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Gravitational Lorentz force and the description of the gravitational interaction
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In the context of a gauge theory for the translation group, we have obtained, for a spinless particle, a
gravitational analogue of the Lorentz force. Then, we have shown that this force equation can be rewritten in
terms of magnitudes related to either the teleparallel or the Riemannian structures induced in spacetime by the
presence of the gravitational field. In the first case, it gives a force equation, with torsion playing the role of
force. In the second, it gives the usual geodesic equation of general relativity. The main conclusion is that
scalar matter is able to feel any one of the above spacetime geometries, the teleparallel and the metric ones.
Furthermore, both descriptions are found to be completely equivalent in the sense that they give the same
physical trajectory for a spinless particle in a gravitational fifBD556-282(197)05620-§

PACS numbsd(s): 04.20.Cv, 04.50h

[. INTRODUCTION fined. On the other hand, as is well known, torsion and cur-
vature are properties of a connectigd2], and many

The notion of absolute parallelisrfor teleparallelis;h  different connections can be defined on the same space.
was introduced by Einstein in the 1920s in his attempt toTherefore, in the specific case of a tetrad theory, we can say
unify gravitation and electromagnetism. About three decadethat the presence of a nontrivial tetrad field in the gauge
later, works by Mder [1], Pellegrini and Plebansk®], and  theory induces both, a teleparallel and a Riemannian struc-
Hayashi and Nakanf3] produced a revival of those ideas, ture in spacetime. The first is related to the Cartan connec-
which since then have received considerable attentiortjon, a connection presenting torsion, but no curvature. The
mainly in the context of gauge theories for the Poincamd  second is related to the Levi-Civitnnection, a connection
the translation groupgt—10]. presenting curvature, but no torsion. Then, owing to the uni-

The scene of the teleparallel theories of gravitation is theversality of the gravitational interaction, it turns out to be
Weitzenbak spacetimé11], a space presenting torsion, but possible to link these geometrical structures with gravitation.
no curvature. The teleparallel description of gravitation isHowever, despite the simultaneous presence of these two
believed to be equivalent, at least macroscopically, to thgeometrical structures, we will show in this paper that, in
general relativity description, whose stage set is provided bygreement with the equivalence alluded to above, the de-
a Riemann spacetime, a space presenting curvature, but soription of the gravitational interaction requires only one of
torsion. If this equivalence is in fact true and effective, thethe above structures. In other words, the gravitational inter-
gravitational interaction might have two equivalent descrip-action can be described alternatively in terms of magnitudes
tions, one of them in terms of torsion only and another one irrelated to the teleparallel or to the Riemannian structures
terms of curvature only. induced in spacetime by the nontrivial tetrad field. Concern-

With the purpose of exploring this equivalence, we studying the dynamics of the gravitational field, it has already
in this paper a gauge theory for the translation group, tryindoeen showrj13] that this is in fact the case: The Hilbert-
to stay as close as possible to the usual scheme of the gauB@stein Lagrangian of general relativity, linear in the scalar
models for internal groups. This means essentially that weurvature, is completely equivalent to the Lagrangian of a
start by considering spacetime to be a Minkowski space. Th&anslational gauge theory, quadratic in the torsion tensor.
resulting model, as we are going to see, will be quite analoSimilarly, we will show that the gravitational Lorentz force
gous to the 1) electromagnetic gauge theory. Relying on equation, which describes the motion of a particle submitted
this analogy and considering the motion of a spinless tesib a gauge gravitational field in a flat spacetime, can be re-
particle in a translational gauge gravitational field, we de-written in terms of magnitudes related to either the telepar-
duce the gravitational analogue of the Lorentz force equaallel or the Riemannian geometry of spacetime. In the first
tion. This equation describes the trajectory of the particlecase, the resulting equation is not a geodesic but a force
submitted to a gauge gravitational field in a flat spacetimeequation, which means that the trajectories followed by sca-
Now, as a result of the spacetime character of translationsar matter are not geodesics of the induced Weitzekbo
the corresponding gauge theory will differ from the usualspacetime. In the second case, the gravitational Lorentz force
gauge models in many ways, the most significant being thbecomes the geodesic equation of general relativity, which
presence of a tetrad field. A tetrad field defines in a naturaineans that the trajectories followed by scalar matter are geo-
way a linear Cartan connection with respect to which thedesics of the induced Riemann spacetime. As both descrip-
tetrad is parallel. For this reason, tetrad theories have rdions are obtained from the same force equation, we con-
ceived the name of teleparallelism, or absolute parallelism. Alude that they are completely equivalent, which means
tetrad field defines also in a natural way a Riemannian metessentially that scalar matter is able to feel any one of the
ric, in terms of which a Levi-Civitaconnection can be de- above spacetime geometries.
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Il. GAUGE THEORY FOR THE TRANSLATION GROUP
, _ , , D,=d,+c B, —, 9
We start by assuming spacetime to be a Minkowski space. éa

