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Radiative multipole moments of integer-spin fields in curved spacetime
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Radiative multipole moments of scalar, electromagnetic, and linearized gravitational fields in Schwarzschild
spacetime are computed to third ordewirin a weak-field, slow-motion approximation, wherds a charac-
teristic velocity associated with the motion of the source. These moments are defined for all three types of
radiation by relations of the fomlf(t,i)zr’12|mM|m(u)Y,m(0,¢), whereW is the radiation field at infinity
and M,,, are the radiative moments, functions of retarded timset—r —2M In(r/2M —1); M is the mass
parameter of the Schwarzschild spacetime amﬁ)(:(t,r,a,gb) are the usual Schwarzschild coordinates. For
all three types of radiation the moments share the same mathematical structure: To zeroth ordirein
radiative moments are given by relations of the foky,(u) e (d/du)' [ p(u,X)r'Y (6, $)dx, wherep is the
source of the radiation. A radiative moment of ortlés therefore given by the corresponding source moment
differentiatedl times with respect to retarded time. To second order,iadditional terms appear inside the
spatial integrals, and the radiative moments becowtg,(u)s(d/du)' [[1+ O(r2¢?ﬁ)+O(M/r)]pr'Y_|m dx.
The term involvingrzaﬁ can be interpreted as a special-relativistic correction to the wave-generation problem.
The term involvingM/r comes from general relativity. These correction terms of oudfeare near-zone
corrections which depend on the detailed behavior of the source. Furthermore, the radiative multipole moments
are stilllocal functions ofu, as they depend on the state of the source at retardedutiomdy. To third order
in v, the radiative moments becomet,,(u)— M;n(u)+2M [" _[In(u—u’)+consiM,,(u’) du’, where
overdots indicate differentiation with respectué. This expression shows that ti@(v®) correction terms
occur outside the spatial integrals, so that they do not depend on the detailed behavior of the source. Further-
more, the radiative multipole moments now display a nonlocality in time, as they depend on the state of the
source atll timesprior to the retarded tima, with the factor Ing—u’) assigning most of the weight to the
source’s recent pastThe term involving the constant is actually logalhe correction terms of order® are
wave-propagatiorcorrections which are heuristically understood as arising from the scattering of the radiation
by the spacetime curvature surrounding the source. The radiative multipole moments are computed explicitly
for all three types of radiation by taking advantage of the symmetries of the Schwarzschild metric to separate
the variables in the wave equations. Our calculations show that the truly nonlocal wave-propagation correction
— the term involving Ing—u’) — takes a universal form which is independent of multipole order and field
type. We also show that in general relativity, temporal and spatial curvatures con&tuabyto the wave-
propagation corrections. Finally, we produce an alternative derivation of the radiative moments of a scalar field
based on the retarded Green’s function of DeWitt and Brehme. This calculation shows that the tail part of the
Green’s function is entirely responsible for the wave-propagation corrections in the radiative moments.
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PACS numbd(s): 04.25.Nx, 04.30.Db, 04.40.Nr

I. INTRODUCTION AND SUMMARY into a direct part, with support on, and only on, the light
cone, and a tail part, with support within the light cone. A

] ] similar Green’s function was also constructed for the Ein-
It has long been known that, in general, the propagation ofein field equationf4].

massless fields in curved spacetime does not proceed along In 1968, Kundt and Newmaf§] established that for hy-
characteristics only, but is accompanied by wave tails. Much '

attention has been devoted to this topic since the grounqgerbollc partial differential equations in two dimensions, the

breaking work by Hadamarid]. Here are some of the high- presence of wave tails is the rule rather than the exception.
lights. ' This conclusion was extended by McLenaghan and co-

In 1952, Choquet-Bruhaf2] studied the initial value workers [6—9] to the case of conformally invariant wave

problem of general relativity and showed that the gravita-egquations in four dimensions. _
tional field at some everR depends not only on the data put ~ Wave tails are known to have important physical conse-
on the intersection oP’s past light cone with the initial duences. For example, DeWitt and Breh[8¢ have shown
surface, but also on the data put inside this region. This resuthat the tail part of the electromagnetic field is of paramount
indicates that in general relativity, field propagation proceedémportance in deriving the equations of motion for charged
at all speeds less than, or equal to, the speed of light. particles in curved spacetime. Similarly, Mino, Sasaki, and
In 1960, DeWitt and Brehmg3] constructed Green’s Tanaka[10], as well as Quinn and Wald 1], have recently
functions for the scalar and electromagnetic wave equationshown that tails are entirely responsible for the gravitational
in curved spacetime, and showed that these split naturallyadiation reaction force. And as a final example, Pfit2]

A. Tails in waves
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has shown that gravitational-wave tails play an integral part u=t—r—2MIn(r/2M —1), (1.2
in the physical process by which a recently formed black

hole relaxes to a stationary state, as is demanded by thfhde(e,qﬁ) are the usual spherical harmonics. The symbol

no-hair theorems. ° collectively desi I ial di 9
The presence of tails in the gravitational waves produce&( collective y esignates a spgua coor inafes ! b}
In a leading-order calculation in a weak-field, slow-

by an isolated source was first demonstrated in 1965 by Bon- " A _— .
nor and Rotenberfl3]. In 1968, this work was extended by motion approximation, the radiative multipole moments are
Couch et al. [14], who showed that an initially outgoing found to be given by
wave will be partly backscattered by the spacetime curvature |
surrounding the source, thereby creating an incoming wave. 0)(y) = 4w (i) f p(u Y, (0 d))d;(
A further extension of this work has appeared very recently Im 2+ du ’ Imi 7> '
[15]. 1.3

In 1992, Blanchet and Damolii6] considered for the
first time the effect of tails on the behavior of gravitational where dx=r? dr d cosf d¢ and the integration is over the
waves at infinity, thereby concentrating on effects that couldegion of space occupied by the source; we assume that this
potentially be observed directly. They found that gravita-region is bounded. Equatiofi.3) shows that the radiative

tional waves at time depend not only on the state of the ,oments are obtained from the source momémpis Y, ,,dx
source at the corresponding retarded timgessentiallyu  py taking a number of time derivatives equal to the multipole
=t—r/c, wherer is the distance to the source, but see Eq.grder.

(1.2) for a more precise definitignbut also on the state of |5 3 more accurate calculation, incorporating corrections
the source aall timesprior to the retarded timéOnce again,  of ordery?2 with respect to the leading-order resultsith v

this indicates that wave propagation proceeds at all speedgi g characteristic velocity associated with the motion of

less than, or equal to, the speed of ligl8ubsequently17—  the source we find

20], it was shown that tails play an important role in the

generation of gravitational waves by the orbital inspiral of a . d\! (ray)? M
compact binary system. These waves are among the most |§1)(U):—,,(_) f [ | —
promising for detection by future kilometer-scale interferom- (2l+1ttidu 2(21+3) r

eters such as the American Laser Interferometer X p(U )Y (6, ) dX. (1.4

Gravitational-wave Observatoryf21] (LIGO) and the
French-Italian VIRGJ 22].

Given the physical relevance of tails in the propagation o
radiation in curved spacetime, it appeared to us worthwhilé’
to seek a deeper understanding of this phenomenon by as(’j%
ing how it depends on the type of radiation being considere
and by digging further into the nature of its physical origin. L ; L .
This paper reports on the results of such an investigation, | tood as arising from special-relativistic corrections to the
which we study the influence of tails on those properties Oyvav_e—generanon problem. On the other_hgnd, the_ term pro-
massless fields that are directly measurable to an observer‘?s\‘?rt'onéJII toM/r comes from general relativity, and is also of
infinity: the radiative multipole moments. We consider therderv” by virtue of the virial theorem for bound motion in
cases of scalar, electromagnetic, and gravitational radiatioff 9ravitational field. It should be noted that in Efj.4), the
generated by an isolated source and propagating to infinity i orrection terms occums_lde the sp_atlal integrals, so that
a spacetime curved by a nonrotating central nidssAll of they depend on the.detalled behawor_of fche sourccg5 Further-
our results are derived on the basis of a weak-field, slowMore, these corrections are purédgal in time, asZ{7(u)
motion approximation. Throughout this paper we use unit§lepends on the state of the source at the timenly. The
such thatG=c=1, and we employ the definitions and con- terms of (_)rderv2 are therefor_enear-zon_ecorrectlons t_hat
ventions of Misner, Thorne, and Whee[@3]. have nothing to do with the tail effect discussed previously.

A calculation carried out to ordes® in a weak-field,
slow-motion approximation does reveal the influence of the

) ) ) tails. Indeed, the radiative multipole moments are now given
We begin the summary of our results with the simplestpy

case, that of a scalar fieldt(x) obeying the wave equation

1Jt is easy to see that the correction terms are indeed of order
2. The term involving €4,)? is of order ¢./t;)?, wherer,

a characteristic radius within the source apa charac-
ristic time scale associated with its motion; the ratiét,
defineghe characteristic velocity. This term can be under-

B. Scalar radiation

Ob=—4mp, WhereD=g“BVaVB, Jqp Is the Schwarzs- u u—u’

child metric andp(x) a given source. The symbalcollec- ,%)(u)=Zf§1>(u)+2Mf In( 4AM + BNy
tively designates all Schwarzschild coordinafes, 8, ¢}. o

As is shown in Sec. Ill, the radiative part of the scalar field, fo,?])(u’)du’, (1.5

which dominates at infinity, can be written as

120 which clearly displays a nonlocality in time. Here, overdots
d)rao(t,x)=ﬂ:20 mZ Zm(WYim(0,¢), (1.1 indicate differentiation with respect o/, and

where Z,(u) are radiative multipole moments, depending scalar_ E
on retarded time Bi p+1+3, (1.6
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!

u—u
In( M )+,8|em+ Y

where z/;(l+1):—y+2l(:1k*1 is the digamma function 3 ) u
(y=0.577 21 is Euler's numbgrWe notice that the correc- Sy (=587 (u)+2M wa
tion terms of ordew® occuroutsidethe spatial integrals, so

that they do not depend on the detailed behavior of the XS89 )du’, (1.9
source. These arerave-propagatiorcorrections, which are

readily associated with the occurrence of wave tails inyhere
curved spacetime. We must point out that of the ti@¢e®)

terms in Eq(1.5), two are actuallynstantaneousas they are

equal to M (B5°¥%+ y) Z{9(u). The remaining term is truly

nonlocal, and the factor In-u’) assigns most of the weight

to the source’s recent past. These relations are analogous to Elg5) and have the same
Equations (1.1)—(1.6) were derived by integrating the physical interpretation. The second-order multipole moments

wave equation for a scalar field in Schwarzschild spacetimeare given by

for which the variables can conveniently be separaf€te |

actual work of integrating the radial equation is carried out in 72(u)= 4 1+ 1/&)

Sec. Il) But because our calculations use only the weak-field Im 21+ | \du

behavior of the Schwarzschild solution, our results are insen-

sitive to the detailed form of the metric. Although we rely XJ' 14 I+3

heavily on the symmetries of the Schwarzschild metric to 2(1+1)(21+3)

separate the variables in the wave equation, our results rely

only on the fact that the field is spherically symmetric at _(|_1)M

large distances. Our results would therefore hold also in r

more general, nonrotating spacetimes, with spherical sym-

metry holding only approximately at large distances. Staticand

ity, however, is a crucial assumption, and our results would | 5

not be valid if the spacetime were rotating. Although the 20 am (i) f { (rdyu)

. . L ; m(u) = +
wave-propagation corrections to the radiative multipole mo- (21+21)!1"\ du 2(21+3)
ments would take the same form as in Ef15), the space-
time’s rotation would create additional terms of orde. _
These would occur inside the spatial integrals, and would |
describe near-zone corrections of the spin-orbit tj/pé— (1.12
27].

