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The Hadamard renormalization prescription is used to derive a two-dimensional analog of the renormalized
stress tensor for a minimally coupled scalar field in Schwarzschild—de Sitter space-time. In the two-
dimensional analog the minimal coupling reduces to the conformal coupling and the stress tensor is found to
be determined by thénonloca) contribution of the anomalous trace and some additional parameters in close
relation to the work by Christensen and Fulling. To properly relate the stress tensor to the state of outwards
signals coming from the direction of the black hole at late times we propose a cutoff hypothesis that excludes
the contribution of the anomalous trace close to the black hole horizon. The corresponding cutoff scale is found
to be related to the equilibrium temperature of the cosmological horizon in a leading order estimate. Finally, we
establish a relation between the radiation temperature of the black hole horizon at large distance from the hole
and the anomalous trace and determine the correction term to the Hawking temperature due to the presence of
the cosmological horizo S0556-282(97)05918-3

PACS numbe(s): 98.80.Hw, 04.20.Gz, 04.62v

[. INTRODUCTION still be justified. In this article we first clarify this aspect in
connection with the Hadamard renormalization prescription
A central problem in quantum field theory in curved developed i{3-5] (see alsd6]). We then apply the results
space-time is the computation of the renormalized expectd0 the two-dimensional analog of Schwarzschild—de Sitter
tion value of the stress tensor operafdt. Usually one is space-time and derive the leading order approximation of
inclined to expect that the stress tensor at some point in gquilibrium temperature and radiation temperature associated
curved space-time can be measured by a well-defined locHyith the cosmological event horizon and the black hole ho-
operator. However, the usual expression for the stress tensHZ0ON, respectively. In our presentation the equilibrium tem-
operator involves singular products of the field operator aferature of the cosmological event horizon basically emerges
the same space-time point, and it seems clear that such siffom a physical cutoff which close to the black hole horizon
gular products do not allow the definition of a well-defined excludes the contribution of the anomalous trace to radiation
local operator. Renormalization theory of the stress tensopart of the stress tensor. In essence, such an approach has a
was originally designed to solve this problem. But, it must becertain similarity to the recent publicatioig—9] in which
remarked that the usual scheme of renormalization involvedissatisfactions were expressed with the use of the singular
complicated, often ambiguous, steps and it is by no mean&odes escaping from a region close to the black hole horizon
apparent that the resulting final expressions actually correl the derivation of the Hawking effect. We believe that our
spond to the expectation value of a well-defined local operaPresentation, although it will not use the notion of mode to
tor acting on the Hilbert space of states. In principle, onedenerate the Hawking effect, is instructive because it sug-
should recognize that there is no conceptual support for gests that in a future theory the physical cutoff for a black
local measure of energy-momentum of some given stat80le may have an intimate connection to the presence of an
without reference to any global construct. In fact, even indssociated cosmological horizon.
Minkowski space energy-momentum is measured relative to

a global construct, namely the Minkowski vacuum. We em- Il. HADAMARD RENORMALIZATION
phasize that the conceptual basis of the renormalization . i ) ]
theory, as it is currently understood, is still ill defined. We consider a linear scalar quantum figldoropagating

Despite these difficulties, the usual renormalization preOn & curved space-time with the action of the standard form

scriptions have some power, in that they satisfy some gener
requirements, such as the covariant conservation law, and in 1
the case of the conformal invariant coupling the general re- —_ | A4yl g 2, 242
qguirement on the anomalous trace. It is just for this reason 1= 2[ IXGHGapd @7+ ERGTH MY, (1)
that the study of the usual renormalization prescriptions can
wherem and ¢ are parameters, arRlis the scalar curvature.
(In the following the semicolon an& indicates covariant
*Electronic address: salehi@netware2.ipm.ac.ir differentiation) The corresponding field equation is
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(O-m?—£R)p(x)=0. 2) We remark that for a linear theory the antisymmetric part

of the two-point function is common to all states in the same

The choice of the parametar and ¢ depends on the particu- representation. It is just the universal commutator function.
lar type of coupling we wish to consider. For example, theThus, in our case all the relevant informations about the
minimal coupling corresponds tan=0,6=0) and the con- state-dependent part of the two-point function are encoded in
formal coupling in four dimensions corresponds toG™*(x,x’). Equivalence principle suggests that the leading