The second half of the greek alphabet, ¢,p,...=1,2,3,4) _ ] ) ] ]

will be used to denote indices related to this space. Its coorwhere the velocity of light was introduced for dimensional
dinates, therefore, will be denoted &y and its metric by ~easons, the covariant derivative ®{x*) turns out to be
1,,- At each point of spacetime, there is a tangent space b

at}tlached to it, given also by a Minkowski space, which will D,®=d,P+c ‘B uPa®. (10)
be the fiber of the corresponding tangent bundle. We use thR

first half of the greek alphabeia(s.7....—1.2.3.4) to de- s the generators are derivatives which act on the fields

through their arguments, every source field in nature will
?espond to their action and consequently will couple to the
auge potentials. In other words, every source field in nature
ill feel gravitation the same way. This is the origin of the
oncept ofuniversalityaccording to this model.

From the covariance requirement for,, we can get the

will be denoted byx* and its metric byn,;. As gauge
transformations take place in this space, these will also b
the algebra indices of the gauge model. The holonomic deé
rivatives in these two spaces can be identified by

@ auge transformation of the potentials:
Iy =(9,X) s Do=(0eX")d,, (1 949 P
r_ -1 2 -1
where g, x* is a trivial holonomic tetrad, withy x* its in- B,=UB,U "+c"Ug, U~ 11
verse. L L
A gauge transformation is defined as a local translation O}l’he corresponding infinitesimal transformation is
the fiber coordinates, B'“,=B“,— CZaM(Saa. (12)

x't=xt+at(x"), 2 The field strengttF <, is defined as the covariant derivative

with a“(x*) the corresponding parameters. It can be WrittenOf the gauge potentia®, , and analogously to the (@)

in the formx’ =Ux, whereU is an element of the translation electromagnetic gauge theory, it reads
roup. For an infinitesimal transformation, _ _
group F*,,=d,B%,—3,B%,. (13)

U=1+0a"P,, ®) Notice that, as expected for an Abelian thedfy,,, is in-

dvarian'[ under a gauge transformation. Consequently, its or-
dinary and gauge-covariant derivatives coincide.

The dynamics of the gauge fields, as usual, can be ob-
tained from a Lagrangian quadratic in the field strength,

with sa“® representing the infinitesimal parameters an
P,=4d, standing for the generators of infinitesimal transla-
tions, which satisfy

[P..Pg]=0. 4 _
— @ [ v
In terms of these generators, the infinitesimal version of L= T6aG |2 " wrFPopm Nag™ |, (14
transformation(2) becomes
whereG is the gravitational constant and
oX*= 5aPP px*. (5)
Nug"*= 7apn"”. (15
Let us consider now a general source fidl¢x*). Its gauge
tr_ansformatlon does not depend on the spin character and is Il GRAVITATIONAL LORENTZ FORCE
given by
Let us now consider the motion of a particle of mass
a gravitational field described by a translation gauge theory.
The corresponding infinitesimal transformation, therefore isAS quceUme 1S 8 MkaWSI.(I space, we can rely on an anal-
’ ' “ogy with the electromagnetic case to obtain the correspond-
5P = 5aP,®, @) ing gravitational interaction. Thus, analogously to what oc-

curs in electrodynamicgl4], we assume the interaction of
which is the relevant transformation for gauge theories. It i2Ction
important to remark that the translation generators are able to b
act on any source field through their arguments because of C—zf B, padx*, (16)
identification(1). a
In order to define the gauge-covariant derivative of
®(x*), we must first introduce the gauge potentials of thewith the integration taken along the world line of the particle.

