mathematical methods employed in the previous sec-
tions of this paper to derive expressions for the radiative
multipole moments of integer-spin fields were based upon a
separation of variables approach made possible by the sym-
metries of the Schwarzschild solution. Although the physical
interpretation of our results, in terms of near-zone and wave-
propagation corrections, is quite clear, we cannot claim that
the physical picture is particularly well represented by the
mathematics involved in bringing the problem to a solution.
Indeed, the physical meaning of our expressions became
clear onlyafter performing the inverse Fourier transform that
gave the multipole moments in the time domain; by them-
selves, the frequency-domain expressions did not have a very
compelling interpretation.

In this section, we offer an alternative derivation of the
radiative multipole moments in which the mathematics re-
flects the physics every step of the way. For simplicity we
shall again restrict attention to the case of scalar radiation.

Following the seminal work by Hadamard@1#, DeWitt
and Brehme @3# considered the scalar wave equation,
hF(x)524pr(x), and its Green’s function satisfying
hG(x,x8)52d(x,x8), in an arbitrary spacetime with metric
gab . These equations imply that the scalar field can be ex-
pressed as

F~x!54pE G~x,x8!r~x8!dx8, ~7.1!

where dx85ug(x8)u1/2d4x8, with g5det(gab). Assuming
that the field pointx belongs to the normal convex neighbor-
hood of the source pointsx8, DeWitt and Brehme found that
the retarded Green’s function takes the form

G~x,x8!5
1

4p
u~x,x8!@u~x,x8!d~s!2v~x,x8!u~2s!#.

~7.2!

Here,s(x,x8) is the world function first introduced by Synge
@39#, and equal to one-half the squared geodesic distance
betweenx and x8; s is positive if the points are spacelike
related, negative if the relation is timelike, and zero ifx and
x8 are joined by a null geodesic. The functionsu(x,x8) and
v(x,x8) are nonsingular in the limits→0, and are obtained
by substituting Eq.~7.2! into the differential equation for the
Green’s function. Finally,u(x,x8) is a time-ordering func-
tion, equal to unity ifx is in the causal future ofx8, and zero
otherwise.

As can be seen from Eq.~7.2!, the retarded Green’s func-
tion splits naturally into a direct part~the first term!, which
has support on, and only on, the past light cone ofx ~all
pointsx8 such thats50), and a tail part~the second term!,
which has support inside the past light cone~all points x8
such thats,0). This, in turn, implies thatF(x) will also be
split into direct and tail parts, as was observed in Sec. III. We
therefore see that contrary to our previous mathematical for-
mulation, Eqs.~7.1! and ~7.2! reflect the physical picture
quite closely.

In the remainder of this section, we calculateG(x,x8) in a
weak-field approximation~relying on previous work by De-
Witt and DeWitt @40#!, and derive an expression for the ra-
diative multipole moments of the scalar field. Not surpris-
ingly, our answer will agree with what was obtained in Sec.
III, Eqs. ~3.19! and~3.20!. Although this calculation tells us
nothing new in terms of the final answer, it is still instructive,
because of the fact that the mathematical origin of the tail
correction is clear from the outset — it follows directly from
the tail term in the Green’s function.

B. Direct term

We begin with the calculation of the direct part of the
field,

Fdirect~x!5E u~x,x8!u~x,x8!d~s!r~x8!dx8. ~7.3!

This involves the evaluation ofs(x,x8) and u(x,x8). We
shall work in the weak-field approximation~that is, linear-
ized gravity in harmonic coordinates!, and express the metric
as gab(x)5hab1hab(x), where hab is the metric of flat
spacetime in Cartesian coordinates, and

hab~x!5
2M

uxW u
dab . ~7.4!

Here,dab is the Kronecker delta, and for any three-vectorsW,
usWu25sW•sW5dabs

asb. It is assumed that the source of the
gravitational field is a point mass located at the origin of the
coordinates.

The world function is given by@41#

s~x,x8!5
1

2ECgab

dja

dl

djb

dl
dl, ~7.5!

whereC is the geodesic relating the pointsx8 andx, ja(l)
the equation of this geodesic, andl an affine parameter on
the geodesic, normalized so thatja(0)5x8a and ja(1)
5xa. Equation~7.5! follows immediately from the geomet-
ric meaning of the world function. Because Eq.~7.5! is an
action principle for the geodesic equation, an error of ordere
in the specification ofC is translated into an error of ordere2

in s(x,x8). Since we wish to evaluates(x,x8) accurately to
first order in the formally small parameterM , it is sufficient
to approximateC by the straight path@41#

ja~l!5x8a1l~xa2x8a!. ~7.6!