1
TM=y(l+ 1)+

2 21(1+1)° (110

(rdy,)?

a(u,X)r'Y (6, ¢)dx  (1.19)

12—1M - .
3 (ux)r Y6, ¢)dx,

where 0=J'-r4,J"/(I+1). These relations are analogous
to Eq. (1.4) and have the same physical interpretation. Fi-
nally, the zeroth-order momen#®)(u) andS{%(u) are ob-

In Sec. IV we turn to the case of electromagnetic radiationained from Eqs(1.11) and (1.12 by discarding allO(v?)
produced by a given current densit§(x) in Schwarzschild  terms; in this limit,oc=J".
spacetime(The remarks of the preceding paragraph, regard-
ing the generality of our results, apply equally well hgre.
The radiative part of the vector potential is given by

C. Electromagnetic radiation

D. Gravitational radiation

The case of gravitational radiation is conceptually very

I £l different from the previous cases, because of the fact that the
APt,x) = 721 Z | [Zim(W)Y 5 ™(60,¢) spacetime metric is now dynamical. However, if we assume
Lme that T*4(x), the given stress-energy tensor responsible for
+Sim(W)YE'™(60,¢)]1, (1.77  the radiation, is small, then the Einstein field equations may

be linearized in the small deviation of the metric with respect

to the Schwarzschild form. This results in a wave equation
whereZ,,,(u) and S,,(u) are charge and current multipole for the metric perturbatiorf28], and mathematically, the
moments, respectively, whil?E'™(6,¢) and YB'M(9, $) gravitational-radiation problem ends up resembling closely
are the vectorial spherical harmonics described in Appendifhe scalar and electromagnetic analogues. This is the prob-

A. In a calculation accurate to orde? in a weak-field, slow- lem considered in Sec. V.
motion approximation, we find The traceless-transverse gravitational-wave field is given
by [29]

!

u—u
In( M ) + By

© I
TR (W=7 (W +2M f - 2 2 [Tm(WTEE™(0,0)

|k

hizgl(t.x)=

XZiP(u")du’ (1.9 +Sm(WTE5™(0, )], (1.13

where Z,,(u) and §,(u) are mass and current multipole
and moments, respectively, whil€53'™(6,¢) and T55'™(6, 4)
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are the tensorial spherical harmonics described in Appendiresults share the same degree of generality as the previous
A. The weak-field, slow-motion approximations to the mul- ones(see the concluding paragraph of Sec)| B

tipole moments are

u u—u’
Iri)(u): |§1)(U)+2Mf In +ﬁ;;]rav,mas§'_y
—® 4M
Xi}g)(u’)du’ (1.14
and
u u—u’
|§1)(U):8|(§1)(u)+ 2M f In( M +B?rav,currenq_ y
XS}%)(U’)du’, (1.15
where
Bgrav,curren;__ g +1)+ 1_ 2 (116
! 2 10+1) :
and
ﬁlgrav,mass: Blgrav,current_ 6 (117

I—DI+1)(1+2)

The second-order moments are given by

167 (I+1)(1+2)/ d)'
20+ 1)1 2(1-1) \du

1+9
XJ i )’

M
~(+2)—

1?53(U)=(

1

a(u,X)r'Y,m(0,4)dx (1.18

and

S2(u)=

167 /2(I+2)/d)'
2+ -1 \du

+4
Xf )

(1-1)(1+2) M
T

(rdy,)?

J%(u,)r'YBImeg 4ydx,

(1.19
where o=TU+ T +r2T%+ r26inPgT¢%—4r o, T"/(1+ 1), J¢

=T'*—rg,T"%/(1+2). Finally, the zeroth-order expressions

are recovered by discarding &v?) terms from Eqs(1.18
and(1.19; in this limit, c=T" and J*=T'e.

Equationg1.14—(1.19 were previously derivedn a dif-
ferent representation involving symmetric tracefree tensors

E. Universality of the tail correction

A survey of the preceding subsections reveals that the
multipole moments of scalar, electromagnetic, and gravita-
tional radiation fields all share the same mathematical struc-
ture, with terms of ordes? near-zone corrections depending
on the detailed behavior of the source and with terms of
order v wave-propagation corrections independent of the
detailed behavior of the source. And while the near-zone
corrections are local in time, the wave-propagation correc-
tions introduce a nonlocality.

We also observe that the tail corrections depend on the
multipole orderl and on the field’s type only through the
terms involving the varioug,’s. These terms are actually
instantaneousbecause after integration ovdu’, they are
found to be proportional to the first derivative of the zeroth-
order moments evaluated @t The truly nonlocal tail correc-
tions, which involve the weighting function la{-u’), are
independentbf multipole order and field type. This remark-
able result, that the tail correction hasuaiversalform, is
one of the main new contributions of this paper.

F. Physical origin of the tail term

The nonlocality(in time) of the radiative multipole mo-
ments is heuristically understood as arising from the scatter-
ing of the radiation field by the spacetime curvature sur-
rounding the mas$/, and a survey of our previous results
indeed reveals that the tail terms are proportion&litdNow,
the mass parameter enters twice in the metric of an asymp-
totically flat spacetime: Assuming that the weak-field metric
is expressed in Schwarzschild-like coordinates, we hayve
~—1+2M/r and g,,~1+2M/r at large distances. Be-
cause of this degeneracy, it is impossible to tell whether it is
“gu's mass” which is “mostly responsible” for the tail ef-
fect or whether it is ‘g,,’'s mass,” or whether both are
“equally responsible.” In other words, we cannot tell how
the temporal and spatial curvatures separately contribute to
the tail effect.

We examine this question in Sec. VI for the specific case
of scalar radiation. To lift the degeneracy, we artificially in-
troduce an additional mass parame in the description
of our spacetime. This is defined so that the metric functions
are now given byg,~—1+2M/r andg,,~1+2yM/r in
the weak-field limit. General relativity is recovered by set-
ting y=1.

Integrating the scalar wave equation for the modified
spacetime yields Eq1.1) with

+ ’8|scalar+ y

u

az><u>=aa><u>+<1+;>mj

| u—u’
N 72m

X Z9u"du', (1.20

by Blanchet[30] (see also Refd.16] and[19]) on the basis
of post-Newtonian theory. The physical interpretation of R R
these results is the same as in the previous cases, and tbere 8725 y(1+ 1)+ y/(1+ ),
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A d\! (ray)? And, finally, in Sec. VII we integrate the scalar wave equa-
'%)(U)ZW(E) J 2(?13.) tion using the spacetime approach of DeWitt and Brehme

” [3]. Various technical details are relegated to five Appen-
(20+1)y—1 M dixes.

5 | p(uX)rY (8, p)dx,

(1.20)

Il. GENERALIZED REGGE-WHEELER EQUATION
The generalized Regge-Wheeler equafidh]

and 2{%9(u) is given by Eq.(1.3). These expressions reduce 42 (141)  2(s2—1)M
. ~ 2 .
to Egs.(1.5) and(1.4), respectively, whey=1. We see that { St = >~ 3 X(w;r)=0
in the modified spacetime, the tail terms are proportional to r r r 2.1

(1+ 3/). This allows us to conclude that in general relativity,

the temporal and spatial curvatures contribegeiallyto the  has Jong been known to govern the evolution of integer-spin
tail effect. This intriguing observation is another main con-fie|ds in Schwarzschild spacetime. Here,is the usual

tribution of this paper. Schwarzschild coordinatef,=1—2M/r (with M denoting
the mass of the spacetimandd/dr* =fd/dr. Also, o de-
G. Spacetime approach notes the frequency of the fieltljits multipole order, and

={0,1,2 its spin. The precise relation between the mode
TunctionsX,(w,r) and the corresponding scalar, electromag-
netic, and gravitational fields will be described in Secs. lll,
IV, and V, respectively. In this section we consider the
urely mathematical problem of integrating Eg.1) in the

The final section of the paper, Sec. VII, contains an alter
native derivation of Eqs(1.1)—(1.6) based on the spacetime
approach of DeWitt and Brehmg8]. For simplicity, we
again restrict attention to the case of scalar radiation.

The mathematical methods employed in Secs. lll, IV, an ow-frequency limit
V to derive expressions for the radiative multipole moments We first examiné the question of boundary conditions. It
of integer-spin fields are based upon a separation of variables _ ior '
approach made possible by the symmetries of the Schwarz! €2SY 0 check tha(w:r) must behave as™'“"", where
child solution. These methods, though convenient for practi-
cal computations, do not reflect closely the physical picture
of wave propagation in curved spacetime. In particular, the C .
distinctiorr: bgtvgeen direct tern@wh?ch are local ir?timeand n the asymptotic I'm'tg_’ZM‘ F—ee. .It will bec_om(_e clear
tail terms(which are nonlocalemerges only at the very end in t_he f0||OWI.I’1g sections 'that the desired solution is the one
of the calculation. which des_cnbes purely incoming waves at the black-hole

The spacetime approach of Sec. VIl is based instead ofvent horizon. We therefore select the functh(w;r),
G(x,x"), the DeWitt-Brehme retarded Green’s function for such that
the scalar wave equatidB]. As was mentioned in Sec. | A, H -

G(x,x) is expressed as a sum of two parts. The first part has X[ (@;r—2M)~(conspe """ 2.3
support on, and only on, the past light cone of the field point .

X, and gives rise to the direct terms in the waves. The seconfihe constant appearing in front e '“"" determines the
part has support inside the past light conex,gdnd gives rise  overall normalization of the Regge-Wheeler function. Be-
to the tail terms. In the spacetime approach of DeWitt andcause our final results will be independent of this normaliza-
Brehme, the mathematics reflects the physical picture quitdon, we shall leave this constant arbitrary. At infinity,
closely. X}*(w;r) describes a superposition of incoming and outgoing

The radiative multipole moments calculated in Sec. Vllwaves. Consequently,
agree precisely with those calculated in Sec. Ill. Therefore,
the calculation based on the spacetime approach tells us xr‘(w;r_,oo)~A:“(w)e—iwr*+A;3Ut(w)eiwr*_ (2.9
nothing new in terms of the final answer. Nevertheless, this

alternative derivation is very instructive, because of the factr,g amplitudesAI”(w) and AP(w) are determined by solv-
that the mathematical origin of the tail correction is clearing the differential equation.

from the outset. We regard this as another important contri- “\y/e wish to integrate Eq2.1) in the low-frequency limit

bution of this paper. for M|w|<1. Without loss of generality, we henceforth take
o to be positive; the negative-frequency case can easily be

recovered from the relation(f'(—w)=Y,F'(w), where an
The remaining sections of the paper contain the detailedverbar denotes complex conjugation. To facilitate the cal-

derivations of the results summarized above. After layingculations, we define the smdjositive) quantity

some preliminary ground work in Sec. Il, we integrate the

wave equations for scalar, electromagnetic, and gravitational e=2Mo, (2.5

radiation in Schwarzschild spacetime in Secs. lll, IV, and V,

respectively. All calculations are carried out in a weak-field,and introduce a new dependent variable

slow-motion approximation. In Sec. VI we integrate the sca-

lar wave equation for the artificially modified spacetime. Z=wr. (2.6)

r*=r+2MIn(r/2M—1), (2.2

H. Organization of this paper
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After substitution and expansion in powers &fthe gener-
alized Regge-Wheeler equation becomes

d? [(1+1) €/1 d [(1+1)+1-¢°
a2 T2 ThzattT T2
+0(&?)  X,(2)=0. (2.7

It should be noted that when expanding in powers pft
was implicitly assumed that>¢. Our low-frequency solu-
tion will therefore be restricted to the domais=2M. Our
task is now to integrate Eq2.7) to first order ine. We
proceed by iteration, by writing<,=X(?+eX(Y+0(&?),
substituting into Eq(2.7), and solving order by orddB2].
Because we are restricted to the domzine, which ex-
cludes the event horizon at=¢, Eq. (2.3 cannot be im-

posed directly, and the issue of boundary conditions must be
reexamined. This question was addressed by Poisson and

Sasaki[33], who integrated the=2 Regge-Wheeler equa-
tion in the domainz<1 (which includes the horizonim-
posed the correct boundary condition &te, and then
matched the resulting function to the general solution of Eq
(2.7) in the common domair<<z<1. Such an analysis will

not be repeated here. It suffices to state the conclusion: To be

compatible with the incoming-wave boundary condition at
the horizon, the solution to Eq2.7) must be regular in the
(unphysical, and unrealizgdimit z—0.

