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In the context of a gauge theory for the translation group, we have obtained, for a spinless particle, a
gravitational analogue of the Lorentz force. Then, we have shown that this force equation can be rewritten in
terms of magnitudes related to either the teleparallel or the Riemannian structures induced in spacetime by the
presence of the gravitational field. In the first case, it gives a force equation, with torsion playing the role of
force. In the second, it gives the usual geodesic equation of general relativity. The main conclusion is that
scalar matter is able to feel any one of the above spacetime geometries, the teleparallel and the metric ones.
Furthermore, both descriptions are found to be completely equivalent in the sense that they give the same
physical trajectory for a spinless particle in a gravitational field.@S0556-2821~97!05620-8#

PACS number~s!: 04.20.Cv, 04.50.1h

I. INTRODUCTION

The notion of absolute parallelism~or teleparallelism!
was introduced by Einstein in the 1920s in his attempt to
unify gravitation and electromagnetism. About three decades
later, works by Mo” ller @1#, Pellegrini and Plebanski@2#, and
Hayashi and Nakano@3# produced a revival of those ideas,
which since then have received considerable attention,
mainly in the context of gauge theories for the Poincare´ and
the translation groups@4–10#.

The scene of the teleparallel theories of gravitation is the
Weitzenbo¨ck spacetime@11#, a space presenting torsion, but
no curvature. The teleparallel description of gravitation is
believed to be equivalent, at least macroscopically, to the
general relativity description, whose stage set is provided by
a Riemann spacetime, a space presenting curvature, but no
torsion. If this equivalence is in fact true and effective, the
gravitational interaction might have two equivalent descrip-
tions, one of them in terms of torsion only and another one in
terms of curvature only.

With the purpose of exploring this equivalence, we study
in this paper a gauge theory for the translation group, trying
to stay as close as possible to the usual scheme of the gauge
models for internal groups. This means essentially that we
start by considering spacetime to be a Minkowski space. The
resulting model, as we are going to see, will be quite analo-
gous to the U~1! electromagnetic gauge theory. Relying on
this analogy and considering the motion of a spinless test
particle in a translational gauge gravitational field, we de-
duce the gravitational analogue of the Lorentz force equa-
tion. This equation describes the trajectory of the particle
submitted to a gauge gravitational field in a flat spacetime.
Now, as a result of the spacetime character of translations,
the corresponding gauge theory will differ from the usual
gauge models in many ways, the most significant being the
presence of a tetrad field. A tetrad field defines in a natural
way a linear Cartan connection with respect to which the
tetrad is parallel. For this reason, tetrad theories have re-
ceived the name of teleparallelism, or absolute parallelism. A
tetrad field defines also in a natural way a Riemannian met-
ric, in terms of which a Levi-Civita` connection can be de-

fined. On the other hand, as is well known, torsion and cur-
vature are properties of a connection@12#, and many
different connections can be defined on the same space.
Therefore, in the specific case of a tetrad theory, we can say
that the presence of a nontrivial tetrad field in the gauge
theory induces both, a teleparallel and a Riemannian struc-
ture in spacetime. The first is related to the Cartan connec-
tion, a connection presenting torsion, but no curvature. The
second is related to the Levi-Civita` connection, a connection
presenting curvature, but no torsion. Then, owing to the uni-
versality of the gravitational interaction, it turns out to be
possible to link these geometrical structures with gravitation.
However, despite the simultaneous presence of these two
geometrical structures, we will show in this paper that, in
agreement with the equivalence alluded to above, the de-
scription of the gravitational interaction requires only one of
the above structures. In other words, the gravitational inter-
action can be described alternatively in terms of magnitudes
related to the teleparallel or to the Riemannian structures
induced in spacetime by the nontrivial tetrad field. Concern-
ing the dynamics of the gravitational field, it has already
been shown@13# that this is in fact the case: The Hilbert-
Einstein Lagrangian of general relativity, linear in the scalar
curvature, is completely equivalent to the Lagrangian of a
translational gauge theory, quadratic in the torsion tensor.
Similarly, we will show that the gravitational Lorentz force
equation, which describes the motion of a particle submitted
to a gauge gravitational field in a flat spacetime, can be re-
written in terms of magnitudes related to either the telepar-
allel or the Riemannian geometry of spacetime. In the first
case, the resulting equation is not a geodesic but a force
equation, which means that the trajectories followed by sca-
lar matter are not geodesics of the induced Weitzenbo¨ck
spacetime. In the second case, the gravitational Lorentz force
becomes the geodesic equation of general relativity, which
means that the trajectories followed by scalar matter are geo-
desics of the induced Riemann spacetime. As both descrip-
tions are obtained from the same force equation, we con-
clude that they are completely equivalent, which means
essentially that scalar matter is able to feel any one of the
above spacetime geometries.
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II. GAUGE THEORY FOR THE TRANSLATION GROUP