(m=0¢=1). singularity ofG™(x,x") should have a close correspondence
The energy-momentum o is defined by the singular t0 singularity structure of the two-point function of a free
expression massless field in Minkowski spa¢#1]. In general the entire

singularity ofG*(x,x’) may have a more complicated struc-
, , 1 8 ture. Usually one assumes th@&" (x,x’) has a singular
TH(X)=(1-2§)V V7 e+ 25_5 9*"VppVFie structure represented by the Hadamard expansions. This
means that in a normal neighborhood of a poirthe func-

1 ; + ’ ;
e Rer— Eg‘”R B+ 26 (g T b= VAV ) tion G™(x,x’) can be written
1 G (0= ] SO e i)
X,X")= X,X")Ino(X,X
5 Mg 2. 3 87 o(xx')
We shall deal with a particularly useful version of E8) in +W(x,x’)} , (8)
terms of anticommutator, namely

1 I where 2r(x,X") is the square of the distance along the geo-
& 29 (V. Vg desic joiningx andx’ and A(x,x") is the van Vleck deter-
minant

1
TH(x)= 5(1-28){V*¢,V"} +

1 1
+5E R Eg“”R){¢,¢}+ £9""{ ¢, 0 ¢} A(x,x")=—g YAx)De{ —a.,,,,}g YAx'),
g(x)=Detg,p. 9)

The functionsV(x,x") andW(x,x") have the following rep-
A state of ¢ is characterized by a hierarchy of Wightman résentations as power series:

1
—§{¢,V“V”¢}—Zng“”{¢,¢}. (4)

functions +oo
ry — ! n
(d(X0), .- (X)), (5) VX)= 2 Vo(xx') o, (10
The “operator” T#” takes a singular expectation value oo

(T**) in a given state. Using the point-splitting methdd],
this singular expectation value can most conveniently be rep-
resented by

W(x,x')=n20 W, (x,X") o™, (12)

_ N in which the coefficients are determined by applying &.
(T#)=lim D#"(x,x" ){G™ (x,x")}. (6)  to G*(x,x’), yielding the recursion relations
x' —x

n+1)(n+2)Vy 1+ (N+1)Vyiq..0¢
Here G'(x,x') is the symmetric two-point function, N+ DN+ 2Vt N+ DVi1i00

D#¥(x,x") is the bilocal differential operator 1
= (N+ 1)V A" V2AL e 4+ S (O = mP = éR)V, =0,

1 , '
§—§>{gﬁ,w AT 12

D#¥(x,x")=

(N+1)(N+2)Wp i1+ (N+ D)Wy 1,407

1 v B B’ v 1 v
+ 25—5 9", V VP + £ R* —59“R

1
_ —1P2A12 o, —m2—
O D) €T gl g TR (N+ D)W, 14928 Vi +2 (O - mP— ER)W,

1, @ +(2N+3)Vpi 1+ Vi 1,40 %= Vo 1A Y2A e =0
——m g v ,
2 (13
andgg, is the bivector of parallel transport. This expressiontogether with the boundary condition
makes explicit that the singular character of the oper&tdr
emerges as a consequence of the short-distance singularity qf/

1
o —U2AU2 a2 U2_
the symmetric two-point functios*(x,x"). This function 0t Voia0" "= VoA AT+ 2 (D =m" = ER)AT=0.
satisfies Eq(2) in each argument. (14
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From these relations one can determine the functitnx’) 1 1

uniquely in terms of local geometry. It takes therefore the =~ W(X,X") =W(X) = 5 W.4(X)o*+ EWaB(X)U‘YUB

same universal form for all states. But the bisca&(x,x")

remains arbitrary. Its specification depends significantly on 1

the choice of a state. *t7
Let us now explain the standard Hadamard renormaliza-

tion prescription. The basic strategy is, in the first place, to (19

extract the finite part ofG*(x,x’) by subtracting from

G*(x,x") a local symmetric two-point functiots,” (x,x")

with the same short-distance singularity of the Hadamard 1

expansion and, in the second place, to define the renormaIT“V[VV]=(8w2)1[5(1—2§)W?/”(x)

ized expectation value of the stress tensor as

1
—W;aﬁy—W

6 ooPor+ 0(0'2),

apB;y

the tensod™#*[W] can be calculated to yield

1 1
(TE"Y en= lim D#"(x,x"){GT(x,x") =G (x,x")}. +§(2§_ E)DW(X)QMV+§ R ng“’R)
(19 XW(X)—%ng‘“’W(X)—

