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Traversable wormholes have traditionally been viewed as intrinsically topological entities in some multiply
connected spacetime. Here, we show that topology is too limited a tool to accurately characterize a generic
traversable wormhole: in general one needs geometric information to detect the presence of a wormhole, or
more precisely to locate the wormhole throat. For an arbitrary static spacetime we shall define the wormhole
throat in terms of a two-dimensional constant-time hypersurface of minimal area.~Zero trace for the extrinsic
curvature plus a ‘‘flare-out’’ condition.! This enables us to severely constrain the geometry of spacetime at the
wormhole throat and to derive generalized theorems regarding violations of the energy conditions, theorems
that do not involve geodesic averaging but nevertheless apply to situations much more general than the
spherically symmetric Morris-Thorne traversable wormhole.~For example, the null energy condition, when
suitably weighted and integrated over the wormhole throat, must be violated.! The major technical limitation of
the current approach is that we work in a static spacetime; this is already a quite rich and complicated system.
@S0556-2821~97!02618-0#

PACS number~s!: 04.20.Gz, 04.20.Cv, 04.40.2b

I. INTRODUCTION

Traversable wormholes@1–3# are often viewed as intrin-
sically topological objects, occurring only in multiply con-
nected spacetimes. Indeed, the Morris-Thorne class of inter-
universe traversable wormholes is even more restricted,
requiring both exact spherical symmetry and the existence of
two asymptotically flat regions in the spacetime. To deal
with intrauniverse traversable wormholes, the Morris-Thorne
analysis must be subjected to an approximation procedure
wherein the two ends of the wormhole are distorted and
forced to reside in the same asymptotically flat region. The
existence of one or more asymptotically flat regions is an
essential ingredient of the Morris-Thorne approach@1#.

However, there are many other classes of geometries that
one might still quite reasonably want to classify as worm-
holes, that either do not possess any asymptotically flat re-
gion @4#, or have trivial topology@3#, or exhibit both these
phenomena.

A simple example of a wormhole lacking an asymptoti-
cally flat region is two closed Friedmann-Robertson-Walker
spacetimes connected by a narrow neck~see Fig. 1!; you
might want to call this a ‘‘dumbbell wormhole.’’ A simple
example of a wormhole with trivial topology is a single
closed Friedmann-Robertson-Walker spacetime connected
by a narrow neck to ordinary Minkowski space~see Fig. 2!.
A general taxonomy of wormhole exemplars may be found
in @3#, pp. 89–93, and discussions of wormholes with trivial
topology may also be found in@3#, pp. 53–74.

While the restricted viewpoint based on the Morris-
Thorne analysis is acceptable for an initial discussion, the
Morris-Thorne approach fails to capture the essence of large
classes of wormholes that do not satisfy their simplifying
assumptions.

In this paper we shall investigate the generic static tra-

versable wormhole. We make no assumptions about spheri-
cal symmetry~or axial symmetry, or even ‘‘exchange’’ sym-
metry!, and we make no assumptions about the existence of
any asymptotically flat region. We first have to define ex-
actly what we mean by a wormhole, we find that there is a
nicegeometrical~not topological! characterization of the ex-
istence of, and location of, a wormhole ‘‘throat.’’ This char-
acterization is developed in terms of a hypersurface of mini-
mal area, subject to a ‘‘flare-out’’ condition that generalizes
that of the Morris-Thorne analysis.

With this definition in place, we can develop a number of
theorems about the existence of ‘‘exotic matter’’ at the

FIG. 1. A ‘‘dumbbell wormhole’’: Formed~for example! by two
closed Friedmann-Robertson-Walker spacetimes connected by a
narrow neck.

PHYSICAL REVIEW D 15 OCTOBER 1997VOLUME 56, NUMBER 8

560556-2821/97/56~8!/4745~11!/$10.00 4745 © 1997 The American Physical Society



wormhole throat. These theorems generalize the original
Morris-Thorne result by showing that the null energy condi-
tion ~NEC! is generically violated at some points on or near
the two-dimensional surface comprising the wormhole
throat. These results should be viewed as complementary to
the topological censorship theorem@5#. The topological cen-
sorship theorem tells us that in a spacetime containing a
traversable wormhole the averaged null energy condition
must be violated along at least some~not all! null geodesics,
but the theorem provides very limited information on where
these violations occur. The analysis of this paper shows that
some of these violations of the energy conditions are concen-
trated in the expected place: on or near the throat of the
wormhole. The present analysis, because it is purely local,
also does not need the many technical assumptions about
asymptotic flatness, future and past null infinities, and global
hyperbolicity that are needed as ingredients for the topologi-
cal censorship theorem@5#.

The key simplifying assumption in the present analysis is
that of taking a static wormhole. While we believe that a
generalization to dynamic wormholes is possible, the situa-
tion becomes technically much more complex and one is
rapidly lost in definitional subtleties and formalism.

II. STATIC SPACETIMES

In any static spacetime one can decompose the spacetime
metric into block diagonal form@6–8#:

ds25gmn dxmdxn ~1!

52exp~2f!dt21gi j dxidxj .
~2!

