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Geometric structure of the generic static traversable wormhole throat
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Traversable wormholes have traditionally been viewed as intrinsically topological entities in some multiply
connected spacetime. Here, we show that topology is too limited a tool to accurately characterize a generic
traversable wormhole: in general one needs geometric information to detect the presence of a wormhole, or
more precisely to locate the wormhole throat. For an arbitrary static spacetime we shall define the wormhole
throat in terms of a two-dimensional constant-time hypersurface of minimal @ean trace for the extrinsic
curvature plus a “flare-out” condition.This enables us to severely constrain the geometry of spacetime at the
wormhole throat and to derive generalized theorems regarding violations of the energy conditions, theorems
that do not involve geodesic averaging but nevertheless apply to situations much more general than the
spherically symmetric Morris-Thorne traversable wormhdkeor example, the null energy condition, when
suitably weighted and integrated over the wormhole throat, must be vigldteel major technical limitation of
the current approach is that we work in a static spacetime; this is already a quite rich and complicated system.
[S0556-282(97)02618-0

PACS numbsg(s): 04.20.Gz, 04.20.Cv, 04.46b

[. INTRODUCTION versable wormhole. We make no assumptions about spheri-
cal symmetry(or axial symmetry, or even “exchange” sym-

Traversable wormholelsl—3] are often viewed as intrin- metry), and we make no assumptions about the existence of
sically topological objects, occurring only in multiply con- any asymptotically flat region. We first have to define ex-
nected spacetimes. Indeed, the Morris-Thorne class of inteRCtly what we mean by a wormhole, we find that there is a
universe traversable wormholes is even more restricted)icegeometrical(not topological characterization of the ex-
requiring both exact spherical symmetry and the existence dptence of, and location of, a wormhole “throat.” This char-
two asymptotically flat regions in the spacetime. To deal@cterization |s_developed in terms of a_h_ypersurface of mini-
with intrauniverse traversable wormholes, the Morris-Thornénal area, subject to a “flare-out” condition that generalizes
analysis must be subjected to an approximation procedur@at of the Morris-Thorne analysis.
wherein the two ends of the wormhole are distorted and With this definition in place, we can develop a number of
forced to reside in the same asymptotically flat region. Théheorems about the existence of “exotic matter” at the
existence of one or more asymptotically flat regions is an
essential ingredient of the Morris-Thorne approfth

However, there are many other classes of geometries that
one might still quite reasonably want to classify as worm-
holes, that either do not possess any asymptotically flat re-
gion [4], or have trivial topology[3], or exhibit both these
phenomena.

A simple example of a wormhole lacking an asymptoti-
cally flat region is two closed Friedmann-Robertson-Walker
spacetimes connected by a narrow néske Fig. ], you
might want to call this a “dumbbell wormhole.” A simple
example of a wormhole with trivial topology is a single
closed Friedmann-Robertson-Walker spacetime connected
by a narrow neck to ordinary Minkowski spatsee Fig. 2
A general taxonomy of wormhole exemplars may be found
in [3], pp. 89-93, and discussions of wormholes with trivial
topology may also be found i8], pp. 53-74.

While the restricted viewpoint based on the Morris-
Thorne analysis is acceptable for an initial discussion, the
Morris-Thorne approach fails to capture the essence of large
classes of wormholes that do not satisfy their simplifying FIG. 1. A “dumbbell wormhole™: Formedfor example by two
assumptions. closed Friedmann-Robertson-Walker spacetimes connected by a

In this paper we shall investigate the generic static tranharrow neck.
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CHURG = i+ ¢ ) - 5

The hat on thd index indicates that we are looking at com-
ponents in the normalizeddirection

Xi = X(V—g" = X, exp(— ¢). (6)

This means we are using an orthonormal basis attached to

the fiducial observers. We usg., to denote a spacetime
FIG. 2. A wormhole with trivial topology: Formedfor ex- ~ covariant derivativeX;; to denote a three-space covariant

ample by connecting a single closed Friedmann-Robertson-Walkeflerivative, and will shortly us&., to denote two-space co-

spacetime to Minkowski space by a narrow neck. variant derivatives taken on the wormhole throat itself.

Now taking suitable contractions,

wormhole throat. These theorems generalize the original

Morris-Thorne result by showing that the null energy condi- DRy = OR = ¢y — By » (7)
tion (NEC) is generically violated at some points on or near

the two-dimensional surface comprising the wormhole (R} =0, (8
throat. These results should be viewed as complementary to .

the topological censorship theordB). The topological cen- CrURG=g"[ ¢jij + ¢} ) ]- 9

sorship theorem tells us that in a spacetime containing a
traversable wormhole the averaged null energy conditiorP©;
must be violated along at least soifmet all) null geodesics,

but the theorem provides very limited information on where

these violations.occyr. The analysis of this paper shows thaito effect these contractions, we make use of the decompo-
some of these violations of the energy conditions are concen: ;

: ition of the spacetime metric in terms of the spatial three-
trated in the expected place: on or near the throat of the P P

wormhole. The . L [netric, the set of vectorg* tangent to the time slice, and the
. present analysis, because it is purely local, tor VK — P | to the ti lice:

also does not need the many technical assumptions abotit<*" exi $)(@/at)" normal to the time slice:
asymptotic flatness, future and past null infinities, and global (3+Dgur = ghergil — \rYP (12)
hyperbolicity that are needed as ingredients for the topologi- v ’

cal censorship theorep®].

