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Pre-big-bang inflation requires fine-tuning
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The pre-big-bang cosmology inspired by superstring theories has been suggested as an alternative to slow-
roll inflation. We analyze, in both the Jordan and Einstein frames, the effect of spatial curvature on this
scenario and show that too much curvature — of either sign — reduces the duration of the inflationary era to
such an extent that the flatness and horizon problems are not solved. Hence, a fine-tuning of initial conditions
is required to obtain enough inflation to solve the cosmological problga@656-282197)01020-5

PACS numbds): 98.80.Cq

[. INTRODUCTION classical field equations and the initial datatgt We will
find that, in contras{3] to slow-roll inflation, the pre-big-

The pre-big-bang cosmology inspired by superstring theobang scenario is quite sensitive to these initial conditions.
ries has been suggested as a possible implementation of the In Sec. Il we obtain the pre-big-bang solutions with arbi-
inflationary-universe scenarfd]. This cosmology is based trary spatial curvature, and discuss the requirements that
on a spatially flat solution in which the kinetic energy of a must be satisfied in order that there be enough inflation to
massless dilaton drives an accelerated expansion towards@lve the horizon and flatness problems of the standard cos-
singularity at timetgp,g, with the scale factom(t)x(ts,, ~ Mology. We then show how these requirements can be
—t)~ Y3, Before the singularity is reached, stringy and/orPhrased as constraints on initial conditions. We carry out this
nonperturbative effects bring an end to the inflationary phaséliscussion in the Jordan frame, in which the Planck mass is a
and, by mechanisms that are not yet completely understoodme-dependent quantity depending on the dilaton field and
effectuate a transition to a standard Friedmann-Robertsofibe fundamental string length, is fixed. In Sec. Il we
Walker (FRW) epoch of decelerating expansion with the di- describe the somewhat different, but equivalent, picture that
laton fixed at its present value. results if one works in the Einstein frame, where the Planck

In previous investigations of this scenario considerablemass is fixed and’g; varies with time. Section IV contains
effort has been focused on the details of the graceful exigome concluding remarks.
from the inflationary erd2]; it is still not at all clear that this
can be done. In this paper we will assume, for the sake of II. PRE-BIG-BANG COSMOLOGY WITH CURVATURE
argument, that mechanisms for accomplishing this actually
exist and will concentrate instead on the initial conditions.
These have received little attention in previous discussions, The evolution of the universe during the pre-big-bang
in large part because the flat-space solution on which thegghase of this scenario is governed by the tree-level, low-
discussions have been based has an inflationary epoch thextergy effective action
extends infinitely far back in time. 1

The situation is quite different once one admits the possi- . 4 o =2 >
bility of even a small amount of spatial curvature, as gener- Seﬁ_ﬁf d x\/—_ge [/ (R¥ 9,00 ) TR
ality considerations certainly require. Although pre-big-bang
inflationary solutions still arise, the inflationary epoch has a
finite duration which depends upon the initial curvature. Fur- L
thermore, it does not even appear that the preinflationary erjg\ we assume a Robertson-Walker metric with scale factor

can be extended arbitrarily far back. For a closé&e-() a(t), the Friedmann equation takes the form

A. Flat-space solutions

+ matter terms-O(e”)]. D

universe this is prevented by the existence of an initial sin- 10\2 1/d\2 8 K
gularity, while the open universek& —1) solution, al- (H+——) =_<_) +_7Tﬂ__2, @)
though remaining nonsingular, becomes increasing implau- 20 12 3d a

sible ast— — . For both cases, as well as for their limiting o ] o ) )
k=0 case, one is thus led to view the scenario as beginnin@’here a dot indicates differentiation with respect to time,
with the appearancée.g., by a quantum fluctuatiprof a  H=a/a, and the Brans-Dicke fieldb and the associated
sufficiently large, smooth region at an initial tirhg with the  time-dependent Planck lengtfi, are related to the dilaton
subsequent evolution of this region being determined by théield by
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O=/pl=/3’e". €)) If the presently observed universe is contained within a re-
gion that had a sizél ~(t;) at timet;, then solution of the
Equation (2) must be supplemented by the equation ofhorizon problem by this inflation requires that-e®° (see,

motion for the dilaton field e.g., Ref[4]). Hence, the effective Planck mass must change
g by a very large amount/®(t;)/®(t;)=e'%* and, because
—(Pa®)=87ad(p—3 , 4 the growth of the scale factor is a power law and not expo-
dt( )=8ma’(p—3p) @ nential, the inflationary period must be of long duration,