We start by assuming spacetime to be a Minkowski space.
The second half of the greek alphabet (m,n,r,...51,2,3,4)
will be used to denote indices related to this space. Its coor-
dinates, therefore, will be denoted byxm and its metric by
hmn . At each point of spacetime, there is a tangent space
attached to it, given also by a Minkowski space, which will
be the fiber of the corresponding tangent bundle. We use the
first half of the greek alphabet (a,b,g,...51,2,3,4) to de-
note indices related to this space. Its coordinates, therefore,
will be denoted byxa and its metric byhab . As gauge
transformations take place in this space, these will also be
the algebra indices of the gauge model. The holonomic de-
rivatives in these two spaces can be identified by

]m5~]mxa!]a , ]a5~]axm!]m , ~1!

where]mxa is a trivial holonomic tetrad, with]axm its in-
verse.

A gauge transformation is defined as a local translation of
the fiber coordinates,

x8a5xa1aa~xm!, ~2!

with aa(xm) the corresponding parameters. It can be written
in the formx85Ux, whereU is an element of the translation
group. For an infinitesimal transformation,

U511daaPa , ~3!

with daa representing the infinitesimal parameters and
Pa5]a standing for the generators of infinitesimal transla-
tions, which satisfy

@Pa ,Pb#50. ~4!

In terms of these generators, the infinitesimal version of
transformation~2! becomes

dxa5dabPbxa. ~5!

Let us consider now a general source fieldF(xm). Its gauge
transformation does not depend on the spin character and is
given by

F8~xm!5UF~xm!. ~6!

The corresponding infinitesimal transformation, therefore, is

dF5daaPaF, ~7!

with dF standing for the functional change at the samexm,
which is the relevant transformation for gauge theories. It is
important to remark that the translation generators are able to
act on any source field through their arguments because of
identification~1!.

In order to define the gauge-covariant derivative of
F(xm), we must first introduce the gauge potentials of the
model, which will be denoted by

Bm5Ba
mPa . ~8!

Using the general definition of gauge covariant derivatives,

Dm5]m1c22Ba
m

d

daa , ~9!

where the velocity of lightc was introduced for dimensional
reasons, the covariant derivative ofF(xm) turns out to be

DmF5]mF1c22Ba
mPaF. ~10!

As the generators are derivatives which act on the fields
through their arguments, every source field in nature will
respond to their action and consequently will couple to the
gauge potentials. In other words, every source field in nature
will feel gravitation the same way. This is the origin of the
concept ofuniversalityaccording to this model.

From the covariance requirement forDm , we can get the
gauge transformation of the potentials:

Bm8 5UBmU211c2U]mU21. ~11!

The corresponding infinitesimal transformation is

B8a
m5Ba

m2c2]mdaa. ~12!

The field strengthFa
mn is defined as the covariant derivative

of the gauge potentialBa
m , and analogously to the U~1!

electromagnetic gauge theory, it reads

Fa
mn5]mBa

n2]nBa
m . ~13!

