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The pre-big-bang cosmology inspired by superstring theories has been suggested as an alternative to slow-
roll inflation. We analyze, in both the Jordan and Einstein frames, the effect of spatial curvature on this
scenario and show that too much curvature — of either sign — reduces the duration of the inflationary era to
such an extent that the flatness and horizon problems are not solved. Hence, a fine-tuning of initial conditions
is required to obtain enough inflation to solve the cosmological problems.@S0556-2821~97!01020-5#

PACS number~s!: 98.80.Cq

I. INTRODUCTION

The pre-big-bang cosmology inspired by superstring theo-
ries has been suggested as a possible implementation of the
inflationary-universe scenario@1#. This cosmology is based
on a spatially flat solution in which the kinetic energy of a
massless dilaton drives an accelerated expansion toward a
singularity at timetsing, with the scale factora(t)}(tsing

2t)21/A3. Before the singularity is reached, stringy and/or
nonperturbative effects bring an end to the inflationary phase
and, by mechanisms that are not yet completely understood,
effectuate a transition to a standard Friedmann-Robertson-
Walker ~FRW! epoch of decelerating expansion with the di-
laton fixed at its present value.

In previous investigations of this scenario considerable
effort has been focused on the details of the graceful exit
from the inflationary era@2#; it is still not at all clear that this
can be done. In this paper we will assume, for the sake of
argument, that mechanisms for accomplishing this actually
exist and will concentrate instead on the initial conditions.
These have received little attention in previous discussions,
in large part because the flat-space solution on which these
discussions have been based has an inflationary epoch that
extends infinitely far back in time.

The situation is quite different once one admits the possi-
bility of even a small amount of spatial curvature, as gener-
ality considerations certainly require. Although pre-big-bang
inflationary solutions still arise, the inflationary epoch has a
finite duration which depends upon the initial curvature. Fur-
thermore, it does not even appear that the preinflationary era
can be extended arbitrarily far back. For a closed (k51)
universe this is prevented by the existence of an initial sin-
gularity, while the open universe (k521) solution, al-
though remaining nonsingular, becomes increasing implau-
sible ast→2`. For both cases, as well as for their limiting
k50 case, one is thus led to view the scenario as beginning
with the appearance~e.g., by a quantum fluctuation! of a
sufficiently large, smooth region at an initial timet0, with the
subsequent evolution of this region being determined by the

classical field equations and the initial data att0. We will
find that, in contrast@3# to slow-roll inflation, the pre-big-
bang scenario is quite sensitive to these initial conditions.

In Sec. II we obtain the pre-big-bang solutions with arbi-
trary spatial curvature, and discuss the requirements that
must be satisfied in order that there be enough inflation to
solve the horizon and flatness problems of the standard cos-
mology. We then show how these requirements can be
phrased as constraints on initial conditions. We carry out this
discussion in the Jordan frame, in which the Planck mass is a
time-dependent quantity depending on the dilaton field and
the fundamental string lengthl st is fixed. In Sec. III we
describe the somewhat different, but equivalent, picture that
results if one works in the Einstein frame, where the Planck
mass is fixed andl st varies with time. Section IV contains
some concluding remarks.

II. PRE-BIG-BANG COSMOLOGY WITH CURVATURE

A. Flat-space solutions

The evolution of the universe during the pre-big-bang
phase of this scenario is governed by the tree-level, low-
energy effective action
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If we assume a Robertson-Walker metric with scale factor
a(t), the Friedmann equation takes the form
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where a dot indicates differentiation with respect to time,
H5ȧ/a, and the Brans-Dicke fieldF and the associated
time-dependent Planck lengthl Pl are related to the dilaton
field by

PHYSICAL REVIEW D 15 OCTOBER 1997VOLUME 56, NUMBER 8

560556-2821/97/56~8!/4604~6!/$10.00 4604 © 1997 The American Physical Society



F5l Pl
225l st

22e2s. ~3!

