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We investigate cosmological density perturbations in a covariant and gauge-invariant formalism, incorpo-
rating relativistic causal thermodynamics to give a self-consistent description. The gradient of density inho-
mogeneities splits covariantly into a scalar part, equivalent to the usual density perturbations, a rotational
vector part that is determined by the vorticity, and a tensor part that describes the shape. We give the evolution
equations for these parts in the general dissipative case. Causal thermodynamics gives evolution equations for
viscous stress and heat flux, which are coupled to the density perturbation equation and to the entropy and
temperature perturbation equations. We give the full coupled system in the general dissipative case, and
simplify the system in certain cases. A companion paper uses the general formalism to analyze damping of
density perturbations before last scatterif§0556-282197)05420-9

PACS numbd(s): 98.80.Hw, 04.40.Nr, 05.70.Ln

[. INTRODUCTION a covariant and gauge-invariant analysis of density perturba-
tions that self-consistently incorporates relativistic causal
The analysis of density perturbations in cosmological flu-thermodynamics. The general evolution equations governing
ids is well established, particularly using Bardeen’'s gaugedensity inhomogeneities are considered in Sec. Il. Inhomo-
invariant formalisn1,2]. This formalism is inherently linear geneities are covariantly characterized by a scalar part,
(i.e., it starts from the background and perturbs away from itwhich represents the usual density perturbations, a vector
and nonlocal. An alternative approach, developed by Elligpart, which we show is determined by the vorticity, and a
and Bruni[3], is covariant(and therefore locgaland readily  tensor part, which determines the shape of gravitational clus-
incorporates nonlinear effectsince it starts from the real tering. New evolution equations are derived for the vector
spacetime, not the backgroyn®e will use this covariant and tensor parts, as well as for perturbations in the number
and gauge—invariant formalism, in which the variables have @ensity, entropy, and tempera‘[ure_ We use the Gibbs equa-
clear physical and geometric interpretation. Furthermore, thgon to incorporate the temperature and entropy self-
covariant approach is directly compatible with causal relativonsistently, and we covariantly characterize different types
istic thermodynamics, as developed by Israel and Stewags perturbation. In Sec. Il the viscous stress and heat flux
[4] L i _ ) that appear in the perturbation evolution equations are sub-
ajtect to thermodynamical transport equations, which then

tions in both approachefl 5], most applications of the tions. We define appropriate dissipative scalars to obtain a

theory are restricted to the nondissipative case—and even N osed system of dynamical equations. The equations are

this case, relativistic thermodynamics is usually not applied”. "=~ " =7~ . .
to analyze the behavior of the fluid self-consistently. This isSlmpllfled in the particular cases of entropy perturbations
nondissipative and when only one form of dissipation is

not a problem when studying the evolution of Iarge—scale(

perturbations, which are unaffected by local physics—prese”t- _
although the generation of these perturbations, their initial The Israel-Stewart transport equations are under reason-

evolution before leaving the Hubble radius, and their fina/@ble conditions causal and statjig], and thus provide a
evolution after reentering the Hubble radius are governed b90n5|stent relat|V|St|C descrlptlon Of |Oca| phySIcal effeCtS on
local physics. For small-scale perturbations, within theSmall-scale perturbations. The thermodynamics of Eckart
Hubble radius, a self-consistent analysis requires the appli@nd a similar alternative due to Landau and Lifshigzmore
cation of thermodynamics. established in the literature. However, in this theory the
Here and in a companion pad&i, we develop and apply transport equations reduce from evolution equations to alge-
braic constraints on viscosity and heat flux, and as a result,
the theory is noncausdtlissipative effects propagate at su-
*Electronic address: maartens@sms.port.ac.uk perluminal speedsand all its equilibrium states are unstable
Electronic address: pep@ulises.uab.es [9]. It can be argued10] that these pathologies only occur
We are considering here the case of hydrodynamics. Dissipativeutside the hydrodynamic regime. But first, the stability
effects on the microwave background have been self-consistentlproblem persists in all situations, and second, it seems pref-
analyzed via numerical integration of the Boltzmann equage®, erable to employ a theory with built-in causality and stabil-
e.g.,[6]). A covariant and gauge-invariant approach to the Boltz-ity. Furthermore, the causal theory can deal with transient
mann equation is developed [iff]. and short-wavelength effects, which are important in
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many cosmological and astrophysical situatidsse, e.g., stres$, Q, (heat flux,Q,u®=0), andm,,= 7 (ap (Shear vis-

[11-14). cous stregs These arise in the energy-momentum tensor
Applications to dissipative situations are treated in a com-
panion papef8], where we analyze viscous damping of den- Tab= pUaUp+ (P+B)hap+ 20 aUp) + 7ap Y

sity perturbations before last scattering. This generalizes theh
results of Weinberg15], who used noncausal Eckart ther- Where[4]

modynamics.
y pt+p

—ia @

0a=Qat

II. COVARIANT APPROACH

TO DISSIPATIVE PERTURBATIONS is the total energy flux relative ta?, with n the particle

