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We present a method to study the time variation of the orbital parameters of a post-Keplerian binary system
undergoing a generic external perturbation. The method is the relativistic extension of the planetary Lagrangian
equations. The theory only assumes the smallness of the external perturbation while relativistic effects are
already included in the unperturbed problem. This is the major advantage of this novel approach over classical
Lagrangian methods.@S0556-2821~97!05120-5#
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I. INTRODUCTION

Since the early stages of classical celestial mechanics, a
very large amount of effort has been made in order to find
exact or approximate solutions to the problem ofN pointlike
interacting bodies. It is well known that a general solution
exists only forN52 ~Keplerian solution!. In general, when
N exceeds two searching for even approximate solutions be-
comes a very difficult task. Fortunately manyN-body sys-
tems of interest in celestial mechanics may be considered a
two-body problem, and the interaction of the otherN22
bodies can be regarded as a perturbation. In these cases the
distance of theN22 bodies, together with the relative mag-
nitude of masses, allows one to resort to standard perturba-
tive methods~see for instance@1#, Chap. 6!. Moreover when
a two-body system suffers perturbations such as drag or ra-
diation damping forces, oblateness of one of the two bodies
and so on, the usual Keplerian solution must be viewed only
as a zeroth-order approximation.

In the framework of Newtonian gravity, all these kinds of
perturbations may be handled using the Lagrangian planetary
equations through which the time dependence of orbital ele-
ments~otherwise constant! is achieved. This way the motion
of the system is formally Keplerian but the orbital elements
are allowed to vary with time. This procedure has been
widely used from physicists and astronomers to study New-
tonian binary systems; but what happens if relativistic effects
are to be taken into account together with the external per-
turbation? A first way to approach the problem is to assume
that relativistic effects and the external perturbation are
roughly of the same order of magnitude; in thissemiclassical
standpoint they are both considered as a perturbation to
Keplerian motion.

We propose a novel procedure to account for relativistic
effects in the unperturbed problem, in which the only pertur-
bation is the external one. For this scheme we divide our
work in two steps; first the relativistic two-body problem
needs to be solved~this has already been done up to the first
post-Newtonian~1PN! and 2PN orders beyond the classical
limit by various authors~see, for instance,@2,3#!; this is the

so-called post-Keplerian solution!; then our task, that is the
main result of this paper, is to find out the relativistic version
of Lagrangian planetary equations, giving the time depen-
dence of relativistic orbital elements.

II. POST-KEPLERIAN SOLUTION

Let us consider a system of two bodies, moving under
mutual gravitational attraction. Since we want to focus our
attention on systems whose relativistic effects are not negli-
gible, we have to introduce a post-Newtonian parameter
quantifying the relevance of these effects; this parameter is
defined as

ePN5
defv

c
. ~1!

In the above expressionv is the typical speed of the bodies
of the system andc is the speed of light; using relativistic
Einstein equations it can be shown that the equations of mo-
tion up to 1PN order, i.e., retaining only the terms in (ePN)2,
may be derived from the following Lagrangian, in a refer-
ence frame with the 1PN center of mass at rest~see, for
instance,@2#!:
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In the above formulas,r 1 andr 2 are the radius vectors of the
two bodies,m1 and m2 denote their masses, andrB is the
position of the post-Newtonian center of mass@see@4#, Eqs.
~5.4.5!–~5.4.9!#. In the following the usefulness of the
Hamiltonian approach with respect to the Lagrangian one
will become clear; therefore we calculate the canonical mo-
menta deriving from Eq.~2!:
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The Hamiltonian function of the system is defined as usual:

H05p•v2L0 . ~4!

Now, from Eqs.~2! and ~3! we are in a position to express
explicitly such a Hamiltonian in terms of the canonical vari-
ablesx andp, obtaining

H05
c2

2
p22

Gm

c2r
2

c4

8
~123n!p42

Gm

2r
~31n!p2

2
Gmn

2r 3 ~x•p!21
G2m2

2c4r 2 . ~5!

Hence, the Hamilton equations are
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The exact solution~called the post-Keplerian!, up to 1PN
order, has been found by Damour and Deruelle~see@2#, and
also @3# for its extension to the 2PN level!. The post-
Keplerian solution may be written in a form very similar
with respect to the classical one as follows:
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where
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and
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In these equationsv, V, and i are Euler angles, defining
the rotation that connects the observation reference frame
with the intrinsic frame of the motion. In celestial mechanics
they are usually referred to asargument of periastron~the
angle in orbital plane from the line of nodes~see@5#, Sec.
4.4! to the perihelion point!, longitude of the ascending node
~the angle measured from the positivex axis of the observer
to the line of nodes! and inclination of the orbit~the angle
between the orbital plane and thex-y plane of the observer!,
respectively. The other elements of the orbit are thesemima-
jor axis of the ellipsea, the eccentricity e, and thetime of
periastronpassageT.