Notice that, as expected for an Abelian theory,Fa
mn is in-

variant under a gauge transformation. Consequently, its or-
dinary and gauge-covariant derivatives coincide.

The dynamics of the gauge fields, as usual, can be ob-
tained from a Lagrangian quadratic in the field strength,

L5
1

16pG F1

4
Fa

mnFb
urhmuNab

nrG , ~14!

whereG is the gravitational constant and

Nab
nr5habhnr. ~15!

III. GRAVITATIONAL LORENTZ FORCE

Let us now consider the motion of a particle of massm in
a gravitational field described by a translation gauge theory.
As spacetime is a Minkowski space, we can rely on an anal-
ogy with the electromagnetic case to obtain the correspond-
ing gravitational interaction. Thus, analogously to what oc-
curs in electrodynamics@14#, we assume the interaction of
the particle with the gravitational field to be described by the
action

c22E
a

b

Ba
mpadxm, ~16!

with the integration taken along the world line of the particle.
In this expression,pa is the Noether conserved charge under
the transformations of the gauge group@15,16#. In other
words,pa is the four-momentum,

pa5mcua ,
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of the particle, withua its four-velocity. Therefore, the com-
plete action for a particle in a gravitational field is given by

S5E
a

b

Lds[E
a

bF2mcA2u21
m

c
Ba

muaumGds, ~17!

with ds5(hmndxmdxn)1/2 the Minkowski interval and
u25hmnumun. Notice that, in writing this action, we have
already assumed the equality between inertial and gravita-
tional masses, as stated by the~weak! equivalence principle
@17#.

Next, we make use of the Euler-Lagrange equation to
obtain the equations of motion. The result is

mcFdum

ds
1c22Ba

m

dua

ds G5
m

c
Fa

mnuaun. ~18!

Using the relation

dum

ds
5S ]xa

]xmD dua

ds
,

we get finally

~]mxa1c22Ba
m!

dua

ds
5c22Fa

mnuaun. ~19!

This is the gravitational analogue of the Lorentz force. Its
solution determines the trajectory of the particle in a flat
spacetime. It is interesting to notice that, while in the elec-
tromagnetic case the particle four-acceleration is propor-
tional to e/m, with e its electric charge, in the gravitational
case the mass disappears from the equation of motion. This
is, of course, a consequence of the assumed equivalence be-
tween the gravitational and inertial masses.

IV. INDUCED SPACETIME GEOMETRY

Up to this point, spacetime has been considered to be the
Minkowski space. However, as we are going to see, the pres-
ence of a nontrivial tetrad field in the translation gauge
theory induces further structures in spacetime. Owing to the
universality of the gravitational interaction, it will then be
possible to relate these structures to the presence of gravita-
tion.

By using Eq.~1!, the covariant derivative~10! of a gen-
eral source field can be rewritten in the form

DmF5ha
m]aF, ~20!

where

ha
m5]mxa1c22Ba

m[Dmxa ~21!

is a tetrad field. Notice that the gravitational field appears as
the nontrivial part of the tetrad@18#. Making use of Eqs.~5!
and ~12!, it is easy to see that, as in fact it should be, the
tetrad is gauge invariant:

h8a
m5ha

m .

Its gauge-covariant derivative, therefore, turns out to be the
same as the ordinary derivative.

The expression for the gauge-covariant derivative opera-
tor of source fields,

Dm5ha
m]a , ~22!

is actually the definition of a nonholonomous basis. In the
absence of gravitation,ha

m becomes trivial, and it reduces to
the coordinate basis]m appearing in Eq.~1!. This new basis,
induced by the presence of the gravitational field, satisfies
the commutation relation

@Dm ,Dn#5c22Fa
mnPa . ~23!

Therefore, as usual in gauge theories, the commutator of co-
variant derivative operators yields the field strengthFa

mn .
There is a difference, though: In contrast to the usual gauge
theories, the field strength here will be directly related to the
spacetime geometry.