Greek indices run from 0 to 3 and refer to spacetime; latin
indices from the middle of the alphabet (i , j ,k, . . . ) runfrom
1 to 3 and refer to space; latin indices from the beginning of
the alphabet (a,b,c, . . . ) will run from 1 to 2 and will be
used to refer to the wormhole throat and directions parallel to
the wormhole throat.

Being static tightly constrains the spacetime geometry in
terms of the three-geometry of space on a constant time slice,
and the manner in which this three-geometry is embedded
into the spacetime. For example, from@6#, p. 518 we have

~311!Ri jkl 5
~3!Ri jkl , ~3!

~311!Rt̂abc50, ~4!

~311!Rt̂i t̂ j5f u i j 1f u if u j . ~5!

The hat on thet index indicates that we are looking at com-
ponents in the normalizedt direction

Xt̂ 5 XtA2gtt 5 Xt exp~2f!. ~6!

This means we are using an orthonormal basis attached to
the fiducial observers. We useX;a to denote a spacetime
covariant derivative,Xu i to denote a three-space covariant
derivative, and will shortly useX:a to denote two-space co-
variant derivatives taken on the wormhole throat itself.

Now taking suitable contractions,

~311!Ri j 5 ~3!Ri j 2f u i j 2f u if u j , ~7!

~311!Rt̂i50, ~8!

~311!Rt̂ t̂5gi j @f u i j 1f u if u j #. ~9!

So,

~311!R 5 ~3!R22gi j @f u i j 1f u if u j #. ~10!

To effect these contractions, we make use of the decompo-
sition of the spacetime metric in terms of the spatial three-
metric, the set of vectorsei

m tangent to the time slice, and the
vectorVm5exp@f#(]/]t)m normal to the time slice:

~311!gmn5ei
mej

ngi j 2VmVn. ~11!

Finally, for the spacetime Einstein tensor~see@6#, p. 552!,

~311!Gi j 5 ~3!Gi j 2f u i j 2f u if u j1gi j g
kl@f ukl1f ukf u l #,

~12!

~311!Gt̂i50, ~13!

~311!Gt̂ t̂51 1
2

~3!R. ~14!

This decomposition is generic toany static spacetime.~You
can check this decomposition against various standard text-
books to make sure the coefficients are correct. For instance,
see Synge@9#, p. 339, Fock @10#, or Adler Bazin, and
Schiffer @11#.!

Suppose the strong energy condition~SEC! holds, then
@3#

SEC⇒~r1gi j T
i j !>0 ~15!

⇒gi j @f u i j 1f u if u j #>0 ~16!

⇒f has no isolated maxima. ~17!

III. DEFINITION OF A GENERIC STATIC THROAT

We define a traversable wormhole throatS to be a two-
dimensional hypersurface ofminimalarea taken in one of the
constant-time spatial slices. Compute the area by taking

A~S!5E A ~2!g d2x. ~18!

FIG. 2. A wormhole with trivial topology: Formed~for ex-
ample! by connecting a single closed Friedmann-Robertson-Walker
spacetime to Minkowski space by a narrow neck.
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Now use Gaussian normal coordinates,xi5(xa;n), wherein
the hypersurfaceS is taken to lie atn50, so that

~3!gi j dxidxj5 ~2!gab dxadxb1dn2. ~19!

The variation in surface area, obtained by pushing the sur-
facen50 out ton5dn(x), is given by the standard compu-
tation

dA~S!5E ]A ~2!g

]n
dn~x!d2x, ~20!

which implies

dA~S!5E A ~2!g
1

2
gab

]gab

]n
dn~x!d2x. ~21!

In Gaussian normal coordinates the extrinsic curvature can
be simply defined by

Kab52
1

2

]gab

]n
. ~22!

@See @6#, p. 552. We use Misner-Thorne-Wheeler~MTW!
sign conventions. The convention in@3#, p. 156 is opposite.#
Thus,

dA~S!52E A ~2!g tr~K !dn~x!d2x. ~23!

@We use the notation tr(X) to denotegabXab .# Since this is
to vanish for arbitrarydn(x), the condition that the area be
extremalis simply tr(K)50. To force the area to beminimal
requires ~at the very least! the additional constraint
d2A(S)>0. ~We shall also consider higher-order constraints
below.! But by explicit calculation,

d2A~S!52E A ~2!gS ] tr~K !

]n
2tr~K !2D dn~x!dn~x!d2x.

~24!

Extremality@ tr(K)50# reduces this minimality constraint to

d2A~S!52E A ~2!gS ] tr~K !

]n D dn~x!dn~x!d2x>0.

~25!

Since this is to hold for arbitrarydn(x) this implies that at
the throat we certainly require

] tr~K !

]n
<0. ~26!

This is the generalization of the Morris-Thorne ‘‘flare-out’’
condition to arbitrary static wormhole throats.

In the following definitions, the two-surface referred to is
understood to be embedded in a three-dimensional space, so
that the concept of its extrinsic curvature~relative to that
embedding space! makes sense.

Definition: Simple flare-out condition

A two-surface satisfies the ‘‘simple flare-out’’ condition if
and only if it is extremal, tr(K)50, and also satisfies
] tr(K)/]n<0.