The key simplifying assumption in the present analysis is
that of taking a static wormhole. While we believe that a GG = (3)Gi]__¢|ij_¢“¢“+g”gkl[¢lkl+ bl
generalization to dynamic wormholes is possible, the situa- 12
tion becomes technically much more complex and one is
rapidly lost in definitional subtleties and formalism. B+1G; =0, (13

GB+DR = (3>R_29ii[¢|ij+¢“¢|j]. (10

Finally, for the spacetime Einstein tengsee[6], p. 552,

Il. STATIC SPACETIMES GrUGh=+ 1OR. (14)

In any static spacetime one can decompose the spaceti

metric into block diagonal fori6—g]: ™M%is decomposition is generic my static spacetime(You

can check this decomposition against various standard text-
books to make sure the coefficients are correct. For instance,

ds’=g,, dx“dx” D see Syngel9], p. 339, Fock[10], or Adler Bazin, and
5 o Schiffer[11].)
=—exp2¢)dt*+g; dxdx. . Suppose the strong energy conditiBEQ holds, then
[3]
Greek indices run from 0 to 3 and refer to spacetime; latin SEC:>(p+gijT”)>0 (15)
indices from the middle of the alphabetj(k, . ..) runfrom
1 to 3 and refer to space; latin indices from the beginning of :>gij[¢,|ij +ji¢h1=0 (16)
the alphabetd,b,c, ...) will run from 1 to 2 and will be
used to refer to the wormhole throat and directions parallel to = ¢ has no isolated maxima. (17)

the wormhole throat.
Being static tightly constrains the spacetime geometry in
terms of the three-geometry of space on a constant time slice, !l DEFINITION OF A GENERIC STATIC THROAT
and the manner in which this three-geometry is embedded \ye define a traversable wormhole thr@to be a two-
into the spacetime. For example, frd@, p. 518 we have  gimensional hypersurface afinimalarea taken in one of the

constant-time spatial slices. Compute the area by taking
CrUR=“Riju , ©)

(3+1)Riabc=01 (4) A(E):f Y (2)g d2X. (18)
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Now use Gaussian normal coordinate's= (x2;n), wherein
the hypersurfac& is taken to lie ah=0, so that

(3)9” dXide :(2)gab ande+dn2. (19)
The variation in surface area, obtained by pushing the sur-

facen=0 out ton=6n(x), is given by the standard compu-
tation

,/(2)

5”(X)d2X, (20) FIG. 3. Generically, we define the throat to be located at a true
minimum of the area. The geometry should flare out on either side
of the throat, but we make no commitment to the existence of any
asymptotically flat region.

S

which implies

5A(2)=J m%gab% 5n(x)d2X. (21) Definition: Simple flare-out condition
A two-surface satisfies the “simple flare-out” condition if
nd only if it is extremal tr(K)=0, and also satisfies
tr(K)/on=<0.
This flare-out condition can be rephrased as follows: We
have as an identity that

atr(K) (aK 5
o =tr o +2tr(K9). (27

In Gaussian normal coordinates the extrinsic curvature ca§
be simply defined by

:_l‘?gab
ab™ 2 on

(22

[See[6], p. 552. We use Misner-Thorne-Wheel@TW)
sign conventions. The convention|[ig], p. 156 is opposité. So, minimality implies
Thus, '

K
+2 tr(K?)<0. (28)

J
SA(S)=— f @g tr(K)sn(x)d>2x. (23) ”( on

[We use the notation tX) to denoteg?®X,,.] Since this is  Generically we would expect the inequality to be strict, in
to vanish for arbitrarysn(x), the condition that the area be the sense that tr(K)/dn<0, for at least some points on the
extremalis simply tr(K)=0. To force the area to bminimal ~ throat. (See Fig. 3 This suggests the modified definition
requires (at the very least the additional constraint below.

5%A(2)=0. (We shall also consider higher-order constraints

below) But by explicit calculation, Definition: Strong flare-out condition

7 tr(K) A two-surface satisfies the “strong flare-out” condition at
SPA(3)=— J \/%(——tr(K)z) 8n(x) on(x)d?x. the point x if and only if it is extrematr(K) =0, everywhere
on satisfiesd tr(K)/on=<0, and if at the point x on the surface
(24) the inequality is strict:

Extremality[ tr(K) = 0] reduces this minimality constraint to d tr(K)
Jn

(29

d tr(K
52A(2)=—f \/(2)9( ( ))5n(x)6n(x)d2x>O.
an It is sometimes sufficient to demand a weak integrated
(25 form of the flare-out condition.