In fact, as a result of the presence of a tetrad field, there
always exists a naturally defined linear Cartan connection
@12#

Gr
mn5ha

r]nha
m , ~24!

which is a connection presenting torsion, but no curvature.
As a consequence, the field strengthFa

mn can be written in
the form

Fa
mn5c2ha

rTr
mn , ~25!

where

Tr
mn5Gr

nm2Gr
mn ~26!

is the torsion induced in spacetime by the presence of the
gravitational field. Moreover, the commutation relation~23!
acquires the form

@Dm ,Dn#5Tr
mnDr , ~27!

indicating that torsion plays also the role of the non-
holonomy of the gauge-covariant derivative.

The presence of a Cartan connection allows the introduc-
tion of a spacetime-covariant derivative which, acting for
example on a spacetime covariant vectorVm , reads

¹nVm5]nVm2Gu
mnVu . ~28!

From this definition, one can easily see that, as a conse-
quence of Eq.~24!,

¹nha
m5]nha

m2ha
rGr

mn[0. ~29!

This is the condition of absolute parallelism, which implies
that the spacetime underlying a translational gauge theory is
naturally endowed with a teleparallel structure. In other
words, a Weitzenbo¨ck’s four-dimensional manifold is always
present when considering a gauge theory for the translation
group @4#.

Besides the teleparallel structure, the presence of a non-
trivial tetrad induces also a Riemannian structure in space-
time. As the tetrad satisfies

ha
mha

n5dm
n, ha

mhb
m5da

b , ~30!
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if algebra indices are raised and lowered with the Lorentzian
metric hab, tensor indices will necessarily be raised and
lowered with the Riemannian metric

gmn5habha
mhb

n . ~31!

Accordingly, a linear metric connection can be introduced:

G̊u
mn5 1

2 gur@]mgrn1]ngrm2]rgmn#, ~32!

which is a connection presenting curvature, but no torsion.
Its curvature

R̊u
rmn5]mG̊u

rn1G̊u
smG̊s

rn2~m↔n! ~33!

represents the curvature induced in spacetime by the pres-
ence of the gravitational field. The connectionG̊u

mn , actually
the Levi-Civitàconnection ofgmn , allows the introduction of
another spacetime-covariant derivative which, acting for ex-
ample on a spacetime covariant vectorVm , reads

¹̊nVm5]nVm2G̊u
mnVu . ~34!

As can be easily verified, both connectionsGu
mn and G̊u

mn

preserve the metric:

¹̊ngrm5¹ngrm50.

Substituting nowgmn into G̊u
mn , we obtain

Gu
mn5G̊u

mn1Ku
mn , ~35!

where

Ku
mn5 1

2 @Tm
u

n1Tn
u

m2Tu
mn# ~36!

is the contorsion tensor. Notice that the curvature of the Car-
tan connection vanishes identically:

Ru
rmn5]mGu

rn1Gu
smGs

rn2~m↔n![0. ~37!

SubstitutingGu
mn from Eq. ~35!, we get

Ru
rmn5R̊u

rmn1~DK !u
rmn2Ku

smKs
rn1Ku

snKs
rm[0,

~38!

where

~DK !u
rmn5]mKu

rn1Gu
smKs

rn1Gs
rnKu

sm2~m↔n!.
~39!

From these considerations, we conclude that the presence of
a nontrivial tetrad field in the translational gauge theory in-
duces both a teleparallel and a Riemannian structure in
spacetime. These structures together completely characterize
the induced spacetime geometry. Moreover, we see from Eq.
~38! that the Riemann curvature tensorR̊u

rmn induced in
spacetime is such that it compensates exactly the contribu-
tion to the curvature coming from the teleparallel structure,
yielding an identically zerototal curvature tensor. As we are
going to see, however, the description of the gravitational
interaction requires only one of the above structures. In other
words, the gravitational interaction can be described alterna-
tively in terms of magnitudes related to the teleparallel or to
the Riemannian geometry.