Substituting this into Eq.~7.5! and discarding allO(M2)
terms, we obtain

s~x,x8!52
1

2S 122ME
0

1dl

j D ~ t82t2!~ t82t1!,

~7.7!

where

t65t6uxW2xW8u62M uxW2xW8u E
0

1dl

j
~7.8!
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andj[ujW u. Equation~7.7! implies

d~s!5
1

uxW2xW8u
@d~ t82t2!1d~ t82t1!#, ~7.9!

and the second term vanishes whend(s) is multiplied by
u(x,x8). To evaluate the integral in Eq.~7.8!, we use Eq.
~7.6! to write

j5Ar 8212lxW8•~xW2xW8!1l2uxW2xW8u2, ~7.10!

wherer 85uxW8u; we also definer 5uxW u andnW 5xW /r . The inte-
gration is elementary, and Eq.~7.8! becomes

t65t6uxW2xW8u62M ln~2r /s8!, ~7.11!

where s8[r 81nW •xW8 and where terms of order unity have
been discarded in the logarithm.

In the weak-field approximation,u(x,x8) is given by@41#

u~x,x8!511
1

2
~xa2x8a!~xb2x8b!E

C
Rabl~12l!dl,

~7.12!

whereRab is the Ricci tensor. BecauseRab is already pro-
portional toM , the geodesicC can once again be approxi-
mated by the straight path~7.6!. Now, Rab}d(xW ) in the
point-mass approximation, and there is only one pathC8
which gives rise to a nonvanishing integral in Eq.~7.12! —
the path for whichxW8 andxW are diametrically opposite. Be-
causeC8 forms a set of measure zero in the space of all paths
connecting source pointsx8 to a given field pointx, the fact
that u(x,x8)Þ1 for this path has no effect onFdirect(x).
Therefore, we can safely set

u~x,x8!51 ~7.13!

in the following @42#.
Substituting Eqs.~7.9!, ~7.11!, and ~7.13! into Eq. ~7.3!

yields

Fdirect~ t,xW !5E r~ t2 ,xW8!

uxW2xW8u
dxW8, ~7.14!

where dxW8[ug(x8)u1/2 d3x5(112M /r 8)d3x. At large dis-
tances, this becomes

Fdirect
rad ~ t,xW !5

1

r E r@u1nW •xW812M ln~s8/2c!,xW8#dxW8,

~7.15!

where

u5t2r 22M ln~r /c! ~7.16!

is retarded time, withc an arbitrary constant. This definition
of retarded time is similar to the Schwarzschild expression,
and c will eventually be chosen so that the two definitions
agree.

We now invoke the slow-motion approximation and ex-
pandr in a Taylor series aboutu. ~The approximation en-
sures that the series converges.! This gives

Fdirect
rad ~ t,xW !5

1

r (
n50

`
1

n! E r~n!~u,xW8!@nW •xW8

12M ln~s8/2c!#ndxW8, ~7.17!

where r (n)[]nr/]un. After discarding all terms of second
and higher order inM , we arrive at

Fdirect
rad ~ t,xW !5

1

r (
n50

`
1

n! E r~n!~u,xW8!~nW •xW8!ndxW8

1
2M

r (
n50

`
1

n! E r~n11!~u,xW8!ln~s8/2c!

3~nW •xW8!ndxW8. ~7.18!

This is our final expression for the direct part of the radiative
field.

C. Tail term

The tail part of the scalar field is

F tail~x!52E u~x,x8!v~x,x8!u~2s!r~x8!dx8,

~7.19!

and it is now our task to evaluate this.
An expression forv(x,x8), accurate to first order inM in

a weak-field approximation, was derived by DeWitt and De-
Witt @40#, who find

v~x,x8!52
2M

uxW2xW8u

]2

]t8]t
Fu~r 1r 81t82t !

3 ln
r 1r 81uxW2xW8u

r 1r 82uxW2xW8u
1u~ t2t82r 82r !

3 ln
t2t81uxW2xW8u

t2t82uxW2xW8u
G . ~7.20!

For larger , this reduces to

v~x,x8!52
2M

r Fd~u2u82s8!

s8
2

u~u2u82s8!