WHY — %gww;) ] .
The result is apparently finite. But there is a fundamental 20)
ambiguity concerning the choice & (x,x’). As a general

criterion one reasonably assumes B4t(x,x’) is a function I this expression the scal#¥(x) is arbitrary, but once it has
of local geometry. been chosen the choice of the ten¥d,(x) must be sub-

This criterion does not eliminate the ambiguity concern-jected to the constraint

ing the choice of the functio, (x,x"), but the renormal-
ization theory replaces this ambiguity by another one,,
namely the freedom to add ¥7*") ., a state-independent = #
conserved tensor. We explain the underlying reasoning. Us-

2

1 1
WY — ng( W7 —mPW+ —DW) }

ing the definitions(7), (8), and (15), one can write the de- R 1
composition =2vy’+ ERMVWML_ zgRWV (21)
(THY o= lim D#¥(x,x" ){(872) " TW(x,x')} + 47 which, using the differential identity,
X (16 O(V)W=V’OW+REY W, 22)

follows from the symmetry property of the biscald(x,x")

in which the first term on the right-hand side represents th‘:t'ogether with(see[6,12])

finite state-dependent contribution of the functidf{x,x")

in the Hadamard expansion &*(x,x’), and the second (O—m2— ER)W(X,X') = — 6v1(X) + 20,0+ O( o).

term is imagined to incorporate the finite state-independent ’ (23

contribution of G*(x,x’) together with the finite state-

independent contribution @, (x,x’). Now the point is that From the constraint21) one finds

the conservation law determines the tenZdt up to a di- _ B

vergenceless state-independent tensor. Thuspthe ambiguity V,2Hr=2(87%) 71V .0 04 (),

concerning the choice @, (x,x") yields the freedom to add

to the tenso “* a conserved state-independent tensor.
The decompositiori16) is, however, incomplete without

specifying the nature of the tens*”. In the renormaliza-  This has the implication that the incorporation of a compen-

tion theory one uses a decomposition in which the tensogating term proportional tg*"v(x) into the tensof **[W]

2. #” comes out to be divergenceless. To find the correspondyill make 3~ divergenceless. The corresponding decompo-

ing decomposition we apply the conservation laWT#”).e,  sition used by the renormalization theory is
and find for the divergence &*” the expression

lim Vi(x,x")=v41(X). (29

x"—x

(TH) =T AT W]+ 347, (25)
V,S#=-V, [#[W], 17
where

where TH[W]=T#[W]+2(872) " 1g*"v,(X). (26)
C# W)= lim D#*(x,x"){(87?) " W(x,x")}. (18)  The merits of such a decomposition is that each term be-
X' =X comes now divergenceless.
For the calculations, the tensbr*’[ W] is very important
Now expandingW(x,x') into a covariant power series because, first, it provides a conserved tensor which contains
[6,10,13, namely all the relevant informations about the state-dependent part
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of (T#"),en and, second, in the case of conformal coupling itThus, up to terms of ordek?, the construction of the tensor
produces the usual restriction imposed on the anomalouB#*[W] amounts to finding the traceless conserved tensor
trace of( T#”),en[1,13). In the following we shall exclusively W#”. For our purpose it is convenient to use o’ a
deal with the tensof #*[ W]. From Egs.(20) and (26) one  decomposition of the form

gets its explicit expression as o
WHY= — o WGHY— SH?, (33

_ 1 _
r“[wj= (872)_1[5(1—2§)W’“"(X) wherea is a constant parameter. As a consequence of Bian-
chi identity V,G*”=0 one gets then from Eq$30)—(32)
1 1 the corresponding constraints on the tenSof, namely
+ 5 2&— 5 OW(x)g+”
V,S$"=0(A?), S!=aWR+O(A2). (34)
+¢ Our approximation now consists in neglecting terms of order
AZ2. One finds from Eqs(i?), (33), and(34) the approximate

_ (27) expression of the tensdr**[ W] in terms of S*”, namely

1 1
R — Eg’“R)W(x)—Eng’”W(x)

1
—(W’”— 594" WJ | +2g#"0:(x)

T4 [W]~S*"+ aWGH?, (35)

lll. THE APPROXIMATE STRESS TENSOR . .
IN THE PRESENCE OF THE COSMOLOGICAL where the tensof"*"” is a conserved tensor with the trace

CONSTANT Si=aWR.

