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Maintaining a wormhole with a scalar field
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It is well known that it takes matter that violates the averaged weak energy condition to hold the throat of
a wormhole open. The production of such “exotic” matter is usually discussed within the context of quantum
field theory. In this paper | show that it is possible to produce the exotic matter required to hold a wormhole
open classically. This is accomplished by coupling a scalar field to matter that satisfies the weak energy
condition. The energy-momentum tensor of the scalar field and the matter separately satisfy the weak energy
condition, but there exists an interaction energy-momentum tensor that does not. It is this interaction energy-
momentum tensor that allows the wormhole to be maintaife@556-282197)07720-3

PACS numbd(s): 04.20.Gz, 04.20.Jb

INTRODUCTION EQUATIONS OF MOTION
AND THE ENERGY-MOMENTUM TENSOR

A wormhole is a handle which connects two different
space-times or two distant regions in the same space-timg
[1-3]. To keep a wormhole open it is necessary to thread its
throat with matter that violates the averaged weak energy
condition [1,2]. In other words, there exist null geodesics Sz—z mnf V—9,,UpUpdr,
passing through the wormhole, with tangent vectors n
k“=dx*/do, which satisfy[ T, k“k"do<0. Such matter
obviously violates the weak energy condition which states +
that T#*U,U,=0 for all nonspacelike vector&*. The
weak energy condition ensures that all observers will see a
positive energy density. Matter that violates the weak energy - anJ d(Xn(m))d 7y, 1)
condition is called exotic. Thus it takes exotic matter to hold n
a wormhole open. 1

Most discussions of exotic matter involve quantum field _ - o 4
theory effects, such as the Casimir effetl In this paper | 2 f v ¢V”¢\/a . @
show that it is possible to generate the exotic matter required
to maintain a wormhole classically. This is accomplished bywherex4(7,,) andU}; are the position and four velocity of
coupling a scalar field to matter which satisfies the weakhenth particle,r, is the proper time along its world liney,
energy condition. The energy-momentum tensor of the scalds its rest massy ,(7,) are Lagrange multipliers, and thg,
field and the matter separately satisfy the weak energy corare coupling constants.
dition, but there exists an interaction energy-momentum ten- The scalar field equations are found by varying the action
sor that does not. It is this interaction energy-momentunwith respect top(x) and are given by
tensor that allows the wormhole to remain open.

To create a wormhole | take two static, spherically sym- 1
metric, scalar-vac solutions of the Einstein field equations O2¢p=—=2> anj SH(x* = x4 (7))d Ty, 3
and join them together. A surface energy-momentum tensor \/6 "

will exist on the surface where these two manifolds are

2 ou . . .
joined. This surface energy-momentum tensor violates th&vhefre[]d bV VM._Ther:equatl_ons o_fr:nonon for the partlgles
weak energy condition. However, if its source is a scala@'® found by varying the action with respect(7,) an

field coupled to matter, | show that the energy-momentunfi® given by
tensor of the matter and of the field can both satisfy the weak

Consider a collection of timelike particles interacting with
scalar fieldg. The action will be taken to bfb]

; J Mn(T)[9,,UEUL+1]d 7,

N[ =

" o " duf A
energy condition. The violation of the wer energy condition (M4, n F’gﬁBUﬁUﬁ 4 0n Uk=—q,V¥¢.
for the total energy-momentum tensor is produced by the dr, dr,

interaction energy-momentum tensor. In addition to satisfy- (4)
ing the weak energy condition | show that the matter and

scalar field also satisfy the dominant energy condition. Thé&contracting withUg gives

dominant energy condition ensures that the four velocity as-

sociated with the local flow of energy and momentum is dr, _d¢ 5
nonspacelike. Thus a wormhole can be maintained classi- d7, a”drn'

cally by coupling a scalar field to matter that satisfies the

weak and dominant energy conditions. Thus
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An=apnd. (6)  joined at the radial coordinate=b. In the process of joining
these manifolds together, surface energy and stresses will be
The equations of motion for the particles are then given byproduced atr=b. The properties of the surface energy-
momentum tensor will then be examined in relation to the

d . "

— (m.+ U™+ (m.+ T* UUB=— g VA4, various energy conditions.

dTn[( ntand)Unlt (M and)lapUnUn=—anV"¢ The metric will be taken to be of the form
7

