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We investigate cosmological density perturbations in a covariant and gauge-invariant formalism, incorpo-
rating relativistic causal thermodynamics to give a self-consistent description. The gradient of density inho-
mogeneities splits covariantly into a scalar part, equivalent to the usual density perturbations, a rotational
vector part that is determined by the vorticity, and a tensor part that describes the shape. We give the evolution
equations for these parts in the general dissipative case. Causal thermodynamics gives evolution equations for
viscous stress and heat flux, which are coupled to the density perturbation equation and to the entropy and
temperature perturbation equations. We give the full coupled system in the general dissipative case, and
simplify the system in certain cases. A companion paper uses the general formalism to analyze damping of
density perturbations before last scattering.@S0556-2821~97!05420-9#
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I. INTRODUCTION

The analysis of density perturbations in cosmological flu-
ids is well established, particularly using Bardeen’s gauge-
invariant formalism@1,2#. This formalism is inherently linear
~i.e., it starts from the background and perturbs away from it!
and nonlocal. An alternative approach, developed by Ellis
and Bruni@3#, is covariant~and therefore local! and readily
incorporates nonlinear effects~since it starts from the real
spacetime, not the background!. We will use this covariant
and gauge-invariant formalism, in which the variables have a
clear physical and geometric interpretation. Furthermore, the
covariant approach is directly compatible with causal relativ-
istic thermodynamics, as developed by Israel and Stewart
@4#.

Although dissipative terms representing viscosity and heat
conduction have been formally incorporated into the equa-
tions in both approaches@1,5#, most applications of the
theory are restricted to the nondissipative case—and even in
this case, relativistic thermodynamics is usually not applied
to analyze the behavior of the fluid self-consistently. This is
not a problem when studying the evolution of large-scale
perturbations, which are unaffected by local physics–
although the generation of these perturbations, their initial
evolution before leaving the Hubble radius, and their final
evolution after reentering the Hubble radius are governed by
local physics. For small-scale perturbations, within the
Hubble radius, a self-consistent analysis requires the appli-
cation of thermodynamics.1

Here and in a companion paper@8#, we develop and apply

a covariant and gauge-invariant analysis of density perturba-
tions that self-consistently incorporates relativistic causal
thermodynamics. The general evolution equations governing
density inhomogeneities are considered in Sec. II. Inhomo-
geneities are covariantly characterized by a scalar part,
which represents the usual density perturbations, a vector
part, which we show is determined by the vorticity, and a
tensor part, which determines the shape of gravitational clus-
tering. New evolution equations are derived for the vector
and tensor parts, as well as for perturbations in the number
density, entropy, and temperature. We use the Gibbs equa-
tion to incorporate the temperature and entropy self-
consistently, and we covariantly characterize different types
of perturbation. In Sec. III, the viscous stress and heat flux
that appear in the perturbation evolution equations are sub-
ject to thermodynamical transport equations, which then
form a coupled system with the perturbation evolution equa-
tions. We define appropriate dissipative scalars to obtain a
closed system of dynamical equations. The equations are
simplified in the particular cases of entropy perturbations
~nondissipative! and when only one form of dissipation is
present.

The Israel-Stewart transport equations are under reason-
able conditions causal and stable@9#, and thus provide a
consistent relativistic description of local physical effects on
small-scale perturbations. The thermodynamics of Eckart
~and a similar alternative due to Landau and Lifshitz! is more
established in the literature. However, in this theory the
transport equations reduce from evolution equations to alge-
braic constraints on viscosity and heat flux, and as a result,
the theory is noncausal~dissipative effects propagate at su-
perluminal speeds!, and all its equilibrium states are unstable
@9#. It can be argued@10# that these pathologies only occur
outside the hydrodynamic regime. But first, the stability
problem persists in all situations, and second, it seems pref-
erable to employ a theory with built-in causality and stabil-
ity. Furthermore, the causal theory can deal with transient
and short-wavelength effects, which are important in
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1We are considering here the case of hydrodynamics. Dissipative

effects on the microwave background have been self-consistently
analyzed via numerical integration of the Boltzmann equation~see,
e.g., @6#!. A covariant and gauge-invariant approach to the Boltz-
mann equation is developed in@7#.
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many cosmological and astrophysical situations~see, e.g.,
@11–14#!.

Applications to dissipative situations are treated in a com-
panion paper@8#, where we analyze viscous damping of den-
sity perturbations before last scattering. This generalizes the
results of Weinberg@15#, who used noncausal Eckart ther-
modynamics.

II. COVARIANT APPROACH
TO DISSIPATIVE PERTURBATIONS

The covariant and gauge-invariant analysis of density per-
turbations is fully discussed in@3,5#. Here we present only
the main points that are necessary for our purposes, before
going further by deriving new evolution equations and incor-
porating causal thermodynamics. Our notation and conven-
tions follow @5,16,17#, with some changes~see@18#!.