With this in mind, the desired zeroth-order solution to Eg.
2.7 is

X' O(2)=zj(2), (2.8

where j(z) are the spherical Bessel functions of the first
kind. It should be noted that E¢2.8) provides a particular
choice for the overall normalization mf'(z). The first-order
solution is then determined by solving

d? [(1+1)
g =W, 29
where
_11d [(1+1)+1-8?|
Wi(2)= |- 5 R zji(2).
(2.10
The general solution to E@2.9) is
X(M(z)=zj(2)|a+ fzz’m(z’)w,(z’)dz’
+zn(z)|b— fzz’j|(z’)W|(z’)dz’ ,
(2.11
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The integrations of Eg(2.11 can be carried out explic-
itly. First, we use the recurrence relations among spherical

Bessel functiongRef. [34], p. 439 to write W,(2) in the
form

[—s)(1+
zvv|<z)=2zj|<z>—%nfl<z)
[—s+1)(I+s+1
S . @aa

21+1

Second, we evaluate the integrals using the results found in
the Appendix of Ref[35]. After straightforward manipula-
tions, we arrive at
X{V(2)=[a~A(2)1zji(2) +[b+ y+B\(2)]zn(2)
(I=s)(1+s)
21(21+1)
(I=s+1)(I+s+1)
2(1+1)(21+1)

Zj-1(2)

(2.13

Zj4+1(2),

where

Ai(2)=Si(22) +2°ng(2)j o(2)

p=1

1 1
—_t —

o o1 (2.19

2ny(2)jp(2)

and

Bi(2)=Ci(2z)— y—In(22) + 7% y*(2)

p=1

1

1
—

o ¥l (2.19

) 2%j p4(2).

Here, Si and Ci are the sine and cosine integral functions,
respectively, andy=0.577 21 is Euler's number.

In Appendix B, the functiong\;(z) andB(z) are evalu-
ated in the limitz—0. We find

Z
A(z)= |—+O(z3),

ZZI+2

(+1)2—1) 21+ 1)

+0(22'4).
(2.16

It follows that X*)(z) goes to zero in the limiz—0 pro-
vided thatb= —y. Otherwise, the function diverges. This
choice forb therefore selectX"*)(z), the desired solution.
The constana remains arbitrary, because it affects only the
overall normalization of the solutiorg can be set to zero
without loss of generality.

Integration of the generalized Regge-Wheeler function, to
first order ing, is now completed. We have pointed out that
our answer incorporates a specific choice of overall normal-
ization which is provided by Eq2.8). We now wish to form

B|(Z): - [

wheren,(z) are the spherical Bessel functions of the seconda normalization-independent quantiy'(z)/ A", which will
kind, anda andb are constants which must be chosen so thabe required in the following sections of this paper. We must

X{1)(z) satisfies the regularity condition at=0.

therefore calculateA!". This involves the evaluation of
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X'(2), as given by Eqs(2.8) and(2.13—(2.15), in the limit ~ where the sums ovérandm are restricted by=0, |m|<I.
z—, and a comparison with the low-frequency limit of Eq. Substituting this into Eq(3.1), we obtain the following or-

(2.4). Such a calculation is carried out in Appendix C. Thedinary differential equation for the radial functiétj,(w;r):
final result is quoted here:

H {d2+2f|(|+1)+2MR( )= T (@:r)
X'(2) . T w2 T > 3 iml@, M) =T1plwr),
(=i |+lels(|n2£—B|)(l+_ )z{ 1—eA(2D)]ii(z dr r r
AP (—1) 5 € [1-2A(2)]i1(2) 3.3
(I=s)(I+s). whered/dr* =fd/dr and f=1—2M/r. The source term is
+€B|(Z)n|(2)—8m1|71(2) given by
L Umsendasiy ]
“Rrn@y a@reE) @10 Tin(oin) = =477 [ 5000 ¥im(0.6)00, (3.4
where whered() =d cosf d¢, an overbar denotes complex conjuga-
2 tion, and
PRI 2.18
A TR |

;(w,i):zij p(t,x)e'“tdt (3.5
with ¢(I+1)=— v+ ELzlk‘l denoting the digamma func- m
tion.

Finally, we evaluate Eq(2.17 in the limit z<1, to a is the Fourier transform ob(x). The symbolx collectively
degree of accuracy sufficient for our purposes in the follow-designates all spatial coordinates.
ing sections of this paper. For this, we use Efj16) and the
series expansions for the spherical Bessel functions. We ar-

> " B. Solution
rive a
Equation (3.3) has a Sturm-Liouville form, and it can
H therefore be solved in terms of a Green’s function con-
X' (w;r) 2

e2iMm(In4M\w|—B|)(1+,n,M|w|) structed from two linearly independent solutions to the ho-
mogeneous problem. Which solutions are selected depends
on the boundary conditions we wish to imposeRp(w;r).

A(w) (@I+D)1

“(—iwn Y 1- (wr)? _(I=9)(I+s) M The appropriate choice here is dictated by the physical re-
@ 2(21+3) I r quirement that the scalar field must represent waves which
are purely ingoing at the black hole horizon=2M) and
+ 4 2 2l _ purely outgoing atr=<. This amounts to integrating Eq.
Ol(wr),MeT,(M/r) ]) 219 (3.1 with a no-incoming-radiation initial condition.

We therefore seek functiorB,H(w;r) andR/(w;r), so-
This equation holds both for positive and negative frequeniutions to
cies.

I(1+1 2M
Loy, 2m

Ri(w;r)=0, (3.6

2
L
Ill. SCALAR RADIATION dr*? r

A. Wave equation
and such that

We begin our study of radiative multipole moments in
curved spacetime with the simplest case, that of a real scalar Heo Cier*
field ®(x) obeying the wave equation Ri(w;r—2M)~e ,

OP(x)=—4mp(X). 3. R:"(w;rHOO)NQ:n(w)e—iwr*_*_ Qf)ut(w)eiwr*, (3.7
Here,ng“BVaVﬁ is the curved spacetime wave operator, o
p(X) is an unspecified source function, amrdcollectively R (w;r—ow)~ge“",
designates all spacetime coordinates. The spacetime is as-
sumed to be Schwarzschiltvith massM), and the usual \here r* =r+2M In(r/2M —1). Equation (3.7 indicates
coordinatedt,r, 0, ¢} are adopted.

Because the spacetime is static and spherically symmetri
the scalar field can be decomposed according to

that R|H(w;r) describes waves which are purely ingoing at
the black-hole horizon, whileR*(w;r) describes waves
which are purely outgoing at infinity. The behavior of
R (w;r) nearr=2M will not be needed.

P(x)= _J' dwE Rim(@:1)Y;m(6, d)e" e (3.2) In terms of these functions, the solution to E8.3) takes
r Im the form
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1

R|m(w2f):m

X Rf(w;r)LMTum(w;r’)RP(w;r’)dr’

+R}*(m;r)erTm(w;r’)Rf(w;r’)dr’ ,
(3.8

where the factor QwQ:n(w) is the conserved Wronskian of
the functionsR"(w;r) and R} (w;r).
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introduce a characteristic velocity<1, which will be the
smallness parameter of our approximation. In terms of these
guantities, the requirement that the source motions must be
slow translates to

ol :=0(v). (3.13

The virial theorem for gravitationally bound systems then
implies that the gravitational field must be weak inside the
source:

M/r.=0(v?). (3.19

Finally, the slow-motion approximation implies that the sca-

We are interested in the radiative part of the field, whichlar waves produced by the source’s motion must have low
dominates at large distances from the source. More preciselfrequencies:

we define the radiative field by® ,(x)=Ilim,_ .rd(x),
which expresses the fact that at large distancé$x)
=d,,(x)+O(1/r?). Evaluating Eq(3.8) in the limit r —oe
[assuming thal|,(w;r) has compact suppdrtwe obtain

Rim(@;r—%)~Zjn(w)e'", (3.9
where
Zn) = [ TR wind
= o r)dr.
e S w QM (w) Jam ™ T
(3.10
Finally, substituting this into Eq(3.2) yields
.01
Prad tX) =72 Zin(W)Yin(6,4), (3.1
whereu=t—r* is retarded time, and
Z,m(u)=J Zm(w)e *dw. (3.12

The quantitiesZ;,,(u), or their Fourier transforng;,,(),
will be referred to as theadiative multipole momentsf the
scalar field®(x).

C. Slow-motion approximation

In Eqg. (3.10, the radiative multipole moments are written

in exact form in terms of the sourd@,(w;r) and the func-
tion R/ (w;r)/ Q"(»). While the source function will be left

Mw.=0(v3). (3.19

Our calculation of the radiative multipole moments will be
carried out to ordep® beyond the leading-order expressions.
We now proceed. It is evident that E®.6) is nothing but
Eqg. (2.1), the generalized Regge-Wheeler equation, gith

=0. So we have, immediately,

Ri'(@;r)  X{'(w;r)
)  Alw)

Equation(2.19 may therefore be substituted into E§.10.
After using Eq.(3.4), we obtain

(3.1

Zim(w)= (2:'_—7;)”92iMw('n4Mwlﬁ|)(1+ 7M|w|)(—iw)'
(wr)? M
XJ' 1—m—|7+0(v4)
Xp(@,X)r"Y (6, p)dX, (3.17)
where
1
/5'|:l//(|+1)+§ (3.18

anddx=r2drdQ.

The physical interpretation of this result comes more eas-
ily if we first invert the Fourier transform. The-dependent
prefactors complicate this procedure slightly, but an explicit

unspecified, we now wish to find an expression forexpression foZy,(u) can nevertheless be foutske Appen-
R (w;r)/Q"(w). To do this we must resort to approxima- dix D). We obtain
tions, because E{3.6) cannot be integrated in closed form.

We will derive approximate expressions for the radiative Zim(UW)=Z;m(U)+2M fu m(ﬁ +B+y
multipole moments, and these will be valid in weak-field, — 4
slow-motion situations. To formulate this approximation pre- .
cisely, we introduce a characteristic radiys to be thought XZjm(u")du’, (3.19

of as the radial coordinate of a typical portion of the source
[In other words,T|,(w;r) is assumed to be appreciably dif-
ferent from zero only for values of comparable ta..] We

where overdots indicate differentiation with respectitaand

) T 47 d)\' (ray)? M
introduce also a characteristic timawl/, to be thought of as Zim(U) = —( _) f 1+ ———— — | —

the typical time scale over which the source movyasother (2l+1)\du 2(21+3) r
words, T;(w;r) is assumed to be appreciably different from o

zero only for values otw comparable taw..]| Finally, we +0(v?h p(U,)Z)r'Y|m(0,¢)d>?. (3.20
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Equation (3.20 indicates that to leading ordeg,(u) is wheref=1-2M/r.

given by thel th retarded-time derivative dfpr'Y ,dx. This The source ternT|(w;r) is constructed as follows from
justifies our referring to these quantities as multipole mo-J“(x), the (unspecifiedi current density. One first forms the
ments. Equatiori3.20 also shows that all corrections of or- contractions
derv? appeainsidethe spatial integral, and that they depend _
on the detailed behavior of the source function. These cor- oJ=-J3N,, _J=-J3'm,, 4.3
rections arenear-zonecorrections, and they are purely local
in time: As with the leading-order term, they involve the
value of the source at the retarded timenly. This is not so .1 o
for the corrections of ordes3, as is shown by Eq(3.19: J(w,X)= z—f J(t,x)e'°tdt, (4.9
These involve the value of the sourceadittimesprior to the &
retarded timeu. Furthermore, the®(v?) corrections appear gng takes the projections
outsidethe spatial integral, and they are independent of the
detailed behavior of the source. These weve-propagation ~ - . —
corrections. Equation§3.19 and (3.20, with 3, given by lem(w;r):f 3 (0,X)sY m(8,4)dQ. (4.5
Eq. (3.18, are equivalent to Eq$1.4—(1.6).