V. DYNAMICS OF THE GAUGE FIELDS

In the induced spacetime, the gauge field Lagrangian~14!
is written as

L5
h

16pG F1

4
Fa

mnFb
urgmuNab

nrG , ~40!

whereh5det(ha
m) is the Jacobian of the transformation~22!.

Because of the presence of the tetrad field, however, algebra
and spacetime indices can now be changed into each other
and consequently appear mixed up in the Lagrangian. This
means that

Nab
nr5habgnr[habhg

nhgr

must now include all cyclic permutations ofa, b, andg. A
simple calculation shows that

Nab
nr5habhg

nhgr12ha
rhb

n24ha
nhb

r. ~41!

Substituting in Eq.~40!, the gauge field Lagrangian turns out
to be

L5
h

16pG
Fa

mnFb
urgmuF1

4
hd

nhdrhab

1
1

2
ha

rhb
n2ha

nhb
rG . ~42!

Then, by using Eq.~25!, it becomes

L5
hc4

16pG F1

4
Tr

mnTr
mn1

1

2
Tr

mnTnm
r2Trm

rTnm
nG .

~43!

In order to obtain the vacuum field equations, it is convenient
to rewrite it as@13#

L5
hc4

16pG
Sr

mnTr
mn , ~44!

where

Sr
mn5 1

4 ~Tr
mn1Tm

r
n2Tn

r
m!2 1

2 ~dr
nTu

mu2dr
mTu

nu!.
~45!

By performing variations inL with respect toBa
m , we get

the equation

]nSr
mn2

4pG

c4 tr
m50, ~46!

where

tr
m5

c4

16pG F4Sr
muGn

nu12SmnuTrnu1Ts
umTs

ur

1Tu
s

mTs
ur22Tum

uTu
ru1

1

2
Tmu

sTru
sG2dr

mh21L

~47!

is the gauge field self-current, which in this case is the
energy-momentum~pseudo!tensor of the gravitational field.
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Notice that, despite being an Abelian gauge theory, this
equation presents a nonvanishing self-current which makes it
quite similar to the Yang-Mills equations. However, in the
present case, the self-current has a different nature as, in
contrast to the standard Yang-Mills theories@19#, it cannot
be written as a commutator since the gauge group here is
Abelian.

On the other hand, as we have already seen, the presence
of a nontrivial tetrad field in the gauge theory induces also a
Riemannian structure in spacetime. We consider then, in the
induced Riemann spacetime, the Hilbert-Einstein Lagrangian
of general relativity:

L5
c4h

16pG
R̊. ~48!

SubstitutingR̊ as obtained from Eq.~38!, it can be rewritten
in terms of the Cartan connection only. Up to divergences,
we get

L5
hc4

16pG F1

4
Tr

mnTr
mn1

1

2
Tr

mnTnm
r2Trm

rTnm
nG ,

~49!

which is exactly the Lagrangian~43! of the translational
gauge theory. We have in this way recovered the well-known
result @13# which says that the translational gauge theory,
with a Lagrangian quadratic in the torsion field, is com-
pletely equivalent to general relativity, with its usual La-
grangian linear in the scalar curvature. As a consequence of
this equivalence, the field equation~46! of the translational
gauge theory must also be equivalent to the vacuum Ein-
stein’s equation. In fact, through a tedious but straightfor-
ward calculation, that equation can be reduced to

h~R̊ru2 1
2 gruR̊!50. ~50!

VI. GRAVITATION AS A MANIFESTATION
OF TORSION: FORCE EQUATION

Let us return to the gravitational force equation~19!,
which assumes now the form

ha
m

dua

ds
5c22Fa

mnuaun. ~51!

As we are going to see, there are two different ways of
interpreting this force equation. In fact, it can be rewritten
alternatively in terms of magnitudes related to the Weitzen-
böck or to the Riemann spacetime, giving rise, respectively,
to the teleparallel and the metric description of gravitation.

