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Post-Newtonian Lagrangian planetary equations
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We present a method to study the time variation of the orbital parameters of a post-Keplerian binary system
undergoing a generic external perturbation. The method is the relativistic extension of the planetary Lagrangian
equations. The theory only assumes the smallness of the external perturbation while relativistic effects are
already included in the unperturbed problem. This is the major advantage of this novel approach over classical
Lagrangian method$S0556-282(97)05120-5

PACS numbes): 04.25.Nx, 95.10.Ce

[. INTRODUCTION so-called post-Keplerian solutignthen our task, that is the
main result of this paper, is to find out the relativistic version

Since the early stages of classical celestial mechanics, @ Lagrangian planetary equations, giving the time depen-
very large amount of effort has been made in order to finddence of relativistic orbital elements.
exact or approximate solutions to the problemNopointlike
interacting bodies. It is well known that a general solution Il. POST-KEPLERIAN SOLUTION
exists only forN=2 (Keplerian solutioh In general, when
N exceeds two searching for even approximate solutions be- Let us consider a system of two bodies, moving under
comes a very difficult task. Fortunately manitbody sys- mutue_ll gravitational attraction. Si_n(_:e_we want to focus our
tems of interest in celestial mechanics may be considered @tention on systems whose relativistic effects are not negli-
two-body problem, and the interaction of the othér 2 glble,_we have to introduce a post-Newtonian parameter
bodies can be regarded as a perturbation. In these cases fiigantifying the relevance of these effects; this parameter is
distance of theN— 2 bodies, together with the relative mag- defined as
nitude of masses, allows one to resort to standard perturba-
tive methodgsee for instancgl], Chap. 6. Moreover when def
a two-body system suffers perturbations such as drag or ra- €PNT @
diation damping forces, oblateness of one of the two bodies

and so on, the usual Kep]eria_n solution must be viewed only, the above expressian is the typical speed of the bodies
as a zeroth-order approximation. of the system anda is the speed of light; using relativistic

In the framework of Newtonian gravity, all these kinds of g, qtein’equations it can be shown that the equations of mo-
perturbations may be handled using the Lagrangian planeta

: - S
equations through which the time dependence of orbital eleéogyuget%éﬁvl\]egrgg%I'ti'é rgﬁéu?r?gofgé:gﬁégms}?fréfer-
ments(otherW|§e constapis ach|§ved. This way_the mMotion  oca frame with the 1PN center of mass at feste, for
of the system is formally Keplerian but the orbital eleme”tsinstance[Z]):

are allowed to vary with time. This procedure has been
widely used from physicists and astronomers to study New- 1v2 Gm 1 v
tonian binary systems; but what happens if relativistic effects ==+ +<(1-3v)3
are to be taken into account together with the external per- 2c¢® cr 8 ¢
turbation? A first way to approach the problem is to assume Gm V2 (v-x)?  G2m?

<

that relativistic effects and the external perturbation are +ﬂ (3+ u)?+ VT | T o2 2
roughly of the same order of magnitude; in teemiclassical
standpoint they are both considered as a perturbation to
Keplerian motion. where
We propose a novel procedure to account for relativistic
effects in the unperturbed problem, in which the only pertur- X=r2= Ty,
bation is the external one. For this scheme we divide our
work in two steps; first the relativistic two-body problem & N &
needs to be solvedhis has already been done up to the first 8= &Eit+& 1 &1+ & M2
post-Newtonian1PN) and 2PN orders beyond the classical
limit by various authorgsee, for instancd?2,3]); this is the R m , Gmm,
1—m10 + 7V1 - 2r ’
*Electronic address: calura@axpfel.fe.infn.it
"Electronic address:fortini@axpfel.fe.infn.it &=m.c2+ @V 2_ Gmm,
*Electronic address: montanari@axpfel.fe.infn.it 2 2 2 2 2r

0556-2821/97/5@)/47827)/$10.00 56 4782 © 1997 The American Physical Society



m;m;

m= m1+ m,, v= ?—,
dx
r=|x, V=gp

In the above formulag,; andr, are the radius vectors of the
two bodies,m; and m, denote their masses, amg is the
position of the post-Newtonian center of masee[4], Egs.
(5.4.5-(5.4.9]. In the following the usefulness of the
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~1_ 1+83 n _ —_
X*=r cos 2 (1+ k)arcta tan = | |[ =rcos 7,
l-e; 2