Since this is to hold for arbitrargn(x) this implies that at

the throat we certainly require Definition: Weak flare-out condition
A two-surface satisfies the “weak flare-out” condition if
d tr(K) and only if it is extremaltr(K)=0, and
- <o, (26) Y altr(K)

f o a tr(K Px<o. 30
This is the generalization of the Morris-Thorne “flare-out”
condition to arbitrary static wormhole throats.

In the following definitions, the two-surface referred to is  Note that the strong flare-out condition implies both the
understood to be embedded in a three-dimensional space, smnple flare-out condition and the weak flare-out condition,
that the concept of its extrinsic curvatu(eelative to that but that the simple flare-out condition does not necessarily

embedding spagenakes sense. imply the weak flare-out conditionThe integral could be
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d tr(K)

f V@g f(x) Td2x<0. (31)

[We will only be interested in this condition fdi(x) some
positive function defined over the wormhole thrgat.

The constraints on the extrinsic curvature embodied in
these various definitions lead to constraints on the spacetime
geometry, and consequently, constraints on the stress energy.

FIG. 4. Strong versus weak throats: Placing a small bump on a Technical point |- Degenerate throats

strong throat typically causes it to trifurcate into two strong throats A class of wormholes for which we have to extend these
plus a weak throat. definitions arises when the wormhole throat possesses an ac-

zero) Whenever we do not specifically specify the type Ofcidental degeneracy in the extrinsic curvature at the throat.
flare-out condition being used we deem it to be the simpl%]zetﬁrrggloxz g:;fl\‘;rsit'gn has tacitly been assuming that near

flare-out condition.

The conditions under which the definition of a weak flare
out are appropriate arise, for instance, when one takes a = (2g_, (x,n)=®g,,(x,0)+n
Morris-Thorne traversable wormhol@vhich is symmetric an

I[P gap(x.N)]

n=0
under interchange of the two universes it conneatsl dis- 2 20(2)
torts the geometry by placing a small bump on the original L I Gap(X,N) ] +o(n%), (32
throat. (See Fig. 4. 2 (an)? n=0 ’

The presence of the bump causes the old throat to trifur-
cate into three extremal surfaces: Two minimal surfaces arwith the linear term having trace zetm satisfy extremality
formed, one on each side of the old thr@hiese are minimal and the quadratic term being constrained by the flare-out
in the strong sense previously discugsedhile the surface conditions.
of symmetry between the two universes, though by construc- Now if we have an accidental degeneracy with the qua-
tion still extremal, is no longer minimal in the strict sense.dratic (and possibly even higher-order tepmsnishing iden-
However, the surface of symmetry is oftésut not always tically, we would have to develop an expansion such as
minimal in the weak(integrated sense indicated above.

A second situation in which the distinction between |, I[?'gan(x,n)]

gab(X1 n) = (2)gab(X10) +n

strong and weak throats is important is in the cut-and-paste an B
construction for traversable wormholg8,12,13. In this n=o
construction one takes tw(statig spacetimes f1;,M,) 2N o?2N[Pg..(x,n)] a1
and excises two geometrically identical regions of the form + (2N)! (an)>N +0O(n )-
O, XR, Q; being compact spacelike surfaces with boundary n=0

and R indicating the time direction. One then identifies the (33

two boundarie®(); X R thereby obtaining a single manifold
(M #M,) that contains a wormhole joining the two regions
M;—Q;XR. We would like to interpret the junction

Applied to the metric determinant this implies an expansion
such as

dQ,-,XR as the throat of the wormhole. [ NNk, (x)
If the sets(); are convex, then there is absolutely no prob- /@g(x,n)= \/<2>g(x,0)k 1+ TN'JrO(nZN“)) ,
lem: the junctiond€),_,XR is by construction a wormhole (2N)! (34)

throat in the strong sense enunciated above.

On the other hand, if thd); are concave, then it is \yherek,(x) denotes the first nonzero subdominant term in

straightforward to convince oneself that the junctionihe ahove expansion, and we know by explicit construction
dQ;_,XR is not a wormhole throat in the strong sense. Ifi 4t

one denotes theonvex hullof Q; by conv((};) then thetwo

regionsd[ conv((};)] X R are wormhole throats in the strong 1 (PN @Dgap(x,n)]
sense. The junctionQ);_,X R is at best a wormhole throat kn(X) =+ 1r ™ ) (35
in the weak sense. n=0

For these reasons it is useful to have this notion of a weak IN—1

; . e d Kan(X,Nn)

throat available as an alternative definition. Whenever we do =— f(w ) (36)
not qualify the notion of wormhole throat it will refer to a (on) n=0
throat in the simple sense. Whenever we refer to a throat in
the weak sense or strong sense we will explicitly say so. FNTIK(x,n)
Finally, it is also useful to make the following definition. - S (gn)N1 o) (37