Given a covariantly defined fluid four-velocityua ~see the
further discussion below!, thenhab5gab1uaub projects into
the local rest spaces of comoving observers, wheregab is the
spacetime metric. The covariant 113 splittings of the Bian-
chi identities and the Ricci identity forua, incorporating Ein-
stein’s field equations as an algebraic definition of the Ricci

tensor,Rab5Tab2 1
2 Tgab , are the fundamental equations in

the covariant perturbation approach. These equations may be
written as propagation and constraint equations for covariant
scalars, spatial vectors (Va5ha

bVb), and spatial two-tensors
which are symmetric and trace-free, i.e., which satisfy

Sab5S^ab&[ha
chb

dS~cd!2
1

3
hcdS

cdhab .

Any spatial two-tensor has the covariant irreducible decom-
position

Sab5
1

3
Shab1S^ab&1«abcS

c,

whereS[habSab is the spatial trace andSa5 1
2 «abcS

bc is the
spatial dual to the skew part. Here«abc5habcdu

d is the spa-
tial permutation tensor defined by projecting the spacetime
permutation tensorhabcd. The covariant derivative¹a splits
into a covariant time derivativeȦa•••

5ub¹bAa•••

and a co-
variant spatial derivativeDbAa•••

5hb
dha

c
•••¹dAc•••

. ~Note
that Dchab505Dd«abc .) Then the covariant spatial diver-
gence and curl are defined by@16#

div V5DaVa , curl Va5«abcD
bVc,

~div S!a5DbSab , curl Sab5«cd~aDcSb)
d.

The fluid kinematics are described by the scalaru5Daua

~expansion!, the spatial vectorsu̇a ~four-acceleration! and
va52 (1/2) curl ua ~vorticity!, and the tensorsab5D ^aub&
~shear!. The locally free gravitational field is described by
the electric and magnetic parts of the Weyl tensor,

Eab5Cacbdu
cud5E^ab& and Hab5 1

2 «acdC
cd

beu
e5H ^ab& .

The fluid dynamics are given by the energy densityr, the
pressurep, and the dissipative quantitiesB ~bulk viscous

stress!, Qa ~heat flux,Qaua50), andpab5p^ab& ~shear vis-
cous stress!. These arise in the energy-momentum tensor

Tab5ruaub1~p1B!hab12q~aub)1pab , ~1!

where@4#

qa5Qa1S r1p

n D j a ~2!

is the total energy flux relative toua, with n the particle
number density andj a the particle flux (j aua50). The latter
are combined in the particle four-flow vector

Na5nua1 j a. ~3!

In a self-consistent thermohydrodynamic description, we
need to introduce also the temperatureT and specific entropy
s per particle, defined in, or near to, equilibrium via the
Gibbs equation

Tds5dS r

nD1p dS 1

nD . ~4!

The hydrodynamic tensorsTab and Na define two natural
four-velocities—the particle~or Eckart! four-velocityup

a , for
which j a50⇔Qa5qa , and the energy~or Landau-Lifshitz!
four-velocity ue

a , for which qa50⇔Qa52(r1p) j a /n.
These four-velocities coincide in equilibrium, and differ by a
small angle near to equilibrium.2 The four-velocityua may
be chosen to be close toup

a andue
a . Any small change inua

produces second order changes~negligible in the linear re-
gime! in r, p, n, T, ands @4#. These scalars therefore coin-
cide ~to first order! with the corresponding scalars for a local
equilibrium state. The bulk and shear viscous stressesB and
pab are also invariant to first order under a small change in
ua. Both qa and j a undergo first-order changes, but the heat
flux vectorQa is invariant to first order. From Eq.~1!, we see
that

ua5ue
a2

1

~r1p!
qa. ~5!

For the isotropic and homogeneous Friedmann-Lemaitre-
Robertson-Walker~FLRW! universes

Dau5Dar5Dap5DaB5Dan5DaT5Das50,

u̇a5va5qa5 j a50,

sab5Eab5Hab5pab50.

In covariant perturbation theory, a universe with small an-
isotropy and inhomogeneity is characterized by these quan-
tities being small, and one neglects terms which are nonlin-
ear in them. Since these quantities vanish in the background,
they are gauge invariant@3#. Note that Friedmann-Lemaitre-
Robertson-Walker~FLRW! models can admit scalar dissipa-

2It has recently been argued@20# that only the energy frame is
suitable for the description of irreversible thermodynamics.
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tion, in the form of a bulk viscous stressB ~see, e.g.,@12–
14,19#!, reflecting the fact that expanding fluids in general
cannot maintain equilibrium@4#. However, we shall follow
the standard approach in irreversible thermodynamics of as-
suming an equilibrium background state, so thatB50 in the
background.3 For convenience, the linearized Bianchi and
Ricci equations that underlie the covariant gauge-invariant
theory are given in Appendix A~using the above notation
and definitions, introduced in@16#, which considerably sim-
plify the original equations!. Appendix A also contains use-
ful differential identities. Note that in the background

u53H, r53H2~11K !,

Ḣ52
1

2
H2@3~11w!1~113w!K#, B505 ṡ, ~6!

whereH5ȧ/a is the Hubble rate,a is the cosmic scale fac-
tor, K50,6(aH)22 is the dimensionless spatial curvature
index, andw5p/r.

Linearization of the number conservation equation
¹aNa50 gives

ṅ1un52Daj a . ~7!

Using the energy conservation equation~A1! and the number
conservation equation~7!, together with Eq.~2!, the Gibbs
equation~4! implies that

nTṡ523HB2DaQa . ~8!