This flare-out condition can be rephrased as follows: We
have as an identity that

] tr~K !

]n
5trS ]K

]n D12 tr~K2!. ~27!

So, minimality implies

trS ]K

]n D12 tr~K2!<0. ~28!

Generically we would expect the inequality to be strict, in
the sense that] tr(K)/]n,0, for at least some points on the
throat. ~See Fig. 3!. This suggests the modified definition
below.

Definition: Strong flare-out condition

A two-surface satisfies the ‘‘strong flare-out’’ condition at
the point x if and only if it is extremal, tr(K)50, everywhere
satisfies] tr(K)/]n<0, and if at the point x on the surface
the inequality is strict:

] tr~K !

]n
,0. ~29!

It is sometimes sufficient to demand a weak integrated
form of the flare-out condition.

Definition: Weak flare-out condition

A two-surface satisfies the ‘‘weak flare-out’’ condition if
and only if it is extremal, tr(K)50, and

E A ~2!g
] tr~K !

]n
d2x,0. ~30!

Note that the strong flare-out condition implies both the
simple flare-out condition and the weak flare-out condition,
but that the simple flare-out condition does not necessarily
imply the weak flare-out condition.~The integral could be

FIG. 3. Generically, we define the throat to be located at a true
minimum of the area. The geometry should flare out on either side
of the throat, but we make no commitment to the existence of any
asymptotically flat region.
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zero.! Whenever we do not specifically specify the type of
flare-out condition being used we deem it to be the simple
flare-out condition.

The conditions under which the definition of a weak flare
out are appropriate arise, for instance, when one takes a
Morris-Thorne traversable wormhole~which is symmetric
under interchange of the two universes it connects! and dis-
torts the geometry by placing a small bump on the original
throat.~See Fig. 4!.

The presence of the bump causes the old throat to trifur-
cate into three extremal surfaces: Two minimal surfaces are
formed, one on each side of the old throat~these are minimal
in the strong sense previously discussed!, while the surface
of symmetry between the two universes, though by construc-
tion still extremal, is no longer minimal in the strict sense.
However, the surface of symmetry is often~but not always!
minimal in the weak~integrated! sense indicated above.

A second situation in which the distinction between
strong and weak throats is important is in the cut-and-paste
construction for traversable wormholes@3,12,13#. In this
construction one takes two~static! spacetimes (M1 ,M2)
and excises two geometrically identical regions of the form
V i3R, V i being compact spacelike surfaces with boundary
andR indicating the time direction. One then identifies the
two boundaries]V i3R thereby obtaining a single manifold
(M1#M2) that contains a wormhole joining the two regions
Mi2V i3R. We would like to interpret the junction
]V1523R as the throat of the wormhole.

If the setsV i are convex, then there is absolutely no prob-
lem: the junction]V1523R is by construction a wormhole
throat in the strong sense enunciated above.

On the other hand, if theV i are concave, then it is
straightforward to convince oneself that the junction
]V1523R is not a wormhole throat in the strong sense. If
one denotes theconvex hullof V i by conv(V i) then thetwo
regions]@conv(V i)#3R are wormhole throats in the strong
sense. The junction]V1523R is at best a wormhole throat
in the weak sense.

For these reasons it is useful to have this notion of a weak
throat available as an alternative definition. Whenever we do
not qualify the notion of wormhole throat it will refer to a
throat in the simple sense. Whenever we refer to a throat in
the weak sense or strong sense we will explicitly say so.
Finally, it is also useful to make the following definition.

Definition: Weak f -weighted flare-out condition

A two-surface satisfies the ‘‘weak f-weighted flare-out’’
condition if and only if it is extremal, tr(K)50, and

E A ~2!g f~x!
] tr~K !

]n
d2x,0. ~31!

@We will only be interested in this condition forf (x) some
positive function defined over the wormhole throat.#

The constraints on the extrinsic curvature embodied in
these various definitions lead to constraints on the spacetime
geometry, and consequently, constraints on the stress energy.

Technical point I: Degenerate throats

A class of wormholes for which we have to extend these
definitions arises when the wormhole throat possesses an ac-
cidental degeneracy in the extrinsic curvature at the throat.
The previous discussion has tacitly been assuming that near
the throat we can write

~2!gab~x,n!5 ~2!gab~x,0!1n
]@~2!gab~x,n!#

]n U
n50

1
n2

2

]2@ ~2!gab~x,n!#

~]n!2 U
n50

1O~n3!, ~32!

with the linear term having trace zero~to satisfy extremality!
and the quadratic term being constrained by the flare-out
conditions.

Now if we have an accidental degeneracy with the qua-
dratic~and possibly even higher-order terms! vanishing iden-
tically, we would have to develop an expansion such as

~2!gab~x,n!5 ~2!gab~x,0!1n
]@~2!gab~x,n!#

]n U
n50

1
n2N

~2N!!

]2N@ ~2!gab~x,n!#

~]n!2N U
n50

1O~n2N11!.

~33!

Applied to the metric determinant this implies an expansion
such as

A ~2!g~x,n!5A ~2!g~x,0!S 11
n2NkN~x!

