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The Hadamard renormalization prescription is used to derive a two-dimensional analog of the renormalized
stress tensor for a minimally coupled scalar field in Schwarzschild–de Sitter space-time. In the two-
dimensional analog the minimal coupling reduces to the conformal coupling and the stress tensor is found to
be determined by the~nonlocal! contribution of the anomalous trace and some additional parameters in close
relation to the work by Christensen and Fulling. To properly relate the stress tensor to the state of outwards
signals coming from the direction of the black hole at late times we propose a cutoff hypothesis that excludes
the contribution of the anomalous trace close to the black hole horizon. The corresponding cutoff scale is found
to be related to the equilibrium temperature of the cosmological horizon in a leading order estimate. Finally, we
establish a relation between the radiation temperature of the black hole horizon at large distance from the hole
and the anomalous trace and determine the correction term to the Hawking temperature due to the presence of
the cosmological horizon.@S0556-2821~97!05918-3#

PACS number~s!: 98.80.Hw, 04.20.Gz, 04.62.1v

I. INTRODUCTION

A central problem in quantum field theory in curved
space-time is the computation of the renormalized expecta-
tion value of the stress tensor operator@2#. Usually one is
inclined to expect that the stress tensor at some point in a
curved space-time can be measured by a well-defined local
operator. However, the usual expression for the stress tensor
operator involves singular products of the field operator at
the same space-time point, and it seems clear that such sin-
gular products do not allow the definition of a well-defined
local operator. Renormalization theory of the stress tensor
was originally designed to solve this problem. But, it must be
remarked that the usual scheme of renormalization involves
complicated, often ambiguous, steps and it is by no means
apparent that the resulting final expressions actually corre-
spond to the expectation value of a well-defined local opera-
tor acting on the Hilbert space of states. In principle, one
should recognize that there is no conceptual support for a
local measure of energy-momentum of some given state
without reference to any global construct. In fact, even in
Minkowski space energy-momentum is measured relative to
a global construct, namely the Minkowski vacuum. We em-
phasize that the conceptual basis of the renormalization
theory, as it is currently understood, is still ill defined.

Despite these difficulties, the usual renormalization pre-
scriptions have some power, in that they satisfy some general
requirements, such as the covariant conservation law, and in
the case of the conformal invariant coupling the general re-
quirement on the anomalous trace. It is just for this reason
that the study of the usual renormalization prescriptions can

still be justified. In this article we first clarify this aspect in
connection with the Hadamard renormalization prescription
developed in@3–5# ~see also@6#!. We then apply the results
to the two-dimensional analog of Schwarzschild–de Sitter
space-time and derive the leading order approximation of
equilibrium temperature and radiation temperature associated
with the cosmological event horizon and the black hole ho-
rizon, respectively. In our presentation the equilibrium tem-
perature of the cosmological event horizon basically emerges
from a physical cutoff which close to the black hole horizon
excludes the contribution of the anomalous trace to radiation
part of the stress tensor. In essence, such an approach has a
certain similarity to the recent publications@7–9# in which
dissatisfactions were expressed with the use of the singular
modes escaping from a region close to the black hole horizon
in the derivation of the Hawking effect. We believe that our
presentation, although it will not use the notion of mode to
generate the Hawking effect, is instructive because it sug-
gests that in a future theory the physical cutoff for a black
hole may have an intimate connection to the presence of an
associated cosmological horizon.

II. HADAMARD RENORMALIZATION

We consider a linear scalar quantum fieldf propagating
on a curved space-time with the action of the standard form
@2#

S@f#52
1

2E d4xg1/2~gabf ;af ;b1jRf21m2f2!, ~1!

wherem andj are parameters, andR is the scalar curvature.
~In the following the semicolon and¹ indicates covariant
differentiation.! The corresponding field equation is*Electronic address: salehi@netware2.ipm.ac.ir
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~h2m22jR!f~x!50. ~2!

The choice of the parameterm andj depends on the particu-
lar type of coupling we wish to consider. For example, the
minimal coupling corresponds to (m50,j50) and the con-
formal coupling in four dimensions corresponds to

(m50,j5 1
6 ).