The contribution of shear viscous stress to entropy genera-
tion is via a nonlinear termsabpab , so thatin an almost-
FLRW universe, the shear viscous stress does not contribute

to ṡ. Thus nondissipative perturbations are not adequately
characterized by ṡ50. We need to specify that
B5Qa5pab50.

Scalar perturbations are covariantly and gauge-invariantly
characterized by the spatial gradients of scalars. Density in-
homogeneities are described by the comoving fractional den-
sity gradient@3#

da5
aDar

r
. ~9!

We define also the comoving expansion gradient@3#, the
dimensionless fractional number density gradient~not con-
sidered in@3,5#!, normalized pressure gradient, and normal-
ized entropy gradient~see@18#! by

ua5aDau, na5
aDan

n
, pa5

aDap

r
, ea5

anTDas

r
.

~10!

Using the fact thatp5p(r,s) and the Gibbs equation~4!, we
find

pa5cs
2da1rea , ~11!

ea5da2~11w!na , ~12!

where the dimensionless quantities

cs
25S ]p

]r D
s

, r 5
1

nTS ]p

]sD
r

~13!

are, respectively, the adiabatic speed of sound and a non-
barotropic index. Note that in Eqs.~11! and~12!, these quan-
tities andw are evaluated in the background.4 In the back-
ground

cs
25

ṗ

ṙ
, ẇ523H~11w!~cs

22w!, ~14!

where we have usedṡ50 and the energy conservation equa-
tion ~A1!.

A covariant thermodynamic classification of scalar pertur-
bations is as follows. Perturbations arenondissipativeif
B5Qa5pab50, and then in particularṡ50, so that the
specific entropy is constant along fluid-flow lines. If the spe-
cific entropy is the same universal constant along all flow
lines, i.e., ifea50 in addition toṡ50, then the perturbations
are isentropic, often ~misleadingly! called ‘‘adiabatic.’’ For
isentropic perturbations, Eqs.~11! and ~12! show that the
number density perturbations and pressure perturbations are
algebraically determined by the energy density perturbations:
na5da /(11w), pa5cs

2da . The case of dissipative pertur-
bations withea50, so that the specific entropy varies, but
only along the fluid flow, will be calleddissipative perturba-
tions without entropy perturbations. The integrability condi-
tion ėa50, implies, via the gradient of the entropy evolution
equation~8!, that

3HDaB1Da~DbQb!50, ~15!

which is very restrictive, except in the case where only shear
viscous stress is present. In general, dissipative perturbations
will also involve entropy perturbations.

The evolution of the temperature is clearly affected by the
nature of the perturbations. In order to determine how this
works, we user and s as the independent thermodynamic
variables in the Gibbs equation~4!. The integrability condi-
tion ]2n/]r]s5]2n/]s]r then gives

~r1p!S ]T

]r D
s

5~cs
21r !T,

where we used

S ]n

]sD
r

52
n2T

r1p
,

3The consistency condition that this assumption imposes through
the transport equation~40! for B is that the bulk viscosityz should
be much less thanpu21.

4If B is nonzero in the background, then the background speed of
sound acquires an additional dissipative contributioncb , where~see
@21#! cb

225b0(r1p), andb0 arises in Eq.~40!.
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which follows from the Gibbs equation. Using the identity

Ṫ5S ]T

]r D
s

ṙ1S ]T

]sD
r

ṡ,

together with the energy conservation equation~A1! and the
entropy evolution equation~8!, the above equations lead to
the temperature evolution equation

Ṫ

T
52~cs

21r !u2
~cs

21r !

r~11w!
@3HB1Daqa#

2
1

nT2S ]T

]sD
r

@3HB1DaQa#. ~16!

This equation reproduces the standard cooling rates for per-
fect fluids in the nonrelativistic and ultrarelativistic cases.5 In
the general case, the source terms on the right-hand side
show the role of nonbarotropic and dissipative effects. Note
that the last term vanishes if the temperature is barotropic,
i.e., if T5T(r). Bulk viscous perturbations counteract the
cooling due to expansion, shear viscous perturbations do not
affect the cooling rate~to first order!, and the effect of heat
flux depends on the sign of the divergence. For nondissipa-
tive perturbations, the sign of the nonbarotropic indexr de-
termines whether cooling is enhanced or retarded.6

We can also derive new evolution equations for the num-
ber density perturbations, entropy perturbations, and tem-
perature perturbations. The comoving gradient of the number
conservation equation~7!, together with the momentum con-
servation equation~A2! and the identity~A15!, gives

ṅa13rHna52ua13~11w!21~cs
21r !Hda

1
a

r~11w!
@3H~DaB1q̇a14Hqa1Dbpab!

1DaDb~Qb2qb!#. ~17!

The comoving gradient of the entropy evolution equation~8!,
together with the energy conservation equation~A1!, the
temperature evolution equation~16!, and the identity~A15!,
gives theevolution equation for entropy perturbations:

ė13H~cs
22w1r !e52

a2

r
@3HD2B1D2~DaQa!#,

~18!

where we have defined the scalar entropy perturbation

e5aDaea5
a2nT

r
D2s. ~19!