~2N!!
1O~n2N11! D ,

~34!

wherekN(x) denotes the first nonzero subdominant term in
the above expansion, and we know by explicit construction
that

kN~x!51
1

2
trS ]2N@ ~2!gab~x,n!#

~]n!2N U
n50

D ~35!

52trS ]2N21Kab~x,n!

~]n!2N21 U
n50

D ~36!

52S ]2N21K~x,n!

~]n!2N21 U
n50

D , ~37!

since the trace is taken with(2)gab(x,0) and this commutes
with the normal derivative. We know that the first nonzero
subdominant term in expansion~34! must be of even order in

FIG. 4. Strong versus weak throats: Placing a small bump on a
strong throat typically causes it to trifurcate into two strong throats
plus a weak throat.
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n ~i.e., n2N!, and cannot correspond to an odd power ofn,
since otherwise the throat would be a point of inflection of
the area, not a minimum of the area. Furthermore, since
kN(x) is by definition nonzero the flare-out condition must
be phrased as the constraintkN(x).0, with this now being a
strict inequality. More formally, this leads to the definition
below.

Definition: N-fold degenerate flare-out condition

A two-surface satisfies the ‘‘N-fold degenerate flare-out’’
condition at a point x if and only if it is extremal, tr(K)50,
if in addition the first2N22 normal derivatives of the trace
of the extrinsic curvature vanish at x, and if finally at the
point x one has

]2N21 tr~K !

~]n!2N21 , 0, ~38!

where the inequality is strict. [In the previous notation this is
equivalent to the statement that kN(x).0.]

Physically, at anN-fold degenerate point, the wormhole
throat is seen to be extremal up to order 2N21 with respect
to normal derivatives of the metric, i.e., the flare out property
is delayed spatially with respect to throats in which the flare
out occurs at second order inn. The way we have set things
up, the onefold degenerate flare-out condition is completely
equivalent to the strong flare-out condition.

If we now consider the extrinsic curvature directly we see,
by differentiating Eq.~34!, first that

K~x,n!52
n2N21kN~x!

~2N21!!
1O~n2N!, ~39!

and second that

]K~x,n!

]n
52

n2N22kN~x!

~2N22!!
1O~n2N21!. ~40!

From the dominantn→0 behavior we see that if~at some
point x! 2N happens to equal 2, then the flare-out condition
implies that]K(x,n)/]n must be negativeat and near the
throat. This can also be deduced directly from the equivalent
strong flare-out condition: if]K(x,n)/]n is negative and
nonzero at the throat, then it must remain negative in some
region surrounding the throat. On the other hand, if 2N is
greater than 2 the flare-out condition only tells us that
]K(x,n)/]n must be negativein some region surrounding
the throat, and does not necessarily imply that it is negative
at the throat itself.~It could merely be zero at the throat.!

Thus for degenerate throats, the flare-out conditions
should be rephrased in terms of the first nonzero normal
derivative beyond the linear term. Analogous issues arise
even for Morris-Thorne wormholes@1#, p. 405, Eq.~56!, see
also the discussion presented in@3#, p. 104–105 and 109.
Even if the throat is nondegenerate~onefold degenerate!
there are technical advantages to phrasing the flare-out con-
ditions this way: It allows us to put constraints on the extrin-
sic curvature near but not on the throat.

Technical point II: Hyperspatial tubes

A second class of wormholes requiring even more techni-
cal fiddles arises when there is a central section which is
completely uniform and independent ofn. @So thatKab50
over the whole throat for some finite rangen
P(2n0 ,1n0).# This central section might be called a ‘‘hy-
perspatial tube.’’ The flare-out condition should then be re-
phrased as stating that whenever extrinsic curvature first de-
viates from zero @at some point (x,6n0)#, one must
formulate constraints such as

] tr~K !

]n U
6n

0
6

<0. ~41!

In this case tr(K) is by definition not an analytic function
of n at n0 , so the flare-out constraints have to be interpreted
in terms of one-sided derivatives in the region outside the
hyperspatial tube.@That is, we are concerned with the possi-
bility that Ag(x,n) could be constant forn,n0 but behave
as (n2n0)2N for n.n0 . In this case derivatives, atn5n0 ,
do not exist beyond order 2N.#

IV. GEOMETRY OF A GENERIC STATIC THROAT

Using Gaussian normal coordinates in the region sur-
rounding the throat,

~3!Rabcd5
~2!Rabcd2~KacKbd2KadKbc!. ~42!

See @6#, p. 514, Eq.~21.75!. Because two dimensions are
special this reduces to

~3!Rabcd5
~2!R

2
~gacgbd2gadgbc!2~KacKbd2KadKbc!.

~43!

Of course, we still have the standard dimension-independent
results that

~3!Rnabc52~Kab:c2Kac:b!, ~44!

~3!Rnanb5
]Kab

]n
1~K2!ab . ~45!

See@6#, p. 514, Eq.~21.76! and@6#, p. 516 Eq.~21.82!. Here
the indexn refers to the spatial direction normal to the two-
dimensional throat.