We recognize the important distinction between near-zondhe source term is finally given Hy6]
and wave-propagation corrections. Near-zone corrections de-
pend on the detailed behavior of the source and are local in ) — 5 .
time. Wave-propagation corrections, on the other hand, do Tim(@i1) ZWES: sPisDsdim(@ir), 4.9
not depend on the detailed behavior of the source, and are
nonlocal in time. This nonlocality is heuristically understood Where the sum runs fros=0 to s=—1,
as arising from the scattering of the radiation by the space-
time curvature surrounding the source. This scattering causes _ v2i(l+1),  s=0 4.7
part of the information about the state of the source to be sPi 1, s=—1, '
delayed further than what is strictly required by causality.
The integral term in Eq(3.19 is often called theail term, ~ and
and wave-propagation corrections are often catkst cor-

then evaluates the Fourier transforms

3 —

; r s=0

rections. ! !
D= 4.8
s [r[,r3, s=—1, 4.8

IV. ELECTROMAGNETIC RADIATION with £=fd/dr+iw.
A. Teukolsky equation
B. Solution

In this section, we derive expressions for the radiative
multipole moments of an electromagnetic field in Schwarzs- Equation(4.2) is integrated by means of a Green’s func-
child spacetime. The Maxwell equations for this spacetimdion, in a manner similar to what was done in Sec. Ill. We
have been cast, by Teukolskgé], in a form convenient for  introduce two function®R*(w;r) andR|(w;r), solutions to
our purposes. In the Teukolsky formalism, the radiative parthe homogeneous Teukolsky equatidiq. (4.2) with
of the electromagnetic field is represented by the compleX | (w;r)=0], with asymptotic behaviof36]
quantity ®,=F*m,n,, whereF*# is the field tensorn,,
=—1/2(f,1,0,0) a null vector pointing radially inward, and
m,= (0,0r,—ir sind)/\/2 a spatial vector with zero norm. As
before, an overbar denotes complex conjugation.

Ri(w;r—2M)~fe e,

R (w;r—o)~ Q' w)(iwr) te™ ™ + 0M(w)(iwr)e'™,

The field ®,(x) has spin weight=—1 (see Appendix (4.9
A), and it can be decomposed according to R (w;r— o)~ (iwr)&or,
D,(X)= if dwz Rim(@;r)_1Ym( 60, p)e e, wherer* =r+2M In(r/2M —1). In terms of these, the radial
r2 Im function is given by
4.0
where _,1Y(6,#) are spherical harmonics of spin weight Rim(w;r)= 2i Q")
—1 (see Appendix A The sums over andm are restricted !
by I=1, |m|<I. The radial function then satisfies the inho- ) r Tim(@;r" )R (w:r") ,
mogeneous Teukolsky equatipd6] X| R (w;r) 7 dr
oM rr !
d2 1 OOT ap ! ROO !
‘erPJr?[(wr)z—2iwr(l—3M/r)]—I(I+l) +R|H(w;r)f im( @3 )2 @) ol
r r r'=f’

XRim(@;1)=T)n(w;r), (4.2 (4.10
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wheref’'=1—-2M/r’.

As before, we are mostly interested in the behavior of the

radial function near =. Equation(4.10 gives

Rim(w;r—©)~Z(w)(ior)e*”, (4.1)
where
~ 1 e Tip(einR(w;n)
Z|m(CU)=2in:n(w)f2M r2f dr.

(4.12

These quantities are tH€ourier transform of theradiative
multipole moments of the electromagnetic field.

C. Adjoint operators and Chandrasekhar transformation

Equation(4.12 will not be our final expression for the
radiative multipole moments. In E4.12, T,,(w;r) is ob-
tained by applying the differential operatorgD on

STEPHEN W. LEONARD AND ERIC POISSON

2 sP

A oA ()

XJW sJim(@;N) XM (w;r)dr,  (4.16
oM

where we have introduced the operators

r}fiL,
S =10+,

s=0,
s=-—1.

(4.17

We emphasize tha)l(,”(w;r) denotes the solution to the

=1 generalized Regge-Wheeler equation with boundary
conditions(2.3) and (2.4). Equation(4.16 will be our final
expression for the radiative multipole moments.

D. Vector potential

The physical meaning of the quantiti@s,(w) becomes
more transparent if we use Edd.1) and(4.1]) to construct
Afd(x), the vector potential describing the radiative part of
the field.[This is defined similarly tab,,{Xx), encountered in

ST]',m(w;r), the projections of the current density. To have toSec. Ill]

take derivatives of these functions is an inconvenience, and We may choose a gauge in whi&fY(x) is purely trans-
we would like to express the moments directly in terms ofverse to the direction of propagation, which, at large dis-
Jim(w:r). Itis easy to show, by straightforward integration tances from the source, is radially outward. This implies that
by parts, that if we define the adjoint operators the vector potential may be expressed as

. rs, s=0,
D=

s=-1,

(4.18

A= Am, +Am,,
571 (4.13 o
' wherem, = (0,0r,ir sind)/\/2 is complex conjugate tm,, .
It should be noted that the quantify(x) is complex, but that
Ax) is real.
The radiative part of the electromagnetic field tensor,
Fﬁ;ﬁ(x), can easily be computed from E.18), and the

Teukolsky field (I)z(x)=Ff§£manﬁ follows immediately.
Keeping in mind that we are working neas «~, we find

where L= fd/dr—iw, then Eq.(4.12 is equivalent to

~ T = Jim(@;r) DR (w;r)
Zm - s d .
im(®) in;“(w)Es: D|J’2M ey r

(4.19

®,=—A n=— —

R (4.19

Although Z,,(w) is now expressed directly in terms of

Jim(@:r), Eq. (4.19 still will not be our final expression
for the radiative multipole moments. We now want to write
RI'(w;r) in terms of X(w;r), the solution to the general-
ized Regge-Wheeler equationith s=1) considered in Sec.
[I. The relationship between these functions was trivial in the

case of scalar radiatidmf. Eq. (3.16)]. That such a relation-

ship exists in the case of gravitational radiation was shown

by Chandrasekhdi87], who also provided it explicitly. We ~Where
show in Appendix E that for the case of electromagnetic
radiation, the Chandrasekhar transformation is given by

whereu=t—r*. Combining this with Eqs(4.1) and (4.1
yields

-1
A= T2 Zin(W)-1Yim(6,¢),  (4.20

Zm(u)= f Zim(w)edw. (4.21)

R|H(w;r)_ -2 X (w;r)
Ow) 10+ " 4i(w)

This shows thatZ,(u) are indeed the radiative multipole
moments of the electromagnetic field.

The vector potential is obtained by substituting E520
into Eq. (4.18. The spin-weighted spherical harmonics then

(4.195

Substituti_ng this into Eq(4.14) and taking into account the
fact that£L=1(l1+1)f/r? when acting onX|H(w;r), we ar-
rive at

combine with the vectors, and@ to form the vectorial
spherical harmonics described in Appendix PSee Eg.
(A16); Eq. (A15) must also be usepWe find
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.1 of terms in Eq.(4.22, that involving the charge moments,
AZ%t,x) = FE [Zim(WYE'™(8, )+ Sim(u) Y2'™(8, )1, has electric-type parity, while the second group, involving
m (4.22 the current moments, has magnetic-type paistye Appen-
dix A). The fact that two sets of multipole moments are
where we have introduced tlelargemultipole moments needed to formAEf‘d(x) is related to the fact that the electro-
L magnetic field possesses two radiative degrees of freedom.
= —Z=[Zm(W+(=1)"Z _n(1)] (4.23

2

and thecurrent multipole moments

Zim(u)

E. Slow-motion approximation

We now compute the radiative multipole momesl6
i = in the slow-motion approximation. The calculation is similar
Sim(u)= E[Zlm(”)_(_l) Z,-m(W]. (424 15 the one presented in Sec. Ili C.
We begin by substituting Eq2.19, with s=1, into Eq.
The reason for using this terminology will become clear be{(4.16). After using Egs.(4.3), (4.5), (4.7), and (4.17), we
low. For the time being we may mention that the first groupobtain the lengthy expression

/ +3 M
Zim( )= (2|+1)HT(“’)( )| Vg ” 2(|+1)(2|+3)(‘"r) —(=b

iwr{ (wr)? 12—2]—
B R

[

Here, p(w,X)=3"(w,X) is the Fourier transform of the charge density, and

+O( “)

(fp+ JNr! OY|mdx

(wr)?2  12—1 M
s21+3) 1 1 oW

"J'r'_lv_.mdi) . (4.25
-1

Ti(w)=exMeiniMiel=A) (1 + 7M|w|), (4.26

where g, is given by Eq.(2.18 with s=1:

1 1
Bi=u(l+1)+ > m (4.2

Inspecting Eq.(4.25, we notice that it does not have the same mathematical structure &8.EqQ, which gives the
radiative multipole moments of a scalar field. In particular, we seeZhdtw) possesses correction terms that are linear in
[the terms wr p/(1+1) andJ", the latter being one power ofsmaller tharp ], as well as many third-order terms that depend

explicitly onr, and which cannot be taken outside the integral. This apparently contradicts our expectatfp thatshould
come with only near-zone corrections of ordérand wave-propagation corrections of orager

However, expressiof#.25 is not unique, and we may use the continuity equafibp=0 to remove the unwanted terms.
When written out explicitly, this reads

1 1 . .
=——(r4") ,——(9_1J+d4J), 4.2
P rz( ). ﬁr( 1 1J) (4.28
whered andd are the “edth” differential operators described in Appendix A, and

J=—Jm,. (4.29

The continuity equation gives rise to an integral identity if we multiply both sideré‘@%m(a,cﬁ) and integrate ovetlx. After
a Fourier transform and several partial integratifusing Egs.(A13) and (A14)], we obtain

i NV dy Fren—-1v dy Id+1) J Vv FV \rN1ldy
—iw | pr"gYimdx=n [ Jr"" Y ,dx— 5 (11 Yim— 131 m)r" dx. (4.30

We now use this identity to remove all terms proportionalctnp?(w,i) in Eq. (4.25. After some remarkable cancellations,
wherein all unwanted terms disappear, we arrive at our final expression for the radiative multipole moments:
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~ ia)rNr Lo 4=
p+—=3"|r'gY mdx

Z — f +3 2_(1-1 M O(v*
im(@)= (2|+1)H (@) (~io)' \/ 2l a0+ 2+ e =D oy I+1

1 (wr)?>  1°—-1M
2 ]a-

_ e 4
221+3) 1 1 oW

We see that this expression has the expected form, witB@lP) corrections occurring inside the spatial integrals, and all

O(v?) corrections occurring outside.

We now separaté&;,(w) into charge and current moments, according to the Fourier transform of £88. and (4.24).
This gives

(131Y_|m+131Y_|m)r'd;(]. (4.31

_ 4r i+ . I+3 , M .
I|m(w):(2|+1)” | ﬂ(w)(—lw)f 1—m(aﬁ) —(|—1)T+O(U )

X ;(w,i)+%jf(w,>2) oY im( 6, )dx (4.32
and
~ 2\2im 2 |2-1 M - .
Sim(w) = (2[—1),,7((»)( Iw)'f {1— 2((;23)— i 7+O(v4) [—13(0,X)_1Ym(6,0)
+13(0,X)1Ym(0, ) ]r'dx. (4.33

The corresponding expressions in the time dontaee Appendix Dare

Ilm(u)=||m(u)+2|\/|fu +B1+y|lim(u")du’ (4.34

| u—u’
N ~am

and

+ B+ y|Sm(u")du’, (4.35

| u—u’
"™ am

where overdots indicate differentiation with respecuto We have defined

4w /I+l/d)' 1+3 - .
(W= G o VT du / SFTIES PR )7 o)

and

Sim(U) = Sym(U) +2M f

J(u,x)|r OY,m(a qS)dx
(4.3

Py, X)_|+1

[-23(U,%X) 1Y m(6,8) +13(U,X)1Y (6, ) Ir'dx.
(4.37

2(|w< )”1 (ra)? 12—1M

Sm(W =~ G 22143 1 1 TOwY

Equations(4.34—(4.37 have the same mathematical struc- V. GRAVITATIONAL RADIATION
ture as Eqs(3.19 and(3.20, which give the radiative mul-
tipole moments of a scalar field. The physical meaning of
these equations is therefore exactly the same as in Sec. Ill, In this section, we derive expressions for the radiative
and the discussion appearing at the end of Sec. Ill E need natultipole moments of a gravitational-wave field in
be repeated. Equatiorid.34—(4.37), with B, given by Eq.  Schwarzschild spacetime. Specifically, we consider a tensor
(4.27), are equivalent to Eq91.9—(1.12, once the spin- field h,4(x), defined as the difference between the metric of
weighted spherical harmonics have been converted into thihe perturbed spacetime and the Schwarzschild metric. Field
vectorial harmonics of EqQA16). equations foih,,5(x) are obtained by linearizing the Einstein