We study now the case of minimal couplidg=m=0,
and proceed to find the approximate form of the tensor
'“[W] in a space-time with a metric given by a vacuum Our goal now is to arrive at &suitably definegl two-
solution of Einstein’s equations in the presence of a smalflimensional analog of the approximate stress tef@8 In

cosmological constant. The metric arises as a solution of two dimensions the fielg is a dimensionless quantity. Cor-
the equations respondingly, the stress tensor takes the dimension of a

length to the power- 2. Thus, to arrive at a two-dimensional
G*"+ Ag+”=0, (28 analog of the stress tensor we first replace the igeloy the
dimensionless quantityv~Y24. Correspondingly, we re-
from which one finds place the tensoF “*[W] by W~ T #[W]. Denoting this lat-
REY=0(A), tgr qua_ntity byI‘_‘z‘V[W] and_takin_g into ac_COL_mt that in t_wo
dimensions the tens@*” is identically vanishing, we define
the two-dimensional analog of E¢35) as

IV. DIMENSIONAL REDUCTION

R*7°=0(A), (29)
TAV\WT ~ SEY
R=0(A), 5" Twl=~$s5”,
whereO(A) indicates the order of the tensors involved with S’zW:V\_/_IS’”a (36)

respect to the cosmological constdsee Appendix A We

now consider the construction of the ten¥#t” for the par-  in Which the conserved tens&,"” takes now the trace
ticularly simple case in which the scal#¥(x) is taken as

slowly varying space-time function. In this case the function S3.=aR. (37
W(x) can approximately be replaced by an almost constant . _ .
mean valueW, so we can neglect its derivatives. Corre- € Still unknown parameter in Eq.(37) can be determined

spondingly, the divergence relati¢2l) results in the follow- by a general requirement. We remark that the minimal cou-
ing constraint: pling in two dimensions reduces to the conformal coupling.

Thus, a can be determined by the requirement that the trace
1 of S5” shall reproduce the general restriction on the anoma-

VM(W“V— Eg“VWﬁi) =0(A?). (30 lous trace in two dimensior{4,13], yielding a=1/24+. We
conclude that, in our two-dimensional analog of the problem,

Using the relationg23) one can obtain a further constraint the determination of the tensbr“*[ W] amounts to finding a
on the trace of the tensal*”. One finds tensorS*” satisfying the constraintéve suppress the sub-
script 2,

We=0(A?), (31)

which together with Eq(30) implies

VW= O(A). (32 " 2am 39
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These constraints correspond exactly to the well-known con- 2M  Ar? r

straints imposed on the two-dimensional stress tensor of a Qr)=1- -+ "3 d7=Q(r)- (44)
conformally invariant field. Here we have shown that, re-

stricting ourselves to solutions of E(8), these constraints |n the following our main objective is the determination of

can also be found from ésuitably definegidimensional re- pe tensorS;, defined by Eq(38) for the metric of Eq(42).

duction of the state-dependent part of the renormalized stressyr the nonzero christoffel symbols of the metfit2) we
tensor of a minimally coupled field in four dimensions plus haye in ¢,r*) coordinates

some approximation.

r=rt,=rt, =17 ,=
(SO T 3 S Y S

d
aﬂ(r). (45

N| -

V. THERMAL RADIATION AND THE COSMOLOGICAL
EVENT HORIZONS

As an illustration we shall apply the results of the previ-
ous sections to a particular solution of the equati@®),
namely the Schwarzschild—de Sitter space-time on which the

Under the assumptions th&, is time independent and
spherically symmetric, the conservation equation takes the

metric in the static and spherical symmetric form is given by Jpx S{* + F:r* S{* _ F{t* Si* =0, (46)
2M  Ar? 2M  Ar?\ 1t . .
d32=—(1—T—T>dt2+ 1—-*?) dr? G S+ T4 S — T SI=0, (47)
+r2(d6*+sirfod¢?). (39  Wwith
This metric describes a Schwarzschild-like black hole in the Sﬁ* =-S,
presence of the cosmological constant14]. In the follow- .
ing we shall restricts ourselves to a typical situation in which $= S— s:* , (48)