Equation~18! shows thatfor nondissipative or shear viscous
perturbations, entropy perturbations decay with expansion
unless cs

22w1r<0. Defining the comoving fractional tem-
perature gradient by

Ta5
aDaT

T
, ~20!

we find from the evolution equation~16! and the identity
~A15! that theevolution equation of (covariant and gauge-
invariant) temperature perturbationsis given by

Ṫa523~cs
21r !Hau̇a2~cs

21r !ua23HaDa~cs
21r !

2
a~cs

21r !

r~11w!
@3HDaB1Da~Dbqb!#

2
a

nT2S ]T

]sD
r

@3HDaB1Da~DbQb!#. ~21!

Now da contains more information than just the scalar den-
sity perturbations, since at each point,da picks out the direc-
tion of maximal inhomogeneity. The irreducible parts of the
comoving gradient ofda then describe completely and cova-
riantly the variation in density inhomogeneities:

aDbda5
1

3
dhab1jab1«abcW

c, ~22!

where the scalar partd[aDada5(aD)2r/r corresponds to
the usual gauge-invariant density perturbation scalar«m @1#,

the vector partWa52 1
2 a curl da describes the rotational

properties of inhomogeneous clustering, and the tensor part
jab5aD^adb& describes the volume-true distortion of inho-
mogeneous clustering.~These quantities were introduced in
@5#, but only the scalard was discussed.! These irreducible
parts encode, respectively, the total scalar, vector, and tensor
contributions to density inhomogeneities.

It is difficult to see how a rotation independent of the
vorticity could arise, and indeed we can show thatWa is
always proportional to the vorticity vector:

Wa523a2H~11w!va . ~23!

This follows from the identity~A13! and the energy conser-
vation equation~A1!. Thus rotation in clustering matter is
inherited entirely~in the linear regime! from cosmic rotation:
The vector part of density inhomogeneities is determined
completely in direction by the cosmic vorticity.The expan-
sion and pressure index affect the magnitude of the vector
part. In particular, it follows thatWa50 if the background is
nonexpanding or de Sitter (w521).

The vorticity propagation equation~A4! leads to the new
evolution equation for the vector part of density inhomoge-
neities:

5A similar equation is given in@21#, but in the particle frame only,
and without separating out the nonbarotropicr terms.

6Using the Gibbs equation ~4!, we can show that
r 5cs

2@r(11w)a2ncp#/ncp , where a5n(]n21/]T)p>0 is the
dilatation coefficient, andcp5T(]s/]T)p>0 is the specific heat at
constant pressure.
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Ẇa1
1

2
H@3~12w!1~113w!K#Wa

52S 3a2H

2r D curl @ q̇a14Hqa1Dbpab#, ~24!

where we have used Eqs.~6! and ~14!, and the momentum
conservation equation~A2! allowed us to evaluate curlu̇a ,
together with the identity~A13!. Unsurprisingly, Eq.~24!
shows that the scalar dissipative quantityB does not influ-
ence the evolution of the vector part of density

inhomogeneities.7 In the energy frame, heat flux also has
no direct influence onWa . Equation ~24! shows thatfor
nondissipative or only shear viscous perturbations, Wa

decays with expansion unless3(12w)1(113w)K<0.
For ordinary hydrodynamic matter, with 0<w< 1

3, this in-
equality is never satisfied if the spatial curve is non-negative.

To derive evolution equations for the tensor and scalar
parts, we take the comoving spatial gradient of the energy
conservation equation~A1! and the Raychaudhuri equation
~A3!, using the momentum conservation equation~A2!, the
identities~A14!–~A16!, and Eq.~23!:

ḋa53wHda2~11w!ua1
3aH

r
@ q̇a14Hqa1Dbpab#2

a

r
DaDbqb, ~25!

~11w!u̇a522H~11w!ua2
3

2
H2@11w1~11w1 2

3 cs
2!K#da2cs

2D2da2r ~KH21D2!ea2
a

r
~KH21D2!DaB

1
3aH2

2r
@3~11w!1~113w!K#@ q̇a14Hqa1Dbpab#2

a

r
DaDb@ q̇b14Hqb1Dcpbc#1

2

a
cs

2 curl Wa . ~26!

Equation~25! can be shown to be in agreement with Eq.~61! of @5#, while Eq. ~26! generalizes Eq.~62! of @5# by including
bulk viscous effects.

We can now decouple the equations:

d̈a1H~226w13cs
2!ḋa2

3

2
H2@118w23w226cs

21~123w21 2
3 cs

2!K#da

5cs
2D2da2

2

a
cs

2 curl Wa1r ~KH21D2!ea1
a

r
~KH21D2!DaB13

aH

r
$q̈a1H@723w13cs

22~113w!K#q̇a

16H2@123w12cs
22~113w!K#qa2cs

2DaDbqb%1
a

r
$3HDbṗab13H2@223w13cs

22~113w!K#Dbpab

1DaDbDcpbc%, ~27!

where we have used Eqs.~6!, ~9!, ~11!, and ~A14!–~A16!.
The comoving gradient of the evolution equation~27! deter-
mines evolution equations for the scalar, vector, and tensor
parts of density inhomogeneities, incorporating all dissipa-
tive and entropy effects. We have already derived the vector
evolution Eq.~24!. Taking the comoving divergence of equa-
tion ~27!, and using identities~A14!–~A16! and~A20!, gives
the evolution equation for scalar density perturbations

d̈1H~226w13cs
2!ḋ2

3

2
H2@118w23w226cs

21~123w2

12cs
2!K#d2cs

2D2d5S@e#1S@B#1S@q#1S@p#, ~28!

where the source terms arising, respectively, from entropy
perturbations, bulk viscous stress, energy flux, and shear vis-
cous stress are

S@e#5r ~3KH21D2!e, ~29!