Definition: Weak f-weighted flare-out condition since the trace is taken witff)g?"(x,0) and this commutes

A two-surface satisfies the “weakweighted flare-out”  with the normal derivative. We know that the first nonzero
condition if and only if it is extremaltr(K) =0, and subdominant term in expansié®4) must be of even order in
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n (i.e., n?N), and cannot correspond to an odd powemof Technical point II: Hyperspatial tubes

since otherwise thg t.hroat would be a point of inflection of A second class of wormholes requiring even more techni-
the area, not a minimum of the area. Furthermore, sinC@y figdles arises when there is a central section which is
kn(X) is by definition nonzero the flare-out condition must completely uniform and independent of [So thatK ,,=0

be phrased as the constrakpj(x) >0, with this now beinga 4er the whole throat for some finite rgngel
strict inequality. More formally, this leads to the definition _ (—ng,+ng).] This central section might be called a “hy-

below. perspatial tube.” The flare-out condition should then be re-
phrased as stating that whenever extrinsic curvature first de-
Definition: N-fold degenerate flare-out condition viates from zero[at some point X,*=ny)], one must

A two-surface satisfies the “Kold degenerate flare-out” TO'mulate constraints such as

condition at a point x if and only if it is extrematr(K) =0, a9 tr(K)
if in addition the first2N— 2 normal derivatives of the trace o <0. (41
of the extrinsic curvature vanish at »and if finally at the *ngy

point X one has
B In this case trK) is by definition not an analytic function
N1 tr(K) . .
<0 (38) of n atng, so the flare-out constraints have to be interpreted
(on)>N-1 ’ in terms of one-sided derivatives in the region outside the
hyperspatial tubd.That is, we are concerned with the possi-

where the inequality is strict. [In the previous notation this is Pility that yg(x,n) could be constant fon<<n, but behave
equivalent to the statement thag()>0] as (n—no)_2N for n>ng. In this case derivatives, @t=ng,
Physically, at arN-fold degenerate point, the wormhole do not exist beyond orderi2 |
throat is seen to be extremal up to ord&21 with respect
to normal derivatives of the metric, i.e., the flare out property  Iv. GEOMETRY OF A GENERIC STATIC THROAT
is delayed spatially with respect to throats in which the flare ) ) ] ) ]
out occurs at second order in The way we have set things US|_ng Gaussian normal coordinates in the region sur-
up, the onefold degenerate flare-out condition is completelyounding the throat,
equivalent to the strong flare-out condition. @ @
If we now consider the extrinsic curvature directly we see, Rabcd™"“Rabcd™ (KacKpd—KadKpe)- (42)
by differentiating Eq.(34), first that
See[6], p. 514, Eq.(21.75. Because two dimensions are

n2N=1 (x) special this reduces to
_ 2N
K(x,n) 2N=1)! +0(n“Y), (39 @R
(B)Rabcd:_(gacgbd_gadgbc)_(Kachd_ KadKpe)-
2
and second that (43)
aK(x,n) n2N=2Kk\(x) N1 Of course, we still have the standard dimension-independent
an - (2N=2) +O(n="7). (400 results that
GRape= — (Kap:e— Kacb) 44

From the dominanh—0 behavior we see that ifat some nane= ~ (Kabic™Kacn) 44
pointx) 2N happens to equal 2, then the flare-out condition
implies thatoK(x,n)/dn must be negativat and near the OR,p= 9Kab+(Kz) . (45)
throat This can also be deduced directly from the equivalent nant e on a

strong flare-out condition: iPK(x,n)/dn is negative and
nonzero at the throat, then it must remain negative in som&ee[6], p. 514, Eq(21.76 and[6], p. 516 Eq(21.82. Here
region surrounding the throat. On the other hand,Nf 8  the indexn refers to the spatial direction normal to the two-
greater than 2 the flare-out condition only tells us thatdimensional throat.
dK(x,n)/on must be negativén some region surrounding Thus far, these results hold both on the throat and in the
the throat and does not necessarily imply that it is negativeregion surrounding the throat: these results hold as long as
at the throat itself(It could merely be zero at the throat. the Gaussian normal coordinate system does not break down.
Thus for degenerate throats, the flare-out conditiongSuch a breakdown being driven by the fact that the normal
should be rephrased in terms of the first nonzero normageodesics typically intersect after a certain distantethe
derivative beyond the linear term. Analogous issues arisénterests of notational tractability we now particularize atten-
even for Morris-Thorne wormholdd], p. 405, Eq(56), see tion to the throat itself, but shall subsequently indicate that
also the discussion presented[®], p. 104-105 and 109. certain of our results can be extended off the throat itself into
Even if the throat is nondegeneratenefold degenerate the entire region over which the Gaussian normal coordinate
there are technical advantages to phrasing the flare-out cosystem holds sway.
ditions this way: It allows us to put constraints on the extrin- Taking suitable contractionsgnd using the extremality
sic curvature near but not on the throat. conditiontr(K)=0,
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@R K ap [See, for example, Eq$21.57% and(21.63 of [6].] Thus,
(3)Rab:Tgab+ W+2(K2)abv (46)
9" ¢1=9%°b.a6+ (9%°K ap) Bjnt djnn- (59
Bp —_K b
Rna=~Kap™, “7) But remember that tK)=0 at the throat, so
oK
(3)Rnn=tr(% +1r(K2) (48) 9" 11=9""¢.a0+ Bjnn- (60)
2 tr(K) s o This finally allows us to write
= —1r ,
an (3+1)Gab: - d’:ab_ ¢:a¢:b_ Kab¢\n+ gab[ng(¢:cd
so that IK ap )
+ d):cd’:d) + d)|nn+ ¢\nd’|n] + W + 2(K )ab
BPR=2R+2tr N +3tr(K?) (50)
an atr(K) 1 )
—0Jab an + Egab tI‘(K )
d tr(K)
:<2>R+2T—tr(}<2). (51 =87GT,p. (61
To effect these contractions, we make use of the decom-  **VGpa= =Ko b= djndp.a=Kap *=87G Tp,.
position of the three-space metric in terms of the throat two- (62