A. Teukolsky equation



56 RADIATIVE MULTIPOLE MOMENTS OF INTEGER-SPN . .. 4801

equations for the full metric. It is therefore assumed that theHere, L=fd/dr+iw.
perturbation is small. TeukolsK6] has cast the field equa-

tiqns for haﬁ(x)_ ina form conve_nient for our purposes. We B. Solution
briefly summarize this formulation here. . . .
In the Teukolsky formalism, the radiative part lof 5(x) The inhomogeneous Teukolsky equatiGn2) can be in-

is represented by the complex-valued functioh,= tegrated by means of a Green'’s function, in a manner similar
4 to what was done in Sec. IV. Here also, the form of the radial

_ A B Y ; _
Capysh Zn nym_,awherecamg IS the. perturbed Weyl tgn function can be simplified by introducing adjoint operators
sor, andn® and m® are defined as in Sec. IV. The field D', and by expressing it in terms O(F(w;r)/A]”(w),

T,(x) has spin weight= —2 (see Appendix A and it can

i WhereX|H(w;r) is the solution to the Regge-Wheeler equa-
be decomposed according to

tion — Eq. (2.1) with s=2 — with boundary conditions

1 (2.3 and(2.4). These manipulations are described in detail

\I,4:_f do> Rym(@:r)_oY,m(6,¢)e 1@, (5.1 in Ref.[33], and they will not be displayed here. The con-
r4 Im clusion is that at large distances, the radial function is given

by
where _,Y|,(6,¢) are spin-weighted spherical harmonics

(see Appendix A The sums ovel andm are restricted by ) _ 1 - 3 iort
|=2 and|m|<I. The radial function then satisfies the inho- Rim(@;r =) 2¢ Zim(@)rre, 5.9
mogeneous Teukolsky equatipd6]
where
2 & d : : .
r fﬁ—Z(r—M)a+U(a),r) R|m(w,r):T|m(w,r), E ()= S 2 .
(5.2 " iw;q(w)A:n(w) 5 o

where f=1-2M/r and U(w;r)=f (wr)?—4in(r L Y
—3M)]-(I-1)(1+2). XJZMrf sTim(@;N) ' X (w;r). (5.10

The source term on the right-hand side of E§.2) is
constructed as follows from*#(x), the (unspecified stress-
energy tensor responsible for the perturbation. The first step
is to form the contractions

1
B - alw)=Z[1-DI1+1)(1+2)~12Mo] (511
OT:Taﬁnan'B! —lT:TaBnamBy _2T=Taﬁm“mﬁ.

(53 and

One then evaluates the Fourier transforms d

1 01“=2(1—3M/r+iwr)rfa+f[l(l+l)—6M/r]

j(w,i):z—f ST(t,x) €'t dt (5.4 _ _
77 +2iwr(1-3M/r+iwr),

and takes the projections d
l1“=—f{[l(l+1)+2iwr]rfa
STim(w;r)= j T(@X)sYim(6,4)dQ. (55
+I(I+1)(f+iwr)—2(wr)2],
Finally, T)m(w;r) is given by[36]

2F=f2[2[(l —1)(I+2)+6M/r]rf %

Tim(@:1) =272 opeDaTim(@ir), (5.6
where +(I—1)(I+2)[I(I+1)+2|wr]+12fM/r].
2JI—DII+1(1+2), s=0, (5.12
sPi=9 2v2(1=1)(1+2), s=—1, (5.7  The quantitiesZ,,(w) are the multipole moments of the ra-
1, s=-2, diative part ofh,z(x).
and C. Metric perturbation
ré s=0, The gravitational-wave fieldfg(x) can be obtained from
26 pr3f-1 N the behavior of¥,(x) at large distancel33]. Choosing the
D=4 rfLr ' s=—4 (5.9 6 and ¢ directions as polarization axes, the two fundamental

rfcr*f~1cr, s=-2. polarizations of the gravitational waves are given by
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D. Slow-motion approximation

|
h+(t’x)_'hX(t’X)_F% Zim(W)—2Yim(0,), We now calculate the radiative multipole moments in the

(5.13  slow-motion approximation. We proceed as in Sec. IV E.
Substituting Eq(2.19, with s=2, into Eq.(5.10, and using
whereu=t—r* and Egs. (5.9, (5.7), (5.11), and(5.12) yields

* = e - 16w . ~
Zim(U) = f_mzlm<w>e “do. (5.14 Zim(@)= Gy (@) (Zi0)' X Pin(o),

: : . (5.17
This shows tha,(u) are indeed the multipole moments of
the radiative field. It should be noted that while these quan-
tities are complexh, (x) andhy(x) are real. where

In the traceless-transverse gauge, the gravitational-wave
tensor is given by

Ti(w)=e2MemiMlol=u) (1 4 zM|w|),  (5.18

h#=(h, —ih,)m,ms+(h,+ih,)m,m, (5.15

with
or, after substituting Eq(5.13),
=pB— © 5.1
RSt )= 2 [Zim(W) T2™(0,) MR DI+ D(+2) ®-19
+Sim(u) TZ™(6,0)1. (5.16  while 8, is given by Eq.(2.18 with s=2:

Here,hfg(x) is expressed in terms of the tensorial spherical 1
harmonics described in Appendix A. Thmass multipole B=y(l+1)+ =

2 1(1+1) (5.20
momentsZ;,(u) and thecurrent multipole momentss,,,(u) ( )
are related toZ,,,(u) by the same equations as E¢4.23
and(4.249. We have also introduced
|
5 B (|+1)(|+2f 2 (4o M 2iwr[1 [+4 5
oPim(® 2(|+1)(2|+3)(“’” 21 2@ @0
13+312+1-4 M O(v ol 'V dx -
WT+(0)f_2rOImX’ (5.21
5 2(|+2f 12+31+6 , I=D)(+2) M iwr L 12+31+6 )
~1Pim(@)==2 2|(|+1)(2|+3)( wr)”= | TP s naroa+a @
|+3|28|v|04 TYd -
mr+(v) r'_1YimdX, (5.22
P |+2f1 2l O | Tr'_,Ymdx 5.2
—2Pim(@)=— +m+ (v9) By r'—2YimdX. (5.23
|
To'better keep track of the relative importance of each op=T", 7lp:_TraE, p=—T""m,, (5.2
term in Eq.(5.17, we decompose the stress-energy tensor
according to — o
ot=Tm,mg, _t=T*m,mg, ,t=T*’m,m,.
ptht, (524) (527)

L Thus, if p is considered to be a quantity of order unity, then
=T, _jj=-Tm,, 4=-T"m,, (5.25 =0(v), p=0(v?), and t=0(v?). Inspection of Egs.
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(5.2)—(5.23 — in which we substitute ,T/f?=1/4(p ) .~ = -

+20j/f+oplf2), _ TIf=%(_41j+_.p/f), and _,T=_,t 'wf —1J 1"-1Ymdx

— then reveals that as it stands,,(») contains many un-
wanted terms of the sort encountered in Sec. IV E: terms
which are first order irv, andO(v?®) terms that cannot be
pulled outside of the spatial integrals.

= _(n_l)f _pr" Y X

In Sec. IV E, the unwanted terms were removed by invok- T A /WJ LTy, dX
ing the continuity equatiod,=0. Here, they are removed 2
with the help of the energy-momentum conservation equa- (1+1)
tions T“’f‘ﬁzo. When written out explicitly, these become — 5 f O’frnfloY_lmd)'z_ (5.33

We shall also need the following identities, which are valid
o+ 1 (r2fof) ,+ 1 (3 4 +(V91J')=0 (5.29 in the slow-motion approximation:
2y N T ’

f[(wr)z—ln/l/r]oir'ov_.mdi:

_ r? 1 . . 1ff’ 2f
O],t+r_2 Wop +E(071P+51p)+§ P~ o

, FD (M~ — o
’ - > fT(—lJ—lYlm_1J1Y|m)rdX

=0, (5.29

+f iwr[(1+2)op+ 20t Ir'oY mdX

D [ o~ — o
- > flwr(—lp—lYlm_lplYlm)rdxy

1 1 . .
1j,t+r—3(r~°'1p),r+—(aot+a_zt):o, (5.31) (5.39

V2r

. 1 3 1 . .
—lj,t+ r—3(l‘ _1p)’r+_((9_2t+(90t):0, (53@

V2r

where terms of ordep® and higher(with p taken to be of

where ¢ and ¢ are the “edth” differential operators de- order unity have been discarded, and

scribed in Appendix A and’=df/dr=2M/r?.
Equations(5.28—(5.31) give rise to a number of integral

identities, which we write in the frequency domain, and

which are easily established by partial integration, using Egs.

(A13) and(A14). We shall need the following two identities, f [iMw+0(%)]_ g1 1Y mdx

which involve no approximation:

:—(|—1>f [M/r+0(0%)]_1Pr' 1 Vymd,

(5.39

iwarnov_lm di:—f (n=rf'1f)o) 1" 1Y | mdX
[(1+1) - —

+ > f(—lj—lYm _ o _
which follows from Eq.(5.33 after multiplying both sides
by M.

_le_lm)rnfldf( (5.32 These identities are used to remove all unwanted terms
from Z,,(w), as given by Eqs(5.179—(5.23. After a rather
long calculationwhich spans several pagewe arrive at the

and following expression for the radiative multipole moments:
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. 8 | (|+1)(|+2)J 149 e oo™ o
(@)= G 1(@)l=ie) 1)l Ty @) T (F oW

L . /Z(HZ)f .
X\ PPt 2ot ol [FoYin®X= N~ | |17 a2+ ey ()

20+2) | +4 ,
*1J+|+2 ) A e f “20+2)@+3) "

1Y|md><] : (5.39

(-1)(+2) M

24iM w
=D+ 1)(1+2)

+0O(v )}

(|—1)(|+2)
|

4 ~ iw
O(U ) |+21p

Notice that the second and third integrals differ by a term proportiong\te. We see that this expression for the radiative
multipole moments has the expected form, with@{b?) correction terms occurring inside the spatial integrals an@® @)
corrections occurring outside.