S@B#5~3KH21D2!B, ~30!

S@q#53aH$ q̈1H@129w1cs
22~113w!K#q̇

2
3

2
H2@118w29w228cs

21(129w2!K]q

2cs
2D2q% , ~31!

S@p#53HṠ23H2@116w23cs
21~113w!K#S1D2S,

~32!

and we have defined the dimensionless perturbation scalars

B5
a2D2B

r
, q5

aDaqa

r
, S5

a2DaDbpab

r
. ~33!

7Although the gradient ofB occurs in the transport equation~41!
for Qa , and therefore occurs on the right-hand side of Eq.~24! in
the particle frame (qa5Qa), the curl of this gradient is negligible
by the identity~A13!, sinceB vanishes in the background.
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Equation ~28! generalizes Eq.~74! of @5# to include bulk
viscous effects, and is presented we believe in a more trans-
parent form, which makes clear the physical meaning of each
term.

The newevolution equation for the tensor part of density
inhomogeneitiesfollows from the trace-free symmetric part
of the comoving gradient of Eq.~27!, on using the identities
~A14!–~A16!:

j̈ab1~226w13cs
2!H j̇ab2

3

2
H2@118w23w226cs

2

1~123w21 2
3 cs

2!K#jab2cs
2D ^aDb&d

5S@e#ab1S@B#ab1S@q#ab1S@p#ab . ~34!

The source terms are given by

S@e#ab53rKaH2D ^aeb&1rD ^aDb&e, ~35!

S@B#ab53K
a2H2

r
D ^aDb&B1D ^aDb&B, ~36!

S@q#ab53
a2H

r
$D ^aq̈b&1H@723w13cs

22~113w!K#

3D ^aq̇b&16H2@123w12cs
22~113w!K#

3D ^aqb&2cs
2D ^aDb&D

cqc%, ~37!

S@p#ab5
a2

r
$3HD ^aDcṗb&c13H2@223w13cs

2

2~113w!K#D ^aDcpb&c1D ^aDb&D
cDdpcd%.

~38!

Comparison of Eqs.~28! and~34! shows that in the simplest
case of isentropic perturbations, the density distortion tensor
jab obeys the same equation as the scalard, so that

jab5Aabd, Ȧab50. ~39!

The presence of entropy or dissipative perturbations breaks
the simple relation~39!, and the evolution of the shape of
density inhomogeneities is not directly determined by the
scalar density perturbation.

III. CAUSAL TRANSPORT EQUATIONS

We are now ready to introduce the evolution equations
obeyed by the dissipative quantities in the causal thermody-
namics of Israel and Stewart@4#. This theory is based on a
covariant treatment of the second law of thermodynamics
and the conservation equations, and its transport equations
are confirmed by relativistic kinetic theory~via the relativis-
tic generalization of the Grad approximation!, which also
provides explicit expressions for the various thermodynamic
parameters in the case of a dilute gas. The theory thus has a
firm physical foundation. Furthermore, as pointed out earlier,
dissipative signals propagate below the speed of light and the
equilibrium states are stable, within the regime of validity of
the theory. Thus the causal and stable thermodynamics of
Israel and Stewart is a consistent relativistic thermodynamics

which supercedes the noncausal and unstable theories first
put forward by Eckart, and Landau and Lifshitz.

The predictions of the causal theory agree with those of
the pathological theories in quasistationary situations. But
when high-frequency or short-wavelength effects are impor-
tant, in the transient regime, the pathological theories are
inapplicable. Thus these theories cannot cover the full range
of behavior of a relativistic fluid near equilibrium. Moreover,
these theories cannot even constitute part of a consistent the-
oretical thermohydrodynamics because they are intrinsically
not relativistic theories, given their pathologies. Thus our
approach is to employ the causal thermodynamics to con-
struct a self-consistent theory of cosmological density pertur-
bations in the general case. In particular applications, where
it can be argued that the noncausal theories will give reason-
able results, we can then specialize the general equations
appropriately. This is done in the companion paper@8#.

The full form of the transport equations, encompassing
situations where the background equilibrium state is acceler-
ating and rotating, and including terms which were neglected
in the original theory and restored by Hiscock and Lindblom
@9#, is given in Appendix B for convenience. Since we are
dealing with cosmological perturbations, the background is
nonrotating and nonaccelerating, and spatial gradients of
thermodynamic coefficients give rise to nonlinear terms.
There are also linear terms, containing time derivatives of
thermodynamic coefficients, which were restored by@9#. We
will follow the arguments of@21,14# which show that under
many reasonable conditions, these terms may be neglected in
comparison with the other terms in the transport equations.8

With these simplifications, Eqs.~B1!–~B3! reduce to the
causal transport equations

B52z@u1b0Ḃ2a0DaQa#, ~40!