A>0 andAM?<1. There are two solutions @f,;=0 cor-

responding to a black hole horizon and a cosmological horiwhere S;, is trace anomaly in two dimensions. Using Egs.
zon. The black hole horizon can be obtained if we approxi{45)—(48) one can show that

mateg,, for r—2M<2M by

d «
2M+A(2M)%/3 grlems =0 (49
1—— -

Ou~— " (40

and
from which one infers thag,, becomes zero at a value q 1( d
ro~2M(1+%2AM?). This is the position of black hole hori- — QNS =2{—0(r) | . (50)
. , . . dr r 2\dr “«
zon. It increases with respect to the Schwarzschild radius

r=2M by a term of the relative orderA(3)(2M)2. The Equation(49) leads
cosmological horizon can be obtained if we approxingte

for \3/A —r<3/A by S[* =aQ Y(r), (51)
2M A ) wherec is a constant of integration. The solution of E§0)

Ou~—|1— NENE 3" (41 may be written in the following form:
from which one infers thag, becomes zero at a value S (n=[H(N+BIQ " r), B=Q(L)S.(L), (52

re~+3/A(1—M/A/3). This is the position of cosmological
horizon. It decreases with respect to the de Sitter radiu
r=1/3/A by a term of the relative ordefAM?/3. 1 (r d
In the following we shall deal with the two-dimensional H(r)= EJ SH(r")=— Q(r")dr’, (53)
L

gvhere

analog of the metri¢39), namely dr’
oM Ar2 oM Ar2\ -1 with L being an arbitrary scale of length, and
d2=—|1- = |de2+[1- "= -] dr?
3 3 1 1
(42) Sa(l’):ERZ _67Tr3+ EA (54)

for which the positions of event horizons are the same a
those for the four-dimensional case. The metd2) can be
written in the conformally-flat form

%;iven a length scal&, the functionH(r) incorporates the
correspondingnonloca) contribution of the trace,(r) to
the tensorS, . The choice oL needs careful considerations.
ds?=Q(r)(—dt?+dr*?), (43 It does not appear possible to include the contribution of a
region very close to the black hole horizon to the off-
with diagonal components &, if the latter is taken as properly
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describing the late tim¢steady statebehavior of outwards Both tensors in Eq(57) satisfy the conservation law. Note
signals coming from the direction of the black Hola fact,  that onlysg)” has off-diagonalflux) components.

an “off-diagonal” contribution of a region very close to the Now we should determine the consta@tsandK. For the
black hole horizon cannot be sharply defined with respect tgletermination ofQ we require the regularity o8, at the
the state Of OUtWardS Signa|S at Iate times because the inﬁnilﬂack ho|e horizon in a Coordinate System Wh|Ch is regu'ar
gravitational redshift at the black hole horizon connects thenere. This results in a relatidppendix B

latter state at asymptotic times with the physical situations in

the vicinity of the horizon where the quantum fluctuation of Q+H(r)—0, asr—ry, (60)

the horizon(and the corresponding change of the gravita- _ o

tional field can no longer be neglected. To accurately deWhich together with Eq(53) implies

scribe the outwards signals at late time3jyour criterion is 1 (L d

to exclude in the definition oH(r) the contribution of the Q= —f SA(r")=—Q(r")dr’. (61)
trace very close to the black hole horizon using a character- 2Jrg dr

istic cutoff lengthl ;. Since the scales of the problem are set, . .
by the mass of the black hole and the cosmological constanlt;.Slng Eq.(54),. the appr.oxllmate valugve neglect terms of
it should be possible to define the cutoff in termshbfand igher orders im) of this integral can be found to be

A. The least arbitrary way to do this is to relate the cutoff to A
the actual shift of the black hole horizon with respect to the Q~ 7om
Schwarzschild-radius M which has been previously deter- ™

mined to be of the relative orderA(3)(2M)*. Thus, We  from which one infers that in quasiflat regions of space-time
shall subject the choice &f in Eq. (53) to a condition of the r~r g Where

type

(62

Np<<rgr<re, Qrgn=1, (63

A
L=rp+le, |c%§(2|\/|)3- (59 the tensorS(®?" in Eq. (57) describes an equilibrium gas
with a temperaturd ;= 1/27+/A/3. This follows if one com-
Using Egs.(51) and (52) one can show thal), takes the ~Pares the tensoB(c?” with the stress tensor of an equilib-

form (in t,r* coordinates rium gas, namely
o _ -2 0
S ()= Sa(r)—Q X r)H(r) 0 112(kT)2< 0 2). (64)
wi 0 QX r)H(r)
8 —a The equilibrium temperatur@, corresponds to the leading-
+Ql(r)( ) (56)  order estimate of the temperature of the cosmological event
a B horizon[14].