H - H a_—
The covariant and gauge-invariant analysis of density per?Umber density anl, the particle flux {;u®=0). The latter

turbations is fully discussed if8,5]. Here we present only a'¢ combined in the particle four-flow vector
the main points that are necessary for our purposes, before a_p @ ia

: p . . . N&=nu®+j2. 3
going further by deriving new evolution equations and incor-

porating causal thermodynamics. Our notation and convenn a self-consistent thermohydrodynamic description, we
tions follow [5,16,17, with some changetsee[18]). need to introduce also the temperatilirand specific entropy

further discussion belowthenh,,=gap+ UaUp Projects into  Gipbs equation

the local rest spaces of comoving observers, whggds the
spacetime metric. The covariant-B splittings of the Bian-
chi identities and the Ricci identity far?, incorporating Ein- Tds=d
stein’s field equations as an algebraic definition of the Ricci
tensor,R,,=Tap— 2Ty, are the fundamental equations in The hydrodynamic tensor§,, and N define two natural
the covariant perturbation approach. These equations may feur-velocities—the particléor Eckar) four-velocityug, for
written as propagation and constraint equations for covarianwhich j,=0=Q,=0,, and the energyor Landau-Lifshitz
scalars, spatial vector/{=h"V,), and spatial two-tensors four-velocity u3, for which q,=0<Q,=—(p+p)ja/n.
which are symmetric and trace-free, i.e., which satisfy These four-velocities coincide in equilibrium, and differ by a
small angle near to equilibriutThe four-velocityu® may
be chosen to be close tg andug. Any small change in®
produces second order chandesgligible in the linear re-
gime) in p, p, n, T, ands [4]. These scalars therefore coin-
Any spatial two-tensor has the covariant irreducible decomgide (to first ordej with the corresponding scalars for a local
position equilibrium state. The bulk and shear viscous streBsaad
ap are also invariant to first order under a small change in
1 u?. Both g? andj? undergo first-order changes, but the heat
Sab=§Shab+ Staby T €abcS"s flux vectorQ? is invariant to first order. From Eql), we see
that

P
n

1
+pdﬁ). (4)

1
Sab= Staby=N5N5S(ca) — §hcdSthab :

whereS=h2bS,, is the spatial trace an,= & ,,.S" is the

spatial dual to the skew part. Hetg,.= 7.pc4u° is the spa- ut=ug— (p+p) g% 5)

tial permutation tensor defined by projecting the spacetime

permutation tensof,,cq. The covariant derivativd , splits  For the isotropic and homogeneous Friedmann-Lemaitre-
into a covariant time derivativ,...=u®V A, .. and a co- Robertson-WalketFLRW) universes

variant spatial derivativ®,A,...=hJhS. .. VA, .. . (Note
that D.h,p,=0=Dgyeapc.) Then the covariant spatial diver-
gence and curl are defined by6]

D,0=Dp=D,p=D,B=D,n=D,T=D,s=0,

L.'|a= wa=0a=]a=0,
div V=D%,, curl Va=g,4pD"VE,
Tap=Eap=Hap=map=0.
i —pb — cg d
(AV $)2=D"Sap,  curl Sap=ecqiaD"Sy)" In covariant perturbation theory, a universe with small an-
The fluid kinematics are described by the scalarDu, |_sptr0py_ and inhomogeneity is characterized l_ay these quan-
) ; . ) tities being small, and one neglects terms which are nonlin-
(expansioh, the spatial vectorsi, (four-accelerationand  ggr in them. Since these quantities vanish in the background,
wa=— (1/2) curl u, (vorticity), and the tensowap=DaUy)  they are gauge invariafi]. Note that Friedmann-Lemaitre-
(sheay. Thg locally free grgvnannaI field is described by Ropertson-WalkefFLRW) models can admit scalar dissipa-
the electric and magnetic parts of the Weyl tensor,
Ean= Cacbc“cud: E(ab) and Hgp= %SachCdbeue: H(ab) .
The fluid dynamics are given by the energy dengifythe 2t has recently been argud@0] that only the energy frame is
pressurep, and the dissipative quantitieB (bulk viscous suitable for the description of irreversible thermodynamics.
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tion, in the form of a bulk viscous stre&s (see, e.g.[12— Da=C§5a+fea, (11)
14,19), reflecting the fact that expanding fluids in general
cannot maintain equilibriun4]. However, we shall follow e,=8,— (1+W)v,, (12)

the standard approach in irreversible thermodynamics of as-
suming an equilibrium background state, so tBat0 inthe  where the dimensionless quantities
background For convenience, the linearized Bianchi and

Ricci equations that underlie the covariant gauge-invariant , [P 1/dp
theory are given in Appendix Ausing the above notation Cs= % T aT Js (13
and definitions, introduced ifL6], which considerably sim- s P

plify the original equations Appendix A also contains use-

are, respectively, the adiabatic speed of sound and a non-
ful differential identities. Note that in the background P y P

barotropic index. Note that in Egél1l) and(12), these quan-
9=3H, p=3HZ(1+K), gtrlgjnzndw are evaluated in the backgrouhdn the back-