III. 1PN LAGRANGIAN BRACKETS

In last section we have reviewed the post-Newtonian so-
lution of a binary system of bodies. Such a solution is quite
correct provided that either the system is completely isolated
or the external perturbation induces effects whose order of
magnitude is less than or equal to the 2PN ones; if we quan-
tify the weakness of external perturbation to the parameter
eext, our last assumption is

eext<~ePN!2. ~17!

In the framework of the validity of the above expression the
simple post-Keplerian solution is correct. When the external
perturbation is so strong that the above expression does not
hold true anymore, we have to take into account its effect on
the 1PN relative motion of the two bodies. To this purpose
we have developed a perturbation method enabling us to
calculate the time dependence of orbital parameters due to
external perturbation. Such a method may be viewed as the
relativistic extension of the planetary Lagrangian equations,
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which are widely being used in classical celestial mechanics
to evaluate the time evolution of the orbital elements for
Keplerian motion. Indeed it is our aim to calculate the time
evolution of orbital parameters for post-Keplerian motion.
To summarize we assume that the solution of the perturbed
problem has the same functional dependence on orbital pa-
rameters and on time explicitly as the unperturbed problem.

In the presence of an external perturbation, the Hamil-
tonian describing the system can be written as

H5H0~x,p!1H1~x,p!, ~18!

whereH0 is the usual two-body Hamiltonian, which is exact
up to 1PN order, whileH1 describes the most general per-
turbation. This latter is a sort ofdisturbing functionwith the
only difference that the usual classical disturbing function
~see@1#, Chaps. 5, 6 and@6# if the external perturbation is
due to the gravitational attraction of other bodies! is a per-
turbation to the Lagrangian, while the one concerned
through this paper is a perturbation to theHamiltonian. With
the above assumptions, the solution satisfies the following
equations:
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wherex5x(a,e,T,v,V,i ,t) andp5p(a,e,T,v,V,i ,t).
As in the classical case, we need to find out the equations

governing the time dependence of orbital parameters
(a,e,T,v,V,i ) due to an external perturbation. First of all
we have to calculate the relativistic Lagrangian brackets de-
fined as~@5#, Sec. 9-4!
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where Cj with 1< j <6 are the orbital elements
a,e,T,v,V,i . On the strength of Eqs.~19! it is easy to show
that the Lagrangian brackets do not depend explicitly upon
time ~for the classical version of this property see@1#, Sec.
6-2!.

From definition~20! and the Hamilton equations of mo-
tion pertaining to Eq.~18!, we find, after straightforward
calculation~see, for instance,@5#, Sec. 11-2!,

(
k51

k56
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dCk
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52

]H1
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. ~21!

We remark that these latter equations are rather similar to the
classical ones@see@1#, p. 133, Eq.~6-19!#, whereH1 plays
the role of disturbing function~the sign is reversed since our
1PN disturbing function is ascribed to a Hamiltonian!.

Since 1PN Lagrangian brackets do not depend explicitly
upon time, it suffices to evaluate them at the periastron~i.e.,
at t5T). In doing so we follow the same procedure as in the
classical case~see, for instance,@1#, Sec. 6-3!, i.e., we ex-
pand in powers oft2T, up to second-order terms, the rela-
tive radius vectorx and the canonical momentump, then we
compute Lagrangian brackets~20!; finally we sett5T. After
a very long but straightforward calculation we achieve the
only nonvanishing brackets:
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IV. 1PN PLANETARY LAGRANGIAN EQUATIONS

Using the above expressions for the brackets and inverting the system of equations~21!, we find the post-Newtonian
Lagrangian planetary equations:
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Once the external perturbation has been assigned, it is possible to evaluate its effects on the orbital parameters by solving the
system~28!–~33!; as in classical mechanics, the first-order time variation of orbital elements is simply obtained after substi-
tution of the unperturbed values into the right-hand sides of Eqs.~28!–~33!. This could be done without assuming that the
magnitude ofePN is a first-order term because the 1PN effects have already been taken into account using the post-Keplerian
parametrization instead of the Keplerian one.

In celestial mechanics, the parameterT, is often replaced by~e.g.,@1,6,7#!:

s52nT, ~34!

which is just the constant related to themean anomaly M5nt1s, i.e., the angle which the radius vector would have described
if it had been moving uniformly with the average raten.