metric and the set of two-vectoe§ tangent to the throat and

the three-vecton' normal to the two-surface: 1 1
(3+l)Gnn:ng[¢:cd+ (;b:cd’:d]_ z (2>R_ E tr(Kz)

@+lgii=gl el g2P+ninl. (52
=—8nGr. (63
For the three-space Einstein tengof. [6], p. 552, we
see (3+1)Gia: 0. (64)
JK b &tr(K) 1 3+~
DGab= +2(K?)ap=Gap—— + 5 0ap tr(K?), #rhe=0. (69)
(53 s (2>R+ oK) 1 (K2)= +81Gp. (66)
. tt=""%5" —5tr =+87Gp.
¥Gpa=—Kap® (54 22
BG,,=— s@R-1 tr(K?). (55) Here 7 denotes thdensionperpendicular to the wormhole

throat, it is the natural generalization of the quantity consid-
ered by Morris and Thorne, whilg is simply the energy

Note in particular that by the flare-out conditié?R,,,<0. _
density at the wormhole throat.

This implies that the three-space Ricci ten$®iR;; has at
least one negative semidefinite eigenvalue everywhere on the
throat. If we adopt the strong flare-out condition then the V. CONSTRAINTS ON THE STRESS-ENERGY TENSOR
three-space Ricci tensor has at least one negative definite
eigenvalue somewhere on the throat.

This decomposition now allows us to write down the vari-
ous components of the spacetime Einstein tensor. For ex-
ample, r

We can now derive several constraints on the stress en-
ergy. First,

[(2)R+tr(K2) - Zng(¢:cd+ ¢:cd’:d)]- (67)

~ 167G

oK
3+1 _ Kl ab
B VGap= = dlab— Bladipt 9abd [ P+ Syl + an (Unfortunately, the signs as given are correct. Otherwise we
would have a lower bound on We will need to be a little

2 d tr(K) 5 tricky when dealing with thep terms) The above is the
+2(K%ab=Gab ™+ 5 9ap (K generalization of the Morris-Thorne result that
=87GT,p. (56) 1

T=o—> (68
But by the definition of the extrinsic curvature, and using the 8wGro

Gauss-Weingarten equations, )
at the throat of the special class of model wormholes they

blab= :ap+ Kan®|n, (570  considered(With MTW conventions(®?R=2/rZ for a two-
sphere). If you now integrate over the surface of the worm-
¢|na: Kab¢:b . (58 hole,
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1 2~
f \/% T d2X: R [47TX+f v <2)g{tr(K2) f (2)g P d2X<0! (75)

(69) guaranteeing violation of the weak and dominant energy
conditions. For a throat with higher genus topology

=2-20), the simple flare-out condition is sufficient to
Here x is the Euler characteristic of the throat, while the (x 9) P

ield
g°de..4 term vanishes by partial integration, since the throaty
is a manifold without boundary.