Hamiltonian approach with respect to the Lagrangian one

will become clear; therefore we calculate the canonical mo-

menta deriving from Eq(2):

v 1 v2

Ly m
C7+ (1- 31/) 4+—2—(3+V)V

P= v~
Gvm (v-X)

)

The Hamiltonian function of the system is defined as usual:

Ho=p-V—Lyg. (4)
Now, from Egs.(2) and (3) we are in a position to express
explicitly such a Hamiltonian in terms of the canonical vari-
ablesx andp, obtaining

2
¢ 2

2P

4

Gm 1-3v)p* Gm 3+ v)p?
g( v)p 7( v)p

Ho=
o cir

212

_Gm

(5

c*r?

Hence, the Hamilton equations are
Gm

dp Gm

3 ) _3va )
at A3X T 53 (3+v)px 5r5 (Xx-p)x
GmV G2m?
(X-p)p+ —z7X, (6)
dx c* ,  Gm Gmv
Gt P 5 (1=31)pp- B+ r)p= —z-(X-p)x.

()

The exact solutioncalled the post-Kepleriagnup to 1PN
order, has been found by Damour and Deru&kee[ 2], and
also [3] for its extension to the 2PN level The post-
Keplerian solution may be written in a form very similar
with respect to the classical one as follows:

x'=(coswcod) — sinwsinQcos )X *
— (sinwcod) + coswsinQ cod )X ?
x2=(coswsinQ + sinwcog)cos )X *
— (sinwsinQ) — coswcod)cod )X 2,
x3=sinwsiniX 1+ coswsinX 2 (8)

where

X2=1 sinl 2(1+ ¢ /1+est AN
X“=r sin 2 (1+ k)arcta e, a 5 =r siny,
9
and
n(t—T)= n—e;siny, (10
r=a(l—e,cosy), (11
~/Gm 1 (9—v) Gm 12
NT T2 @) 12
_ 3Gm 13
= Fa(i-e)) -
(8—3v) Gm
e, = 1——2 Ezg e, (14)
e,=e, (15
v Gm
€3= 1+§% e. (16)

In these equationa, (), andi are Euler angles, defining
the rotation that connects the observation reference frame
with the intrinsic frame of the motion. In celestial mechanics
they are usually referred to agument of periastrorithe
angle in orbital plane from the line of nodésee[5], Sec.
4.4) to the perihelion point longitude of the ascending node
(the angle measured from the positivexis of the observer
to the line of nodegsandinclination of the orbit(the angle
between the orbital plane and they plane of the observigr
respectively. The other elements of the orbit areshmima-
jor axis of the ellipsea, the eccentricity ¢ and thetime of
periastronpassagd .

Ill. 1PN LAGRANGIAN BRACKETS

In last section we have reviewed the post-Newtonian so-
lution of a binary system of bodies. Such a solution is quite
correct provided that either the system is completely isolated
or the external perturbation induces effects whose order of
magnitude is less than or equal to the 2PN ones; if we quan-
tify the weakness of external perturbation to the parameter
€axt, OUr last assumption is

17

In the framework of the validity of the above expression the
simple post-Keplerian solution is correct. When the external
perturbation is so strong that the above expression does not
hold true anymore, we have to take into account its effect on
the 1PN relative motion of the two bodies. To this purpose
we have developed a perturbation method enabling us to
calculate the time dependence of orbital parameters due to
external perturbation. Such a method may be viewed as the
relativistic extension of the planetary Lagrangian equations,

2
€ext=(€pn)*.
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which are widely being used in classical celestial mechanics def g
to evaluate the time evolution of the orbital elements for [CiCl=—r =~ =~ , (20)
Keplerian motion. Indeed it is our aim to calculate the time dCj dC  dC dC;

evolution of orbital parameters for post-Keplerian motion.