~u2u8!2 G ,

~7.21!

wheres85r 81nW •xW8,

u85t82r 1uxW2xW8u.t82nW •xW8, ~7.22!

andu5t2r is retarded time.@The true retarded time is given
by Eq. ~7.16! and differs fromt2r by a term 2M ln(r/c).
Nevertheless,u5t2r is the appropriate expression to use in
the calculation of the tail term when working to first order in
M , becausev(x,x8) is already proportional toM .#
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We now substitute Eq.~7.21! into Eq. ~7.19!, taking into
account that u(x,x8)u(2s)5u(t2uxW2xW8u2t8) 5u(u
2u8), according to Eqs.~7.7! and ~7.8!. We obtain

F tail
rad~ t,xW !5

2M

r E E
2`

u Fd~u2u82s8!

s8

2
u~u2u82s8!

~u2u8!2 G r~u81nW •xW8,xW8!du8dxW8,

~7.23!

where dxW85ug(x8)u1/2 d3x85@11O(M )# d3x8. After two
partial integrations and a few lines of algebra, this becomes

F tail
rad~ t,xW !5

2M

r E F2 ṙ~u2r 8,xW8!lns82E
2nW •xW8

r 8
r̈~u

2z,xW8!ln~z1nW •xW8!dz

1E
2`

u

r̈~u81nW •xW8,xW8!

3 ln~u2u8!du8GdxW , ~7.24!

where overdots indicate differentiation with respect to either
u or u8.

The z integral on the right-hand side of Eq.~7.24! can be
evaluated explicitly ifr̈(u2z,xW8) is expanded in a Taylor
series aboutz50. ~Again, the slow-motion approximation
ensures that this series converges.! This results in an infinite
sum of terms involving the integrals*znln(z1nW•xW8) dz,
which can be expressed in closed form~Ref. @43#, p. 205!.
After a rather long but straightforward calculation, we find
that this integral is equal to

ṙ~u2r 8,xW8!lns81 (
n50

`
1

n! H @2 lns81c~n11!1g#r~n11!

3~u,xW8!2 (
p5n11

`
~21!p2nn!

p! ~p2n!
r~p11!~u,xW8!r 8p2nJ ~nW •xW8!n.

~7.25!

Notice that the first term cancels out the first term on the
right-hand side of Eq.~7.24!. The rest of Eq.~7.25! is sim-
plified by invoking the slow-motion approximation. Because
it involves an additional~retarded! time derivative, the first
term in the sum overp is smaller thanr (n11) by a factor of
order v, and the remaining terms are smaller still. Now,
Mr (n11) is already a factor of orderv3 smaller thanr (n),
which appears in the direct part of the radiative field. This
means that in Eq.~7.25!, the sum overp is O(v4), and
therefore, it will be neglected.

After substituting Eq.~7.25! into Eq. ~7.24!, and expand-
ing the third term on the right-hand side of this equation in a
Taylor series aboutnW •xW850, we arrive at

F tail
rad~ t,xW !5

2M

r (
n50

`
1

n! E H @2 lns81c~n11!1g#r~n11!

3~u,xW8!1E
2`

u

r~n12!~u8,xW8!ln~u2u8!du8J
3~nW •xW8!ndxW8. ~7.26!

This is our final expression for the tail part of the radiative
field.

D. Total radiative field

The total radiative field is obtained by adding the direct
and tail terms. Combining Eqs.~7.18! and ~7.26!, we obtain

F rad~ t,xW !5
1

r (
n50

`
1

n! E H r~n!~u,xW8!12ME
2`

u F lnS u2u8

2c D
1c~n11!1gGr~n12!~u8,xW8!du8J
3~nW •xW8!n dxW8. ~7.27!

We recall thatdxW85(112M /r 8)d3x8, u5t2r 22M ln(r/c),
and that Eq.~7.27! has been derived on the basis of a weak-
field, slow-motion approximation; it is valid to first order in
M , and neglects terms of orderv4.

The constantc appearing in Eq.~7.27! is the same one
which enters in the definition of the retarded timeu, Eq.
~7.16!. The radiative field does not actually depend on the
numerical value of this constant. To see this, letc→lc,
where l is a scaling constant. Then Eq.~7.16! implies
u→u12M lnl, and we have r (n)(u,xW8)→r (n)(u,xW8)
12M lnlr(n11)(u,xW8)1O(M2). Substituting these relations
into Eq. ~7.27! and discarding all terms of orderM2 shows
that, indeed,F rad(x) is invariant under this transformation.