Equation ~2! must be supplemented by the equation of
motion for the dilaton field

d

dt
~Ḟa3!58pa3~r23p!, ~4!

as well as the equations governing the fields responsible for
the energy densityr. If the latter is entirely due to radiation,
as we assume henceforth,r}1/a4 and the right-hand side of
Eq. ~4! vanishes, implying that

B52Ḟa3 ~5!

is a constant.~If k50, the freedom to make an overall time-
independent rescaling ofa means thatB has no invariant
meaning. For the cases with nonzero spatial curvature we
will eliminate this freedom by adopting the convention that
uku51, so thata is the curvature radius of space.! In order to
obtain a solution in which the string couplinges evolves
from weak to strong, we require thatB be positive. Using
these results, we may rewrite the Friedmann equation as

S ȧ2
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where
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is a constant.
The solution of these equations is particularly simple

when k5b50. With Ḟ.0 there are two solutions, with
a(t);(6t2const)61/A3. The lower signs give the inflation-
ary solution underlying the pre-big-bang scenario; this solu-
tion may be written as

a~ t !5A~ tsing2t !21/A3,

F~ t !5
BA23

11A3
~ tsing2t !11A3 ~8!

with tsing andA being arbitrary constants.
As we will see, this flat-space solution is also a good

approximation to the final, inflationary stages of thek561
solutions. We may view the inflationary era of these solu-
tions as beginning at a timet i , when they are well approxi-
mated by Eq.~8!, and ending at a timet f,tsing when the
solution ceases to be reliable, either because the couplinges

has become large enough that higher-order loop corrections
to the low-energy effective action can no longer be neglected
or because the space-time curvature has become so great that
stringy and/or quantum gravity effects are significant. The
amount of inflation during the interval between these can be
measured by the factorZ by which the comoving Hubble
length (Ha)21 decreases. Using Eq.~8!, we find that

Z5
H~ t f !a~ t f !

H~ t i !a~ t i !
5S F~ t i !

F~ t f !
D 1/A3

5S tsing2t i

tsing2t f
D ~11A3!/A3

. ~9!

If the presently observed universe is contained within a re-
gion that had a sizeH21(t i) at time t i , then solution of the
horizon problem by this inflation requires thatZ.e60 ~see,
e.g., Ref.@4#!. Hence, the effective Planck mass must change
by a very large amount,AF(t i)/F(t f)*e104 and, because
the growth of the scale factor is a power law and not expo-
nential, the inflationary period must be of long duration,
(tsing2t i)/(tsing2t f)*e38.

Since inflation ends if the coupling becomes strong,
F(t f)*l st

22 . Similarly, the fact that the classical equations
are reliable only if the curvature is less than the string scale
implies thatH21(t f);(tsing2t f)*l st. Taken together, these
inequalities imply the bound

Z&MinH @F~ t i !l st
2#1/A3,S tsing2t i

l st
D ~11A3!/A3J . ~10!

As we shall see, this bound makes it very difficult to obtain
a Z large enough to solve the horizon problem. One could, of
course, hope for additional inflation in the nonperturbative
and stringy era betweent f and tsing. However, mechanisms
for realizing this hope remain to be demonstrated.

B. Solutions with spatial curvature

Let us now turn to the solutions with nonzero spatial
curvature.1 We begin by solving Eq.~6! for ȧ and then sub-
stituting that result in Eq.~5!. Introducing the variable

c5A12

B
a2F, ~11!

which is proportional to the square of the Einstein-frame
scale factor, we can write the resulting equations as

ȧ5
1

c
@A36A112bc2kc2#, ~12!

ċ56
2

a
A112bc2kc2. ~13!

The choice of signs in these equations is determined by the
requirement thatc;a2F eventually tend toward zero, so
that the curvature term will become negligible and the solu-
tion can approach the inflationaryk50 solution ~8!. For k

521 the sign ofċ can never change, and so the lower signs
in Eqs.~12! and ~13! must be chosen throughout. Fork51,
whereċ changes sign, the upper signs apply at early times
and the lower ones at late times.

Rather than solve these equations directly, we introduce a
parameterh that satisfies

ḣ5
1

a
. ~14!

1For another treatment of these equations, see Ref.@5#; some re-
lated solutions involving dilaton fields in models with spatial cur-
vature are discussed in Ref.@6#.
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Examining Eq.~13!, we see thatdc/dh5ċ/ḣ depends only
on c. Hence,c can be obtained as a function ofh by
straightforward integration. After this result is substituted
into Eq.~12!, a second integration yieldsa(h). The solutions
thus obtained are

a~h!5321/4ABQ21@C~h!2bS~h!#~11A3!/2

3@2S~h!#~12A3!/2,

F~h!5Q2F 2S~h!