We now separaté&,,,(w) into mass and current moments, according to the Fourier transform of£28.and(4.24. (As
was pointed out in Sec. IV C, those equations are valid also in the case of gravitational radifofind that the mass
moments are given by

> 167 (|+1)(|+2)T ) 'f 1 [+9 2_ (|42 M O
Tim(@)= (21+1)! 20— 1)l (o) (i) —m(wr) —(I+ )T+ (%)

X S(w,@+05<w,i>+20T<w.>2>+‘|"+—“’1r07<w,i> oY im(60,6)dx (5.39
and that the current moments are given by
Sim(@)= (leff),, 17#(0)) —iw) ” %(m)z—whﬂ O(v 4)}
x{ 717<w.>2>+|i+ﬂ2,16<w,x*) Tl 0.0)+ | T (0, 0) 1B, | Vi 6, ¢)]r dx, (539
where
Tf (w)=eXMeiniMlel=£0(1 4+ 7M|w]). (5.39

Notice that different constantg( for the mass momentg, for the current momentsappear inZ;(w) and?f(w); these are
defined by Eqgs(5.19 and (5.20.
The corresponding expressions in the time dontaee Appendix Dare

Z,m(u)=I|m(u)+2MfL |n<u4_,\;|J + i+ y| lim(u”)du’ (5.40

and

Sin(0)= S +2M [ In(“;h;‘ + B+ | Sm(u)d, (5.4

where overdots indicate differentiation with respecuto We have defined

167 (|+1)(|+2)/i)'” |+

M
o= V 20-01 \du +m(m“)2_('+2)7+0(”4)}

oY m( 6, ¢)dx (5.42)

- - - 4roy, . .
X1 p(U,X) +oP(U,X) + 2ot (U,X) = 7770l (UX)

and

16 I+2( d ! | +4 (I-1)(1+2) M
Sn(W=~Gron \/|—1\ﬁ> ””m“(mz o 4>}
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Lrdy I p— A R
X~ (UX) =5-1P(UX) | —1Yim(0, )+ | 1) (U,X) =771 P(U,X)

1Yim( 6, ¢)] r'dx, (5.43

The interpretation of these results is exactly the same as fdwy artificially introducing an additional mass parameter in
the casegscalar and electromagnetic radiafiacconsidered the description of our spacetime. The resulting metric, of
previously. Equationés.40—(5.43, with g,= g2 "and  course, will no longer be a solution to the Einstein equations.
w =B MaSgiven by Egs.(5.20 and (5.19, respectively, This, however, does not prevent us from examining the sca-
are equivalent to Eq$1.14—(1.19, once the spin-weighted lar wave equation in this spacetime. Extension of the follow-
spherical harmonics have been converted into the vectoridNg considerations to the case of electromagnetic radiation
harmonics of Eq(A16). would be straightforward. However, in the absence of field
equations, an eventual extension to the case of gravitational
VI. PHYSICAL ORIGIN OF THE TAIL TERM waves would be ambiguous. , _
We consider a static, spherically symmetric spacetime
A survey of Secs. Ill, IV, and V reveals that for scalar, with a line element of the most general form
electromagnetic, and gravitational radiation, the tail correc-
tion to the radiative multipole moments takes the universal ds?=—fdt?+g dr2+r?(dg’+sirfe d¢p?), (6.3
form [cf. Egs.(3.19), (4.34), (4.35, (5.40, and(5.4))]
wheref andg are two arbitrary functions of obeying the

_ ! u-u’ following restrictions. First, the spacetime must be asymp-
Mim(U)=Mim(u)+2M f,w In( am | ety totically flat, so that the metric functions must behave as
XMm(u’)du’. (6.1 f~1—2M/r, g~1-2yM/r, (6.4)

Here, M ,(u) stands forZ,,(u) in the case of scalar radia-

tion, and forZ,,,(u) and S;,(u) in the case of electromag- : o . A
netic and gravitational radiation. Similarlyy,,,(u) stands gf tzsaii/;:gml':gtsFrfgjézlfego{htgia?lﬁ\gtgp?r?:lr:gtlﬂé:?Qdmatch
for eitherZ,,(u), I,n(u), or S,(u). The constant, stands P

for B, [cf. Eq. (2.18], except for the mass multipole mo- the Schwarzschild form at large distancegM can be
ments of the gravitational-wave field, for whichstands for ~thought of as the system’s inertial mass, and the Schwarzs-
w [cf. Eq.(5.19]. child behavior is recovered by putting=1. (This parameter
The physical interpretation of E@6.1) is clear, and was has the same meaning ag in the parametrized post-
first given at the end of Sec. Ill C. Equati¢®.1) shows that Newtonian formalisnj38]. We nevertheless use the notation
while the correction terms of order that appear iM ,,(u) 5/ to distinguish this quantity from the Euler number)
are near-zone corrections that depend on the detailed behaSecond, we assume for concreteness that the metric describes
ior of the source, the correction terms of ordet — the  a black-hole spacetime, so that bdir) andg(r) vanish at
terms under the integral sign, or tail terms — are due tca common radius,. Regularity of the spacetime at the event
wave-propagation effects, and are independent of the devorizon further demands that the rafitg be finite and non-
tailed behavior of the source. And while t@v?) correc-  vanishing atr=r,. (Our conclusions are insensitive to this

tions are local in time, th®(v?®) corrections introduce a second set of assumptiongépart from these requirements,
nonlocality in the radiative multipole moments. This nonlo- f(r) andg(r) will be left unspecified.

cality is understood as arising from the scattering of the ra- We consider the scalar wave equation®(x)=
diation field off the spacetime curvature generated by the-4p(x) in a spacetime with line eleme(8.3). After sepa-
massM, and as Eq(6.1) shows, the tail term is indeed ration of the variables, according to Eq8.2), (3.4), and

at large distances &M). Here,M is the gravitational mass

proportional toM. (3.5, the radial function is found to satisfy
The mass parameter appears in two places in the
Schwarzschild metric, d2 I(1+1) \ﬁ(\/ﬁ)/
2— +\/ = Rim(w;r)
ds?=—fdt2+f~1dr2+r2(d6?+sir0 dg?), (6.2 dr+2 r2 for I
where f=1-2M/r. It enters ing, and ing,,, which are =fTim(w;r), (6.9

both involved in the calculation of the tail correction. Be-

cause the mass parameter is the same in both componentsvfered/dr* = fg d/dr and a prime indicates differentia-
the metric, it is impossible to tell, on the basis of our previ-tion with respect ta'. This equation is integrated by means
ous calculations, whether it ig,, that is “mostly respon- 0f a Green’s function, constructed from two linearly inde-
sible” for the tail effect or whether it ig,, , or whether both ~pendent solutions to the homogeneous equation. These are
components are “equally responsible.” In other words, ourdenotedR*(w;r) and R*(w;r), and are defined as in Eq.
previous calculations cannot tell us how the temporal and3.7), with r* = fdr/\/fg, and withr =r replacingr =2M.
spatial curvatures separately contribute to the tail effect. Thihe solution at large distances is then given by E39),

is the question we now wish to examine. We shall answer itvith
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_ 1 w The second step is to substitute E§.12 into Eq. (6.6),
Z|m(w)=_—f VHGTim(w; )R (w;r)dr. using Eq.(6.4) once more. We obtain

2IwQ:n(w) ro
(6.6 ~ 4 A
z|m(w)=—(2|+7;)” e2loMenaMlel=4)(1 4+ oM w|)
Substituting this into Eq(3.2) yields v
1 X(—iw)'f {1— (wr)” —(Zl_l);HM
Prad 1,X)= 72 Zim(W)Yim( 6, 8), 6.7) 2(21+3) 2 r
m
~ A Nl "
where Z,,(u) is the inverse Fourier transform &,(o) +O@Y) |p(@X)rY (6, $)dx. (6.13

andu=t—r* is retarded time. According to Eg&.4), r* is
now given by

The corresponding expression in the time domain is

r*~r+2oMiIn(r/2M) (6.8 u u—u’
Z|m(u):Z|m(U)+20'Mf In aM +B|+‘y
at large distances, where -
L X Zim(u”)du’, (6.14
o=5(1+7). 6.9 L rere
Equation (6.8) agrees with the Schwarzschild definition A d\' (ra,)?
wheny=o=1. _ Z'm(“):(2|+1)!!(ﬁ> J T 221+3)
We now wish to calculat&,,(w), the radiative multipole .
moments, in the slow-motion approximation. The first step is _@-Dy+1M

to integrate the homogeneous version of E§5 in the TTJFO(UL‘)
low-frequency limit. The calculation proceeds as in Sec. Il
and Appendix C, and uses the approximatié®g) for f(r)

andg(r); these steps will not be duplicated here. Defining

X p(U, )Y (6, d)dX. (6.15

e=2Mw andz=wr, we eventually find

R'(2)

Qin — 2( —j )l +1eio's(|n2£fﬁ|)
|

l+7T
EO’S

><Z{[1—Ut‘l'Aw(Z)]j|(Z)+(Tt‘JB|(Z)n|(Z)

(I+1)y—o ly+o
mh—l(z)ﬂmhn(z)

— &

+O(82)), (6.10

whereA,(z) andB,(z) are defined by Eq4$2.14) and(2.15),
respectively, and

Y

3|:¢(|+1)+Z_ (6.11)

Evaluating Eq.(6.10 for z<1 yields

R (w;r) 2

_ 2icMw(IndM|w|— B))
o) @rr® A moMlel)

(wr)?

- M
—m—[(Hl))’—U]T

x(—iwr)'”(l

+O(v4)]. (6.12

These are the radiative multipole moments of a scalar field in
a spacetime with line elemeri6.3). Equations(6.14 and
(6.19, with B, given by Eq.(6.11), are equivalent to Egs.
(1.20 and(1.2)).

We see from Eqs(6.14 and (6.15 thatS/ and o both
appear in the near-zone and wave-propagation correction
terms. In particular, the tail integral is now proportional to

o=1/2(1+ ). This allows us to conclude that in general
relativity, temporal and spatial curvatures contribetgially

to the tail correction. This result is striking, because the same
conclusion is known to hold in two other situations: the de-
flection and time delay of light by the gravitational field of a
massive body. Indeed, in a parametrized post-Newtonian cal-
culation[38], the deflection angle and the time delay are both
found to be proportional to 1/2(&vy). (Here, y is the pa-
rameter that measures how much spatial curvature is pro-
duced by a unit rest mass; it is equal to unity in general
relativity.) The statement that temporal and spatial curva-
tures contribute equally therefore applies to two very differ-
ent physical situations. While the deflection and time delay
of light are both high-frequency, geometric-optics phenom-
ena, the tail effect is very much a low-frequency, wavelike
phenomenon, and the discovery of such a similarity in such
different situations could not have been expected on physical
grounds. However, this similarity is not entirely surprising
on mathematical grounds: The factor efthat appears in
front of the tail integral is essentially the samehat appears

in the new definition of *, Eq. (6.9); since radial light rays
propagate along curves of constantr* ort+r*, it is per-
haps not surprising that should also appear in expressions
for the deflection angle and the time delay.
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VII. SPACETIME APPROACH In the remainder of this section, we calcul&éx,x’) in a
weak-field approximatiottrelying on previous work by De-
Witt and DeWitt[40]), and derive an expression for the ra-

The mathematical methods employed in the previous segiiative multipole moments of the scalar field. Not surpris-
tions of this paper to derive expressions for the radiativeingly, our answer will agree with what was obtained in Sec.
multipole moments of integer-spin fields were based upon @, Egs. (3.19 and(3.20. Although this calculation tells us
separation of variables approach made possible by the symrothing new in terms of the final answer, it is still instructive,
metries of the Schwarzschild solution. Although the physicabecause of the fact that the mathematical origin of the tail
interpretation of our results, in terms of near-zone and wavecorrection is clear from the outset — it follows directly from
propagation corrections, is quite clear, we cannot claim thathe tail term in the Green’s function.
the physical picture is particularly well represented by the
mathematics involved in bringing the problem to a solution. B. Direct term
Indeed, the physical meaning of our expressions became o ) .
clear onlyafter performing the inverse Fourier transform that  We begin with the calculation of the direct part of the
gave the multipole moments in the time domain; by them-field,
selves, the frequency-domain expressions did not have a very
compelling interpretation. q)direct(x):J O(x,x" ) u(x,x")8(a)p(x")dx". (7.3

In this section, we offer an alternative derivation of the
fr|ad|at|ve multlpole moments in which the math_ema_ltl_cs re-rhis involves the evaluation o (x,x') and u(x,x'). We

ects the physics every step of the way. For simplicity we

shall again restrict attention to the case of scalar radiation..Shall work in the weak-field approximatioghat is, linear-

Following the seminal work by Hadamaid], DeWitt ized gravity in harmonic coordinates@nd express the metric

and Brehme[3] considered the scalar wave equation'gszgca(ft(ir);l):ir?aé;rtheasﬁgr(])E(\;\:)r;girr?a?gg ';nt(?e metric of flat
Od(x)=—4mp(Xx), and its Green’s function satisfying P '
OG(x,x")=—8(x,x"), in an arbitrary spacetime with metric

A. DeWitt-Brehme Green'’s function

d.s- These equations imply that the scalar field can be ex- hap(X)= ﬂ%ﬁ (7.4)
pressed as x|
<1>(x)=477f G(x,x" ) p(x")dx’ (7.1) Here, d, is the Kronecker delta, and for any three-veapr
|S|2=5-5=8,,5%s°. It is assumed that the source of the

gravitational field is a point mass located at the origin of the
where dx’=|g(x")[*d*x’, with g=det(g,z). Assuming coordinates.
that the field poink belongs to the normal convex neighbor- ~ The world function is given by41]
hood of the source points, DeWitt and Brehme found that

the retarded Green'’s function takes the form 1 dév déP
o(x,x")= 2] 9«574% an dx, (7.9
1
G(x,x")= 4—0(x,x’)[u(x,x’)5(cr)—v(x,x’)0(—a)]. where( is the geodesic relating the points andx, £%(\)
T

the equation of this geodesic, ahdan affine parameter on
the geodesic, normalized so thgf(0)=x'® and £%(1)
=x*. Equation(7.5) follows immediately from the geomet-
Here,o(x,x") is the world function first introduced by Synge ric meaning of the world function. Because H@@.5) is an
[39], and equal to one-half the squared geodesic distancaction principle for the geodesic equation, an error of oeder
betweenx andx’; o is positive if the points are spacelike in the specification of is translated into an error of ordef
related, negative if the relation is timelike, and zera #ind  in o(x,x’). Since we wish to evaluate(x,x’) accurately to
x' are joined by a null geodesic. The functiomé&,x’) and  first orderin the formally small parameteM, it is sufficient
v(x,x") are nonsingular in the limir— 0, and are obtained to approximateC by the straight path41]

by substituting Eq(7.2) into the differential equation for the

(7.2

Green’s function. Finallyg(x,x") is a time-ordering func- EXN)=X"“HN(X*=X"9). (7.6
tion, equal to unity ifx is in the causal future of’, and zero e o _ _
otherwise. Substituting this into Eq(7.5) and discarding allO(M?)