Our current expression for the radiative field has a math-
ematical structure similar to that of Eqs.~3.11!, ~3.19!, and
~3.20!, but there appear to be some differences. We now
show that these are only apparent, and that in fact, Eq.~7.27!
is entirely equivalent to the results of Sec. III.

We first reintroduce the spherical harmonics, with the re-
lation @44#

~nW •xW8!n54pn! r 8n(
l 50

8 (
m52 l

l

3
2l@~n1 l !/2#!

~n1 l 11!! @~n2 l !/2#!

3 Ȳlm~u8,f8!Ylm~u,f!, ~7.28!

where the sum overl includes even values only ifn is even,
and odd values only ifn is odd. The anglesu8 andf8 are the
polar angles of the source pointxW8, andu andf belong to
the field pointxW . Substituting this into Eq.~7.27! and reor-
dering the sums, we obtain
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F~ t,xW !5
4p

r (
l 50

`

(
m52 l

l

Ȳlm~u8,f8! Ylm~u,f!

3(
n5 l

`

8
2l@~n1 l !/2#!

~n1 l 11!! @~n2 l !/2#! E H r~n!~u,xW8!

12ME
2`

u F S ln
u2u8

2c D1c~n11!1gG r~n12!

3~u8,xW8! du8J r 8ndxW8. ~7.29!

The slow-motion approximation now demands that we keep
only the first two terms (n5 l andn5 l 12) in the sum over
n. After some algebra, we arrive at

F rad~ t,xW !5
1

r (lm Zlm~u!Ylm~u,f!, ~7.30!

which is the same as Eq.~3.11!. Here,

Zlm~u!5Zlm~u!12ME
2`

u F lnS u2u8

2c D1c~ l 11!

1gG Z̈lm~u8!du8 ~7.31!

and

Zlm~u!5
4p

~2l 11!!! S d

duD lE F11
~r ]u!2

2~2l 13!

1O~v4!Gr~u,xW !r l Ȳlm~u,f!dxW . ~7.32!

This is almost, but not quite, the same as Eqs.~3.19! and
~3.20!.

To properly compare our results with those of Sec. III, we
must account for the different choices of coordinate systems.
The coordinates used in this section, and those for which Eq.
~7.4! holds, are the harmonic coordinates$t,x,y,z%. From
these we have constructed the spherical coordinates
$t,r ,u,f% in the usual way, and in this coordinate system,
dxW5(112M /r )r 2dr dV, wheredV5d cosu df. These co-
ordinates are distinct from the Schwarzschild coordinates
used in Sec. III, which we now denote$ t̄ , r̄ , ū ,f̄%. The
transformation between the two coordinate systems is@45#

t̄ 5t, r̄ 5r 1M , ū 5u, f̄5f. ~7.33!

We therefore havedxW5 r̄ 2d r̄ dV̄[d x̄W , which is the vol-
ume element of Sec. III. We also haver l5 r̄ l(12 lM / r̄ ),
and substituting this into Eq.~7.31! yields

Zlm~u!5
4p

~2l 11!!! S d

duD lE F11
~ r̄ ]u!2

2~2l 13!
2 l

M

r̄

1O~v4!Gr~u, x̄W ! r̄ l Ȳlm~ ū ,f̄ !d x̄W . ~7.34!

This is the same as Eq.~3.20!.
Finally, a specific choice forc can be made by demanding

that u5t2r 22M ln(r/c) be equal to ū5 t̄ 2 r̄

22M ln( r̄ /2M ), which is the retarded time encountered in
Sec. III. ~We have approximatedr̄ /2M21 by r̄ /2M in the
logarithm.! A short calculation gives

c52Me21/2, ~7.35!

and with this choice, Eq.~7.31! becomes

Zlm~u!5Zlm~u!12ME
2`

u F lnS u2u8

4M D1c~ l 11!1
1

2
1gG

3Z̈lm~u8!du8. ~7.36!

This is the same as Eq.~3.19!. We therefore have precise
agreement between the results of this section and those of
Sec. III.
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APPENDIX A: TENSOR FIELDS ON A TWO-SPHERE

We gather, for the benefit of the reader, several results
pertaining to the ‘‘edth’’ differential operators and the asso-
ciated spin-weighted spherical harmonics. The discussion
follows closely Ref.@46#, but it is essentially self-contained.