—29°%.c.q}d?x

Secong f V@g p d>x< %< 0. (76)
1 0 tr(K)
= _|® _ 2 :
p=15q | PR+2— ——tr(K >}. (70) Third,
The second term is negative semidefinite by the flare-out 1 d tr(K) 2
condition, while the third term is manifestly negative P T 160G on 2K
semidefinite. Thus,
1 ) +290d(¢:cd+ ¢:c¢:d) . (77)
<
P<16-G R. (77

. L . Note that the two-curvaturé)R has conveniently dropped
This is the generalization of the Morris-Thorne result that )+ of this equation. As given, this result is valid only on the
b'(ro) 1 throat itself, but we shall soon see that a generalization can
= > < 5 (72) be constructed that will also hold in the region surrounding
87Gry 87Grg the throat. The first term is negative semidefinite by the
. simple flare-out conditiofiat the very worst when integrated
at the throat of the special class of model wormholes they, e the throat it is negative by the weak flare-out condjtion
conS|der_ed(See_[3], p. 107? The second term is negative semidefinite by inspection. The
Note in particular that if the wormhole throat does not;ry term integrates to zero though it may have either sign
have the topology of a sphere)or torus then thexestbe |01y on the throat. The fourth term is unfortunately posi-
places on the throat such thé R<0 and thus such that e semidefinite on the throat which prevents us from deriv-
p<0. Thus wormhole throats of a high genus will alwaysiq 5 truly general energy condition violation theorem with-
have regions that violate the weak and dominant energy cons .+ additional information.
ditions. (The simple flare-out condition is sufficient for this Now because the throat is by definition a compact two-

result. For a general discussion of the energy conditions se§;rface we know thai(x?) must have a maximum some-

[S]I?':h[(z]\./zlormhole throat has the topology of a torus then itWhere on the throat, At the global maxbimL(mr even at any
. ° a _

will generically violate the weak and dominant energy con—:,?];ilinTaaé}rgué?]gvﬁazave(ﬁ:a 0 andg™¢.ap=0, so at the

ditions; only for the very special cas&'R=0, K,,=0,

d tr(K)/on=0 will it possibly satisfy (but still be on the

verge of violating the weak and dominant energy condi-

tions. This is a particular example of a degenerate throat in

theﬁg:‘ﬂiﬁﬁgfﬁ%ﬁg v?/irﬁwv'lcﬁgstlc))/bology of a sphere will, pro- there_ yvill _be 'points on the throat at which the null energy

vided they are convex, at least have a positive energy der?—Ondltlon IS violated.

sity, but we shall soon see that other energy conditions are Integrating over the throat we have

typically violated.

p—1<0. (78

Generically, this inequality will be strict, and generically

: 1 a tr(K)
If we now integrate over the surface of the wormhole, [ AT o 12y — f [(2q
f olp=7Id*= 16, 9%2 an
1 d tr(K)
VG p dixe ot amcs [ {2
J Va0 o gerg | 4m % an ~21(K?)+ 20%(.06h.0) | .
—tr(Kz)]dzx . (73 (79

So for a throat with the topology of a torug£0) the Because of the last term we must be satisfied with the result

simple flare-out condition yields
| Pl r1ox= | VG20 e 10Px.
| 75 p dx=o, (74 (80)

while the strong or weak flare-out condition yields Fourth, we can rewrite the difference—7 as
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3 1 d tr(K) 2 — 1 cd
p—T= 167G +2 an —2tr(K) p—T+2p—m{9 (¢:cd+¢:c¢:d)+¢|nn+¢|n¢\n}
(88
+2exfd— @) PA exp(+ )| (81 1
= m{g”(¢|ij+¢\i¢|j)}- (89

So if we multiply by exp(-¢) before integrating, the two-

dimensional Laplaciad®A vanishes by partial integration ~ This serves as a nice consistency check. The combination

and we have of the stress-energy components appearing above is equal to
p+9"T;; and is exactly that relevant to the strong energy

condition. See Eq415)—(17). See also Eq412)—(14). Mul-
j Vg exp+ ¢)[p— 7]d*x tiplying by e? and integrating,
N Vg exp(+ ¢)| + 7K —tr(K?)|d?x f \/(z)ged’[p—ﬁ—Zﬂdzx=L f V@g(e?)nnd?x
87G an ' 47G a2

82) (90

This relates this transverse-integrated version of the strong

Thus the strong flare-out conditidior less restrictively,  gnergy condition to the normal derivatives of the gravita-
the weake?-weighted flare-out conditiorimplies the viola- tional potential.

tion of this “transverse-averaged null energy conditiditfie On the other hand
NEC averaged over the throat ’

o 1 [ s b Jr&tr(K) t(KZ)}
—Tr=2p=—={ — - —tr .
f V@g exp+ ¢)[ p— 7]d?x<0. (83 P P~ 4rG o FIn®In ™0
(9D
Fifth, we can define an average transverse pressure on thiée second and fourth terms are negative semidefinite, while
throat by the third term is negative semidefinite by the flare-out con-
dition.
= 1 g G (84) Summarizing, there are a number of powerful constraints
167G ab that can be placed on the stress-energy tensor at the worm-
hole throat simply by invoking the minimality properties of
1 the wormhole throat. Depending on the precise form of the
= 167G 9°U(b.cat ¢-ch.a) +26h)nn assumed flare-out condition, these constraints give the vari-
ous energy condition violation theorems we are seeking.
d tr(K) 5 Even under the weakest assumpti¢agpropriate to a degen-
+2¢|ndjn— +tr(K%)|. (85  erate throgtthey constrain the stress energy to at best be on

an . . - .
the verge of violating the various energy conditions.