.__E ’ I -
H=—SHA3(1+w)+(1+3w)K], B=0=s, () 2P e aH W (W), 14
p

whereH =a/a is the Hubble ratea is the cosmic scale fac- _ _
tor, K=0,+(aH) 2 is the dimensionless spatial curvature Where we have uses=0 and the energy conservation equa-

index, andw= p/p. tion (Al).
Linearization of the number conservation equation A covariantthermodynamic classification of scalar pertur-
V.N2=0 gives bations is as follows. Perturbations gmndissipativeif
) B=Q,=m,,=0, and then in particulas=0, so that the
n+6n=-D?%j,. (7) specific entropy is constant along fluid-flow lines. If the spe-

_ _ cific entropy is the same universal constant along all flow
Using the energy conservation equatiéd) and the number  |ineg e ife,=0 in addition tos=0, then the perturbations
conservation equatiofv), together with Eq(2), the Gibbs 46 isentropic often (misleadingly called “adiabatic.” For

equation(4) implies that isentropic perturbations, Eq$11) and (12) show that the
: a number density perturbations and pressure perturbations are
nTs=-3HB—-D"Q,. (8) algebraically determined by the energy density perturbations:

I . va=8,/(1+w), p,=c28,. The case of dissipative pertur-
The contribution of shear viscous stress to entropy gener%-gﬂonaS (withe)=%a SOS tﬁat the specific entroF;)y varipe s but
a 1 [}

tion is via a nonlinear termu**m,, so thatin an almost- "o S i dow Wil be calledissipative perturba-
FLRW universe, the shear viscous stress does not contribute y 9 ' P P

. R i lons without entropy perturbation3 he integrability condi-
to s. Thus nondissipative perturbations are not adequatel

) : . tion e,=0, implies, via the gradient of the entropy evolution
characterized by s=0. We need to specify that gqyation(8), that

B=Qa=map=0.

Scalar perturbations are covariantly and gauge-invariantly 3HD,B+D,(D?Q,)=0, (15)
characterized by the spatial gradients of scalars. Density in-
homogeneities are described by the comoving fractional derwhich is very restrictive, except in the case where only shear

sity gradient 3] viscous stress is present. In general, dissipative perturbations
will also involve entropy perturbations.
_aDgp ) The evolution of the temperature is clearly affected by the
a p nature of the perturbations. In order to determine how this

works, we usep ands as the independent thermodynamic
We define also the comoving expansion gradig8lt the  variables in the Gibbs equatiqd). The integrability condi-
dimensionless fractional number density gradiemdt con-  tion 9°n/dpds=d°nl 9sdp then gives
sidered in[3,5]), normalized pressure gradient, and normal-

ized entropy gradientsee[18]) by (o+ )(ﬂ) (41T
pTp p s )

aDgn aDgp anTDgs s
0,=aD,0, v,= . Pa= ,  €y= .
n p p where we used
(10)
_ _ _ an n’T
Using the fact thap=p(p,s) and the Gibbs equatidd), we —| =- ,
find 8], PP

3The consistency condition that this assumption imposes through“lf B is nonzero in the background, then the background speed of
the transport equatiof@0) for B is that the bulk viscosity should  sound acquires an additional dissipative contributignwhere(see
be much less thaps™?. [21]) ¢, 2= Bo(p+p), and B, arises in Eq(40).
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which follows from the Gibbs equation. Using the identity Equation(18) shows thafor nondissipative or shear viscous
perturbations, entropy perturbations decay with expansion

[T\ . [T . unless ¢—w-+r=0. Defining the comoving fractional tem-
T= ap Sp+ a5 > perature gradient by
p
together with the energy conservation equatiaft) and the aD,T
entropy evolution equatiofB), the above equations lead to Ta= T (20
the temperature evolution equation
T ) (c§+r) a we find from the evolution equatiofil6) and the identity
T (cs+r)o- m[3HB+ D®al (A15) that theevolution equation of (covariant and gauge-
invariant) temperature perturbationis given by
oT
- W E) [BHB+ DaQa]. (16 . )
p Ta=—3(c3+r)Hau,— (c2+r)0,—3HaD,(cZ+r)
This equation reproduces the standard cooling rates for per- a(c§+r) b
fect fluids in the nonrelativistic and ultrarelativistic casés. - m[?ﬂ" DaB+Da(Dqp)]
the general case, the source terms on the right-hand side
show the role of nonbarotropic and dissipative effects. Note a (dT b
that the last term vanishes if the temperature is barotropic, ~ 72l 55| [3HDaB+Da(D°Qy)]. (21)
i.e., if T=T(p). Bulk viscous perturbations counteract the P

cooling due to expansion, shear viscous perturbations do not
affect the cooling ratéto first ordej, and the effect of heat Now 6, contains more information than just the scalar den-
flux depends on the sign of the divergence. For nondissipasity perturbations, since at each poidy, picks out the direc-
tive perturbations, the sign of the nonbarotropic indede-  tion of maximal inhomogeneity. The irreducible parts of the
termines whether cooling is enhanced or retaftied. comoving gradient o, then describe completely and cova-
We can also derive new evolution equations for the numriantly the variation in density inhomogeneities:

ber density perturbations, entropy perturbations, and tem-
perature perturbations. The comoving gradient of the number
conservation equatiofy), together with the momentum con-