We start with the first alternative, which corresponds to
transform algebra into tensor indices in such a way to get the
force equation~51! written in terms of the Cartan connection
only. By using Eq.~25!, as well as the relations

ha
m

dua

ds
5vm[

dum

ds
2Gumnuuun, ua5hauuu, ~52!

where vm is the particle four-acceleration in the induced
spacetime, it reduces to

dum

ds
2Gumnuuun5Tumnuuun. ~53!

The left-hand side of this equation is the Cartan covariant
derivative of um along the world line of the particle. The
presence of the torsion tensor on its right-hand side, which
plays the role of an external force, implies that spinless par-
ticles do not follow geodesics in the induced Weitzenbo¨ck
spacetime. Substituting Eq.~26!, it becomes

dum

ds
2Gunmuuun50. ~54!

Notice that, asGunm is not symmetric in the last two indices,
this is in fact not a geodesic equation. Actually, it is a force
equation describing the interaction of a spinless particle with
the gravitational field. According to this description, the only
effect of the gravitational field is to induce atorsion in
spacetime, which will then be responsible for determining
the trajectory of the particle.

VII. GRAVITATION AS A MANIFESTATION
OF CURVATURE: GEODESIC EQUATION

Again, we transform algebra into spacetime indices, but
now in such a way to get the force equation~51! written in
terms of the Levi-Civita` connection only. Following the
same steps used earlier, we get

dum

ds
2Gumnuuun5Tumnuuun. ~55!

Then, by taking into account the symmetry ofuuun under the
exchange (u↔n), we can rewrite it as

dum

ds
2Gumnuuun5Kmunuuun. ~56!

Noticing thatKmun is skew symmetric in the first two indi-
ces, and using Eq.~35! to express (Kumn2Gumn), Eq. ~56!
becomes

dum

ds
2G̊umnuuun50. ~57!

This is precisely the geodesic equation of general relativity,
which means that the trajectories followed by spinless par-
ticles are geodesics of the induced Riemann spacetime. Ac-
cording to this description, therefore, the only effect of the
gravitational field is to induce acurvature in spacetime,
which will then be responsible for determining the trajectory
of the particle.

VIII. CONCLUSIONS

In the context of a gauge theory for the translation group,
we have succeeded in obtaining a gravitational analogue of
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the Lorentz force equation. This force equation determines
the trajectory to be followed by a spinless particle submitted
to a gauge gravitational field, in a flat Minkowski spacetime.
According to this approach, the trajectory of the particle is
described in the very same way the Lorentz force describes
the trajectory of a charged particle in the presence of an
electromagnetic field. This force equation, however, can be
rewritten in terms of magnitudes related to either the telepar-
allel or the Riemannian structures induced in spacetime by
the presence of gravitation, which is represented by a non-
trivial tetrad field.

In the first alternative we consider the zero-curvature Car-
tan connectionGunm defined on spacetime. Its torsion will be
the only manifestation of the gravitational field in this case.
In terms of this connection, the force equation~19! becomes

dum

ds
2Gunmuuun50. ~58!

It is important to remark that, asGunm is not symmetric in the
last two indices, this is not a geodesic equation, which means
that the trajectories followed by spinless particles are not
geodesics of the induced Weitzenbo¨ck spacetime. In a lo-
cally inertial coordinate system the Cartan connectionGunm
becomes skew symmetric in the first two indices, which is
the teleparallel version of the normal coordinate condition
]mgun50 of general relativity. In this coordinate system,
therefore, owing to the symmetry ofuuun, the force equation
~58! becomes the equation of motion of a free particle. This
is the teleparallel version of the~strong! equivalence prin-
ciple.

In the second alternative we consider the torsionless Levi-
Cività connectionG̊umn defined on spacetime. Its curvature
will be the only manifestation of the gravitational field now.
In this case, the force equation~19! is reduced to

dum

ds
2G̊umnuuun50. ~59!