The last term is manifestly positive semidefinite, and the

penultimate term is positive semidefinite by the flare-out VI. SPECIAL CASE: THE ISOPOTENTIAL THROAT

condition. The first and third terms are of indefinite sign

hile th d and fourth | i idefinit Suppose we take.,=0. This additional constraint corre-
while hé second and fourth are aiso posilive semidefini esponds to asserting that the throat isismpotentialof the
Integrating over the surface of the throat,

gravitational redshift. In other wordsp(n,x?) is simply a
1 constant on the throat. For instance, all the Morris-Thorne
J' J@g p d?x= e f \/%dﬂnndzx- (86) ~ model wormholeg1] possess this symmetry. Under this as-
™ sumption there are numerous simplifications.
] ) ) ) We will not present anew all the results for the Riemann
A slightly different constraint, also derivable from the o,nature tensor but instead content ourselves with the Ein-

above, is stein tensor
@get 5 dPx= —— [ Pge®) dx. (87 (3+1) IKap
ge’ p d°x= 87G g(e Innd"X. Gap= +gab(¢|nn+ ¢|n¢\n)_Kab¢|n+ “on
These inequalities relate transverse pressures to normal (K)o — J tr(K) + 1 K2
derivatives of the gravitational potential. In particular, if the (K%ab=Gab an 2 Yab tr(K%)
throat lies at a minimum of the gravitational redshift the
second normal derivative will be positive, so the transverse =8mG Ty, (92
pressurdaveraged over the wormhole thrpatust be posi- )
tive. <3+1)Gna:_Kab'b:87TGTna- (93

Sixth now look at the quantitiesp—7+ 2p and
p—7—2p. We have GG, = 3PR- 3 tr(K)=—-87Gr, (99
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G+DG:.=0 95 Though the stress-energy tensor is now somewhat simpler
ta=0, (95)
than the general case, the presence offthderms precludes
@+1G;, =0, (96)  the derivation of any truly new general theorems.
@R atr(K) 1 VIIl. SPECIAL CASE: THE EXTRINSICALLY FLAT
B+t~ T 2\ — ' .
Ci=—7%+ gy~ WK)=+87CGp. (97) ISOPOTENTIAL THROAT

Thus for an isopotential throat, Finally, suppose we take botK,,=0 and ¢.,=0. A
wormhole throat that is both extrinsically flat and isopoten-

1 2 5 1 2 tial is particularly simple to deal with, even though it is still
= 1e-g L RHUKI)]= 7= R (98)  much more general than the Morris-Thorne wormhole. Once
again, we will not present all the results but content our-
selves with the Einstein tensor

T

d tr(K)
=——|?R+2 —tr(K?) |< ——= @R
P~ 16nG { an ( )} 167G IKab a tr(K)
(99 (3+1)Gab: + Jan( ¢|nn+ ¢\n¢\n) + on Jab on
1 d tr(K) ’ =87GTyy, (107
P~ T=16mG {4—2 on 2t(K )}so. (100
L . . (3+1)Gna:01 (108
This gives us a very powerful result: using only the simple
flare-out condition, the NEC is on the verge of being violated
everywhere on an isopotential throat. BG =~ ;¥R=—87Gr, (109
By invoking the strong flare-out condition the NEC is
definitely violated somewhere on an isopotential throat. (*1Gi,=0, (110
Invoking the weak flare-out condition we can still say that
the surface-integrated NEC is definitely violated on an iso- G+DG,=0, (111
potential throat.
@ DR W(K)
VII. SPECIAL CASE: THE EXTRINSICALLY G“_T+ an +87Gp. (112
FLAT THROAT
Suppose now that we tak€,,=0. This is a much stron- In this casep— 7 is particularly simple:
ger constraint than simple minimality of the area of the 1 9tr(K)
wormhole throat and corresponds to asserting that the three- (113

geometry of the throat igat least locally symmetric under P77 8aG  an

interchange of the two regions it connects. For instance, all o _ _ o

the Morris-Thorne model wormholdd] possess this sym- This quantity is manifestly negative semidefinite by the

metry and have throats that are extrinsically flat. Under thigimple flare-out condition.

assumption there are also massive simplificati¢Nste that For the strong flare-out condition we deduce that the NEC

we are not making the isopotential assumption at this stageMust be violated somewhere on the wormhole throat.
Again, we will not present all the results but content our-  Even for the weak flare-out condition we have