The energy-momentum off is defined by the singular
expression

Tmn~x!5~122j!¹mf¹nf1S 2j2
1

2Dgmn¹bf¹bf

1jS Rmn2
1

2
gmnRDf212jf~gmnhf2¹m¹nf!

2
1

2
m2gmnf2. ~3!

We shall deal with a particularly useful version of Eq.~3! in
terms of anticommutator, namely

Tmn~x!5
1

2
~122j!$¹mf,¹nf%1S j2

1

4Dgmn$¹bf,¹bf%

1
1

2
jS Rmn2

1

2
gmnRD $f,f%1jgmn$f,hf%

2j$f,¹m¹nf%2
1

4
m2gmn$f,f%. ~4!

A state off is characterized by a hierarchy of Wightman
functions

^f~x1!, . . . ,f~xn!&. ~5!

The ‘‘operator’’ Tmn takes a singular expectation value
^Tmn& in a given state. Using the point-splitting method@10#,
this singular expectation value can most conveniently be rep-
resented by

^Tmn&5 lim
x8→x

Dmn~x,x8!$G1~x,x8!%. ~6!

Here G1(x,x8) is the symmetric two-point function,
Dmn(x,x8) is the bilocal differential operator

Dmn~x,x8!5S 1

2
2j D $gm8

m ¹m8¹n1gn8
n ¹m¹n8%

1S 2j2
1

2Dgmngb8
b ¹b¹b81jS Rmn2

1

2
gmnRD

1jgmn$h1h8%2j$¹m¹n1gm8
m gn8

n ¹m8¹n8%

2
1

2
m2gmn ~7!

andgb8
b is the bivector of parallel transport. This expression

makes explicit that the singular character of the operatorTmn

emerges as a consequence of the short-distance singularity of
the symmetric two-point functionG1(x,x8). This function
satisfies Eq.~2! in each argument.

We remark that for a linear theory the antisymmetric part
of the two-point function is common to all states in the same
representation. It is just the universal commutator function.
Thus, in our case all the relevant informations about the
state-dependent part of the two-point function are encoded in
G1(x,x8). Equivalence principle suggests that the leading
singularity ofG1(x,x8) should have a close correspondence
to singularity structure of the two-point function of a free
massless field in Minkowski space@11#. In general the entire
singularity ofG1(x,x8) may have a more complicated struc-
ture. Usually one assumes thatG1(x,x8) has a singular
structure represented by the Hadamard expansions. This
means that in a normal neighborhood of a pointx the func-
tion G1(x,x8) can be written

G1~x,x8!5
1

8p2H D1/2~x,x8!

s~x,x8!
1V~x,x8!lns~x,x8!

1W~x,x8!J , ~8!

where 2s(x,x8) is the square of the distance along the geo-
desic joiningx andx8 andD(x,x8) is the van Vleck deter-
minant

D~x,x8!52g21/2~x!Det$2s ;mn8
%g21/2~x8!,

g~x!5Detgab . ~9!

The functionsV(x,x8) andW(x,x8) have the following rep-
resentations as power series:

V~x,x8!5 (
n50

1`

Vn~x,x8!sn, ~10!

W~x,x8!5 (
n50

1`

Wn~x,x8!sn, ~11!

in which the coefficients are determined by applying Eq.~2!
to G1(x,x8), yielding the recursion relations

~n11!~n12!Vn111~n11!Vn11;as ;a

2~n11!Vn11D21/2D ;a
1/2s ;a1

1

2
~h2m22jR!Vn50,

~12!

~n11!~n12!Wn111~n11!Wn11;as ;a

2~n11!Wn11D21/2D ;a
1/2s ;a1

1

2
~h2m22jR!Wn

1~2n13!Vn111Vn11;as ;a2Vn11D21/2D ;a
1/2s ;a50

~13!

together with the boundary condition

V01V0;as ;a2V0D21/2D ;a
1/2s ;a1

1

2
~h2m22jR!D1/250.