To summarize we assume that the solution of the perturbed, .o ¢ with 1<j<6 are the orbital elements
i <j<

problem has the same functional dependence on orbital p [e,T,,Q,i. On the strength of Eq¢19) it is easy to show

rameters and on time explicitly as the unper;urbed IorOblemthat the Lagrangian brackets do not depend explicitly upon
In the presence of an external perturbation, the Ham'l'time (for the classical version of this property S&d, Sec
tonian describing the system can be written as 6-2). ' '
_ From definition(20) and the Hamilton equations of mo-
H=Ho(x,p)+ Ha(X,P). (18 tion pertaining to Eq.(18), we find, after straightforward
whereH, is the usual two-body Hamiltonian, which is exact calculation(see, for instancg5], Sec. 11-2
up to 1PN order, whilg{; describes the most general per-
turbation. This latter is a sort afisturbing functionwith the k=6
only difference that the usual classical disturbing function 2 [C.C/] ﬁ:_ ‘9_7'[1 (21)
(see[1], Chaps. 5, 6 and6] if the external perturbation is & FT TR e dC; "
due to the gravitational attraction of other bodiesa per-
turbation to the Lagrangian while the one concerned . o
through this paper is a perturbation to tHamiltonian With We remark that these latter equations are rather similar to the

the above assumptions, the solution satisfies the followin§assical onegsee[1], p. 133, Eq.(6-19], where’{; plays

equations: he role of disturbing functioiithe sign is reversed since our
1PN disturbing function is ascribed to a Hamiltonian
X JdHe Ip IHy Since 1PN Lagrangian brackets do not depend explicitly
a op ot ax’ (19 ypon time, it suffices to evaluate them at the periastien,
att=T). In doing so we follow the same procedure as in the
wherex=x(a,e,T,0,Q,i,t) andp=p(a,e,T,w,Q,i,t). classical casésee, for instancd,1], Sec. 6-3, i.e., we ex-

As in the classical case, we need to find out the equationgand in powers of—T, up to second-order terms, the rela-
governing the time dependence of orbital parametergive radius vectox and the canonical momentum then we
(a,e,T,w,Q,i) due to an external perturbation. First of all compute Lagrangian brackg®®0); finally we sett=T. After
we have to calculate the relativistic Lagrangian brackets dea very long but straightforward calculation we achieve the

fined as([5], Sec. 9-4 only nonvanishing brackets:
|
T1= Gm 1 Gm
[aT]=502z |1t 5 (v =1 (22)
B ayl-e? [Gm L 2Gm 1 e ve? 03
lol== = N |V aa-a |2 7)) 23
0= ayl—-e? [Gm L 2Gm e ve? _
0= N |V Gaa—er |11 2~ 2 )% @9
~ a% /Gm 1 4Gm e? v+ve2 )
[e’w]_c&/l_ez a’ c’a(l-¢€?) 4 8 /| @9
a’e Gm 4Gm e v ve?
[eQ]=—— \/—|1-———[1-———+— [cos, (26)
21— e2 a® cla(l1—e?) 4 4 8
01— a’ T Gm . 2Gm 1+e2 ve?\] )
[il=- “Na&® " -T2 4 P @7

IV. 1PN PLANETARY LAGRANGIAN EQUATIONS

Using the above expressions for the brackets and inverting the system of equafipnae find the post-Newtonian
Lagrangian planetary equations:
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da 2c?a? Gm 7 THy
=== , (29
dt  Gm 2 2| T
de c?a(l-e?) Gm(1l 3v aHl c?J1- ez 4 2,V IH, -
dt  Gme cZa\2 2 e~/ ma cza(l—ez) VTETS e 29
dT_ 2c%® Gm 7 &Hl c’a(l—e?) Gm/(11 3v\| oM, 30
at- em 272 Gme ‘vz 2/ e (30
dw c2J1-¢€? . Gm (4 2+ aHl c2coti L (2+ X ) IH,
—=- v—e - - —| | —,
dt eJGma c’a(1-e) \/ may/1— €2 c?a(1—e?) 2 ai
(39
dQ c? Gm ( , ve2> IH,
—— 1- 2+e2— —| | —, (32)
dt Jemavi—e? sini c?a(l1—¢€?) 2 di
di c?cot Gm , ve®\| aH, c? Gm , ve'\ oM,
- = — 1_ 2 2 2+e - T~ + . - 72 2 2+e - T~ - .
dt  /Gma/1-€?|  ca(l-e9) 2 )] do  Gmay1-esin ca(l—e) 2 )]Q
(33