C~h!2bS~h!G
A3

, ~15!

with Q an arbitrary constant. Fork521, C(h) and S(h)
denote coshh and sinhh, respectively, while fork51 they
denote cosh and sinh.

For small negative values ofh, both thek51 and thek
521 solutions approach thek5b50 solution ~8!, with h
50 corresponding totsing. At earlier times, however, the
behavior of these solutions is quite different. For the mo-
ment, we concentrate on the caseb&O(1), for which radia-
tion is never dominant.

The k521 solution~see Fig. 1! remains nonsingular for
all h,0. At very early times~large negative values ofh), a
decreases linearly with time, while the dilaton field remains
approximately constant at a valueF(2`);Q2. The scale
factor reaches a minimumamin when 2h is of order unity,
and then begins to grow as the universe goes over into the
dilaton-dominated inflationary epoch. By contrast, thek51
solution ~Fig. 2! has an initial singularity, with vanishinga
and divergingF, a finite timet total before the final singular-
ity.

In either case, the solution begins to approximate the in-
flationary flat space solution when2h is of order unity,
implying thatF(t i)[@ l Pl(t i)#22;Q2 and hence that

a~ t i !;amin;ABl Pl~ t i !, ~16!

and @from integration of Eq.~14!#

tsing2t i;
1

2
t total;ABl Pl~ t i !. ~17!

Substituting these results into Eq.~10! and using Eq.~16!,
we find that

Z&MinH @F~ t i !l st
2#1/A3,S B

F~ t i !l st
2 D ~11A3!/~2A3!J

, B1/3;S a~ t i !

l Pl~ t i !
D 2/3

. ~18!

For b@1, the k521 solution ~Fig. 1! is qualitatively
rather similar, withF again remaining essentially constant
until the onset of inflation, but with the scale factor decreas-
ing as (C2t)1/2. On the other hand, thek51 solution~Fig.
3! is quite different, with a period of radiation-dominated
expansion and contraction~at a roughly constant value ofF)
preceding the final inflationary expansion. In either case,
dilaton-dominated inflation begins when2h;1/b, with
F(t i);Q2/bA3. One finds that

a~ t i !;b21/2ABl Pl~ t i !,

tsing2t i;b23/2ABl Pl~ t i !, ~19!

and ~for k51)

t total;amax;b1/2ABl Pl~ t i !, ~20!

while Eq. ~18! is replaced by

Z&B1/3b21;S a~ t i !

bl Pl~ t i !
D 2/3

;S tsing2t i

l Pl~ t i !
D 2/3

. ~21!

C. Constraints on initial conditions

The k50 solution, Eq.~8!, can be extended indefinitely
far back into the past without encountering either a singular-
ity or a point where the underlying physical assumptions
clearly break down~in contrast, say, to the radiation-

FIG. 1. Evolution of the cosmic scale factora(t) ~solid curve!
and the Brans-Dicke fieldF(t) ~broken curve! for k521 andb
@1; the scales fora andF are arbitrary. Curvature-dominated and
radiation-dominated phases precede the inflationary phase; the
Brans-Dicke field remains constant during the preinflationary
phases. For the case ofb!1 there is no intermediate radiation-
dominated phase and hence no change of slope in the contracting
portion of thea(t) curve.

FIG. 2. Same as Fig. 1 fork51 andb50. An initial singularity
precedes the inflationary phase~both the scale factor and the Brans-
Dicke field are singular!.
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dominated FRW solutions, which clearly cannot be trusted
once the temperature approaches the Planck scale!. Because
of this, one can to a certain degree sidestep the question of
initial conditions.

This is no longer the case once there is spatial curvature.
For k51, where there is an initial singularity, this is obvious.
For k521 there is neither an initial singularity nor a fixed
time at which the solution must break down. However, as
t→2` the physical size of the region corresponding to the
presently observed universe diverges. Unless we want to
have an infinitely large homogeneous region in the far past,
we must assume the appearance~e.g., by some stringy or
quantum gravitational mechanism! at some initial timet0 of
a smooth region that is sufficiently homogeneous and isotro-
pic to be described by a Robertson-Walker metric. The sub-
sequent development of this region will be determined by the
initial values2 a0, F0, and Ḟ0. The bounds obtained in the
previous subsections place constraints on these initial condi-
tions.