Thus far, these results hold both on the throat and in the
region surrounding the throat: these results hold as long as
the Gaussian normal coordinate system does not break down.
~Such a breakdown being driven by the fact that the normal
geodesics typically intersect after a certain distance.! In the
interests of notational tractability we now particularize atten-
tion to the throat itself, but shall subsequently indicate that
certain of our results can be extended off the throat itself into
the entire region over which the Gaussian normal coordinate
system holds sway.

Taking suitable contractions,and using the extremality
condition tr(K)50,
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~3!Rab5
~2!R

2
gab1

]Kab

]n
12~K2!ab , ~46!

~3!Rna52Kab
:b, ~47!

~3!Rnn5trS ]K

]n D1tr~K2! ~48!

5
] tr~K !

]n
2tr~K2!, ~49!

so that

~3!R5 ~2!R12 trS ]K

]n D13 tr~K2! ~50!

5 ~2!R12
] tr~K !

]n
2tr~K2!. ~51!

To effect these contractions, we make use of the decom-
position of the three-space metric in terms of the throat two-
metric and the set of two-vectorsea

i tangent to the throat and
the three-vectorni normal to the two-surface:

~211!gi j 5ea
i eb

j gab1ninj . ~52!

For the three-space Einstein tensor~cf. @6#, p. 552!, we
see

~3!Gab5
]Kab

]n
12~K2!ab2gab

] tr~K !

]n
1

1

2
gab tr~K2!,

~53!

~3!Gna52Kab
:b, ~54!

~3!Gnn52 1
2

~2!R2 1
2 tr~K2!. ~55!

Note in particular that by the flare-out condition(3)Rnn<0.
This implies that the three-space Ricci tensor(3)Ri j has at
least one negative semidefinite eigenvalue everywhere on the
throat. If we adopt the strong flare-out condition then the
three-space Ricci tensor has at least one negative definite
eigenvalue somewhere on the throat.

This decomposition now allows us to write down the vari-
ous components of the spacetime Einstein tensor. For ex-
ample,

~311!Gab52f uab2f uaf ub1gabg
kl@f ukl1f ukf u l #1

]Kab

]n

12~K2!ab2gab

] tr~K !

]n
1

1

2
gab tr~K2!

58pGTab . ~56!

But by the definition of the extrinsic curvature, and using the
Gauss-Weingarten equations,

f uab5f :ab1Kabf un , ~57!

f una5Ka
bf :b . ~58!

@See, for example, Eqs.~21.57! and ~21.63! of @6#.# Thus,

gklf ukl5gabf :ab1~gabKab!f un1f unn . ~59!

But remember that tr(K)50 at the throat, so

gklf ukl5gabf :ab1f unn . ~60!

This finally allows us to write

~311!Gab52f :ab2f :af :b2Kabf un1gab@gcd~f :cd

1f :cf :d!1f unn1f unf un#1
]Kab

]n
12~K2!ab

2gab

] tr~K !

]n
1

1

2
gab tr~K2!

58pGTab . ~61!

~311!Gna52Ka
bf :b2f unf :a2Kab

:b58pGTna .
~62!

~311!Gnn5gcd@f :cd1f :cf :d#2
1

2
~2!R2

1

2
tr~K2!

528pGt. ~63!

~311!Gt̂a50. ~64!

~311!Gt̂n50. ~65!

~311!Gt̂ t̂5
~2!R

2
1

] tr~K !

]n
2

1

2
tr~K2!518pGr. ~66!

Here t denotes thetensionperpendicular to the wormhole
throat, it is the natural generalization of the quantity consid-
ered by Morris and Thorne, whiler is simply the energy
density at the wormhole throat.

V. CONSTRAINTS ON THE STRESS-ENERGY TENSOR

We can now derive several constraints on the stress en-
ergy.First,

t5
1

16pG
@ ~2!R1tr~K2!22gcd~f :cd1f :cf :d!#. ~67!

~Unfortunately, the signs as given are correct. Otherwise we
would have a lower bound ont. We will need to be a little
tricky when dealing with thef terms.! The above is the
generalization of the Morris-Thorne result that

t5
1

8pGr0
2 ~68!

at the throat of the special class of model wormholes they
considered.~With MTW conventions(2)R52/r 0

2 for a two-
sphere.! If you now integrate over the surface of the worm-
hole,
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E A ~2!g t d2x5
1

16pG F4px1E A ~2!g$tr~K2!

22gcdf :cf :d%d
2xG . ~69!

Here x is the Euler characteristic of the throat, while the
gcdf :cd term vanishes by partial integration, since the throat
is a manifold without boundary.

Second,

r5
1

16pG F ~2!R12
] tr~K !

]n
2tr~K2!G . ~70!

The second term is negative semidefinite by the flare-out
condition, while the third term is manifestly negative
semidefinite. Thus,

r<
1

16pG
~2!R. ~71!

This is the generalization of the Morris-Thorne result that

r5
b8~r 0!

8pGr0
2 <

1

8pGr0
2 ~72!

at the throat of the special class of model wormholes they
considered.~See@3#, p. 107.!

Note in particular that if the wormhole throat does not
have the topology of a sphere or torus then theremust be
places on the throat such that(2)R,0 and thus such that
r,0. Thus wormhole throats of a high genus will always
have regions that violate the weak and dominant energy con-
ditions. ~The simple flare-out condition is sufficient for this
result. For a general discussion of the energy conditions see
@3# or @7#.!