1
__ c
servation equatioA2) and the identityA15), gives aDpda=3 dNapt avt EapWV, (22

3

. - _ -1/ 2
Vat 3rHva= =0, +3(1+w) (cs+r)HS, where the scalar pag=aD?®5,=(aD)?p/p corresponds to

the usual gauge-invariant density perturbation scalarl],

the vector partw,=—3%a curl 8, describes the rotational
properties of inhomogeneous clustering, and the tensor part
+DaD"(Qp—0dp)]. (17 £,,=aD,8y) describes the volume-true distortion of inho-
mogeneous clusteringThese quantities were introduced in
The comoving gradient of the entropy evolution equati®  [5], but only the scala was discussefl These irreducible
together with the energy conservation equatiél), the  parts encode, respectively, the total scalar, vector, and tensor
temperature evolution equatigh6), and the identityA15), contributions to density inhomogeneities.
gives theevolution equation for entropy perturbations: It is difficult to see how a rotation independent of the
vorticity could arise, and indeed we can show thgf is
always proportional to the vorticity vector:

a .
- b
+ Ty [ (DaB+ Gt 4HG,+ D mgp)

. a?
e+3H(c2—w+r)e=— ?[3H D?B+D?(D?Q,)],

(18) W,=—3a?H(1+W)aw,. (23

where we have defined the scalar entropy perturbation

5 This follows from the identityfA13) and the energy conser-
a nTDzs (19) vation equation(Al). Thus rotation in clustering matter is
' inherited entirely(in the linear regimefrom cosmic rotation:
The vector part of density inhomogeneities is determined
completely in direction by the cosmic vorticifihe expan-
5A similar equation is given ifi21], but in the particle frame only, sion and pressure index affect the magnitude of the vector

— a —
e=aD%,=

and without separating out the nonbarotropiterms. part. In particular, it follows tha¥V,= 0 if the background is
fUsing the Gibbs equation(4), we can show that nonexpanding or de Sittemw=—1).
r=cZp(1+w)a—ncyl/nc,, where a=n(dn"/JT),=0 is the The vorticity propagation equatio®\4) leads to the new

dilatation coefficient, and,=T(Js/dT),=0 is the specific heat at evolution equation for the vector part of density inhomoge-
constant pressure. neities:
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. 1 inhomogeneitied. In the energy frame, heat flux also has
Wa+ 5 H[3(1—w)+(1+3w)K]W, no direct influence oW, . Equation(24) shows thatfor
nondissipative or only shear viscous perturbationsg W
decays with expansion unles3(1—w)+(1+3w)K=0.
For ordinary hydrodynamic matter, with<Ow<3, this in-
equality is never satisfied if the spatial curve is non-negative.
where we have used Eq) and (14), and the momentum To derive evolution equations for the tensor and scalar
conservation equatiofA2) allowed us to evaluate cud,, parts, we take the comoving spatial gradient of the energy
together with the identitfA13). Unsurprisingly, Eq.(24)  conservation equatiofA1) and the Raychaudhuri equation
shows that the scalar dissipative quantydoes not influ- (A3), using the momentum conservation equatié2), the
ence the evolution of the vector part of densityidentities(A14)—(A16), and Eq.(23):

3a’H
2p

curl [q,+4Hq,+DPmap], (24

. 3aH . a
5,=3WHGS,— (1+w)f,+ T[qa+ 4HQ,+ D] — ;Danqb, (25)

y 3 2 2.2 22 2 2 a 2 2
(1+W) 3=~ 2H(1+ W) 6~ SHAL+ W (14w §e)K]5,— ¢fD?5,~ 1 (KH?+D?)e;— — (KH?+D?) DB
HZ

* 2,

. a . 2
[3(1+w)+(1+3w)K][qa+4Hq,+ DParap] — ;Dan[qb+ AHQy+ D]+ acg curl W,. (26)

Equation(25) can be shown to be in agreement with E8{l) of [5], while Eq. (26) generalizes Eq62) of [5] by including
bulk viscous effects.
We can now decouple the equations:

y: 2y 3 2 2 2 2, 2.2
Bat H(2=6w+3¢2) 35— 5 HY[1+8w— 3w~ 62+ (13w’ + 5cDK]4,

=c2D?%s —Ec2 curl W,+r(KH2+D?)e +E(KH2+D2)D B+3ﬁ{" +H[7-3w+3c2— (1+3w)K]c
S a a S a a p a p Qa S qa

a .
+6HY1—3w+2¢2—(1+3w)K]g,—c2D,DPqp} + ;{SH D 7+ 3H2[2— 3w+ 3c2— (14 3w)K]D gy

+D,D DSy}, (27)

where we have used Eg&), (9), (11), and (A14)—(A16). S[e]=r(3KH?+D?e, (29
The comoving gradient of the evolution equati@?7) deter-

mines evolution equations for the scalar, vector, and tensor

parts of density inhomogeneities, incorporating all dissipa- S[B]=(3KH?*+D?B5, (30
tive and entropy effects. We have already derived the vector

evolution Eq.(24). Taking the comoving divergence of equa- . ) .