We proceed now to describe the radiation temperature of

Now, definingQ=a+ 8 andK= e, the tensolS;, takes the the black hole. In the present case an outwards flux of ther-

form mal radiation in quasiflat regions can be described by the
stress tensor

S, =S]"+S°9, (57) L
Tk T

with (K1) ( L1 ) (65
*(r)—Q~Yr)H(r) 0 whereT is the temperature. For such a stress tensor the en-
Sﬁf)VZ 0 Q- L(r)H(r) ergy dgnsity gnd -flux are numerically equal(.r)'[his Iatter. con-

dition if applied in Eq.(57) to the tensorS,’”, leads in

1 -1 quasiflat regions to the relation
+KQ(r) 1 -1 (59

1
K=S{H(rgn—SI*(ren}, (66)
and 2
in which H(rqf)=(7-r/6)(87rM)‘2+ O(A), as may be veri-
S(eq)v:Qﬂl( . 0) (59  fied from Eq.(53) by a simple calculation. Thereforgl))”
s 0o 1) takes in quasiflat regions the form

T -1 -1

(r)v _ -2
Of course, from Eq(52) it follows that the functiorH(r) has no S# (r_“qf)_ 12(87TM) ( 1 1 +0O(A),
explicit contribution to the off-diagonal components of the stress (67

tensor. But we shall see later, E@§6), thatH(r) has an implicit
“off-diagonal” contribution to the radiation temperature of the from which one infers thasg)” describes an outward radia-

black hole through the parameterappearing in Eq(51). tion with the temperature
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Tp=(87M) 1+ O(AM). (68  eterl', if F*”Hif;'_'_' can be factorized in the metric tensor
. i ) g, We shall denote such a situation by;g =0(I'").
The termO(AM) is a correction term to the Hawking tem- (For scalars the usual meaning is understpBdr simplicity

peratureT = (87M) ~* [15] which is the temperature of the the attribute “covariant” has been suppressed throughout the
hole in the absence of the cosmological event horizon. Ithaper. From Eq(28) one gets

terms of the cutoff length. the correction term takes the
form O(l./M?). Thus the correction to the Hawking tem- R=4A=0(A) (A1)
perature is a term of the relative ordg/M. In our case this
makes no significant difference for thermal predictions be-2nd
cause our assumptioAM?<1 means that the cutoff, is

wy— RUANY MAVY — mV —
much smaller than the Schwarzschild-radild .2 R R\ 9HR Ag O(A). (A2)

From the last equation it follows
VI. CONCLUDING REMARKS

. . RAMY=AgHg"'=0(A). (A3)

We have seen that the existence of a cutoff excluding the
contribution of the anomalous trace to the stress tensor in @/e also find
neighborhood of the black hole horizon can be connected to
the equilibrium temperature of a background heat bath of the ) , 1 N N
cosmological event horizon. For the corresponding tempera?1(X) = lim Vi(x,x") = 24 [JR—=R4R P+ R R}
ture we have found an estimate in terms of the contribution X! =X
of the anomalous trace close to the black hole horizon; see =0(A?). (A4)

Egs. (61) and (62). It is important to note that, while the
latter contribution seems to be unphysical with respect to the
radiation temperature coming from the black hole at late
times, it does determine the leading order estimate of the An analysis similar to that presented [i] for the
equilibrium temperature. Is there any justification for regard-Schwarzschild metric shows th&f , as measured in a local
ing the contribution of the anomalous trace close to the blackruskal coordinate system at black hole horizon, will be fi-
hole horizon as physical with respect to the equilibrium tem-_.. _ . t, or* -

perature? We emphasize the distinct character of the equilibrllte I Sy, aNdS+ S, are finite asr —r, and
rium temperature as compared to the radiation temperature. lim (r —ry)2|Syuu <, (B1)
The former is not expected to be sensitive to the outward f oty

signals at late times coming from the direction of the black

hole, so dissatisfaction with the role of the infinite gravita-whereu andv are null coordinates. We find easily
tional redshift at the black hole horizon may not be ex-
pressed in this case.

APPENDIX B

1
Suu=7 (Sut Spxrx = 28y). (B2)
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Suw=51 H(N+Q=5Q(Si(n). (83)
APPENDIX A
_ S Therefore, the conditiofB1) is equivalent to
Let n be an arbitrary real number. A tensldtjg"; " is said

to be of the covariant orddr" with respect to some param- H(r)+Q—0 asr—ry. (B4)
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