If the wormhole throat has the topology of a torus then it
will generically violate the weak and dominant energy con-
ditions; only for the very special case(2)R50, Kab50,
] tr(K)/]n50 will it possibly satisfy ~but still be on the
verge of violating! the weak and dominant energy condi-
tions. This is a particular example of a degenerate throat in
the sense discussed previously.

Wormhole throats with the topology of a sphere will, pro-
vided they are convex, at least have a positive energy den-
sity, but we shall soon see that other energy conditions are
typically violated.

If we now integrate over the surface of the wormhole,

E A ~2!g r d2x5
1

16pG F4px1E A ~2!gH 2
] tr~K !

]n

2tr~K2!J d2xG . ~73!

So for a throat with the topology of a torus (x50) the
simple flare-out condition yields

E A ~2!g r d2x<0, ~74!

while the strong or weak flare-out condition yields

E A ~2!g r d2x,0, ~75!

guaranteeing violation of the weak and dominant energy
conditions. For a throat with higher genus topology
(x5222g), the simple flare-out condition is sufficient to
yield

E A ~2!g r d2x<
x

4G
,0. ~76!

Third,

r2t5
1

16pG F12
] tr~K !

]n
22 tr~K2!

12gcd~f :cd1f :cf :d!G . ~77!

Note that the two-curvature(2)R has conveniently dropped
out of this equation. As given, this result is valid only on the
throat itself, but we shall soon see that a generalization can
be constructed that will also hold in the region surrounding
the throat. The first term is negative semidefinite by the
simple flare-out condition~at the very worst when integrated
over the throat it is negative by the weak flare-out condition!.
The second term is negative semidefinite by inspection. The
third term integrates to zero though it may have either sign
locally on the throat. The fourth term is unfortunately posi-
tive semidefinite on the throat which prevents us from deriv-
ing a truly general energy condition violation theorem with-
out additional information.

Now because the throat is by definition a compact two-
surface, we know thatf(xa) must have a maximum some-
where on the throat. At the global maximum~or even at any
local maximum! we havef :a50 andgabf :ab<0, so at the
maxima off one has

r2t<0. ~78!

Generically, this inequality will be strict, and generically
there will be points on the throat at which the null energy
condition is violated.

Integrating over the throat we have

E A ~2!g@r2t#d2x5
1

16pG E A ~2!gF12
] tr~K !

]n

22 tr~K2!12gcd~f :cf :d!Gd2x.

~79!

Because of the last term we must be satisfied with the result

E A ~2!g@r2t#d2x<E A ~2!g@2gcd~f :cf :d!#d2x.

~80!

Fourth, we can rewrite the differencer2t as
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r2t5
1

16pG F12
] tr~K !

]n
22 tr~K2!

12 exp~2f! ~2!D exp~1f!G . ~81!

So if we multiply by exp(1f) before integrating, the two-
dimensional Laplacian(2)D vanishes by partial integration
and we have

E A ~2!g exp~1f!@r2t#d2x

5
1

8pG E A ~2!g exp~1f!F1
] tr~K !

]n
2tr~K2!Gd2x.

~82!

Thus the strong flare-out condition~or less restrictively,
the weakef-weighted flare-out condition! implies the viola-
tion of this ‘‘transverse-averaged null energy condition’’~the
NEC averaged over the throat!:

E A ~2!g exp~1f!@r2t#d2x,0. ~83!

Fifth, we can define an average transverse pressure on the
throat by

p̄[
1

16pG
gab~311!Gab ~84!

5
1

16pG Fgcd~f :cd1f :cf :d!12f unn

12f unf un2
] tr~K !

]n
1tr~K2!G . ~85!

The last term is manifestly positive semidefinite, and the
penultimate term is positive semidefinite by the flare-out
condition. The first and third terms are of indefinite sign
while the second and fourth are also positive semidefinite.
Integrating over the surface of the throat,

E A ~2!g p̄ d2x>
1

8pG E A ~2!gf unnd
2x. ~86!

A slightly different constraint, also derivable from the
above, is

E A ~2!gef p̄ d2x>
1

8pG E A ~2!g~ef! unnd
2x. ~87!

These inequalities relate transverse pressures to normal
derivatives of the gravitational potential. In particular, if the
throat lies at a minimum of the gravitational redshift the
second normal derivative will be positive, so the transverse
pressure~averaged over the wormhole throat! must be posi-
tive.

Sixth, now look at the quantitiesr2t12p̄ and
r2t22p̄. We have

r2t12p̄5
1

4pG
$gcd~f :cd1f :cf :d!1f unn1f unf un%

~88!

5
1

4pG
$gi j ~f u i j 1f u if u j !%. ~89!

This serves as a nice consistency check. The combination
of the stress-energy components appearing above is equal to
r1gi j Ti j and is exactly that relevant to the strong energy
condition. See Eqs.~15!–~17!. See also Eqs.~12!–~14!. Mul-
tiplying by ef and integrating,

E A ~2!gef@r2t12p̄#d2x5
1

4pG E A ~2!g~ef! unnd
2x.

~90!