~14!
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From these relations one can determine the functionV(x,x8)
uniquely in terms of local geometry. It takes therefore the
same universal form for all states. But the biscalarW0(x,x8)
remains arbitrary. Its specification depends significantly on
the choice of a state.

Let us now explain the standard Hadamard renormaliza-
tion prescription. The basic strategy is, in the first place, to
extract the finite part ofG1(x,x8) by subtracting from
G1(x,x8) a local symmetric two-point functionGL

1(x,x8)
with the same short-distance singularity of the Hadamard
expansion and, in the second place, to define the renormal-
ized expectation value of the stress tensor as

^Tmn& ren5 lim
x8→x

Dmn~x,x8!$G1~x,x8!2GL
1~x,x8!%.

~15!

The result is apparently finite. But there is a fundamental
ambiguity concerning the choice ofGL

1(x,x8). As a general
criterion one reasonably assumes thatGL

1(x,x8) is a function
of local geometry.

This criterion does not eliminate the ambiguity concern-
ing the choice of the functionGL

1(x,x8), but the renormal-
ization theory replaces this ambiguity by another one,
namely the freedom to add tôTmn& ren a state-independent
conserved tensor. We explain the underlying reasoning. Us-
ing the definitions~7!, ~8!, and ~15!, one can write the de-
composition

^Tmn& ren5 lim
x8→x

Dmn~x,x8!$~8p2!21W~x,x8!%1Smn

~16!

in which the first term on the right-hand side represents the
finite state-dependent contribution of the functionW(x,x8)
in the Hadamard expansion ofG1(x,x8), and the second
term is imagined to incorporate the finite state-independent
contribution of G1(x,x8) together with the finite state-
independent contribution ofGL

1(x,x8). Now the point is that
the conservation law determines the tensorSmn up to a di-
vergenceless state-independent tensor. Thus the ambiguity
concerning the choice ofGL

1(x,x8) yields the freedom to add
to the tensorSmn a conserved state-independent tensor.

The decomposition~16! is, however, incomplete without
specifying the nature of the tensorSmn. In the renormaliza-
tion theory one uses a decomposition in which the tensor
Smn comes out to be divergenceless. To find the correspond-
ing decomposition we apply the conservation law to^Tmn& ren
and find for the divergence ofSmn the expression

¹mSmn52¹mGmn@W#, ~17!

where

Gmn@W#5 lim
x8→x

Dmn~x,x8!$~8p2!21W~x,x8!%. ~18!

Now expandingW(x,x8) into a covariant power series
@6,10,12#, namely

W~x,x8!5W~x!2
1

2
W;a~x!sa1

1

2
Wab~x!sasb

1
1

4H 1

6
W;abg2Wab;gJ sasbsg1O~s2!,

~19!

the tensorGmn@W# can be calculated to yield

Gmn@W#5~8p2!21H 1

2
~122j!W;mn~x!

1
1

2S 2j2
1

2DhW~x!gmn1jS Rmn2
1

2
gmnRD

3W~x!2
1

2
m2gmnW~x!2S Wmn2

1

2
gmnWg

gD J .

~20!

In this expression the scalarW(x) is arbitrary, but once it has
been chosen the choice of the tensorWmn(x) must be sub-
jected to the constraint

¹mFWmn2
1

2
gmnS Wg

g2m2W1
1

2
hWD G

52v1
;n1

1

2
RmnW;m2

1

2
jRW;n ~21!

which, using the differential identity,

h~¹n!W5¹nhW1Rmn¹mW, ~22!

follows from the symmetry property of the biscalarW(x,x8)
together with~see@6,12#!

~h2m22jR!W~x,x8!526v1~x!12v1;as ;a1O~s!.
~23!

From the constraint~21! one finds

¹mSmn52~8p2!21¹mgmnv1~x!,

lim
x8→x

V1~x,x8!5v1~x!. ~24!

This has the implication that the incorporation of a compen-
sating term proportional togmnv1(x) into the tensorGmn@W#
will make Smn divergenceless. The corresponding decompo-
sition used by the renormalization theory is

^Tmn& ren5 Ḡmn@W#1Smn, ~25!

where

Ḡmn@W#5Gmn@W#12~8p2!21gmnv1~x!. ~26!