Qa52k@DaT1Tu̇a1Tb1Q̇a2Ta0DaB2Ta1Dbpab#,
(41)

pab522h@sab1b2ṗab2a1D ^aQb&#. ~42!

The coefficientsz, k, andh of bulk viscosity, thermal con-
ductivity, and shear viscosity, appear also in the noncausal
~and the nonrelativistic! theories. The coefficientsb I define
characteristic relaxational time scales

t05zb0 , t15kTb1 , t252hb2 ,

which are often taken to be of the order of the mean collision
time, but which are determined by collisional integrals in
kinetic theory@4#. The noncausal theories are characterized
by b I50. Intuitively, this corresponds to instantaneous re-
laxation to equilibrium when the dissipative ‘‘force’’ is
switched off. The coefficientsa I , which also vanish in the
noncausal case, arise from a coupling of viscous stress and
heat flux ~see Appendix B!. They may also be found from
kinetic theory in the case of a dilute gas. These transport

8Note, however, that it is not always reasonable to neglect these
terms—see@12,13# for examples.
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equations hold in the energy and particle frames, with suit-
able simple changes in some of the thermodynamic coeffi-
cients~see Appendix B!.

The transport equations~40!–~42! are coupled to the evo-
lution equations for density inhomogeneities—the scalar
equation~28!, the vector equation~24!, and the tensor equa-
tion ~34!. They are also coupled to the evolution equations
~17!, ~18!, and ~21! for number density, entropy, and tem-
perature perturbations. In all of these evolution equations,
except the entropy evolution equation~18!, the energy flux
vector qa occurs. Considerable simplification is thus
achieved by choosing the energy frame (qa50), which is
consistent with arguments in favor of that frame@20,22#.

In general, the coupling among the transport and evolu-
tion equations is highly complicated, although the coupled
system can always be cast into a form suitable for numerical
integration. Even in the nondissipative case, when the trans-
port equations fall away, the evolution equations themselves
are coupled. In the simplest case of isentropic perturbations
(B5Qa5pab50, e50), the scalar equation~28! reduces to
a wave equation only ind ~with undamped phase speedcs

2 ,
as expected!. In principle, the solution of this equation, and
the solutionWa of Eq. ~24!, may be used to express Eq.~34!
as an equation only injab .

For nondissipative entropy perturbations, decouplingd
leads to a third-order equation. First we apply the operator
3KH21D2 to Eq. ~18!, using identity~A17! and

K̇5H~113w!~11K !K,

to get

@~3KH21D2!e#•1H~223w13cs
213r !

3@~3KH21D2!e#50.

Then we use Eq.~28! in this latter equation, together with
identity ~A17! and Eq.~6!, to obtain thedecoupled density
perturbation evolution equation for nondissipative entropy
perturbations:

d̂1@~429w16cs
213r !H2~ lnr !•#d̈2

1

2
AHḋ2

3

2
BH2d

5cs
2D2ḋ1@$3~cs

22w1r !H2~ lnr !•%cs
21~cs

2!•#D2d,

~43!

whereA andB are complicated functions ofw, cs
2 , r , H, and

K. In the case of a flat backgroundK50, we have

A5~1184w227w2269cs
2127wcs

2212r 136wr218rcs
2

218cs
4!H26~cs

2!•12~226w23cs
2!~ lnr !•,

B5~21110w139w2124rw3215cs
2154wcs

219w2cs
2

13r 29w2r 218rcs
2218cs

4!H26~cs
2!•

2~118w23w226cs
2!~ lnr !•.

A. Coupled system in general

The complexity of Eq.~43! indicates the difficulty of de-
coupling the equations for dissipative perturbations. In gen-
eral, the fact that the transport equations are first order in
time derivatives shows that any decoupling will produce at
least one higher time derivative in the evolution equations. In
the noncausal limit (b I50), when the derivative terms drop
out of the transport equations, this does not hold, and the
order of the equations is the same as in the nondissipative
case.

The transport equations~40!–~42! contain further cou-
plings amongst the dissipative quantities and couplings to the
density and entropy and temperature perturbations. These
further couplings are revealed when we take comoving spa-
tial gradients, and use the following expressions:

aDaz

r
5S ]z

]r D
s

da1
1

nTS ]z

]sD
r

ea ,

which follows from Eq.~10!;

aDaua5
1

11w
@3wHd2 ḋ13HS#,

which follows from Eq.~25!, using the energy frame;

aDau̇a52
1

a~11w!
@cs

2d1re1B1S#,

which follows from the momentum conservation equation
~A2!;

a2DaDbsab5
2

3
aDaua ,

which follows from the constraint equation~A6! and the
identity ~A20!; and

DaDbD ^aQb&5~r23H2!DaQa1
2

3
D2~DaQa!,

which follows from identity~A18!. Then operating on the
transport equations~40!–~42! with, respectively, (a2/r)D2,
(a/r)Da, and (a2/r)DaDb, we get the newcausal transport
equations for the scalar dissipative quantities:

t0Ḃ1@123~11w!t0H#B5~za0a!D2Q1F 3zH

r~11w!GS1
z

r~11w!F ḋ23HH w1~11w!
r

z S ]z

]r D
s
J dG2F3H

nTS ]z

]sD
r
Ge,

~44!

t1Q̇1@123~11w!t1H#Q52S kT

ar DT1 kT

ar~11w!
@$a0r~11w!21%B1$a1r~11w!21%S#1

kT

ar~11w!
@cs

2d1re#, ~45!
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t2Ṡ1F12HH 3~11w!t22
4h

11wJ GS
5

2

3
ha1a~D2Q13H2KQ!1

4h

3~11w!
@ ḋ23wHd#.