This relates this transverse-integrated version of the strong
energy condition to the normal derivatives of the gravita-
tional potential.

On the other hand,

r2t22p̄5
1

4pG H 2f unn2f unf un1
] tr~K !

]n
2tr~K2!J .

~91!

The second and fourth terms are negative semidefinite, while
the third term is negative semidefinite by the flare-out con-
dition.

Summarizing, there are a number of powerful constraints
that can be placed on the stress-energy tensor at the worm-
hole throat simply by invoking the minimality properties of
the wormhole throat. Depending on the precise form of the
assumed flare-out condition, these constraints give the vari-
ous energy condition violation theorems we are seeking.
Even under the weakest assumptions~appropriate to a degen-
erate throat! they constrain the stress energy to at best be on
the verge of violating the various energy conditions.

VI. SPECIAL CASE: THE ISOPOTENTIAL THROAT

Suppose we takef :a50. This additional constraint corre-
sponds to asserting that the throat is anisopotentialof the
gravitational redshift. In other words,f(n,xa) is simply a
constant on the throat. For instance, all the Morris-Thorne
model wormholes@1# possess this symmetry. Under this as-
sumption there are numerous simplifications.

We will not present anew all the results for the Riemann
curvature tensor but instead content ourselves with the Ein-
stein tensor

~311!Gab51gab~f unn1f unf un!2Kabf un1
]Kab

]n

12~K2!ab2gab

] tr~K !

]n
1

1

2
gab tr~K2!

58pGTab , ~92!

~311!Gna52Kab
:b58pGTna , ~93!

~311!Gnn52 1
2

~2!R2 1
2 tr~K2!528pGt, ~94!

4752 56DAVID HOCHBERG AND MATT VISSER



~311!Gt̂a50, ~95!

~311!Gt̂n50, ~96!

~311!Gt̂ t̂5
~2!R

2
1

] tr~K !

]n
2

1

2
tr~K2!518pGr. ~97!

Thus for an isopotential throat,

t5
1

16pG
@ ~2!R1tr~K2!#>

1

16pG
~2!R. ~98!

r5
1

16pG F ~2!R12
] tr~K !

]n
2tr~K2!G< 1

16pG
~2!R,

~99!

r2t5
1

16pG F12
] tr~K !

]n
22 tr~K2!G<0. ~100!

This gives us a very powerful result: using only the simple
flare-out condition, the NEC is on the verge of being violated
everywhere on an isopotential throat.

By invoking the strong flare-out condition the NEC is
definitely violated somewhere on an isopotential throat.

Invoking the weak flare-out condition we can still say that
the surface-integrated NEC is definitely violated on an iso-
potential throat.

VII. SPECIAL CASE: THE EXTRINSICALLY
FLAT THROAT

Suppose now that we takeKab50. This is a much stron-
ger constraint than simple minimality of the area of the
wormhole throat and corresponds to asserting that the three-
geometry of the throat is~at least locally! symmetric under
interchange of the two regions it connects. For instance, all
the Morris-Thorne model wormholes@1# possess this sym-
metry and have throats that are extrinsically flat. Under this
assumption there are also massive simplifications.~Note that
we are not making the isopotential assumption at this stage.!

Again, we will not present all the results but content our-
selves with the Einstein tensor

~311!Gab52f :ab2f :af :b1gab@gcd~f :cd1f :cf :d!1f unn

1f unf un#1
]Kab

]n
2gab

] tr~K !

]n

58pGTab , ~101!

~311!Gna52f unf ua58pGTna , ~102!

~311!Gnn5gcd@f :cd1f :cf :d#2 1
2

~2!R528pGt,
~103!

~311!Gt̂a50, ~104!

~311!Gt̂n50, ~105!

~311!Gt̂ t̂5
~2!R

2
1

] tr~K !

]n
518pGr. ~106!

Though the stress-energy tensor is now somewhat simpler
than the general case, the presence of thef :a terms precludes
the derivation of any truly new general theorems.

VIII. SPECIAL CASE: THE EXTRINSICALLY FLAT
ISOPOTENTIAL THROAT

Finally, suppose we take bothKab50 and f :a50. A
wormhole throat that is both extrinsically flat and isopoten-
tial is particularly simple to deal with, even though it is still
much more general than the Morris-Thorne wormhole. Once
again, we will not present all the results but content our-
selves with the Einstein tensor

~311!Gab51gab~f unn1f unf un!1
]Kab

]n
2gab

] tr~K !

]n

58pGTab , ~107!

~311!Gna50, ~108!

~311!Gnn52 1
2

~2!R528pGt, ~109!

~311!Gt̂a50, ~110!

~311!Gt̂n50, ~111!

~311!Gt̂ t̂5
~2!R

2
1

] tr~K !

]n
518pGr. ~112!

In this caser2t is particularly simple:

r2t5
1

8pG

] tr~K !

]n
. ~113!

This quantity is manifestly negative semidefinite by the
simple flare-out condition.

For the strong flare-out condition we deduce that the NEC
must be violated somewhere on the wormhole throat.

Even for the weak flare-out condition we have

E A ~2!g@r2t#d2x,0. ~114!

We again see that generic violations of the null energy
condition are the rule.