The merits of such a decomposition is that each term be-
comes now divergenceless.

For the calculations, the tensorḠmn@W# is very important
because, first, it provides a conserved tensor which contains
all the relevant informations about the state-dependent part
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of ^Tmn& ren and, second, in the case of conformal coupling it
produces the usual restriction imposed on the anomalous
trace of^Tmn& ren @1,13#. In the following we shall exclusively
deal with the tensorḠmn@W#. From Eqs.~20! and ~26! one
gets its explicit expression as

Ḡmn@W#5~8p2!21H 1

2
~122j!W;mn~x!

1
1

2S 2j2
1

2DhW~x!gmn

1jS Rmn2
1

2
gmnRDW~x!2

1

2
m2gmnW~x!

2S Wmn2
1

2
gmnWg

gD12gmnv1~x!J . ~27!

III. THE APPROXIMATE STRESS TENSOR
IN THE PRESENCE OF THE COSMOLOGICAL

CONSTANT

We study now the case of minimal couplingj5m50,
and proceed to find the approximate form of the tensor
Ḡmn@W# in a space-time with a metric given by a vacuum
solution of Einstein’s equations in the presence of a small
cosmological constantL. The metric arises as a solution of
the equations

Gmn1Lgmn50, ~28!

from which one finds

Rmn5O~L!,

Rabgd5O~L!, ~29!

R5O~L!,

whereO(L) indicates the order of the tensors involved with
respect to the cosmological constant~see Appendix A!. We
now consider the construction of the tensorWmn for the par-
ticularly simple case in which the scalarW(x) is taken as
slowly varying space-time function. In this case the function
W(x) can approximately be replaced by an almost constant
mean valueW̄, so we can neglect its derivatives. Corre-
spondingly, the divergence relation~21! results in the follow-
ing constraint:

¹mS Wmn2
1

2
gmnWa

aD5O~L2!. ~30!

Using the relations~23! one can obtain a further constraint
on the trace of the tensorWmn. One finds

Wa
a5O~L2!, ~31!

which together with Eq.~30! implies

¹mWmn5O~L2!. ~32!

Thus, up to terms of orderL2, the construction of the tensor
Ḡmn@W# amounts to finding the traceless conserved tensor
Wmn. For our purpose it is convenient to use forWmn a
decomposition of the form

Wmn52aW̄Gmn2Smn, ~33!

wherea is a constant parameter. As a consequence of Bian-
chi identity ¹mGmn50 one gets then from Eqs.~30!–~32!
the corresponding constraints on the tensorSmn, namely

¹mSmn5O~L2!, Sa
a5aW̄R1O~L2!. ~34!

Our approximation now consists in neglecting terms of order
L2. One finds from Eqs.~27!, ~33!, and~34! the approximate
expression of the tensorḠmn@W# in terms ofSmn, namely

Ḡmn@W#'Smn1aW̄Gmn, ~35!

where the tensorSmn is a conserved tensor with the trace
Sa

a5aW̄R.

IV. DIMENSIONAL REDUCTION

Our goal now is to arrive at a~suitably defined! two-
dimensional analog of the approximate stress tensor~35!. In
two dimensions the fieldf is a dimensionless quantity. Cor-
respondingly, the stress tensor takes the dimension of a
length to the power22. Thus, to arrive at a two-dimensional
analog of the stress tensor we first replace the fieldf by the
dimensionless quantityW̄21/2f. Correspondingly, we re-
place the tensorḠmn@W# by W̄21Ḡmn@W#. Denoting this lat-
ter quantity byḠ2

mn@W# and taking into account that in two
dimensions the tensorGmn is identically vanishing, we define
the two-dimensional analog of Eq.~35! as

Ḡ2
mn@W#'S2

mn ,

S2
mn5W̄21Smn, ~36!

in which the conserved tensorS2
mn takes now the trace

S2 a
a 5aR. ~37!