tion (27), and using identitie§A14)—(A16) and(A20), gives S[QJ=33H{Q+ H[1—9w+cs—(1+3w)K]q

the evolution equation for scalar density perturbations

. .3 3 2
5+ H(2— 6w+ 302) 5—SH?[ 1+ 8w—3w?— 67+ (1—3w? — 5 HA1+8w—9ow’—8c+(1-9w”)K]q

+2c2)K]6—c2D25=S[e]+S[B]+S[q]+S[ 7], (29) —cZD%q}, (31)

where the source terms arising, respectively, from entropy ) ) ) )
perturbations, bulk viscous stress, energy flux, and shear vis- S[ m]=3HS—3HT1+6w—3cs+(1+3w)K]S+D*S,
cous stress are (32

and we have defined the dimensionless perturbation scalars
Although the gradient oB occurs in the transport equati¢fl)
for Q,, and therefore occurs on the right-hand side of 24) in 22 2 b
the particle frame d,=Q,), the curl of this gradient is negligible B= a’D’B _ aD?g, S a“D®D map (39

by the identity(A13), sinceB vanishes in the background. p p
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Equation (28) generalizes Eq(74) of [5] to include bulk  which supercedes the noncausal and unstable theories first

viscous effects, and is presented we believe in a more trangut forward by Eckart, and Landau and Lifshitz.

parent form, which makes clear the physical meaning of each The predictions of the causal theory agree with those of

term. the pathological theories in quasistationary situations. But
The newevolution equation for the tensor part of density when high-frequency or short-wavelength effects are impor-

inhomogeneitiefollows from the trace-free symmetric part tant, in the transient regime, the pathological theories are

of the comoving gradient of Eq27), on using the identities inapplicable. Thus these theories cannot cover the full range

(A14)—(A16): of behavior of a relativistic fluid near equilibrium. Moreover,
3 these theories cannot even constitute part of a consistent the-
F: _ N T AT Cau2_an2 oretical thermohydrodynamics because they are intrinsically
Sapt (27 6WH3C5)H 2H [1+8w=3w"—6c; not relativistic theories, given their pathologies. Thus our
9. 2.2 ) approach is to employ the causal thermodynamics to con-
+(1=3w+ 5¢5)K]€ap— CsD(aDpyd struct a self-consistent theory of cosmological density pertur-
_ bations in the general case. In particular applications, where
=S[€e]aptS[Blapt+S +S . 34 . | oo
[€lap+ S[Blapt SlAlapt S[7]ap B9 i can be argued that the noncausal theories will give reason-
The source terms are given by able results, we can then specialize the general equations
appropriately. This is done in the companion paj&dr
Slelap= 3rKaH2D<aeb>+ rDaDp)e, (35 The full form of the transport equations, encompassing

situations where the background equilibrium state is acceler-
ating and rotating, and including terms which were neglected
in the original theory and restored by Hiscock and Lindblom
[9], is given in Appendix B for convenience. Since we are

2H2
S[Blay=3K— —D(uDyB+DuDyB. (30

H

a . ) dealing with cosmological perturbations, the background is
S[Q]ab=3T{D<aQb>+ H[7—3w+3cs— (1+3w)K] nonrotating and nonaccelerating, and spatial gradients of
thermodynamic coefficients give rise to nonlinear terms.
><D<aqb>+6|-|2[1_3w+ ch—(1+3w)K] There are also linear terms, containing time derivatives of
thermodynamic coefficients, which were restored ®y We
X D40y~ €2D (2Dp)D°dc}, (37 will follow the arguments of21,14 which show that under

many reasonable conditions, these terms may be neglected in
comparison with the other terms in the transport equafions.

With these simplifications, Eq$B1)—(B3) reduce to the
causal transport equations

a? .
SLmlap=—{3H DDy c+3H?[2— 3w+ 3c2

—(1+3wW)K]D (4D 7y + D (2D py DD g}
(38) B=—{[6+BoB— aD?Qal, (40)

Comparison of Eq9.28) and(34) shows that in the simplest . . b
case of isentropic perturbations, the density distortion tensor Qa=~K[DaT+TUa+TB1Qa— TaDaB~Ta D map],
£., obeys the same equation as the scalaso that (41)

Sab=Aapd,  Aap=0. (39 Tap= 27 Tapt Bomap— 21D (aQpy]. (42)

The presence of entropy or dissipative perturbations break.'fhe coefficientst, «, and 5 of bulk viscosity, thermal con-

the simple relation(39), and the evolution of the shape of S : : .