P’ (xH)=UD(xH). (6)

model, which will be denoted by In this expressionp,, is the Noether conserved charge under
the transformations of the gauge gro{ib,16. In other
B,=B“,P,. (8)  words,p, is the four-momentum,

Using the general definition of gauge covariant derivatives, p,=mcu,,
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of the particle, withu,, its four-velocity. Therefore, the com- The expression for the gauge-covariant derivative opera-
plete action for a particle in a gravitational field is given by tor of source fields,

b b
Szf Ldszf
a a

with ds=(7,,dx*dx")*? the Minkowski interval
u?=7,,u“u”. Notice that, in writing this action, we have
already assumed the equality between inertial and gravit
tional masses, as stated by tfveeak equivalence principle

D,=h",d,, 22

—mcy—u+ TB"Muau“ ds, (17
¢ is actually the definition of a nonholonomous basis. In the
and absence of gravitatiom”,, becomes trivial, and it reduces to
the coordinate basig, appearing in Eq(1). This new basis,
Jnduced by the presence of the gravitational field, satisfies
the commutation relation

[17]. D,,D,]=c %F%,,P 23
Next, we make use of the Euler-Lagrange equation to [Du.D.l prnar 23

obtain the equations of motion. The result is Therefore, as usual in gauge theories, the commutator of co-
variant derivative operators yields the field strength,,, .

du, _,__ du,
mC[E'FC B ~ds

= T,:a Jugu” (18  Thereis a difference, though: In contrast to the usual gauge
c * theories, the field strength here will be directly related to the
spacetime geometry.

Using the relation In fact, as a result of the presence of a tetrad field, there

d @ always exists a naturally defined linear Cartan connection
du, _[x%) du, [12]
ds \|ox#| ds’
re,,=h,o,he,, 24
we get finally a a @9
which is a connection presenting torsion, but no curvature.
-2 du, -2 As a consequence, the field strentt,, can be written in
(9,X*+Cc ?B%,) ——=C 2F%,u,u" (19 a , v
ds the form
This is the gravitational analogue of the Lorentz force. Its F“,LFCZh“prWa (25)

solution determines the trajectory of the particle in a flat

spacetime. It is interesting to notice that, while in the elecawhere

tromagnetic case the particle four-acceleration is propor-

tional to e/m, with e its electric charge, in the gravitational T°,,=I?,,=T",, (26)
case the mass disappears from the equation of motion. This o ] )

is, of course, a consequence of the assumed equivalence #&-the torsion induced in spacetime by the presence of the

tween the gravitational and inertial masses. gravitational field. Moreover, the commutation relati@8)
acquires the form

IV. INDUCED SPACETIME GEOMETRY —
[D;uDV]_Tp,U,VDpr (27)

Up to this point, spacetime has been considered to be the = )
Minkowski space. However, as we are going to see, the predfdicating that torsion plays also the role of the non-
ence of a nontrivial tetrad field in the translation gaugeN©lonomy of the gauge-covariant derivative. .
theory induces further structures in spacetime. Owing to the | "€ Presence of a Cartan connection allows the introduc-
universality of the gravitational interaction, it will then be 10N Of & spacetime-covariant derivative which, acting for

possible to relate these structures to the presence of gravitgX@mple on a spacetime covariant vecior, reads
tion. _ _T°
By using Eq.(1), the covariant derivativé10) of a gen- ViVu= 0V, =TV, (28)

eral source field can be rewritten in the form From this definition, one can easily see that, as a conse-

_he uence of Eq(24),
D,®=h%,3,®, 20 q
where v.,h*,=a,h*,—h17?,,=0. (29
a _ o, ~—2pa — @ This is the condition of absolute parallelism, which implies
h*,=d,x*+c “B*,=D X (21 P p

that the spacetime underlying a translational gauge theory is
is a tetrad field. Notice that the gravitational field appears agaturally endowed with a teleparallel structure. In other
the nontrivial part of the tetrafll8]. Making use of Eqs(5) ~ Wwords, a Weitzenhek’s four-dimensional manifold is always
and (12), it is easy to see that, as in fact it should be, thePresent when considering a gauge theory for the translation

tetrad is gauge invariant: group[fl].
Besides the teleparallel structure, the presence of a non-
h',=h®,. trivial tetrad induces also a Riemannian structure in space-

time. As the tetrad satisfies
Its gauge-covariant derivative, therefore, turns out to be the
same as the ordinary derivative. h®,h,’=46," h*,hgt=05%, (30)
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if algebra indices are raised and lowered with the Lorentzian
metric %#, tensor indices will necessarily be raised and

lowered with the Riemannian metric

g,uV: naﬁha/.thﬁv‘ (31)