~46!

We have defined the scalars for heat flux and temperature
perturbations

Q5
aDaQa

r
, T5aDaTa . ~47!

The comoving spatial divergence of Eq.~21! gives the new
evolution equation for scalar temperature perturbations:

Ṫ5S cs
21r

11w D @ ḋ13H~cs
22w!d13Hre#23Ha2D2~cs

21r !

2
r

nT2S ]T

]sD
r

@3HB1aD2Q#13HS cs
21r

11w DS. ~48!

In summary,the coupled system that governs scalar dissipa-
tive perturbations in the general caseis given by the density
perturbation equation~28!, the entropy perturbation equation
~18!, which we rewrite as

ė13H~cs
22w1r !e523HB2aD2Q, ~49!

and Eqs.~44!–~46! and ~48!.
The number density perturbations do not occur in the

coupled system. Onced, B, andQ are determined from the
coupled system, the scalar number density perturbations, de-
fined by n5aDana , are found from the comoving diver-
gence of Eq.~17!. In the energy frame, this gives

ṅ13rHn5~11w!21@ ḋ13~cs
22w1r !Hd

13HB1a2D2Q#. ~50!

The new evolution equation~50! shows how bulk viscous
stress and heat flux govern the deviation of number density
perturbations from energy density perturbations. Note that
shear viscous stress does not directly affect the number den-
sity perturbations.

For specific applications, we present below the simplified
coupled system that arises in two special cases when only
one form of dissipation is present.

B. Bulk viscous stress only

The coupled system can be reduced to a pair of coupled
equations ind ~second order in time! ande ~second order in
time!. In principle these may be decoupled. For a flat back-
ground, the equations are

d̈1H@226w13cs
2#ḋ2

3

2
H2@118w23w226cs

2#d5cs
2D2d1~w2cs

2!D2e2
1

3H
D2ė ~51!

and

t0ë1F12
3

2
~113w22cs

222r !t0HG ė23HFw2cs
22r 13~11w!r t0H2t0~cs

21r !•1
3H

nTS ]z

]sD
r
Ge

52S z

H~11w! D ḋ1
3

~11w!Fwz1r~11w!S ]z

]r D
s
Gd. ~52!

Once these equations are solved ford and e, the other scalar quantities may be determined. Note that by the consistency
condition ~15!, the entropy perturbations cannot be zero unlessB itself vanishes.

C. Shear viscous stress only

In the absence of entropy perturbations, the consistency condition~15! is identically satisfied if only shear viscous stress is
present, and the system reduces to the pair of coupled equations

d̈1H~226w13cs
2!ḋ2

3

2
H2@118w23w226cs

21~123w212cs
2!K#d

5cs
2D2d13HṠ23H2@116w23cs

21~113w!K#S1D2S, ~53!

t2Ṡ1F12HH 3~11w!t22
4h

11wJ GS5
4h

3~11w!
@ ḋ23wHd#. ~54!

Finally, we point out an interesting feature of the case when only shear viscous stress is present~with or without entropy
perturbations!. The vector partWa of density inhomogeneities satisfies the decoupled wave equation
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t2Ẅa1F11
3

2
$12w1~113w!K%t2HGẆa1

1

4
HF6~12w!2~11w!~32w26cs

2!t2H1
24h

rH

1H 2~113w!1@2~116w13w2!26~11w!cs
213~113w!2K#t2H2

8h

rHS 123w

11w D J KGWa5F h

r~11w!GD2Wa . ~55!

The termDbsab that arises from the transport equation~42!
is eliminated via the constraint equation~A6!. We used the
identity ~A22! and the constraint equation~A7! to evaluate
curl curl va . The undamped phase speedv is clearly given
by

v25
h

t2~r1p!
.

It follows from the analysis of@9# that v<1, as expected
from causality requirements.
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APPENDIX A: COVARIANT PROPAGATION
AND CONSTRAINT EQUATIONS

The Ricci identity forua and the Bianchi identities~in-
corporating the field equations via the Ricci tensor! may be
covariantly split into propagation and constraint equations
~see@5#!. In @17#, these equations are given in our stream-
lined notation in the exact nonlinear case, for a perfect fluid.
For an almost-FLRW universe, with imperfect fluid, the lin-
earized form of the equations follows~in the nondissipative
case, all right-hand sides are zero!:

ṙ1~r1p!u523HB2Daqa , ~A1!

~r1p!u̇a1Dap52DaB2q̇a24Hqa2Dbpab , ~A2!

u̇1
1

3
u22Dau̇a1

1

2
~r13p!52

3

2
B, ~A3!

v̇a12Hva1
1

2
curl u̇a50, ~A4!

ṡab12Hsab2D ^au̇b&1Eab5
1

2
pab , ~A5!