The still unknown parametera in Eq. ~37! can be determined
by a general requirement. We remark that the minimal cou-
pling in two dimensions reduces to the conformal coupling.
Thus,a can be determined by the requirement that the trace
of S2

mn shall reproduce the general restriction on the anoma-
lous trace in two dimensions@1,13#, yielding a51/24p. We
conclude that, in our two-dimensional analog of the problem,
the determination of the tensorḠmn@W# amounts to finding a
tensorSmn satisfying the constraints~we suppress the sub-
script 2!,

¹mSmn50,

Sa
a5

1

24p
R. ~38!
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These constraints correspond exactly to the well-known con-
straints imposed on the two-dimensional stress tensor of a
conformally invariant field. Here we have shown that, re-
stricting ourselves to solutions of Eq.~28!, these constraints
can also be found from a~suitably defined! dimensional re-
duction of the state-dependent part of the renormalized stress
tensor of a minimally coupled field in four dimensions plus
some approximation.

V. THERMAL RADIATION AND THE COSMOLOGICAL
EVENT HORIZONS

As an illustration we shall apply the results of the previ-
ous sections to a particular solution of the equations~28!,
namely the Schwarzschild–de Sitter space-time on which the
metric in the static and spherical symmetric form is given by

ds252S 12
2M

r
2

Lr 2

3 Ddt21S 12
2M

r
2

Lr 2

3 D 21

dr2

1r 2~du21sin2udf2!. ~39!

This metric describes a Schwarzschild-like black hole in the
presence of the cosmological constantL @14#. In the follow-
ing we shall restricts ourselves to a typical situation in which
L.0 andLM2!1. There are two solutions ofgtt50 cor-
responding to a black hole horizon and a cosmological hori-
zon. The black hole horizon can be obtained if we approxi-
mategtt for r 22M!2M by

gtt'2S 12
2M1L~2M !3/3

r D ~40!

from which one infers thatgtt becomes zero at a value

r b'2M (11 4
3 LM2). This is the position of black hole hori-

zon. It increases with respect to the Schwarzschild radius
r 52M by a term of the relative order (L/3)(2M )2. The
cosmological horizon can be obtained if we approximategtt

for A3/L2r !A3/L by

gtt'2F12S 2M

~A3/L!3
1

L

3 D r 2G ~41!

from which one infers thatgtt becomes zero at a value
r c'A3/L(12MAL/3). This is the position of cosmological
horizon. It decreases with respect to the de Sitter radius
r 5A3/L by a term of the relative orderALM2/3.

In the following we shall deal with the two-dimensional
analog of the metric~39!, namely

ds252S 12
2M

r
2

Lr 2

3 Ddt21S 12
2M

r
2

Lr 2

3 D 21

dr2

~42!

for which the positions of event horizons are the same as
those for the four-dimensional case. The metric~42! can be
written in the conformally-flat form

ds25V~r !~2dt21dr* 2!, ~43!

with

V~r !512
2M

r
2

Lr 2

3
,

dr

dr*
5V~r !. ~44!

In the following our main objective is the determination of
the tensorSm

n defined by Eq.~38! for the metric of Eq.~42!.
For the nonzero christoffel symbols of the metric~42! we
have in (t,r * ) coordinates

G tt
r* 5G tr*

t
5G r* t

t
5G r* r*

r* 5
1

2

d

dr
V~r !. ~45!

Under the assumptions thatSm
n is time independent and

spherically symmetric, the conservation equation takes the
form

] r* St
r* 1G tr*

t St
r* 2G tt

r* Sr*
t

50, ~46!

] r* Sr*
r* 1G tr*

t Sr*
r* 2G tr*

t St
t50, ~47!

with

Sr*
t

52St
r* ,

St
t5Sa

a2Sr*
r* , ~48!

where Sa
a is trace anomaly in two dimensions. Using Eqs.

~45!–~48! one can show that

d

dr
$V~r !St

r* %50 ~49!

and

d

dr
$V~r !Sr*

r* %5
1

2H d

dr
V~r !J Sa

a . ~50!