As can be seen from E7.2), the retarded Green’s func- terms, we obtain
tion splits naturally into a direct pafthe first term, which

has support on, and only on, the past light conexdgll o(x,x')=— E(l—ZMfld—)\)(t'_t_)(t'_h_)
pointsx’ such thate=0), and a tail partthe second terin ' 2 3 '
which has support inside the past light cof@ points x’ (7.7

such thatr<<0). This, in turn, implies tha® (x) will also be

splitinto direct and tail parts, as was observed in Sec. iI. wevhere
therefore see that contrary to our previous mathematical for-
mulation, Egs.(7.1) and (7.2) reflect the physical picture tiztt|§—§’|i2M|§—§’|J' - (7.8
quite closely. 0o
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and ¢=|£|. Equation(7.7) implies

%[5(t'—t,)+ St —t,)],

o(o)=
|x=x|

(7.9

and the second term vanishes whé&fv) is multiplied by

0(x,x"). To evaluate the integral in E¢7.8), we use Eq.

(7.6) to write

=24 20x" - (X—x) +\x—x'|2,  (7.10

wherer’=|x'|; we also defing =|x| andn=x/r. The inte-
gration is elementary, and E/.8) becomes

t,=tx|x—x'|£2M In(2r/s"), (7.1

where s’
been discarded in the logarithm.
In the weak-field approximatiomy(x,x’) is given by[41]

u(x,x')=1+ %(x“—x’“)(xB—X’ﬁ) fCRaﬂ)‘(l_Md)"
(7.12

whereR,; is the Ricci tensor. Becaudg,; is already pro-

portional toM, the geodesi€ can once again be approxi-

mated by the straight patt?.6). Now, R,z 8(x) in the

point-mass approximation, and there is only one pé@th

which gives rise to a nonvanishing integral in £g.12 —

=r’'+n-x' and where terms of order unity have
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We now invoke the slow-motion approximation and ex-
pandp in a Taylor series aboui. (The approximation en-
sures that the series convergeRnis gives

p™(u,x)[n-x’

DELAt,X)= 2

+2M In(s'/2c)]"dx’, (7.17

where p(M=4"p/ou". After discarding all terms of second
and higher order iM, we arrive at

p™(u,x")(n-x")"dx’

1
I’del‘rdecl(t X) ngo m
2M &G 1 R
+—> —| p™D(u,x")In(s'/2c)
r i7=on!
X (n-x")"dx’. (7.18

This is our final expression for the direct part of the radiative
field.

C. Tail term

The tail part of the scalar field is

CDtail(X)=—f O(x,x" )v(x,x")6(—a)p(x")dx’,
(7.19

the path for whichx’ andx are diametrically opposite. Be- and it is now our task to evaluate this. o
causeC’ forms a set of measure zero in the space of all paths An expression fov (x,x"), accurate to first order iM in

connecting source points to a given field poink, the fact
that u(x,x’)#1 for this path has no effect o yjeclX).
Therefore, we can safely set

(7.13

u(x,x')=1

in the following [42].
Substituting Eqs(7.9), (7.11), and (7.13 into Eq. (7.3
yields

- p(t_, X ")
q)direcl(tvx):f |X X| d )

(7.14

where dx’'=|g(x’)|¥2 d3x=(1+2M/r')dx. At large dis-
tances, this becomes
DY (t,x)= fp[u+ﬁ-)2’+2|\/| In(s'/2c),x’' 1dx’,
(7.15
where

u=t—r—2MIn(r/c) (7.19

a weak-field approximation, was derived by DeWitt and De-
Witt [40], who find

2M 5
v(X,X')=————= o(r+r'+t'—t)
[x—x"] at’at
F+r’+[x—x|
XIN———=—+0(t—t'—r'—r)
r+r’ —|x—x’|
t—t'+|x—x'|
XIn——————|. (7.20
t—t' —|x—x’|
For larger, this reduces to
S(u— u—s) O(u—u’'—s')
v(xx)——— > |
r s’ (u—u’)
(7.2)
wheres’ =r’+n-x’,
u'=t'—r+|x—x'|=t'—n-x’, (7.22

andu=t—r is retarded time[The true retarded time is given

is retarded time, witlt an arbitrary constant. This definition by Eq. (7.16) and differs fromt—r by a term 2V In(r/c).

of retarded time is similar to the Schwarzschild expressionNeverthelessi=t—r is the appropriate expression to use in
and c will eventually be chosen so that the two definitions the calculation of the tail term when working to first order in
agree. M, because (x,x") is already proportional td/.]
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We now substitute Eq(7.21) into Eq.(7.19, taking into
account that 6(x,x’)8(—o)=6(t—|x—x'|—t') =6(u
—u’), according to Egs(7.7) and(7.8). We obtain

agen=" [ [ ]2

B f(u—u'—s")
(u—u’)?

1 p(u’+ n-x’ X)du'dx’,

(7.23
where dx’'=[g(x')|¥2 d3x' =[1+O(M)] d®x’. After two
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N2y’ x")In(u—u’)du’

— o0

u
><(u,x’)+J p'

X (n-x")"dx’.

(7.26

This is our final expression for the tail part of the radiative
field.

D. Total radiative field

The total radiative field is obtained by adding the direct
and tail terms. Combining Eq$7.18 and(7.26), we obtain

partial integrations and a few lines of algebra this becomes

.. 2M
<I>{:ﬁ’<t,x>=7”—

—,x)In(Z+n-x")d¢

N r’ .
(u—r’,x’)lns’—J’ R Q,p(u
—n-X

u .- - - -
+j p(u" +n-x",x")

(7.24)

XIn(u—u')du’ |dx

i 1J u I u—u’
F:om — n 2c

<“>(u,>2')+2|v|J
+¢(n+1)+ Y

q)rao(ti)z):

p(n+2)(u/,)_(’r)du/)

X (n-x")" dx’.

(7.27

We recall thadx’ = (1+2M/r")d3x’, u=t—r—2M In(r/c),
and that Eq(7.27) has been derived on the basis of a weak-

where overdots indicate differentiation with respect to eithefield, slow-motion approximation; it is valid to first order in

uoru’
The{ integral on the right-hand side of Ef.24) can be
evaluated explicitly ifp(u—,x’) is expanded in a Taylor
series about=0. (Again, the slow-motion approximation
ensures that this series convergdsis results in an infinite

sum of terms involving the integralg "In(Z+n-x') d,
which can be expressed in closed fo(Ref. [43], p. 209.

M, and neglects terms of ordef.

The constant appearing in Eq(7.27) is the same one
which enters in the definition of the retarded tirae Eq.
(7.16. The radiative field does not actually depend on the
numerical value of this constant. To see this, det-\c,
where N is a scaling constant. Then Eq7.16 implies

u—u+2MInx, and we have p™(u,x')—p™(u,x")

After a rather long but straightforward calculation, we find +2M InAp‘”“)(ux )+0O(M?). Substituting these relations

that this integral is equal to

) - 1
p(u—r',x")Ins’' + > = —Ins'+y(n+1)+y]p"tY
n=0

[}

X(ux')— >

p=n+1

(=1 "n!

mp(p+l)(u X )r’p n (n X )

(7.29

into Eq. (7.27 and discarding all terms of ordéi? shows
that, indeed®,,(X) is invariant under this transformation.
Our current expression for the radiative field has a math-
ematical structure similar to that of Eq®.11), (3.19, and
(3.20, but there appear to be some differences. We now
show that these are only apparent, and that in fact(Eg87)
is entirely equivalent to the results of Sec. lll.
We first reintroduce the spherical harmonics, with the re-
lation [44]

Notice that the first term cancels out the first term on the

right-hand side of Eq(7.24). The rest of Eq(7.25 is sim-

plified by invoking the slow-motion approximation. Because

it involves an additionalretarded time derivative, the first
term in the sum ovep is smaller tharp("*Y) by a factor of

order v, and the remaining terms are smaller still. Now,

Mp("*1) is already a factor of ordes® smaller thanp(™,

which appears in the direct part of the radiative field. This

means that in Eq(7.29, the sum overp is O(v?*), and
therefore, it will be neglected.
After substituting Eq(7.25 into Eq.(7.24), and expand-

ing the third term on the right-hand side of this equation in

Taylor series about-x’' =0, we arrive at

o0

. 2M
DRt x)=—2> —

[[—Ins’+zp(n+1)+ ylp"tY
r n=0 n

a

|
(n-x")"=4mnir'">’
=0

m=—|

2T(n+/2)
T DI(n=—D72]!

XY im(60', " )Yim(6, ),

(7.28

where the sum ovdrincludes even values only if is even,
and odd values only ifi is odd. The angleg’ and¢’ are the

polar angles of the source pomt, and # and ¢ belong to

the field pointx. Substituting this into Eq(7.27 and reor-
dering the sums, we obtain
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|

> Yim(0',8") Yin(6,¢)

m=—|

= 2'[(n+1)/2]!
XHZ. (n+|+1)![(n—|)/2]!J

+2Mju =Y
—w n 2C

X(u',x") du’]r’”d)?’.

. Am
P(LX)= 2

p™(u,x")

+(n+1)+y| p"+2

(7.29

The slow-motion approximation now demands that we keep
only the first two termsi{=1 andn=1+2) in the sum over

n. After some algebra, we arrive at

.1
Prad 1.X)= 2 Zin(WYim(6,¢), (730
which is the same as E3.11). Here,
u u—u’
Z,m(u)=Z|m(u)+2Mf_ In( T +(l+1)
+ | Zym(u”)du’ (7.3D
and
4 d) (ray)?
Z'm(“):(2|+1)1!(ﬁ> ”” 2(21+3)
+0(" [p(u,x)r'Y,m(6,¢)dx.  (7.32

This is almost, but not quite, the same as E@19 and

(3.20.
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This is the same as E¢3.20.

Finally, a specific choice far can be made by_der@nﬂng
that u=t—-r—2Min(r/c) be wequal to u=t-—r
—2M In(r/2M), which is the retarded time encountered in

Sec. Ill. (We have approximateWZM —1 by T/2M in the
logarithm) A short calculation gives

c=2Me 2 (7.39
and with this choice, Eq.7.31) becomes

(u u’ 1
In| 7 )+¢/J(|+1)+§+y

u

Zim(U) =Zjm(u) +2M f

X Zim(u’)du’. (7.36

This is the same as E@3.19. We therefore have precise
agreement between the results of this section and those of
Sec. lll.
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APPENDIX A: TENSOR FIELDS ON A TWO-SPHERE

We gather, for the benefit of the reader, several results
pertaining to the “edth” differential operators and the asso-
ciated spin-weighted spherical harmonics. The discussion
follows closely Ref[46], but it is essentially self-contained.