We consider separately the cases where inflation does not
begin until some time aftert0 and that where it begins im-
mediately att0; these correspond toa0uḞ0u/F0 being less
than or greater than max(1,b), respectively. In the former
case, the relation betweenZ and B in Eqs. ~18! and ~21!
implies that

Z&
~2a0

3Ḟ0!1/3

max~1,b!
. ~22!

If, instead, inflation begins immediately att0, Eq. ~9! for
Z must be corrected to take into account the fact that the
portion of the classical solution in the interval betweent i and
t0 does not correspond to actually realized inflation; the ac-
tual amount of inflation~i.e., from t0 until t f) is reduced by
a factor of

a0
2F0

a2~ t i !F~ t i !
;

max~1,b!

uḞ0u/a0F0

. ~23!

The bound corresponding to Eq.~22! for this case is

Z&S F0
3

Ḟ0
2D 1/3

. ~24!

~The fact thata0 does not explicitly enter the bounds in this
case was to be expected, since in the inflationary epoch the
curved space solutions approximate the flat space solution,
for which there is an overall scale ambiguity in the definition
of a.!

Furthermore by combining the relation betweenZ and
F(t i) in Eq. ~10! with the fact thatF is monotonically de-
creasing, one obtains the bound

Z&~F0l st
2 !1/A3; ~25!

in fact, this bound can be strengthened somewhat for certain
choices of parameters withk51.

These bounds on the amount of inflation, Eqs.~22!, ~24!,
make clear the sensitivity of pre-big-bang inflation to initial
conditions. In the case where inflation does not begin until
sometime aftert5t0, either an increase in the initial curva-
ture, i.e., decreasinga0, or an increase in the amount of
radiation, i.e., largerb, with all other quantities held fixed,
can reduceZ to the point where it is insufficient to solve the
horizon and flatness problems. In the other case, when infla-
tion begins immediately att5t0, an increase inḞ0 or a
decrease inF0 can defeat inflation.

Recently, Veneziano has studied another, not unrelated,
aspect—the effect of initial inhomogeneity and anisotropy on
pre-big-bang inflation@7#. Making the assumption of small
initial curvature, he showed that small amounts of inhomo-
geneity and anisotropy do not prevent the ultimate transition
to the pre-big-bang inflationary phase and concluded that
pre-big-bang inflation is robust. The first statement is consis-
tent with our results—we find that radiation and spatial cur-
vature only postponethe inflationary phase—and extends
these to small levels of anisotropy and inhomogeneity. How-
ever, our interpretation is less rosy than Veneziano’s. Since
the end of pre-big-bang inflation is fixed by other consider-
ations, postponing the onset of the dilaton-dominated phase
can severely limit the beneficial effects of pre-big-bang in-
flation. We speculate that anisotropy and inhomogeneity may
also be able to defeat pre-big-bang inflation by postponing
the onset of the dilaton-dominated phase.

III. THE VIEW FROM THE EINSTEIN FRAME

The theory defined by action of Eq.~1! can be recast in a
number of different, but equivalent, forms by conformal res-
calings of the metric. In particular, the conformal transfor-
mation g̃mn5(F/mPl

2)gmn @and hence ã /a5d t̃ /dt
5F1/2/mPl# takes the Jordan frame description that we have
used thus far into the Einstein frame description in which the
gravitational part of the action takes the standard Einstein-
Hilbert form.

The behavior in this frame is qualitatively quite different

2There is also a discrete choice forȧ0 corresponding to the sign
ambiguity in Eqs.~12! and ~13!; we will assume that the value
corresponding to the inflationary solution is chosen.

FIG. 3. Same as Fig. 2 forb@1. In this case, the initial singu-
larity is followed by a radiation-dominated phase during which the
scale factor decreases and the Brans-Dicke field is approximately
constant.
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than that in the Jordan frame. Fork521, ã ~which, as noted
earlier, is proportional toAc) decreases monotonically,
while for k51, ã vanishes at both the initial and final sin-
gularities, with only a single maximum in between, no matter
what the value ofb. The inflationary epoch itself, instead of
being a period of accelerated expansion, is one of ever more

rapid contraction, withã(t)}( t̃ sing2 t̃ )1/3, so thatȧ̃ and ä̃
are both negative. Of course, the answers to physical ques-
tions cannot be changed by a field redefinition, so if the
horizon problem is solved in one frame it must be solved in
the other@8#. Indeed, the ratio in Eq.~9! that we used to
characterize the amount of inflation is the same in either
frame:

H~ t f !a~ t f !