P AR . i ductivity, and shear viscosity, appear also in the noncausal
density inhomogeneities is not directly determined by the - . - .
scalar density perturbation (and the nonrelativistjctheories. The coefficientg, define

characteristic relaxational time scales

I1l. CAUSAL TRANSPORT EQUATIONS
Q 70={Bo, T1=KTB1, T2=271B,

We are now ready to introduce the evolution equations
obeyed by the dissipative quantities in the causal thermodywhich are often taken to be of the order of the mean collision
namics of Israel and Stewd]. This theory is based on a time, but which are determined by collisional integrals in
covariant treatment of the second law of thermodynamicsinetic theory[4]. The noncausal theories are characterized
and the conservation equations, and its transport equatiolyy 8,=0. Intuitively, this corresponds to instantaneous re-
are confirmed by relativistic kinetic theofyia the relativis- laxation to equilibrium when the dissipative “force” is
tic generalization of the Grad approximatjpiwhich also  switched off. The coefficients,, which also vanish in the
provides explicit expressions for the various thermodynamigioncausal case, arise from a coupling of viscous stress and
parameters in the case of a dilute gas. The theory thus hash&at flux(see Appendix B They may also be found from
firm physical foundation. Furthermore, as pointed out earlierkinetic theory in the case of a dilute gas. These transport
dissipative signals propagate below the speed of light and the
equilibrium states are stable, within the regime of validity of
the theory. Thus the causal and stable thermodynamics offNote, however, that it is not always reasonable to neglect these
Israel and Stewart is a consistent relativistic thermodynamicgerms—sed 12,13 for examples.
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equations hold in the energy and particle frames, with suit- B=(—1+ 10w+ 39w?+ 24rw3—15c§+ 54wc§+ 9wzc§
able simple changes in some of the thermodynamic coeffi-
cients(see Appendix B +3r—9w?r—18rc2— 18c)H — 6(c2)’

The transport equatiorig0)—(42) are coupled to the evo-
lution equations for density inhomogeneities—the scalar
equation(28), the vector equatiof4), and the tensor equa-
tion (34). They are also coupled to the evolution equations A. Coupled system in general
(17), (18), and (21) for number density, entropy, and tem-
perature perturbations. In all of these evolution equation
except the entropy evolution equati¢b8), the energy flux
vector ¢, occurs. Considerable simplification is thus

—(1+8w—3w2—6c3)(Inr)".

S The complexity of Eq(43) indicates the difficulty of de-
¢oupling the equations for dissipative perturbations. In gen-
eral, the fact that the transport equations are first order in

: . - time derivatives shows that any decoupling will produce at

achieved by choosing the energy framg,£0), which is least one higher time derivative in the evolution equations. In

consistent with arguments in favor of that frafi9,22. o o
. ' the noncausal limit 8,=0), when the derivative terms drop
In general, the coupling among the transport and evolu ut of the transport equations, this does not hold, and the

tion equations is highly cor_npllcated, although the COUpl.eoorder of the equations is the same as in the nondissipative
system can always be cast into a form suitable for numerical, -
integration. Even in the nondissipative case, when the trans- —_ . .
: . . The transport equation&t0)—(42) contain further cou-
port equations fall away, the evolution equations themselves,. R g .
lings amongst the dissipative quantities and couplings to the

are coupled. In the simplest case of isentropic perturbatlongensity and entropy and temperature perturbations. These

(B:Qa:%bt:.o’ e=|0)_|,6the_;5hcalacri equattljo(mr?) reducesﬁto further couplings are revealed when we take comoving spa-
a wave equation only i@ (with undamped phase speeg, tial gradients, and use the following expressions:

as expected In principle, the solution of this equation, and

the solutionW, of Eq. (24), may be used to express E§4) aDa{ _ (‘7_5) + i ‘7_5) e
as an equation only gy, P dplg* nT\gs] ™
For nondissipative entropy perturbations, decouplihg
leads to a third-order equation. First we apply the operatowhich follows from Eq.(10);
3KH?+D? to Eq.(18), using identity(A17) and 1
K=H(1+3W)(1+K)K, aDaHa:m[BWH5—5+3HS],

to get which follows from Eq.(25), using the energy frame;

[(3KH2+D?)e] +H(2—3w+3c2+3r) L
S 2
X[(3KH2+D2)9]:0. aDaUa—_m[C35+re+B+S],
Then we use Eq(28) in this latter equation, together with
identity (A17) and Eq.(6), to obtain thedecoupled density

perturbation evolution equation for nondissipative entropy
perturbations

which follows from the momentum conservation equation
(A2);

2napb 2 a
1 3 acDeD O'abzgaD 0&11
S+[(4—9w+6c2+3r)H—(Inr) 15— EAH(S—EBHzé

which follows from the constraint equatiofA6) and the

=c2D26+[{3(c2—w-+r)H—(Inr) }c2+(c2) 1D24, identity (A20); and
2
@ DD®D (4Qy) = (p—3H?)D*Qa+3D*DQa),

whereA andB are complicated functions @f, ¢, r, H, and

K. In the case of a flat backgroud=0, we have which follows from identity (A18). Then operating on the
A= (1+84w—27w?— 692+ 27AwcZ—12r + 36wr— 18rc? transport equation&40)—(42) with, respectively, §%/p)D?,
4 . 5 . (a/p)D?, and @%/p)DDP, we get the nevecausal transport
—18c5)H—6(cg) +2(2—6w—3cg)(Inr)", equations for the scalar dissipative quantities

. B ) 3¢H { [ pldl 3H/[ ¢
7o +[1-8(1+ W) roH]B= ({ao@)D?Q+ |~ p(1+w){5—3H w(Ltw) g 22 ol 5] e
) " (44
; kT T 5
7'1Q+[1_3(1+W)T]_H]Q:— 5 +m[{aop(l—i-w)—1}B+{a1p(1+w)—1}8]+m[csﬁ-re], (45)
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and Eqs.(44)—(46) and(48).