We considerS2, a spherical two-dimensional space with
the metric

ds25gabduadub5r 2~du21sin2u df2!, ~A1!

on which fields of various tensorial types are defined. For
simplicity, all geometric objects considered in this appendix
will be confined to this space. However, extension of the
following considerations to four-dimensional, spherically
symmetric spacetimes is immediate.

It is useful to introduce a set of basis vectorsma andm̄a

~an overbar denotes complex conjugation!, which satisfy the
relations

mama5m̄am̄a50, mam̄a51. ~A2!

A particular choice is

ma5
r

A2
~1,i sinu!, m̄a5

r

A2
~1,2 i sinu!. ~A3!

This choice is not unique, because the relations~A2! are
preserved under the transformation

ma→eicma, m̄a→e2 icm̄a, ~A4!

wherec is any constant.
We may use the basis to decompose tensor fields. For

example, a vector fieldVa may be expressed as

4810 56STEPHEN W. LEONARD AND ERIC POISSON



Va521Vma11Vm̄a , ~A5!

where

1V5Vama , 21V5Vam̄a . ~A6!

Similarly, a symmetric tensor fieldTab is decomposed as

Tab522Tmamb120Tm~am̄b)12Tm̄am̄b , ~A7!

where

2T5Tabmamb , 0T5Tabmam̄b , 22T5Tabm̄am̄b .
~A8!

The spin weightof a field is determined by how the field
transforms under Eqs.~A4!. By definition, a field has spin
weight s and is denotedsh, if

sh→eisc
sh ~A9!

under the transformation. For example,21V has spin weight
s521, while 2T has spin weights52.

The covariant derivatives~with respect togab) of the base
vectors are given by

ma;b52
1

A2r
cotuma~mb2m̄b! ~A10!

and its complex conjugate. It follows that the covariant de-
rivatives of arbitrary tensor fields can be conveniently ex-
pressed in terms of the ‘‘edth’’ differential operators]̂ and]̌,
which are defined by

]̂52S ]

]u
1 icscu

]

]f
2scotu D ,

]̌52S ]

]u
2 icscu

]

]f
1scotu D . ~A11!

It should be noted that these operators depend ons, the spin
weight of the object on which they act.~The original notation
@46# for these operators was]̄ and ]̄̄, respectively.! For
example,

Va;b52
1

A2r
@~ ]̌21V!mamb1~ ]̂21V!mam̄b1~ ]̌1V!m̄amb

1~ ]̂1V!m̄am̄b#. ~A12!

From this relation it is clear that]̂ raises the spin weight by
one unit, while]̌ lowers it by one unit. For example,]̂1V
52A2rVa;bmamb has spin weights52.

The ‘‘edth’’ operators can be manipulated efficiently
when working under an integral sign. Given two smooth,
complex functionss21f (u,f) and sg(u,f), the following
identities are easily established by straightforward partial in-
tegration:

E ~ ]̂s21f !sḡdV52E s21f ~ ]̌sg!dV,

E ~ ]̌sg!s21 f̄ dV52E sg~ ]̂s21f !dV, ~A13!

wheredV5d cosu df.
The ‘‘edth’’ operators can be used to generate sets of

spin-weighted spherical-harmonic functions, denoted
sYlm(u,f). Each set~corresponding to a fixed value ofs) is
complete, and members of a given set obey the usual ortho-
normality relations. The defining relations are0Ylm[Ylm
~the usual spherical harmonics!, and

]̂sYlm5A~ l 2s!~ l 1s11!s11Ylm ,

]̌sYlm52A~ l 1s!~ l 2s11!s21Ylm . ~A14!

The spin-weighted spherical harmonics also satisfy the rela-
tions

2sȲl ,2m5~21!s1m
sYlm . ~A15!

The spin-weighted spherical harmonics can be combined
with basis vectors to form tensorial spherical harmonics@29#.
For example,

Ya
E,lm5

1

A2
~21Ylmma21Ylmm̄a!,

Ya
B,lm52

i

A2
~21Ylmma11Ylmm̄a!, ~A16!

are vectorial spherical harmonics. The superscriptE indi-
cates that under a parity transformation,Ya

E,lm has electric-
type parity,Ya

E,lm→(21)lYa
E,lm ; the superscriptB indicates

a magnetic-type parity,Ya
B,lm→(21)l 11Ya

B,lm . Similarly,

Tab
E2,lm5

1

A2
~22Ylmmamb12Ylmm̄am̄b!,

Tab
B2,lm52

i

A2
~22Ylm mamb22Ylm m̄am̄b!, ~A17!

are tensorial spherical harmonics.