Once the external perturbation has been assigned, it is possible to evaluate its effects on the orbital parameters by solving the
system(28)—(393); as in classical mechanics, the first-order time variation of orbital elements is simply obtained after substi-
tution of the unperturbed values into the right-hand sides of E2®—(33). This could be done without assuming that the
magnitude ofepy is a first-order term because the 1PN effects have already been taken into account using the post-Keplerian
parametrization instead of the Keplerian one.

In celestial mechanics, the parameteris often replaced bye.g.,[1,6,7)):

o=—nT, (34)

which is just the constant related to thiean anomaly M=nt+ o, i.e., the angle which the radius vector would have described

if it had been moving uniformly with the average rate
This newly defined orbital element allows one to see that all Lagrangian brackets are not changed except for this one:

a Gm Gm 3
lral=se N | ez 39
which takes the place of E¢§22). Using this new set of elements the 1PN planetary equations become
da  2c?a®> |/Gm Gm\ dH,
Pk 3\ 1= 5 (36)
dt Gm a c‘al do
de cla(1-¢€? Gm Gm IH, c?Jy1—¢? Gm IH
de__cad-e) 1+ - (1-v) —— 4 +— | 4—v- e2+— —, @37
dt Gme ad dor eJGma cca(l—e9) 2 dw
do 2c’a® [Gm L dH, c?a(l-e?) [Gm 1+Gm . IH, 38
dt-6m Va¥ 1 ¢ a t eme Va@ 1Tt e (38
do ¢ 21— ez Gm 4 2, V& 0H1 c?a cof /Gm L Gm e ve?\ | oH,
dt  eJ/Gma T VTET )] ee Gm~/1—e2 a’ c’a(l-¢€?) “T 2 g’
(39
dQ c%a Gm 1 Gm o o? IH, 40
9 emiesn V@ |1 Fai-e| 2T Sk (49
di  c”acot /Gm L Gm b o ve?\| oM,
dt  gmii-e2 V a® c?a(1-€?) 2| e
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c?a Gm
+t———— V= |1
Gmy1—€e%sini a

Usually the disturbing functioft{; depends upomr only through the phasel =nt+ o, therefore it is suitable to express,
in terms of M. FurthermoreH; depends upora both explicitly and implicitly throughM [in fact n=n(a)], so that the
derivative of the disturbing function taken with respecttocan be written as

—. (41)

(77'[1 dn

IHy N .
M oM da’

fJa

M,

Jda (42)

the first term on the right-hand side is the derivative-gfwith respect taa while keepingM (and them) as a constant, and
the second term takes into account the dependentg ofpona throughn. From the above expression and using &§) we

get
dMm Jrd<';1tdn+2c2a2 [Gm Gm\ [ dH, +202a2 [Gm L Gm\ JH; dn
a9t "Tdt'da’ 6m V& %EM Gm V a3 cZal oM "da
c’a(l—e?) /Gm 1JrGm L IH, 43
“Gme Va1t e 43
Now, sinced/dM = dlda, Eqg. (36) becomes
da_ 2c%a®* [Gm L Gm\ dH, 4
@t 6em V& |l @l e (44
while the time derivative oM can be written
dm +2c2a2 Gm Gm\ | dH, ca(1—e? [Gm 1+Gm L IH, 45
at "em Ve |t/ Ga) fTeme Vo M et e “9
|
Equations(44) and(45) take the place of Eq$36) and(38) mg Gm? Mo
whenM is used as orbital parameténstead ofo or T). =B 22t % A (46)
: U