Equation~49! leads

St
r* 5aV21~r !, ~51!

wherea is a constant of integration. The solution of Eq.~50!
may be written in the following form:

Sr*
r* ~r !5@H~r !1b#V21~r !, b5V~L !Sr*

r* ~L !, ~52!

where

H~r !5
1

2EL

r

Sa
a~r 8!

d

dr8
V~r 8!dr8, ~53!

with L being an arbitrary scale of length, and

Sa
a~r !5

1

24p
R5

M

6pr 31
1

36p
L. ~54!

Given a length scaleL, the functionH(r ) incorporates the
corresponding~nonlocal! contribution of the traceSa

a(r ) to
the tensorSm

n . The choice ofL needs careful considerations.
It does not appear possible to include the contribution of a
region very close to the black hole horizon to the off-
diagonal components ofSm

n , if the latter is taken as properly
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describing the late time~steady state! behavior of outwards
signals coming from the direction of the black hole1 In fact,
an ‘‘off-diagonal’’ contribution of a region very close to the
black hole horizon cannot be sharply defined with respect to
the state of outwards signals at late times because the infinite
gravitational redshift at the black hole horizon connects the
latter state at asymptotic times with the physical situations in
the vicinity of the horizon where the quantum fluctuation of
the horizon~and the corresponding change of the gravita-
tional field! can no longer be neglected. To accurately de-
scribe the outwards signals at late time bySm

n our criterion is
to exclude in the definition ofH(r ) the contribution of the
trace very close to the black hole horizon using a character-
istic cutoff lengthl c . Since the scales of the problem are set
by the mass of the black hole and the cosmological constant,
it should be possible to define the cutoff in terms ofM and
L. The least arbitrary way to do this is to relate the cutoff to
the actual shift of the black hole horizon with respect to the
Schwarzschild-radius 2M which has been previously deter-
mined to be of the relative order (L/3)(2M )2. Thus, we
shall subject the choice ofL in Eq. ~53! to a condition of the
type

L5r b1 l c , l c'
L

3
~2M !3. ~55!

Using Eqs.~51! and ~52! one can show thatSm
n takes the

form ~in t,r * coordinates!

Sm
n ~r !5S Sa

a~r !2V21~r !H~r ! 0

0 V21~r !H~r !
D

1V21~r !S 2b 2a

a b D . ~56!

Now, definingQ5a1b andK5a, the tensorSm
n takes the

form

Sm
n 5Sm

~r !n1Sm
~eq!n , ~57!

with

Sm
~r !n5S Sa

a~r !2V21~r !H~r ! 0

0 V21~r !H~r !
D

1KV21~r !S 1 21

1 21D ~58!

and

Sm
~eq!n5QV21S 21 0

0 1D . ~59!

Both tensors in Eq.~57! satisfy the conservation law. Note
that onlySm

(r )n has off-diagonal~flux! components.
Now we should determine the constantsQ andK. For the

determination ofQ we require the regularity ofSm
n at the

black hole horizon in a coordinate system which is regular
there. This results in a relation~Appendix B!

Q1H~r !→0, as r→r b, ~60!

which together with Eq.~53! implies

Q5
1

2Er B

L

Sa
a~r 8!

d

dr8
V~r 8!dr8. ~61!

Using Eq.~54!, the approximate value~we neglect terms of
higher orders inL) of this integral can be found to be

Q'
L

72p
~62!

from which one infers that in quasiflat regions of space-time
r'r qf where

r b!r qf!r c , V~r qf!'1, ~63!

the tensorSm
(eq)n in Eq. ~57! describes an equilibrium gas

with a temperatureTc51/2pAL/3. This follows if one com-
pares the tensorSm

(eq)n with the stress tensor of an equilib-
rium gas, namely

p

12
~kT!2S 22 0

0 2D . ~64!

The equilibrium temperatureTc corresponds to the leading-
order estimate of the temperature of the cosmological event
horizon @14#.