Accordingly, a linear metric connection can be introduced:
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V. DYNAMICS OF THE GAUGE FIELDS

In the induced spacetime, the gauge field Lagran¢lah
is written as

h 1 a B 4 v,
ﬁzm ZF ,qu gpg" Naﬁp, (40)

whereh=deth”,) is the Jacobian of the transformati(2®).

FH,U.V:%g(}p[(?ﬂgpv—’_avgp,u_apgp.v]! (32) .

Because of the presence of the tetrad field, however, algebra
which is a connection presenting curvature, but no torsionand spacetime indices can now be changed into each other
Its curvature and consequently appear mixed up in the Lagrangian. This
Y means that

puv— Yut pv out pv (/—U_)V) (33)

. . . ND( Vp: 7701 ngEna h Vhyp
represents the curvature induced in spacetime by the pres- b p Py

ence of the gravitational field. The connectif),,, actually ~ must now include all cyclic permutations ef 5, andy. A
the Levi-Civitaconnection ofj,,,, allows the introduction of ~simple calculation shows that

another spacetime-covariant derivative which, acting for ex- N 7P— h_"h7P+ 2h Ph'— 4k "h 41
ample on a spacetime covariant vecWy, reads ap = Maplly allp allg (41)

YV =gV T v 34 Substituting in Eq(40), the gauge field Lagrangian turns out
vVu— YvVu uvVe: ( ) to be
As can be easily verified, both connectioRi§,, and faw 1
preserve the metric: L= Rpawpﬁapgw[z hﬁuhﬁp%ﬁ
V.9,.=V.,9,,=0. 1
o o . + 5h,hg"—h,"hg’)|. (42
Substituting nowg,,,, into F"M,,, we obtain 2
e =70 4+K° (35) Then, by using Eq(25), it becomes
v uv mv
hc* [1 1
where _ v v 1%
—m ZTPMVTPM +§TPM,,T ’LP—TPMPT ol
Ke,u.V: % [T;LGV+TV€M_T0MVJ (36) (43)

is the contorsion tensor. Notice that the curvature of the Carin order to obtain the vacuum field equations, it is convenient
tan connection vanishes identically: to rewrite it ag[13]

R =%, +T°% I'?,—(u—v)=0. (37 3 hc? ,
L= 1S T (44)
Substitutingl'? ,, from Eq. (35), we get
0 o 0 0 o 0 o — where
R p/w_R PMV+(DK) P,U«V_K UMK pv+K oK Mz(()éB)
S, = H(T A+ T =T 1) = 3(8,"T 40— 5,4T,").
where (45
(DK)? ,,=3,K?,,+T? K, +T7, K’ —(uerv). By performing variations inC with respect toB“,, we get

(399 the equation

From these considerations, we conclude that the presence of gS v ﬁt hep (46)
a nontrivial tetrad field in the translational gauge theory in- V=P ct v

duces both a teleparallel and a Riemannian structure in
spacetime. These structures together completely characterigénere
the induced spacetime geometry. Moreover, we see from Eq.

(38 that the Riemann curvature tenst’pM induced in t h=
spacetime is such that it compensates exactly the contribu-* 167G
tion to the curvature coming from the teleparallel structure, 1
yielding an identically zerdotal curvature tensor. As we are +TO AT = 2T, TO o+ ETMGUTPQU - 8,rh71L
going to see, however, the description of the gravitational

interaction requires only one of the above structures. In other (47)
words, the gravitational interaction can be described alterna-

tively in terms of magnitudes related to the teleparallel or tois the gauge field self-current, which in this case is the
the Riemannian geometry. energy-momentuntpseudgtensor of the gravitational field.

4

48,1007 o+ 25470+ T, 4T,
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Notice that, despite being an Abelian gauge theory, thisvhere v, is the particle four-acceleration in the induced
equation presents a nonvanishing self-current which makes #ipacetime, it reduces to

quite similar to the Yang-Mills equations. However, in the

present case, the self-current has a different nature as, in

contrast to the standard Yang-Mills theor{gd], it cannot du, T ulut=T. ufu” (59
be written as a commutator since the gauge group here is ds Onv Onv '
Abelian.