This is the geodesic equation of general relativity, which is
an equation written in the underlying Riemann spacetime. It
corresponds mathematically to the vanishing of the Levi-
Cività covariant derivative ofum along the world line of the
particle. In a locally inertial coordinate system, the first de-
rivative of the metric tensor vanishes, the Levi-Civita` con-
nection vanishes as well, and the geodesic equation~59! be-
comes the equation of motion of a free particle. This is the
usual version of the~strong! equivalence principle as formu-
lated in the general theory of relativity@17#.

Notice the difference in the index contractions between
the connections and the four-velocities in Eqs.~58! and~59!.
This difference is responsible for the different characters of
these equations: The first is a force equation written in the
underlying Weitzenbo¨ck spacetime, and the second is a true
geodesic equation written in the induced Riemann spacetime.

Furthermore, as can be easily verified, both equations yield,
for velocities sufficiently small, the usual Newtonian limit
@17#

f[2B0052
GM

r
,

with f the Newton gravitational potential.
It is interesting to remark that any one of Eqs.~58! and

~59! can be deduced from a variational principle with the
action

S52E
a

b

mcds,

where ds5(gmndxmdxn)1/2 is the spacetime interval and
gmn5habha

mhb
n . In contrast to the Minkowskian action

~17!, the interaction of the particle with the gravitational field
is in this case given by the presence of the metric tensorgmn

in ds or, alternatively, inu25gmnumun if one opts for using
a Lagrangian formalism.

Now, as both Eqs.~58! and ~59! are deduced from the
same force equation~19!, they must be equivalent ways of
describing the same physical trajectory. In fact, it is easy to
see that any one of them can be obtained from the other by
substituting the relation

Gumn5G̊umn1Kumn . ~60!

In general relativity, the presence of a gravitational field is
expressed by a torsionless metric connection, whose curva-
ture determines the intensity of the gravitational field and,
consequently, the trajectories to be followed by spinless par-
ticles under the influence of the gravitational field. On the
other hand, in the teleparallel description of gravitation, the
presence of a gravitational field is expressed by a flat Cartan
connection, whose torsion is now the entity responsible for
determining the intensity of the gravitational field and, con-
sequently, the trajectories to be followed by spinless particles
under the influence of the gravitational field. Thus, we can
say that the gravitational interaction can be describedeither
in terms of the curvature of spacetime, as is usually done in
general relativity, or in terms of the torsion of spacetime.
Both interpretations result in being completely equivalent in
the sense that they give the same physical trajectory for a
spinless particle in a gravitational field. Whether gravitation
requires a curved or a torsioned spacetime, therefore, turns
out to be a matter of convention. Moreover, contrary to the
old belief @20# that only particles with spin could detect the
teleparallel geometry, scalar matter being able to feel the
metric geometry only, our results imply that scalar matter is
able to feel any one of these geometries.

ACKNOWLEDGMENTS

The authors would like to thank R. Aldrovandi for useful
discussions and for a critical reading of the manuscript. They
would also like to thank FAPESP-Brazil and CNPq-Brazil,
for financial support.

4694 56V. C. de ANDRADE AND J. G. PEREIRA



@1# C. Mo” ller, K. Dan. Vidensk. Selsk. Mat. Fys. Skr.1, No. 10
~1961!.

@2# C. Pellegrini and J. Plebanski, K. Dan. Vidensk. Selsk. Mat.
Fys. Skr.2, No. 2 ~1962!.

@3# K. Hayashi and T. Nakano, Prog. Theor. Phys.38, 491~1967!.
@4# K. Hayashi and T. Shirafuji, Phys. Rev. D19, 3524~1979!.
@5# F. W. Hehl, in Cosmology and Gravitation, edited by P. G.

Bergmann and V. de Sabbata~Plenum, New York, 1980!.
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