selves with the Einstein tensor

V@g[p— 1]d*x<0. 11
(3+1)Gab:_d’:ab_ ¢:a¢:b+gab[ng(¢:cd+ ¢:c¢:d)+d’|nn j g[p T] ( 4)
T ddi]+ IKap 9 tr(K) We again see that generic violations of the null energy
InPInI™ gn FabT condition are the rule.
=87GT,p, 10
ab (103 IX. THE REGION SURROUNDING THE THROAT
3+1 — - L . :
G a= ~ PnPla=87GTha, (102 Because the spacetime is static, one can unambiguously
define the energy density everywhere in the spacetime by
(3+1)Gnn: ng[¢:cd+ b.ch.ql— %(Z)R: —87wGr, setting
(103
@G
. tt
(3+1)Gga: 0, (104 p= 8.G (115
3+~ —
BHG;,=0, (109 The normal tension, which we have so far defined only on
R K) the wormhole throat itself, can meaningfully be extended to
atr i i i i -
(G = + — +87Gp. (106 the entire region where the Gaussian normal coordinate sys

an tem is well defined by setting
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GG, If the throat satisfies thBl-fold degenerate flare-out con-
=T 78.G (119 dition at the pointx, then by the generalization of the flare-
out conditions applied to degenerate throats the first term
Thus, in particular, will be O(n?N~2) and negative definite in some region sur-
rounding the throat. The second term is again negative
CHUGH+CHVG,, CHURG+CHUR,, semidefinite. The third term can have either sign but will be
p—T= 87G = 871G : O(n?M~1), Thus there will be some regione (0,n,) in

(117  Which the first term dominates. Therefore, the null energy
condition is violated along the linéx}(0,n, ). If at every

with this quantity being well defined throughout the Gausspom xon the throat theN?foId degenerate f'f”‘re"’”‘ condi-

ian normal coordinate patckThe last equality uses the fact tion is satisfied for soménite N, then there will be an open

that gi;=—1 while g,,=+1) But we have already seen region surrounding the throat on which the null energy con-
nn .

how to evaluate these components of the Ricci tensor. mgition.is' everywhere violated. . L .
deed, This is the closest one can get in generalizing to arbitrary

wormhole shapes the discussion on p. 4&. (56)] of
Morris-Thorne[1]. Note carefully their use of the phrase “at
(3+1)REE=Q”[¢|” + )], (118  or near the throat.” In our parlance, they are considering a
spherically symmetric extrinsically flat isopotential throat
that satisfies théN-fold degenerate flare-out condition for
G+DR. =BR.—[ 1+ ] (119  some finite but unspecified. See also p. 104, Eq11.12
b o~ Lpnn ™ Pnin and p. 109, Eq(11.59 of [3], and contrast this with Eq.
(11.56 of [3].

tr(K) If the throat is not isopotential we multiply by exg) and
= a—n—tr(Kz)—[d)\nnJr Gndinl, integrate over surfaces of constantThen,
(120
where we have been careful ot use the extremality con- 7 B )
dition tr(K) =0. Therefore, f V'7'g exp(¢) [p— 7] dx
1 oK) N L 5K
P =g | o~ UK+ (Ppant $adp) [ g exa) (K)
] (122) ™ an
1 [dtr(K) H(K) + 1K) 6
=5 _~ —1r r In
mG L n —tr(K2) +tr(K) | 02X, (124
+gab(¢:ab+ ¢:a¢:b) ) (122)

This generalizes the previous versiof82) of the
) _ transverse-averaged null energy condition to congtalmy-
where in Eq.(122 we have used the Gauss-Weingarten,e g rfaces near the throat. For each paimn the throat,

equations. . . . . assuming theéN-fold degenerate flare-out condition, we can
If the throat isisopotentia) where isopotential now means by the previous argument find a range of valugs
that near the throat the surfaces of constant gravitational po-

i L : - L9 € (0,n, (x))] that will make the integrand negative. Thus
tential coincide with the surfaces of fixed this simplifies to there will be a set of values af for which the integral is

negative. Again we deduce violations of the null energy con-
1 [9tr(K) dition.

P=T=8xG | on

—tr(K?) +tr(K)pjn|. (123
X. DISCUSSION

If the throat is nondegenerate and satisfies the simple flare- We have presented a definition of a wormhole throat that
out condition, then at the throat the first and second terms aiis much more general than that of the Morris-Thorne worm-
negative semidefinite, and the third is zero. Then the nulhole [1]. The present definition works well in any static
energy condition is either violated or on the verge of beingspacetime and nicely captures the essence of the idea of what
violated at the throat. we would want to call a wormhole throat.

If the throat is nondegenerate and satisfies the strong We do not need to make any assumptions about the exis-
flare-out condition at the poirg, then the first term is nega- tence of any asymptotically flat region, nor do we need to
tive definite, the second is negative semidefinite, and thessume that the manifold is topologically nontrivial. It is
third is zero. Then the null energy condition is violated at theimportant to realize that the essence of the definition lies in
point x on the throat. the geometrical structure of the wormhole throat.
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Starting from our definition we have used the theory ofWe defer the issue of time-dependent wormhole throats to a
embedded hypersurfaces to place restrictions on the Riemaifiature publication.
tensor and stress-energy tensor at the throat of the wormhole.
We find, as expected, that t_h'e wormhole throat ggnencally ACKNOWLEDGMENTS
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