On the other hand, as we have already seen, the presentbe left-hand side of this equation is the Cartan covariant
of a nontrivial tetrad field in the gauge theory induces also alerivative ofu,, along the world line of the particle. The
Riemannian structure in spacetime. We consider then, in thpresence of the torsion tensor on its right-hand side, which
induced Riemann spacetime, the Hilbert-Einstein Lagrangiaplays the role of an external force, implies that spinless par-
of general relativity: ticles do not follow geodesics in the induced Weitzerkbo

spacetime. Substituting E6), it becomes

C4h o d&_ 0, v_
L= e R. (48) ds [y, u°u"=0. (54)

Notice that, ad"y,,, is not symmetric in the last two indices,
this is in fact not a geodesic equation. Actually, it is a force
equation describing the interaction of a spinless particle with

Substitutinglo? as obtained from E(38), it can be rewritten
in terms of the Cartan connection only. Up to divergences

we get the gravitational field. According to this description, the only
effect of the gravitational field is to induce tarsion in
hed 1 1 spacetime, which will then be responsible for determining
_ v v _ v the trajectory of the particle.
L= 16+G |2 TP, T+ > TP T, =T, T, J y p
(49 VII. GRAVITATION AS A MANIFESTATION

which is exactly the Lagrangiafd3) of the translational OF CURVATURE: GEODESIC EQUATION

gauge theory. We have in this way recovered the well-known Again, we transform algebra into spacetime indices, but
result[13] which says that the translational gauge theory,now in such a way to get the force equatii) written in
with a Lagrangian quadratic in the torsion field, is com-terms of the Levi-Civitaconnection only. Following the
pletely equivalent to general relativity, with its usual La- same steps used earlier, we get

grangian linear in the scalar curvature. As a consequence of

this equivalence, the field equatig¢d6) of the translational

gauge theory must also be equivalent to the vacuum Ein- du,
stein’s equation. In fact, through a tedious but straightfor- ds
ward calculation, that equation can be reduced to

=Ty, uu"=T,y, u" (55)

Then, by taking into account the symmetryudu” under the

h(prH_ %gp(,lo?)=0. (50)  exchange ¢« v), we can rewrite it as
duf“ 0,,v 6,,v
VI. GRAVITATION AS A MANIFESTATION E_qu u’=K,gu"u". (56)

OF TORSION: FORCE EQUATION

Noticing thatK ,,, is skew symmetric in the first two indi-
ces, and using Eq35) to express Kg,,—I'4,,), EQ. (56)
becomes

Let us return to the gravitational force equati¢io),
which assumes now the form

du,
kds

he CT2FY, U U, (51) du,

s —Ty,,uu"=0. (57)
As we are going to see, there are two different ways Ofryiq g precisely the geodesic equation of general relativity,

interpre_ting this force equatio_n. In fact, it can be rewrittenwhich means that the trajectories followed by spinless par-
alternatively in terms of magnitudes related to the Weitzeniicles are geodesics of the induced Riemann spacetime. Ac-

boclg or tlo the Iﬁl?magnhspacetl_mz, giving rlse,f reSp_eCt'_Velycording to this description, therefore, the only effect of the
to the teleparallel and the metric description of gravitation. 5y irational field is to induce aurvaturein spacetime,

We start with the first alternative, which corresponds to\ypich will then be responsible for determining the trajectory
transform algebra into tensor indices in such a way to get thgf the particle

force equation(51) written in terms of the Cartan connection
only. By using Eq.(25), as well as the relations

VIII. CONCLUSIONS
du,  du,

In the context of a gauge theory for the translation group,
Ty =
“ ds ko ds

a
h we have succeeded in obtaining a gravitational analogue of

—Ty,u%" u,=h,eu’ (52
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the Lorentz force equation. This force equation determine&urthermore, as can be easily verified, both equations yield,
the trajectory to be followed by a spinless particle submittedor velocities sufficiently small, the usual Newtonian limit
to a gauge gravitational field, in a flat Minkowski spacetime.[17]