2

3
Dau2Dbsab1 curl va5qa, ~A6!

Dava50, ~A7!

Hab2 curl sab2D ^avb&50, ~A8!

Ėab13HEab2 curl Hab1
1

2
~r1p!sab

52
1

2
ṗab2

1

2
Hpab2

1

2
D ^aqb& , ~A9!

Ḣab13HHab1 curl Eab5
1

2
curl pab , ~A10!

DbEab2
1

3
Dar52Hqa2

1

2
Dbpab , ~A11!

DbHab2~r1p!va52
1

2
curl qa. ~A12!

Some useful differential identities are@3,16#

curl Daf 522 ḟ va , ~A13!

D2~Daf !5Da~D2f !1 2
3 ~r23H2!Daf 12 ḟ curlva,

~A14!

~Daf !•5Daḟ 2HDaf 1 ḟ u̇a , ~A15!

~aDaAb•••
!•5aDaȦb•••

, ~A16!

~D2f !•5D2 ḟ 22HD2f 1 ḟ Dau̇a , ~A17!

D [aDb]Vc5S H22
1

3
r DV[ahb]c , ~A18!

D [aDb]S
cd52S H22

1

3
r DS[a

~chb]
d), ~A19!

Da curl Va50, ~A20!

Db curl Sab5
1

2
curl ~DbSab!, ~A21!

curl curl Va5Da~DbVb!2D2Va12S 1

3
r2H2DVa ,

~A22!

curl curl Sab5
3

2
D ^aDcSb&c2D2Sab1~r23H2!Sab ,

~A23!

where the vectors and tensors vanish in the background,
Sab5S^ab& , and all the identities except Eq.~A13! are lin-
earized.
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APPENDIX B: FULL CAUSAL TRANSPORT EQUATIONS

For completeness and convenience, we amalgamate the
results of@4# @Eqs. ~7.1!9# and @9# @Eqs. ~21!–~23!10# in our
notation, and present the causal transport equations for vis-
cous stress and heat flux in the general~near-equilibrium!
case, covering both cosmological and other~e.g., astrophysi-
cal! scenarios:

B52z@u1b0Ḃ2a0DaQa#1zH a08u̇
aQa1g0TQaDaS a0

T D
2

1

2
BFb0u1TS b0

T D •G J , ~B1!

Qa52kTF1

T
DaT1u̇a1b1Q̇^a&2a0DaB2a1DbpabG

1kT$a0Bu̇a1a1u̇bpab1b1«abcQ
bvc%

1kTH ~12g0!TBDaS a0

T D1~12g1!Tpa
bDbS a1

T D
2

1

2
QaFb1u1TS b1

T D •G J , ~B2!

pab522h@sab1b2ṗ^ab&2a1D ^aQb&#12h$a18u̇^aQb&

12b2«cd~apb)
cvd%12hH g1TQ^aDb&S a1

T D
2

1

2
pabFb2u1TS b2

T D •G J , ~B3!

whereQ̇^a&[ha
bQ̇b . The coefficientsz, k, andh are, respec-

tively, the bulk viscosity, thermal conductivity, and shear
viscosity. The relaxation coefficientsb0, b1, andb2 are cru-
cial to the causal behavior of the theory. The coefficientsa0
anda1 arise from a coupling between viscous stress and heat
flux, as reflected in the entropy four-current@4#

Sa5sNa1
1

T
Qa1

a0

T
BQa1

a1

T
pabQ

b

2
1

2T
~b0B21b1QbQb1b2pbcp

bc!ua

1
1

2T~r1p!
~qbqbua12pabqb!. ~B4!

The coefficientsa0, a08 , a1, anda18 mediate the coupling of
acceleration and vorticity to viscous stress and heat flux,
while g0 and g1 appear due to a coupling of the spatial
gradients ofa I to viscous stress and heat flux. There are
simple relations between the unprimed and primedaI @4#.

A change from energy to particle frame results in a redefi-
nition of various thermodynamic coefficients, but the trans-
port equations maintain the same form. A partial comparison
is given in @4# ~p. 350!, but the heat flux equation in the
energy frame contains the spatial gradient of the thermal po-
tential a5(r1p)/nT2s, and not the temperature gradient
or acceleration, which arise in the particle frame. We can
complete the comparison by using the Gibbs equation~4!
and the momentum conservation equation~A2! to show that

S nT

r1pDDaa52
1

T
DaT2u̇a1

1

r1p
~DaB1Dbpab!

~B5!

in the energy frame. It follows that the energy-frame equa-
tion ~2.38b! of @4# is in fact of the same form as the particle-
frame equation~2.41b!.

In the cosmological setting, all the terms representing
coupling of effects are nonlinear and may be neglected. To
first order,Q̇^a&5Q̇a and ṗ^ab&5ṗab . Furthermore, we fol-
low the usual practice of neglecting the final term in square
brackets on the right-hand side of each transport equation.
This can lead to problematic behavior in some cases, as
shown in @12,13# for the case of bulk viscosity. However,
under a range of reasonable conditions, these terms may be
neglected in comparison with the remaining terms@14,21#.
With these assumptions, the terms in braces in the transport
equations~B1!–~B3! all fall away, leading to the simplified
cosmological transport equations~40!–~42!.
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