The number density perturbations do not occur in the
coupled system. Oncé, B, and Q are determined from the

2 ) ) 7 : coupled system, the scalar number density perturbations, de-
=3 71a(D°Q+3HKQ)+ m[5_3WH5]- fined by v=aD?v,, are found from the comoving diver-
gence of Eq(17). In the energy frame, this gives

mS+ Trw

4n
1—H:3(1+W)72—

(46)
We have defined the scalars for heat flux and temperature . e )
perturbations v+3rHv=(14+w) [5+3(cs—w+r)HS
aD?Q +3HB+a’D?Q]. (50)
= 2 T=aDT,. (47)

The new evolution equatiob0) shows how bulk viscous
stress and heat flux govern the deviation of number density
perturbations from energy density perturbations. Note that
] shear viscous stress does not directly affect the number den-
[6+3H(c2—w)56+3Hre]—3Ha?D?(c2+r) sity perturbations.
For specific applications, we present below the simplified

coupled system that arises in two special cases when only

S. (48)  one form of dissipation is present.

The comoving spatial divergence of EQ1) gives the new
evolution equation for scalar temperature perturbations:

. c2+r
Sl 14w

P aT) 3HB+aD?Q]+3H
—ngp[ aD“Q]

2
S

1+w

n

In summarythe coupled system that governs scalar dissipa-
tive perturbations in the general cagegiven by the density _
perturbation equatiof28), the entropy perturbation equation ~ The coupled system can be reduced to a pair of coupled

B. Bulk viscous stress only

(18), which we rewrite as equations ins (second order in timeande (second order in
: ) 5 time). In principle these may be decoupled. For a flat back-
e+3H(cs—w+r)e=—-3HB—-aD“Q, (49 ground, the equations are
|
% 27" 3 2 2 2 22 2 2 1 2,
o+ H[2—6w+3cs]5—§H [1+8w—3w"—6c:]5=csD*6+(w—c:)D e—ﬁD e (51
and

. 3 .
Toe+|1— E(l+3w—20§—2r)roH e—3H

nT

2 2 3H[d¢
W—Cg—r+3(1+w)rrgH—7o(c5+r) + — Is

8

[W§+p(1+w) ﬁ—g) S (52
{ apl )"~

_ 4
__(H(1+w) 1w

Once these equations are solved &and e, the other scalar quantities may be determined. Note that by the consistency
condition(15), the entropy perturbations cannot be zero unBsself vanishes.

C. Shear viscous stress only

In the absence of entropy perturbations, the consistency conditns identically satisfied if only shear viscous stress is
present, and the system reduces to the pair of coupled equations

- 2\ 3 2 2 2 2 2
5+ H(2—6w+3cd) o~ SHY1+8w—3w?—6ci+(1-3w’+2cD)K]5

=c2D%6+3HS—3H 1+6w—3c2+ (1+3w)K]S+D?3S, (53
S+[1—-H{3(1 4n S= 47 S5—3wWHS 54

Finally, we point out an interesting feature of the case when only shear viscous stress is (pviteemt without entropy
perturbations The vector pariV, of density inhomogeneities satisfies the decoupled wave equation
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y 3 1 ) 24y
oWat| 14 S {1=w+ (14 3w)K} mH |Wa+ ZH| 6(1—w) = (1+w)(3—w—6cZ) m,H + P
+{2(1+3w)+[2(1+ 6w+ 3w?) —6(1+w)c2+3(1+3w)%K] H—8—77 173w W,=| —"|p2w (55)
s 20T o 1w a” | h(1+w) a-
|
The termDP®o,, that arises from the transport equati@®) ) 1
is eliminated via the constraint equatioA6). We used the Eap+ 3HEap— curl Hapt 5 (p+P)oap
identity (A22) and the constraint equatid\7) to evaluate
curl curl w,. The undamped phase speed clearly given 1. 1 1
by =~ 5Tab~ 5 H7ab=5Dal). (A9)
UZZL : 1
m(p+p)’ H.p+3HH,+ curl Eabzz curl 74, (A10)
It follows from the analysis of9] that v<1, as expected 1 1
from causality requirements. DbEab— §Dap= —Hqg,— Ewaab, (A11)
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curl D,f=—2fw,, (A13)
APPENDIX A: COVARIANT PROPAGATION
AND CONSTRAINT EQUATIONS DZ(Daf)= Da(sz)+ %(p—3H2)Daf+2f curlw,,
The Ricci identity foru® and the Bianchi identitiegin- (A14)
corporating the field equations via the Ricci tensmay be , .
covariantly split into propagation and constraint equations (Daf) =Daf —HDLf +fuy, (A15)
(see[5]). In [17], these equations are given in our stream- _
lined notation in the exact nonlinear case, for a perfect fluid. (aDaAp...) =aDjAyp..., (Al6)
For an almost-FLRW universe, with imperfect fluid, the lin-
earized form of the equations follow# the nondissipative (D2f) =D2f—2HD?f + fD?,, (A17)
case, all right-hand sides are zgro
1
p+(p+p)6=—3HB—DA3q,, (A1) D[aDch:(HZ— 37 |Viahoie. (A18)
+p)U,+Dp=—DB—q,—4Hq,— DPrryy, (A2 1
(p+p)ua aP ab~(a Ua ab, (A2) D[an]SCdZZ( H2— §P)S[a(chb]d)r (A19)
1, ] 3
0+ 30"~ D%uat 5(p+3p)=— 3B, (A3) D2 curl V,=0, (A20)
: 1 : D curl S 1 curl (DPS,;) (A21)
wat2Hw,+ 5 curl u;=0, (A4) ab™ 2 ab/»
1
: . 1 curl curl V,=D,(D"V,)—D?V, +2 §p—H2)Va,
Tapt2Hogp— D(aub)+ Eabziﬂ'abr (A5) (A22)
2 _3 c 2 2
§Da0—Db0'ab+ curl w,=da,, (AB6) curl curl Sab_ED(aD Spyc = D*Sapt+(p—3H*)Syp,
(A23)
D%w,=0, (A7) where the vectors and tensors vanish in the background,