According to this approach, the trajectory of the particle is

described in the very same way the Lorentz force describes

the trajectory of a charged particle in the presence of an GM

electromagnetic field. This force equation, however, can be $=—Boo= T

rewritten in terms of magnitudes related to either the telepar-

allel or the Riemannian structures induced in spacetime b};vith & the Newton gravitational potential,

the presence of gravitation, which is represented by a non- It is interesting to remark that any one of E¢S8) and

trivial tetrad field. o . 1
In the first alternative we consider the zero-curvature Car—(sg) can be deduced from a variational principle with the

tan connectiorl’,,, defined on spacetime. Its torsion will be action
the only manifestation of the gravitational field in this case. jb

In terms of this connection, the force equatid®) becomes S= mcds

a

where ds=(g,,,dx*dx")*? is the spacetime interval and
—I‘gmuau”=0. (59) 9ur= naﬁhaﬂhﬁy_. In contrast to th_e Minkows_kia_n acti_on
(17), the interaction of the particle with the gravitational field
is in this case given by the presence of the metric teggor
in ds or, alternatively, im2=g,wu”“u” if one opts for using
It is important to remark that, ds,, , is not symmetric in the a Lagrangian formalism.
last two indices, this is not a geodesic equation, which means Now, as both Eqs(58) and (59) are deduced from the
that the trajectories followed by spinless particles are nosame force equatiofil9), they must be equivalent ways of
geodesics of the induced Weitzemlospacetime. In a lo- describing the same physical trajectory. In fact, it is easy to
cally inertial coordinate system the Cartan connecfigp, see that any one of them can be obtained from the other by
becomes skew symmetric in the first two indices, which issubstituting the relation
the teleparallel version of the normal coordinate condition .
d,94,=0 of general relativity. In this coordinate system, ou=ToutKoup- (60)
therefore, owing to the symmetry afu?, the force equation
(58) becomes the equation of motion of a free particle. Thig, general relativity, the presence of a gravitational field is
is the teleparallel version of thestrong equivalence prin-  oynressed by a torsionless metric connection, whose curva-
ciple. _ _ , ture determines the intensity of the gravitational field and,
In\the second alternative we consider the torsionless LeV'(‘:onsequentIy, the trajectories to be followed by spinless par-
Civita connectionl’y,,, defined on spacetime. Its curvature ticles under the influence of the gravitational field. On the
will be the only manifestation of the gravitational field now. gther hand, in the teleparallel description of gravitation, the
In this case, the force equati¢h9) is reduced to presence of a gravitational field is expressed by a flat Cartan
connection, whose torsion is now the entity responsible for
determining the intensity of the gravitational field and, con-
sequently, the trajectories to be followed by spinless particles
du, - by q , o .
—~_1,, uur=o0. (590  under the influence of the gravitational field. Thus, we can
ds # say that the gravitational interaction can be describititer
in terms of the curvature of spacetime, as is usually done in
general relativity, or in terms of the torsion of spacetime.
This is the geodesic equation of general relativity, which isBoth interpretations result in being completely equivalent in
an equation written in the underlying Riemann spacetime. lthe sense that they give the same physical trajectory for a
corresponds mathematically to the vanishing of the Levispinless particle in a gravitational field. Whether gravitation
Civita covariant derivative ofi,, along the world line of the = requires a curved or a torsioned spacetime, therefore, turns
particle. In a locally inertial coordinate system, the first de-out to be a matter of convention. Moreover, contrary to the
rivative of the metric tensor vanishes, the Levi-Civitan-  old belief[20] that only particles with spin could detect the
nection vanishes as well, and the geodesic equatiBnbe-  teleparallel geometry, scalar matter being able to feel the
comes the equation of motion of a free particle. This is themetric geometry only, our results imply that scalar matter is
usual version of théstrong equivalence principle as formu- able to feel any one of these geometries.
lated in the general theory of relativifyt7].
Notice th.e difference in the ind'e'x cpntractions between ACKNOWLEDGMENTS
the connections and the four-velocities in E@8) and(59).
This difference is responsible for the different characters of The authors would like to thank R. Aldrovandi for useful
these equations: The first is a force equation written in thaliscussions and for a critical reading of the manuscript. They
underlying Weitzenbck spacetime, and the second is a truewould also like to thank FAPESP-Brazil and CNPg-Brazil,
geodesic equation written in the induced Riemann spacetiméor financial support.

du,
ds
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