, o ds?=—e*dt’+ef[dr2+r3(d#%+sirfd dgp?)]. (15
The energy-momentum tensor of the field and patrticles is

given by The Einstein field equations
T 2 6S 8 1
=g %0, (8) Rov= —SWG(TW— EgWT) (16)
From Eq.(1) the energy-momentum tensor is given by give the three independent equations
=3, [ (M an ) UBUSS G xolraa, Lo e gy E=o a”
n \/6 2 4 r ’
+VHGV p— gtV pV % (9) L D - 2
2 a ' 5(1’ +,8—Za (,8 —a)+T:_87TG¢ , (18)

There is therefore an interaction energy-momentum tensoa{n d
given by

1 1 1
=3 L [ suguitecxmdn. 10 2P TGP BTy (R e Z0 19
n ~Ng

. . _ .. The scalar field equation is
This interaction energy-momentum tensor is necessary if

v, TH=0 (11) 9

or

J
r2e<“+ﬁ>’2a—‘:)) =0. (20)

is to give the correct equations of motion for the particles.

Now consider a collection of particles which all have the Equation(17) plus Eq.(19) gives
same value ofv/m (the simplest possibility would be to take
a,=*m,). From Eqs(3) and(9) it can be seen that it is the
trace of the particle energy-momentum tensor which acts as
the source of the scalar field. In the continuum limit EGs.
and(9) become The general solution to this differential equation, which sat-
isfies the boundary conditiom+ 8—0 asr—», is

1 n 1 12 3 r_
E(a—i—ﬁ) +Z(a+ﬂ) +E(a+ﬂ) =0. (21

0%¢p=—a*Ty, (12)

LA
2

and a+B=2In , (22

T#'=(1+a*¢)[(p+P)UFU"+ PG ]+ V*¢V o . N i
whereA is an integration constant. Using this to elimingte

_ %ngaqwacﬁ, (19 in Eq. (17) gives
Aa’ a'
where Ea”+ r(rz——A)+ Tzo. (23
Tm=3P~pm (4 The solution of this equation is
is the trace of t_he matter energy-momentum tengas, the dr
rest mass densityy* = a/m, andP is the pressure. a=ADf e (24)

WORMHOLE SOLUTIONS where D is an integration constant. The solution fode-

In this section exact wormhole solutions with matter pends on whetheA>0, A<0O, or A=0. It turns out that
energy-momentum tensors that satisfy the weak and domA=0 gives a flat space-time and that there is no consistent
nant energy conditions will be found. The first step is tosolution for A<O. Thus | will only consider the cas&>0.
obtain static spherically symmetric solutions to the scalar-The solution to Eq(23) which satisfies the boundary condi-
vac Einstein field equations. Two such solutions will then betion a—0 asr—o is
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Gm wherer=r(l) and —oo <l <o, The coordinates and| are
1- ar related via
a=aln am | (25 dr eml -2/ 1—Gnvar) @2-1
1+ — —=+|1-—] |— , (32
ar dl ar 1+Gm/ar

wherea=1D\A and Gnm/a=\/A. The solution forg can  Where the plus sign corresponds to the manifold Witr0

then be found from Eq22) and the line element is given by and the minus sign corresponds to the manifold witt0.
To find the surface energy-momentum tensor | will use

1-Gmar|® | Gm\4/ 1—-Gm/ar)| @@ the method developed by Israd,7]. The surface energy-
4=~ romar) 9\ o) [T omar momentum tensor
X[dr2+r2(d6%+sir’6 dg?)]. (26) S — lim f T dI 33
e—0 J 7€
In the weak field limit,|Gnvar|<1,
is given by
2Gm
Yoo=—| 1= ——] (27 87GS,=y*,— %,y (m,v=0,23), (34)
Thusm is the gravitational mass. where
The scalar field can be found from E@QO). The solution yro=KTE KT (35)
which satisfies the boundary conditigh—0 asr — and is ! ! !
consistent with Eq(18) is given by K*# is the extrinsic curvature of the surface=b on the
manifold with1=0, andK™#, is the extrinsic curvature of
4—a 1-Gnvar the surface =b on the manifold withl<0. For u or v=1,
p== In (29 . 1 )
167G 1+Gm/ar $,=0. UsingK ,,= — 39, gives
with —2=<a=2. Since Eqs(26) and(28) are invariant under 1 G’m?| ! Gm)| 2
a— —a only O<a<2 needs to be considered. Note that for Si= 2+Gb 1- a2p2 + ab
a=2 the above solution reduces to the Schwarzschild solu-
tion in isotropic coordinates. 1-Gm/ab| @2~V Gm G’m?
The space-time geometry appears to be badly behaved at X 1+Gm/ab N T+ a2p2 (36)
r=Gnva for a# 2. The Ricci scalaR=g""R,,, is given by
and
2G2m2r4 ) Gm —(4+a) Gm (a—4)
- — J— - 2m2\ -1 -2
R=——F—(@4-a’)|r+— (r a ; o g [t _GImA T Gm
(29) 0= 9" 4wGb a%b? ab
. . 1-Gm/ab (al2—-1) GZmZ
which diverge as r—Gm/a. The curvature scalar « 1+ 37)
I =R,,.sR*"*f also diverges as—Gm/a. Thusr=Gm/a 1+Gm/ab a’b? )’