This newly defined orbital element allows one to see that all Lagrangian brackets are not changed except for this one:
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which takes the place of Eq.~22!. Using this new set of elements the 1PN planetary equations become
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Usually the disturbing functionH1 depends upons only through the phaseM5nt1s, therefore it is suitable to expressH1
in terms of M . FurthermoreH1 depends upona both explicitly and implicitly throughM @in fact n5n(a)#, so that the
derivative of the disturbing function taken with respect toa, can be written as
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the first term on the right-hand side is the derivative ofH1 with respect toa while keepingM ~and thenn! as a constant, and
the second term takes into account the dependence ofH1 upona throughn. From the above expression and using Eq.~38! we
get
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Now, since]/]M5 ]/]s, Eq. ~36! becomes
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while the time derivative ofM can be written
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Equations~44! and~45! take the place of Eqs.~36! and~38!
whenM is used as orbital parameter~instead ofs or T!.

V. APPLICATION

As an example of application we consider the interaction
of a close binary system with a third body. For the sake of
simplicity we assume the third body at a distanceRB@a
from the binary center of mass with massm3@m. In this
way the resulting motion could be safely approximated by
the perturbed 1PN motion of the binary system around its
center of massrB which, in turn, has a Keplerian orbit
aroundm3 , considered motionless. The time evolution ofrB
is therefore known, this latter not being a variable of the
problem. The discussion made at the beginning of Sec. III
showed that, in order to achieve a consistent picture, the
effect of the perturbation must be greater than that of the
2PN one. The most interesting case is when the effect of the
perturbation is of the same order of magnitude as the 1PN
effect; as it will be seen later this occurs when

m3

RB
3 ;

Gm2

c2a4 ;5S M (

a.u.3D , ~46!

where the second relation holds true ifm;M ( and
a;2 R( .

Therefore, in the framework of previous assumptions, the
perturbation to the Hamiltonian~5! is given by

H152
m3G

2c2RB
3 F r 223

~x•RB!2

RB
2 G , ~47!

whereRB is the radius vector fromm3 to the 1PN center of
mass of the binary system. We assume that the binary center
of mass performs a circular orbit aroundm3 , which is copla-
nar with the orbital plane of the binary system. Hence we set
i 50, V50, and RB5AB(cosv3t,sinv3t,0), where
v35AGm3 /AB

3. The Hamiltonian perturbation thus be-
comes

H1~a,e,M ,v,t !52
m3G

4 c2AB
3 a2~12e cosh!2@113 cos2~v3t2v2h̃ !#, ~48!

whereh5h(a,e,M ) and h̃5h̃„a,h(a,e,M ),e… @see Eqs.~9! and~10!, together with the definition ofM after Eq.~34!# and
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From Eqs.~13! and~16! one also has]k/]a52k/a, ]k/]e52 ek/(12e2), ]e3 /]a5(e2e3)/a, ]e3 /]e5e3 /e. In order to
obtain the equations providing the temporal derivatives of the orbital elements, it suffices to calculate the partial derivatives of
H1 ; in this way the problem of motion is solved. In order to better understand the behavior of the solution let us supposee50.
In this case the Hamiltonian perturbation greatly simplifies:
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Finally the equations for the orbital elementsa andM are
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that is e, v, V, and i are constants of the motion. By substituting the unperturbed values of the orbital elements on the
right-hand side of Eqs.~51! and ~52!, the first-order time variation of the parameters is achieved. As far as relation~46! is
fulfilled, beingm3a3/(mAB

3);Gm/(c2a), the solution can be written as

a~ t !5a0S 11
3 m3a0

3

2mAB
3 $cos2@v3t2v2~11k!M0#2cos2v% D , ~54!
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3 D M01

3m3a0
3

2mAB
3 $sin2@v3t2v2~11k!M0#2sin2v%, ~55!

wherea0 andM0 are the unperturbed values.
Accurate timing of the binary system could then provide

the orbital profile through which@via Eqs.~54! and~55!# m3
and AB are evaluated. This example has shown how the
method proposed in this paper allowed one to achieve an
already existing result in a relatively simple way.

VI. CONCLUSIONS

We have developed a post-Newtonian extension of the
planetary Lagrangian equations in order to describe the mo-
tion of a relativistic binary system under the influence of a
generic external perturbation. An important class of phenom-
ena that could be treated is the perturbation caused by exter-
nal bodies to a binary system. We also have provided an

example featuring the capability of the method.
Our approach is a method to solve in a perturbative way

the equations governing the variation of orbital parameters.
The theory only assumes the smallness of the external per-
turbation while relativistic effects are already included in the
unperturbed problem. This is the major advantage of our
approach over classical Lagrangian methods. In the present
paper the problem is solved at the 1PN level, but this ap-
proach should also be suitable to 2PN or higher-accuracy
orders in the relativistic expansion.
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