IX. THE REGION SURROUNDING THE THROAT

Because the spacetime is static, one can unambiguously
define the energy density everywhere in the spacetime by
setting

r5
~311!Gt̂ t̂

8pG
. ~115!

The normal tension, which we have so far defined only on
the wormhole throat itself, can meaningfully be extended to
the entire region where the Gaussian normal coordinate sys-
tem is well defined by setting
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t52
~311!Gnn

8pG
. ~116!

Thus, in particular,

r2t5
~311!Gt̂ t̂1

~311!Gnn

8pG
5

~311!Rt̂ t̂1
~311!Rnn

8pG
,

~117!

with this quantity being well defined throughout the Gauss-
ian normal coordinate patch.~The last equality uses the fact
that gt̂ t̂521 while gnn511.! But we have already seen
how to evaluate these components of the Ricci tensor. In-
deed,

~311!Rt̂ t̂5gi j @f u i j 1f u if u j #, ~118!

~311!Rnn5 ~3!Rnn2@f unn1f unf un# ~119!

5
] tr~K !

]n
2tr~K2!2@f unn1f unf un#,

~120!

where we have been careful tonot use the extremality con-
dition tr(K)50. Therefore,

r2t5
1

8pG F] tr~K !

]n
2tr~K2!1gab~f uab1f uaf ub!G

~121!

5
1

8pG F] tr~K !

]n
2tr~K2!1tr~K !f un

1gab~f :ab1f :af :b!G , ~122!

where in Eq. ~122! we have used the Gauss-Weingarten
equations.

If the throat isisopotential, where isopotential now means
that near the throat the surfaces of constant gravitational po-
tential coincide with the surfaces of fixedn, this simplifies to

r2t5
1

8pG F] tr~K !

]n
2tr~K2!1tr~K !f unG . ~123!

If the throat is nondegenerate and satisfies the simple flare-
out condition, then at the throat the first and second terms are
negative semidefinite, and the third is zero. Then the null
energy condition is either violated or on the verge of being
violated at the throat.

If the throat is nondegenerate and satisfies the strong
flare-out condition at the pointx, then the first term is nega-
tive definite, the second is negative semidefinite, and the
third is zero. Then the null energy condition is violated at the
point x on the throat.

If the throat satisfies theN-fold degenerate flare-out con-
dition at the pointx, then by the generalization of the flare-
out conditions applied to degenerate throats the first term
will be O(n2N22) and negative definite in some region sur-
rounding the throat. The second term is again negative
semidefinite. The third term can have either sign but will be
O(n2N21). Thus there will be some regionnP(0,n* ) in
which the first term dominates. Therefore, the null energy
condition is violated along the line$x%(0,n* ). If at every
point x on the throat theN-fold degenerate flare-out condi-
tion is satisfied for somefinite N, then there will be an open
region surrounding the throat on which the null energy con-
dition is everywhere violated.

This is the closest one can get in generalizing to arbitrary
wormhole shapes the discussion on p. 405@Eq. ~56!# of
Morris-Thorne@1#. Note carefully their use of the phrase ‘‘at
or near the throat.’’ In our parlance, they are considering a
spherically symmetric extrinsically flat isopotential throat
that satisfies theN-fold degenerate flare-out condition for
some finite but unspecifiedN. See also p. 104, Eq.~11.12!
and p. 109, Eq.~11.54! of @3#, and contrast this with Eq.
~11.56! of @3#.

If the throat is not isopotential we multiply by exp(f) and
integrate over surfaces of constantn. Then,

E A ~2!g exp~f! @r2t# d2x

5
1

8pG E A ~2!g exp~f! F] tr~K !

]n

2tr~K2!1tr~K !f unGd2x. ~124!

This generalizes the previous version~82! of the
transverse-averaged null energy condition to constantn hy-
persurfaces near the throat. For each pointx on the throat,
assuming theN-fold degenerate flare-out condition, we can
by the previous argument find a range of values@n
P(0,n* (x))# that will make the integrand negative. Thus
there will be a set of values ofn for which the integral is
negative. Again we deduce violations of the null energy con-
dition.

X. DISCUSSION

We have presented a definition of a wormhole throat that
is much more general than that of the Morris-Thorne worm-
hole @1#. The present definition works well in any static
spacetime and nicely captures the essence of the idea of what
we would want to call a wormhole throat.

We do not need to make any assumptions about the exis-
tence of any asymptotically flat region, nor do we need to
assume that the manifold is topologically nontrivial. It is
important to realize that the essence of the definition lies in
the geometrical structure of the wormhole throat.
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Starting from our definition we have used the theory of
embedded hypersurfaces to place restrictions on the Riemann
tensor and stress-energy tensor at the throat of the wormhole.
We find, as expected, that the wormhole throat generically
violates the null energy condition and we have provided sev-
eral theorems regarding this matter. These theorems general-
ize the Morris-Thorne results on exotic matter@1#, and are
complementary to the topological censorship theorem@5#.

Generalization to the time-dependent situation is clearly
of interest. Unfortunately, we have encountered many subtle-
ties of definition, notation, and formalism in this endeavor.

We defer the issue of time-dependent wormhole throats to a
future publication.
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