is a physical singularity in the space-time. In fact, it is a ) o
naked singularity since it can be seen by distant observer? the previous section it was shown that the energy-
Thus, when joining the manifolds at=b it is necessary to Momentum tensor for an ideal fluid coupled to a scalar field

takeb>Gnva. is given by
Before joining the two scalar-vac manifolds together it is 1
convenient to change coordinates. Ldie a new radial co- THY=(1+a* §)TE + VGV p— — g“'V .V ¢,
ordinate withl=0 atr=b and 2
(38)
Gm\4/1-Gm/ar|? @ ) .
di’=| 1+ — 15 Gmar dr2. (300  whereT/" is the usual energy-momentum tensor for an ideal
ar | \1+Gmar fluid. The scalar field equation was also shown to be
On one manifold take €1<e« and on the other take O0%¢=—a*T,,. (39
—oo<|=<0. The manifold that consists of these manifolds
joined atl=0 has the line element The surface energy momentum tensor does not have the form
of an ideal fluid energy-momentum tensor because it con-
e 1-Gmar ad 24 412412 Gm\* tains only surface stressée., T, T¢#+0 butT"=0). For
T l1¥Gmar tdi®+ro 1+ —— matter which produces surface stresses | will take E3f).
and (39) with
1-Gmar|\®® 5
X|Tomar] (@O Fsimodes. @D Th, =LoUkU,+S(8448°,+ 646 )]8(1), (40
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where ¢ is the surface density andl is the surface stress. Gm ) .

Using Eqgs.(31) and(33)—(35) to find S,* and equating it to —a<—-<a‘-aya’-l. (47)
Egs.(36) and(37) gives

The final energy condition, which appears in some of the

14 o o 1 1- G2m?\ 1t +G—m 2 singularity theorems, is the strong energy condition. For
(I+ad)o= 27Gb a?b? ab >0 the matter energy momentum tensor will satisfy the
- Gryabl@2-D om G2 dominant energy condition iff8,9]
“| T+ Gmab "o T o+25=0. (49
(41 From Egs.(41) and (42) it can be shown that the strong
energy condition will be satisfied ifihn=<0. Since the strong
and energy condition does not have a strong physical motivation,
unlike the weak and dominant energy conditions, | will not
14 o* &) S 1 G?m?| 1 Gm\ 2 impose it onT4” (in fact the strong energy condition can be
(1+a”"¢)S= A7Gb/\ T a?p? + ‘ab violated by a massive classical scalar figd).
ab! @21 _— Now consider the scalar field equation
1-Gm/a - G“m
|1+ Gmab 1*?37)- 42 D%¢=a*(0-29)(). (49)

i Integrating froml = — € to | = € gives
For O<a<2 it is easy to show that (La* $)oc<0 and 9 9 € €9

(1+a* ¢)S>0. 4—a’Gm G’m?\ "'  Gm\?
Now consider the various energy conditions. An energy-a*(0—2S)=% \|—= =3 | 1— —5> 1+ —
s - " 7G ab a‘b ab
momentum tensof#” will satisfy the weak energy condition
if T#*U,U,=0 for all nonspacelike vectotd”. If the weak 1-Gnvab)\ (@21
energy condition is satisfied all observers will measure a X 1+Gm/ab (50

positive energy density. An energy-momentum tensor will
satisfy the dominant energy condition if it satisfies the weakas before, if the weak energy condition is to be satisfied by
energy condition and iT“"U,, is nonspacelike for all non-  t#v ~the |ower sign must be chosen i*m<0 and the
spacelike vectordJ*. If the dominant energy condition is upper sign must be chosen d* m<0. Equation(50) is a

satisfied all observers will measure the four vector associategynstraint ons andS, which are given by Eq$41) and(42).
with the local flow of energy and momentum to be nonspacecompining this with Eqs(41) and (42) gives

like. It is easy to show that the scalar field energy-

momentum tensor satisfies the weak and dominant energy a* (1— Gm/2b+ G2m?/a2b?)(Gm/ab) !
conditions. (1+a*¢p)== = .
The matter energy-momentum tengdt” will satisfy the 7G(4-a%)
weak energy condition iff8,9] (5D)
Since 1- Gm/2b+ G2m?/a?b?>0 (for 0<a<2) any solu-
0=0 and o+S=0. (43)  tion of this equation will automatically satisfy the weak en-

ergy condition(choosing the upper or lower sign as dis-
Both of these conditions will be satisfied iff-da* $<0. cussed above This equation can be written as