V- APPLICATION where the second relation holds true mhi~Mg and

As an example of application we consider the interactiora~2 Rg .
of a close binary system with a third body. For the sake of Therefore, in the framework of previous assumptions, the
simplicity we assume the third body at a distarRg>a  perturbation to the Hamiltonia(®) is given by
from the binary center of mass with masg>m. In this

way the resulting motion could be safely approximated by mG | , (x-Rg)?
the perturbed 1PN motion of the binary system around its Hi==52g3 |3 RZ |’ (47)
B B

center of masgg which, in turn, has a Keplerian orbit
aroundms, considered motionless. The time evolutiorr gf
is therefore known, this latter not being a variable of thewhereRg is the radius vector fronm; to the 1PN center of
problem. The discussion made at the beginning of Sec. lImass of the binary system. We assume that the binary center
showed that, in order to achieve a consistent picture, thef mass performs a circular orbit aroung, which is copla-
effect of the perturbation must be greater than that of théar with the orbital plane of the binary system. Hence we set
2PN one. The most interesting case is when the effect of the=0, (=0, and Rg=Ag(Coswat,sinwst,0), where
perturbation is of the same order of magnitude as the 1PM3=+G malAgB. The Hamiltonian perturbation thus be-

effect; as it will be seen later this occurs when comes
mG 2 ~
Hq(a,e,M,w,t)=— 123 a“(l—ecospy)1l+3cos2wst—w—17)], (48)
B

where = n(a,e,M) and7="7(a, n(a,e,M),e) [see Eqs(9) and(10), together with the definition o after Eq.(34)] and
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dn  (e—eq)siny an e;siny an 1

da a(l—ejcosp)’ de e(l—eccosp)’ oM 1—e;cosy’ (49

From Eqs(13) and(16) one also hagk/da= — k/a, dxlde=2exl(1—e?), deslda=(e—e3)la, deg/de=e;le. In order to

obtain the equations providing the temporal derivatives of the orbital elements, it suffices to calculate the partial derivatives of
‘H,; in this way the problem of motion is solved. In order to better understand the behavior of the solution let us sepfose

In this case the Hamiltonian perturbation greatly simplifies:

Hi(a,M,w,t)= —iga2{1+3COSZw3t—w (1+x)M]}. (50)

Finally the equations for the orbital elemertandM are

da 3a’m; [Ga L 1 Gm)\ | 1 M 51
at - Az Vim e gz )sindest o= (1t M), o
aM_ _mea fGal Gm\ 1+ M 52
Tt =" A3 Vm |17 cza {18 costast e (LM, 2
while
de?) _ do_ do_ odi 53
dt 0 odt . odt . odt 3

that ise, o, 1, andi are constants of the motion. By substituting the unperturbed values of the orbital elements on the
right-hand side of Eq951) and (52), the first-order time variation of the parameters is achieved. As far as reldiprs
fulfilled, beingmza® (mAS)~Gmv/(c?a), the solution can be written as

3myal
a(ty=ag| 1+ ImAS {cosZwst—w—(1+k)Mgy]—cos} |, (54
M (t 1m3agM 3mss t 1+ x)M 2w 55
={1- +— - +
(t) mAg 0 2mA 3 {Sin w3t — 0 —(1+ k)Mg]—sin2w}, (55
|
whereagy and M are the unperturbed values. example featuring the capability of the method.

Accurate timing of the binary system could then provide Our approach is a method to solve in a perturbative way
the orbital profile through whicfvia Egs.(54) and(55] m;  the equations governing the variation of orbital parameters.
and Ag are evaluated. This example has shown how thélhe theory only assumes the smallness of the external per-
method proposed in this paper allowed one to achieve aturbation while relativistic effects are already included in the

already existing result in a relatively simple way. unperturbed problem. This is the major advantage of our
approach over classical Lagrangian methods. In the present
VI. CONCLUSIONS paper the problem is solved at the 1PN level, but this ap-

proach should also be suitable to 2PN or higher-accuracy
We have developed a post-Newtonian extension of therders in the relativistic expansion.

planetary Lagrangian equations in order to describe the mo-
tion of a relativistic binary system under the influence of a

generic external perturbation. An important class of phenom-
ena that could be treated is the perturbation caused by exter- The authors wish to thank V. Guidi for reading of the
nal bodies to a bhinary system. We also have provided amanuscript.
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