H~ t i !a~ t i !
5S tsing2t i

tsing2t f
D ~11A3!/A3

5S t̃ sing2 t̃ i

t̃ sing2 t̃ f
D 2/3

5
H̃~ t f ! ã~ t f !

H̃~ t i ! ã~ t i !
. ~26!

Here, we have used the fact that during inflationH̃ ã}1/ã2.
In the Einstein frame, the sensitivity of the amount of

inflation to the amount of curvature~or radiation! can be
understood as follows. The terms in the Friedmann equation
corresponding to curvature, radiation energy density, and
Brans-Dicke-field energy density vary as 1/ã2, 1/ã4, and
1/ã6, respectively. Inflation only begins whenã has become
small enough that the last of these terms is dominant. Hence,
by increasing the curvature or the amount of radiation, the
duration of inflation is made shorter.

Although the two frames are mathematically equivalent,
they do suggest different levels of ‘‘naturalness.’’ The
initial-condition constraints that we obtained in the previous
section arise~in different forms! in both frames. However, in
the Einstein frame the picture of inflation is far less compel-
ling: A big, smooth region emerges at the end of inflation
because an even bigger smooth region was present at the
beginning of inflation. These considerations can be rephrased
in terms of fundamental length scales. If one views the dila-
ton theory as being an effective theory based on an underly-
ing string theory with a fundamental length scalel st, then
the Jordan-frame picture, with inflation taking a small
smooth region into a large smooth one, is perhaps more natu-
ral. However, nothing that we have done has relied on any
underlying string physics; a similar scenario~up to the imple
mentation of the graceful exit! could be obtained from any
generalized Brans-Dicke theory.3 In this latter case, there is

no fundamental length. The only natural way to characterize
distances as ‘‘large’’ or ‘‘small’’ is relative to the time-
dependent Planck length. But this leads immediately to a
difficulty. The bounds in Eqs.~18! and ~21! tell us that sig-
nificant inflation during the dilaton-dominated era is possible
only in a universe whose characteristic cosmological scales
— a(t i), (tsing2t i), amin @for k521#, andt total @for k51# —
are all enormous when measured in units of its characteristic
Planck lengthl Pl(t i). The flatness problem is just such a
mismatch in scales. Thus, the price of curing one set of natu-
ralness problems is the reintroduction of an earlier natural-
ness problem.

IV. CONCLUDING REMARKS

One measure of the naturalness of a cosmological sce-
nario is its sensitivity to initial conditions. Indeed, the pri-
mary motivation for the inflationary paradigm was to solve
the naturalness problems that arose because the standard cos-
mology appeared to require a finely tuned initial state. A
characteristic of previous implementations of inflation is that
they are rather insensitive to the initial curvature@3,10#. For
example, in slow-roll inflation

ln Z5
8p

mPl
2Ef i

fendV~f!df

V8~f!
, ~27!

is determined by the shape of the inflationary potential, the
initial valuef i of the inflaton field, and the valuefend of the
inflaton at which the slow-roll approximation breaks down;
the only constraint on the initial curvature is that it not have
such a large positive value that recollapse would occur be-
fore inflation could commence. Viewed in the context of
inhomogeneous cosmological models, this means that all
sufficiently large regions of space with either negative or
not-too-large positive curvature will inflate@11,12#.

In pre-big-bang inflation the end of the inflationary era is
fixed, while its beginning is delayed by curvature. Too much
curvature — of either sign — shortens the duration of the
inflationary era to the point that the flatness and horizon
problems are not solved. Thus, in the absence of a mecha-
nism that would naturally cause a large region of space to
materialize with tiny curvature, pre-big-bang inflation re-
quires fine-tuning of initial conditions to solve these cosmo-
logical problems. This makes it less robust, and therefore
less attractive as an implementation of the inflationary para-
digm.
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