APPENDIX B: EVALUATION OF TWO FUNCTIONS

We evaluate, in the limitz→0, the functionsAl(z) and
Bl(z) defined by Eqs.~2.14! and ~2.15!.

To evaluateAl(z) is easy. By using the expansions
Si(2z)52z1O(z3) and z2npj p52z/(2p11)1O(z3), we
quickly arrive at

Al~z!5z2z(
p51

l 21 S 1

p
2

1

p11D1O~z3!. ~B1!

The sum evaluates to 121/l , andAl(z) reduces to the result
quoted in the text — Eq.~2.16!.

To evaluateBl(z) requires more work. We begin by re-
calling the series expansions for the cosine integral~Ref.
@34#, p. 232!,
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Ci~2z!5g1 ln~2z!1 (
n51

`
~21!n

2n~2n!!
~2z!2n, ~B2!

the squared sine,

sin2z52 (
n51

`
~21!n

2~2n!!
~2z!2n, ~B3!

and the squared spherical Bessel functions of the first kind
~Ref. @43#, p. 960!,

z2 j p
2~z!5p(

k50

`
~21!kG~2p1212k!

k!G~2p121k!G2~p1 3
2 1k!

3S z

2D 2p1212k

. ~B4!

Substituting these into Eq.~2.15! gives the series

Bl~z!5 (
n51

`

bnz2n, ~B5!

where, after some rearranging,

bn5
~21!n1122n~n21!

2n~2n!!
1

pG~2n!

22nG2~n1 1
2 !

3 (
p51

P S 1

p
1

1

p11D ~21!n2p21

~n2p21!!G~n1p11!
,

~B6!

with P5min(n21,l 21). Additional manipulations bringbn
to the form

bn5
~21!n1122n~n21!

2n~2n!! F11
n! 2

n21(
p51

P S 1

p
1

1

p11D
3

~21!p

~n2p21!! ~n1p!! G . ~B7!

The sum evaluates to

2
n21

n! 2
1

~21!P~n2P21!

n~P11!~n1P!! ~n2P21!!
, ~B8!

which implies thatbn50 for n< l ~becauseP5n21), while

bn5
~21!n1 l22n21~n21!! 2

l ~2n!! ~n2 l 21!! ~n1 l 21!!
~B9!

for n> l 11. It is then easy to show that Eq.~B5! reduces to
the result quoted in the text — Eq.~2.16!.

APPENDIX C: REGGE-WHEELER FUNCTION IN THE
ASYMPTOTIC LIMIT

We wish to evaluate the Regge-Wheeler functionXl
H(z),

as given by Eqs.~2.8! and~2.13! ~with a50 andb52g), in
the asymptotic limitz→`. By comparing with the low-

frequency limit of Eq.~2.4!, we will then computeAl
in in the

normalization provided by Eq.~2.8!.
To express Eqs.~2.8! and~2.13! in the limit z→`, we use

such asymptotic relations as Si(2z);p/2, Ci(2z);0,
z3(nl j p2 j lnp) j p; 1

2 @12(21)l 2p#znl , j l 21;2nl , and
j l 11;nl . After some algebra, we obtain

Xl
H;S 12«

p

2 D z jl2«@ ln~2z!2b l #znl1O~«2!, ~C1!

whereb l is given by Eq.~2.18!.
We must now compare this result with the low-frequency

limit of Eq. ~2.4!, which we rewrite as

Xl
H;Al

ine2 iz* 1Al
outeiz* , ~C2!

where z* 5z1« ln(z/«21). Expanding the phase factors in
powers of «, and using the asymptotic relationse6 iz;
(6 i ) l 11(z jl6 iznl), yields

Xl
H;~11«Al

1!z jl1«~Al
22 lnz!znl1O~«2!, ~C3!

where

11«Al
15~2 i ! l 11Al

inei« ln«1~ i ! l 11Al
oute2 i« ln«, ~C4!

i«Al
25~2 i ! l 11Al

inei« ln«2~ i ! l 11Al
oute2 i« ln«.