We considerS?, a spherical two-dimensional space with
the metric

ds?=0g,,d62d0°=r?(d 6%+ sirf 0 d¢?), (A1)

on which fields of various tensorial types are defined. For

To properly compare our results with those of Sec. Ill, wesimplicity, all geometric objects considered in this appendix
must account for the different choices of coordinate systemswill be confined to this space. However, extension of the
The coordinates used in this section, and those for which Edollowing considerations to four-dimensional, spherically

(7.4 holds, are the harmonic coordinatésx,y,z}. From
these we have constructed the spherical

symmetric spacetimes is immediate.

coordinates |t is useful to introduce a set of basis vecton® and m@

{t,r,0,¢} in the usual way, and in this coordinate system,(an overbar denotes complex conjugaliomhich satisfy the

d>?=(1+2M/r)r2dr dQ), whered() =d cosf d¢. These co-

ordinates are distinct from the Schwarzschild coordinates

used in Sec. lll, which we now denofet,r,6,¢}. The
transformation between the two coordinate systenid5$

t=t, r=r+M, 0=0, ¢=¢. (733

We therefore havelx=r2dr dQ= d;T which is the vol-

ume element of Sec. Ill. We also have=r'(1—IM/r),
and substituting this into Eq7.31) yields

(1 dy)? M

B 4 d)'
Z'm(“)_(2|+1)n(ﬁ J 2(21+3) 1

+0(0Y) [p(u,X) T (0, 4)dx.  (7.34

relations
m,m?=m,m?=0, mym?®=1. (A2)
A particular choice is
r —r
ma=ﬁ(1,i sing), ma=ﬁ (1,—ising). (A3)

This choice is not unique, because the relatigh2) are
preserved under the transformation
mi*—e’m?, mi-e m?, (A4)
where is any constant.
We may use the basis to decompose tensor fields. For
example, a vector fiel?#® may be expressed as



Vo= _1Vm,+,Vm,, (A5)

where
_,V=Vam,.

1V = Vama 1 (AG)

Similarly, a symmetric tensor fiel@®” is decomposed as
Tap= —2Tmymy+2,T m(amb) +,Tmymy, (A7)
where

_L,T=Tmm,.
(A8)

_Tab _Tab
S,T=T%"mm,, T=T2"mym,,

The spin weightof a field is determined by how the field
transforms under Eq4A4). By definition, a field has spin
weights and is denoted #, if

sn_’eis¢577 (A9)
under the transformation. For example,V has spin weight
s=—1, while ,T has spin weighs=2.

The covariant derivative@vith respect tay,,) of the base
vectors are given by

1 _
— —cotdm,(my—my)

Var

My.p= (A10)

and its complex conjugate. It follows that the covariant de-
rivatives of arbitrary tensor fields can be conveniently ex-

pressed in terms of the “edth” differential operataranda,
which are defined by

9= i +icso J to

= |5 tics P scotd |,
=2 o i + scotd All
d=— ﬁ—ICS % scotd | . (A11)

It should be noted that these operators depensd, dine spin
weight of the object on which they a¢fhe original notation

[46] for these operators wag and 7, respectively. For
example,

1 . . - .
Vap=— E[(&_N)mambvL (d_1VYmymy+(d1V)mym,
+(81V)mymy]. (A12)

From this relation it is clear that raises the spin weight by

one unit, whiled lowers it by one unit. For example,V
= —\2rV,,m?m® has spin weight=2.

The "edth” operators can be manipulated efficiently
when working under an integral sign. Given two smooth,

complex functionsg_;f(6,¢) and (g(0,¢), the following
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9(ds_1F)dQ,  (A13)

| . ifao-- |
whered(Q) =d cosd de¢.

The “edth” operators can be used to generate sets of
spin-weighted  spherical-harmonic  functions, denoted
JYim(6,®). Each setcorresponding to a fixed value 6f is
complete, and members of a given set obey the usual ortho-
normality relations. The defining relations agy|n=Yn
(the usual spherical harmonj¢csand

0sYim=(I=9)(1+5+1)s1Ym,
ViI+s)(I=s+1)s 1Yim-

The spin-weighted spherical harmonics also satisfy the rela-
tions

Y m=— (A14)

LY== D)%Y (A15)

The spin-weighted spherical harmonics can be combined
with basis vectors to form tensorial spherical harmof€.
For example,

1

V2

YEVIm: (—1Ylmma_1YImHa)v

i _
YEVIm: - _(—1Ylmma+ 1Ylmma)y

V2

are vectorial spherical harmonics. The superscEpindi-

cates that under a parity transformatidfﬁ"m has electric-
type parity, YE'™— (—1)'YE!™: the superscripB indicates
a magnetic-type parityy®'™— (—1)"*y2!™ Similarly,

(A16)

1 P
ng'lmzﬁ(—2Y|mmamb+2Ylmmamb)’
B2m i m.ms
Tap == =(2Yim MaMp—5Y, MaMy),  (AL7)

V2

are tensorial spherical harmonics.

APPENDIX B: EVALUATION OF TWO FUNCTIONS

We evaluate, in the limiz—0, the functionsA(z) and
B|(2) defined by Eqgs(2.14) and (2.15.

To evaluate A|(z) is easy. By using the expansions
Si(2z)=2z+0(z% and z°n,j,= —2/(2p+1)+0(2%), we
quickly arrive at

+0(2%). (B1)

identities are easily established by straightforward partial inThe sum evaluates to-11/1, andA(z) reduces to the result

tegration:

| Gaanagao-- [, iGgaa,

quoted in the text — Eq(2.16).

To evaluateB,(z) requires more work. We begin by re-
calling the series expansions for the cosine integRaf.
[34], p. 232,



4812 STEPHEN W. LEONARD AND ERIC POISSON 56
_ “(=" X frequency limit of Eq(2.4), we will then computeétin in the
Ci(22)= 7+|n(22)+nZl W(ZZ) ", (B2  normalization provided by Eq2.9).

N To express Eq€2.8) and(2.13 in the limit z—«~, we use
the squared sine, such asymptotic relations as S#2-w/2, Ci(2z)~0,
Zs(nljp‘ilnp)ij“%[1“(“1)|7p]znh jioa~—n;, and

o (=1)n j1+1~n, . After some algebra, we obtain

sitz=—> U o ®3
n=1 2(2n)!

and the squared spherical Bessel functions of the first kind

(Ref.[43], p. 960,

(- DT (2p+2+2k)

22jA(2)=m
(2=, KIT(2p+2+K)T%(p+ 2 +k)
7\ 2p+2+2k
X > (B4)
Substituting these into E¢2.19 gives the series
Bi(2)= 2 by2™, (B5)
n=1
where, after some rearranging,
IO_(—1)”+122"(n—1) wI'(2n)
" 2n(2n)! 22'T2(n+ 1)
1 1 —net
<3 3+ 511l o ,
p=1\p ptl/(n—p—-!IT'(n+p+1)

(B6)
with P=min(n—1, —1). Additional manipulations brind,
to the form

—1)"*+1220(n—1 nz2 211
B G i G | AL G S S
2n(2n)! |7 n-1%\p p+1
(1P B7
‘P Dinip ) atl
The sum evaluates to
n—1 -1)P(n—-P-1
- (—1) .
n2  n(P+1)(n+P)I(n—P—1)!

which implies thab,=0 for n<I| (because®=n—1), while

B (_1)n+I22n—1(n_1)!2
“l2n)!(n—1-1)!(n+1-1)!

b, (B9)
for n=1+1. It is then easy to show that E@®5) reduces to
the result quoted in the text — E(R.16).

APPENDIX C: REGGE-WHEELER FUNCTION IN THE
ASYMPTOTIC LIMIT

We wish to evaluate the Regge-Wheeler funcﬂd?'(z),
as given by Eq92.8) and(2.13 (with a=0 andb=—v), in
the asymptotic limitz—c. By comparing with the low-

H T
X ~(1—s§>ZJ,—s[In(Zz)—,8|]zn|+O(82), ((ox))

where g, is given by Eq.(2.18).
We must now compare this result with the low-frequency
limit of Eq. (2.4), which we rewrite as

X~ ANe~iz" 4 A0ugiz* (C2
where z* =z+ ¢ In(ze—1). Expanding the phase factors in
powers of &, and using the asymptotic relatiores™'?~
(=)' Y(zj,+izn), yields

X~ (1+eA)zj+e(A —Inz)zn+0(e?), (CI
where

1+8AI+:(_i)l+lA:neiaIns+(i)I+1A|0utefislns’ (C4)

iSAlf=(_i)|+lA:neia|ns_(i)|+lA|0ute7is|ns.

Finally, comparing Eqs(C1) and(C3), and using the re-
lations (C4), we arrive at

o 1 _
A:nzi(i)Hlele(anE'B')[l—gs-l-O(Sz). (C5)

From this and Eqs(2.8) and(2.13), we obtain Eq(2.17).

APPENDIX D: INVERSE FOURIER TRANSFORM OF
TAIL CORRECTIONS

We wish to take the inverse Fourier transform of the func-
tion
Flw)=exMelmMlel=01 4 7M|w|)F(w), (D)
where ¢ is a constant andF(w) an arbitrary, square-

integrable function. In other words, we wish to compute the
function F(u) given by

f(u)zf Flw)e “dw. (D2)

We shall do so in the spirit of the slow-motion approxima-
tion, by formally treatingVl as a small parameter. We follow
closely the derivation found in Appendix A of Réfl9].

We first expand the exponential factor in E§J1) to lin-
ear order inM, and combine the result with the (1
+7M|w|) factor. We then substitute the identityw In|w|
+7w|/2=iwIn(—iw). After a few lines of algebra, we ob-
tain
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Fu)=F(u)—2M(In4M —c)F(u)+2M

Xfﬁ(w) ion(—iwe “Ydo, (D3)

whereF (u) is the inverse Fourier transform &f(w), and a
dot indicates differentiation with respect to

To evaluate the integral, we write In{w) in a different
form by using the identityRef. [43], p. 573

oo

|n,u,=—'y—,u,f e Mnxdx, (D4)

0
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Direct substitution shows that X;(w;r) satisfies the gen-
eralized Regge-Wheeler equatiorfwith s=1), then
Ri(w;r)=rLX,(w;r) satisfies the homogeneous Teukolsky
equation. HereL=fd/dr+iw. The desired relation must
therefore have the form

RI'(w;r)=x rLX(w;r), (ED
where the constant must be chosen so that the normaliza-
tion of Ri'(w;r) agrees with Eq(4.9).

To find x and to relateQ,"(w) to A"(w), we need ex-
pressions fob(:*(w;r) that are more accurate than E(.3
and (2.4). By solving the generalized Regge-Wheeler equa-

with u=—iw; y=0.57721 is Euler's number. Strictly tion, we find that

speaking, this identity is valid only if the real part gf is

positive. This problem can be circumvented by introducing a

regulatore>0 and settingu=—iw+ €. The limit e—0 can
be taken after integrating ovey, which yields

Fu)=F(u)—2M(In4M —c— y)F(u) +2M

xf InXF(u—x)dx. (D5)
0
We write this in its final form as
u u—u’ .
f(U)ZF(UHZMJ |n( | tety F(u")du'.
(D6)

This is the desired result.

APPENDIX E: CHANDRASEKHAR TRANSFORMATION
FOR THE ELECTROMAGNETIC FIELD

We derive the relation betweeR{*(w;r), the solution to
the homogeneous version of Ed.2) with boundary condi-
tions (4.9), andX{'(w;r), the solution to thes=1 version of
Eq. (2.1) with boundary condition$2.3) and(2.4). For con-

X'(w;r)= gy 0D f+0(f3)|e7 '™ (E2)
N =11+ 77, To) e
nearr=2M, while

_ I(1+1) P -
XM(w;r)=ANw){ 1+ ot +O[(wr) 2]]e for™ 4.

(E3)

nearr =, where the ellipsis designates terms proportional
to €. We are now in a position to verify that near
=2M, rce " ~|(1+1)fe " /(1-4iMw), and that
nearr=co, rLe " = —31(1+1)(iwr) e e,

Combining these results with EqR.3), (2.4), (4.9), and
(E1), we find

_1-4iMoe
X~ 70+ D) ED
and
. 1 . _
O(w)=— 5(1_4"\/' o)A (). (E5)

venience, in this Appendix we set to unity the arbitrary con-

stant appearing in Ed2.3).

Equation(4.15 follows immediately.
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