We proceed now to describe the radiation temperature of
the black hole. In the present case an outwards flux of ther-
mal radiation in quasiflat regions can be described by the
stress tensor

p

12
~kT!2S 21 21

1 1 D , ~65!

whereT is the temperature. For such a stress tensor the en-
ergy density and flux are numerically equal. This latter con-
dition if applied in Eq. ~57! to the tensorSm

(r )n , leads in
quasiflat regions to the relation

K5
1

2
$H~r qf!2Sa

~r !a~r qf!%, ~66!

in which H(r qf)5(p/6)(8pM )221O(L), as may be veri-
fied from Eq.~53! by a simple calculation. ThereforeSm

(r )n

takes in quasiflat regions the form

Sm
~r !n~r→r qf!5

p

12
~8pM !22S 21 21

1 1 D 1O~L!,

~67!

from which one infers thatSm
(r )n describes an outward radia-

tion with the temperature

1Of course, from Eq.~52! it follows that the functionH(r ) has no
explicit contribution to the off-diagonal components of the stress
tensor. But we shall see later, Eq.~66!, that H(r ) has an implicit
‘‘off-diagonal’’ contribution to the radiation temperature of the
black hole through the parametera appearing in Eq.~51!.
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Tb5~8pM !211O~LM !. ~68!

The termO(LM ) is a correction term to the Hawking tem-
peratureTH5(8pM )21 @15# which is the temperature of the
hole in the absence of the cosmological event horizon. In
terms of the cutoff lengthl c the correction term takes the
form O( l c /M2). Thus the correction to the Hawking tem-
perature is a term of the relative orderl c /M . In our case this
makes no significant difference for thermal predictions be-
cause our assumptionLM2!1 means that the cutoffl c is
much smaller than the Schwarzschild-radius 2M .

VI. CONCLUDING REMARKS

We have seen that the existence of a cutoff excluding the
contribution of the anomalous trace to the stress tensor in a
neighborhood of the black hole horizon can be connected to
the equilibrium temperature of a background heat bath of the
cosmological event horizon. For the corresponding tempera-
ture we have found an estimate in terms of the contribution
of the anomalous trace close to the black hole horizon; see
Eqs. ~61! and ~62!. It is important to note that, while the
latter contribution seems to be unphysical with respect to the
radiation temperature coming from the black hole at late
times, it does determine the leading order estimate of the
equilibrium temperature. Is there any justification for regard-
ing the contribution of the anomalous trace close to the black
hole horizon as physical with respect to the equilibrium tem-
perature? We emphasize the distinct character of the equilib-
rium temperature as compared to the radiation temperature.
The former is not expected to be sensitive to the outward
signals at late times coming from the direction of the black
hole, so dissatisfaction with the role of the infinite gravita-
tional redshift at the black hole horizon may not be ex-
pressed in this case.
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APPENDIX A

Let n be an arbitrary real number. A tensorHgd . . .
ab . . . is said

to be of the covariant orderGn with respect to some param-

eterG, if G2nHgd . . .
ab . . . can be factorized in the metric tensor

gmn . We shall denote such a situation byHgd . . .
ab . . . 5O(Gn).

~For scalars the usual meaning is understood.! For simplicity
the attribute ‘‘covariant’’ has been suppressed throughout the
paper. From Eq.~28! one gets

R54L5O~L! ~A1!

and

Rmn5Rl
mln5glgRmlng5Lgmn5O~L!. ~A2!

From the last equation it follows

Rmlng5Lgmlggn5O~L!. ~A3!

We also find

v1~x!5 lim
x8→x

V1~x,x8!5
1

720
$hR2RabRab1RabglRabgl%

5O~L2!. ~A4!

APPENDIX B

An analysis similar to that presented in@1# for the
Schwarzschild metric shows thatSm

n , as measured in a local
Kruskal coordinate system at black hole horizon, will be fi-

nite if Svv , andSt
t1Sr*

r* are finite asr→r b and

lim
r→r b

~r 2r b!22uSuuu,`, ~B1!

whereu andv are null coordinates. We find easily

Suu5
1

4
~Stt1Sr* r* 22Str* !. ~B2!

Using Eqs.~57!–~59!, this gives

Suu5
1

2H H~r !1Q2
1

2
V~r !Sa

a~r !J . ~B3!

Therefore, the condition~B1! is equivalent to

H~r !1Q→0 as r→r b . ~B4!
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