Sab=Sany» and all the identities except E¢AL3) are lin-

Hap— curl 04— D a0, =0, (A8)  earized.
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APPENDIX B: FULL CAUSAL TRANSPORT EQUATIONS

) =sN+ = Qa+ BQa+—ﬂ'abQ
For completeness and convenience, we amalgamate the

results of[4] [Egs.(7.1)°] and[9] [Egs. (21)—(23)*°] in our 1

notation, and present the causal transport equations for vis- — —_(BaB%2+ by g P02
cous stress and heat flux in the gendraar-equilibrium ZT('BO ALQuQ Bamocm™)
case, covering both cosmological and otteqg., astrophysi-

. 1
cal) scenarios: ___—  _(qb a ab
) T T ) U+ 270, (B4)

. . (7))
B=— [0+ BoB— agD?Q,]+ ¢} agu?Qa+ yoTQD,| — - . .
{10+ BoB~ aoD"Q.] 4 U Qat 70T Q a( T ) The coefficientsag, aj, a;, anda; mediate the coupling of

acceleration and vorticity to viscous stress and heat flux,

,800+T('80) H (B1) WhileT vo and vy, appear due to a coupling of the spatial
gradients ofea, to viscous stress and heat flux. There are
simple relations between the unprimed and prirag¢4].

1 . . b A change from energy to particle frame results in a redefi-
Qa=—«T fDaT+“a+ﬁlQ<a>_ aoDaB—a;D g nition of various thermodynamic coefficients, but the trans-
_ _ port equations maintain the same form. A partial comparison
+ kT{agBU,+ a;uP 7 p+ B1€ 2 QPwC} is given in[4] (p. 350, but the heat flux equation in the
energy frame contains the spatial gradient of the thermal po-
“1 tential «=(p+p)/nT—s, and not the temperature gradient
T (1=%)TBD, ( F(1=y) T, Db( T) or acceleration, which arise in the particle frame. We can
complete the comparison by using the Gibbs equatin
Qa[,319+T(€-l) H (B2) and the momentum conservation equatié) to show that

. : nT 1 . 1
Tap=—2n[0apT ﬁzﬂ'(ab)_ alD(aQb)] + zn{aiu(aQb) m Daa=-— ?DaT_ Up+ m(DaB+ Dbﬂ'ab)
@ (B5)
c, d 1
+2B28cdamn) @} +27) 11T QD) |
in the energy frame. It follows that the energy-frame equa-

1 Wab[ B0+T 52) ] (B3) tion (2.38h o_f [4] is in fact of the same form as the particle-
2 T frame equatior(2.41h.

In the cosmological setting, all the terms representing

WhereQ<a>— aQb The coefficients, x, and» are, respec- coupling of effects are nonlinear and may be neglected. To
tively, the bulk viscosity, thermal conductivity, and shearfirst order, Q<a> Q, and 7T<ab>—'7Tab Furthermore, we fol-
viscosity. The relaxation coefficienf, B8,, andg, are cru- low the usual practice of neglecting the final term in square
cial to the causal behavior of the theory. The coefficierys brackets on the right-hand side of each transport equation.
anda; arise from a coupling between viscous stress and hedthis can lead to problematic behavior in some cases, as
flux, as reflected in the entropy four-currg# shown in[12,13 for the case of bulk viscosity. However,

under a range of reasonable conditions, these terms may be

neglected in comparison with the remaining terftd,21].

Note that thea, in Eq. (7.19 of [4] should bea;. With these assumptions, the terms in braces in the transport
ONote thatV ,q2 in Eq. (21) of [9] should beg®°V ,q, (using their  equations(B1)—(B3) all fall away, leading to the simplified
notation. cosmological transport equatio®0)—(42).
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