From Eq.(28) this gives
[(4—a?
1+a* (167TG) In
where A=+4—a? \=.47G/a*, and x=Gm/ab. For
O=<a<?2, lim_, .1f(xX)=—o and f(0)=2. Thus for

For a solution to exist the lower sign must be chosen if0<a<2 there is at least one positive and one negative value
a*m>0 and the upper sign must be chosem1fm<0. . P 9

v o . ! I _of x, in the interval (-1,1), which satisfie(x)=0. For
_ _Tm will satisfy the domlng_nt energy condition iff it sat a=2, f(x)=2(x? x+ 1) which has no real zeros. Thus, for
isfies the weak energy condition afl9]

a=2 itis not possible to join the two manifolds, independent
of whether the energy conditions hold or not. This might
seem strange at first since the manifolds are Schwarzschild
space-times, which can be joined with the appropriate sur-
face energy and stress. However, in the usual Schwarzschild
) case there is no scalar field. In the case examined here the
n @(1—a)>0 (46) vanishing of the scalar field gives the additional constraint
ab ' o—2S=0, which is inconsistent with the energy and stress
produced by joining the Schwarzschild space-times. Thus for
For Osa<1 this will be satisfied for allGm/b. For 0O=a<2 there exists at least one value ®fr/ab that cor-
1<a<2 this will be satisfied for responds to a space-time in whidl;” satisfies the weak

=0, (52

F(0) = 25— axt 2% Ax— = A?xin| X
1+Gmvab (X)=2x"—ax+2+ AMx= 5 AXIn| 7=

1-Gm/ab

<0. (44

o=S. (45)
This will be satisfied iff H a* <0 and

Gm
ab
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energy condition. If the range @ is restricted to Gca<1 CONCLUSION

the c_o_rrespondlng'ﬁ” will also satisfy the dominant energy The energy-momentum tensor for a scalar field coupled to
condition. For kxa<2 Eq. (47) must be checked to see if 5, jgeal fluid was derived. In addition to the energy-
Th" satisfies the dominant energy condition. For2 itis  momentum tensor for the matter and the scalar field there
not possible to join the manifolds together. exists an interaction energy-momentum tensor. The interac-
Before leaving this section | want to show that it is nottion energy-momentum tensor can violate the weak and
possible forT4" to satisfy the weak energy condition if the dominant energy conditions even if the matter and scalar
gravitational field described by E(B1) is weak. In the weak field energy-momentum tensors do not. It is the interaction

field limit x<1 and Eq.(52) reduces to energy-momentum tensor that allows the wormhole to be
maintained.
(At AA)X=2. (53) A wormhole was created by joining two static, spherically

symmetric, scalar-vac solutions of the Einstein field equa-
tions. A surface energy-momentum tensor that violates the
weak energy condition exists on the surface where the two
space-times are joined. If the source of the energy-
momentum tensor is taken to be a scalar field coupled to
*a*m>0. (54 matter | showed that the energy-momentum tensor of the

. N ~ matter and scalar field can satisfy the weak and dominant

If Ty satisfies the weak energy condition the lower signenergy conditions. The violation of the weak energy condi-
must be chosen i&*m>0 and the upper sign must be cho- tion is produced by the interaction energy-momentum tensor.
sen if «*m<0. This is clearly inconsistent. Thus E@®L)  Thus a wormhole can be maintained classically by coupling
cannot describe a weak gravitational field'ff” satisfies the  a scalar field to matter that satisfies the weak and dominant
weak energy condition. In fact, it can be shown numericallyenergy conditions. Finally, | showed that it is not possible for
that the smallest value ¢k| that satisfies Eq52) (with the  the matter energy-momentum tensor to satisfy the weak en-

For x to be small it is necessary thahA|>1. Thus
+AAx>0, which implies that

appropriate signis |x|=0.75. ergy condition if the gravitational field is weak.
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