Finally, comparing Eqs.~C1! and ~C3!, and using the re-
lations ~C4!, we arrive at

Al
in5

1

2
~ i ! l 11e2 i«~ ln2«2b l !F12

p

2
«1O~«2!G . ~C5!

From this and Eqs.~2.8! and ~2.13!, we obtain Eq.~2.17!.

APPENDIX D: INVERSE FOURIER TRANSFORM OF
TAIL CORRECTIONS

We wish to take the inverse Fourier transform of the func-
tion

F̃~v!5e2iM v~ ln4M uvu2c!~11pM uvu!F̃~v!, ~D1!

where c is a constant andF̃(v) an arbitrary, square-
integrable function. In other words, we wish to compute the
functionF(u) given by

F~u!5E F̃~v!e2 ivudv. ~D2!

We shall do so in the spirit of the slow-motion approxima-
tion, by formally treatingM as a small parameter. We follow
closely the derivation found in Appendix A of Ref.@19#.

We first expand the exponential factor in Eq.~D1! to lin-
ear order in M , and combine the result with the (1
1pM uvu) factor. We then substitute the identityiv lnuvu
1puvu/25 iv ln(2iv). After a few lines of algebra, we ob-
tain
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F~u!5F~u!22M ~ ln4M2c!Ḟ~u!12M

3E F̃~v! iv ln~2 iv!e2 ivudv, ~D3!

whereF(u) is the inverse Fourier transform ofF̃(v), and a
dot indicates differentiation with respect tou.

To evaluate the integral, we write ln(2iv) in a different
form by using the identity~Ref. @43#, p. 573!

lnm52g2mE
0

`

e2mxlnxdx, ~D4!

with m52 iv; g.0.577 21 is Euler’s number. Strictly
speaking, this identity is valid only if the real part ofm is
positive. This problem can be circumvented by introducing a
regulatore.0 and settingm52 iv1e. The limit e→0 can
be taken after integrating overv, which yields

F~u!5F~u!22M ~ ln4M2c2g!Ḟ~u!12M

3E
0

`

lnxF̈~u2x!dx. ~D5!

We write this in its final form as

F~u!5F~u!12ME
2`

u F lnS u2u8

4M D1c1gG F̈~u8!du8.

~D6!

This is the desired result.

APPENDIX E: CHANDRASEKHAR TRANSFORMATION
FOR THE ELECTROMAGNETIC FIELD

We derive the relation betweenRl
H(v;r ), the solution to

the homogeneous version of Eq.~4.2! with boundary condi-
tions ~4.9!, andXl

H(v;r ), the solution to thes51 version of
Eq. ~2.1! with boundary conditions~2.3! and~2.4!. For con-
venience, in this Appendix we set to unity the arbitrary con-
stant appearing in Eq.~2.3!.

Direct substitution shows that ifXl(v;r ) satisfies the gen-
eralized Regge-Wheeler equation~with s51), then
Rl(v;r )5rLXl(v;r ) satisfies the homogeneous Teukolsky
equation. Here,L5 f d/dr1 iv. The desired relation must
therefore have the form

Rl
H~v;r !5x rLXl

H~v;r !, ~E1!

where the constantx must be chosen so that the normaliza-
tion of Rl

H(v;r ) agrees with Eq.~4.9!.
To find x and to relateQl

in(v) to Al
in(v), we need ex-

pressions forXl
H(v;r ) that are more accurate than Eqs.~2.3!

and ~2.4!. By solving the generalized Regge-Wheeler equa-
tion, we find that

Xl
H~v;r !5F11

l ~ l 11!

124iM v
f 1O~ f 2!Ge2 ivr* ~E2!

nearr 52M , while

Xl
H~v;r !5Al

in~v!H 11
l ~ l 11!

2ivr
1O@~vr !22#J e2 ivr* 1•••

~E3!

near r 5`, where the ellipsis designates terms proportional
to eivr* . We are now in a position to verify that nearr

52M , rLe2 ivr* ; l ( l 11) f e2 ivr* /(124iM v), and that
nearr 5`, rLe2 ivr* 52 1

2 l ( l 11)(ivr )21e2 ivr* .
Combining these results with Eqs.~2.3!, ~2.4!, ~4.9!, and

~E1!, we find

x5
124iM v

l ~ l 11!
~E4!

and

Ql
in~v!52

1

2
~124iM v!Al

in~v!. ~E5!

Equation~4.15! follows immediately.
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