. . . . (tsing_ ti)/(tsing_tf) ze®,
as well as the equations governing the fields responsible for “Since inflation ends if the coupling becomes strong

the energy density. If the Iatter;is entirely_due to radi_ation, (D(tf)z/s_tz' Similarly, the fact that the classical equations
as we assume henceforjiw 1/a” and the right-hand side of  5p6 rejiable only if the curvature is less than the string scale
Eq. (4) vanishes, implying that implies thatH ~(t;) ~ (tsng— t;) = /. Taken together, these
inequalities imply the bound

B=-da’ (5)
i : 3\ (A+B3)NE
is a constant(lf k=0, the freedom to make an overall time- . 21143 | tsing~ i
_ ) b Z=Min{ [®(t)/ V3| —— (10
independent rescaling ai means thaB has no invariant s st

meaning. For the cases with nonzero spatial curvature we

will eliminate this freedom by adopting the convention thatAs we shall see, this bound makes it very difficult to obtain
|k|=1, so that is the curvature radius of spagén orderto  aZ large enough to solve the horizon problem. One could, of
obtain a solution in which the string couplirgf evolves  course, hope for additional inflation in the nonperturbative
from weak to strong, we require tha be positive. Using  and stringy era between andtg,;. However, mechanisms
these results, we may rewrite the Friedmann equation as for realizing this hope remain to be demonstrated.

2 B2 bB

= + —k
12(a’d)? 2 ' . : ,
( INEES Let us now turn to the solutions with nonzero spatial

where curvaturet We begin by solving Eq(6) for a and then sub-
stituting that result in Eq(5). Introducing the variable

[3
b=87\/zzpa’ 7
7\ 382 ) y= \/g'azda (12)

B
- 2a%®

a (6) B. Solutions with spatial curvature

is a constant.

The solution of these equations is particularly simplewhich is proportional to the square of the Einstein-frame
when k=b=0. With ®>0 there are two solutions, with scale factor, we can write the resulting equations as
a(t)~(+t—consty""3. The lower signs give the inflation-

ary solution underlying the pre-big-bang scenario; this solu- .1
tion may be written as a= @[\/gi V1+2by—ky?], (12
a(t):A(tsing_t)ilNﬁ, 2
=*—1+2by—ky?. (13
A3 - a
d(t)= —\/—(tsim‘q_t)lJﬂ3 8)
1+v3 The choice of signs in these equations is determined by the

requirement thaiy~a2®d eventually tend toward zero, so
As we will see, this flat-space solution is also a goodthat the curvature term will become negligible and the solu-

approximation to the final, inflationary stages of #tre £1 tion can approach the inflationaky=0 solution (8). For k

solutions. We may view the inflationary era of these solu-= —1 the sign ofy can never change, and so the lower signs
tions as beginning at a timte, when they are well approxi- in Egs.(12) and(13) must be chosen throughout. For1,
mated by Eq.(8), and ending at a timeé;<tg,, when the  where s changes sign, the upper signs apply at early times
solution ceases to be reliable, either because the cougfing and the lower ones at late times.

has become large enough that higher-order loop corrections Rather than solve these equations directly, we introduce a
to the low-energy effective action can no longer be neglectegparametery that satisfies

or because the space-time curvature has become so great that

stringy and/or quantum gravity effects are significant. The o1

amount of inflation during the interval between these can be 7= 3 (14
measured by the factaf by which the comoving Hubble

length (Ha) ~! decreases. Using E¢B), we find that

with tg,g and A being arbitrary constants.

1 .
N\ IN3 N1+ B3 For another treatment of these equations, see [B&fsome re-
= H(toaty) = q)(t')) :(M) . (9) lated solutions involving dilaton fields in models with spatial cur-
H(t)a(t) | P(ty) tsing— tf vature are discussed in R¢6].
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FIG. 1. Evolution of the cosmic scale factaft) (solid curve FIG. 2. Same as Fig. 1 fd=1 andb—0. An initial singularity

and the Brans-Dicke field(t) (broken curve for k=—1 andb . .
=1 the scales foa and® a(re) a(rbitrary Cun?ature-dominated and precedes the inflationary pha@mth the scale factor and the Brans-
! ’ Dicke field are singular

radiation-dominated phases precede the inflationary phase; the
Brans-Dicke field remains constant during the preinflationary
phases. For the case b1 there is no intermediate radiation-

dominated phase and hence no change of slope in the contracting

1
portion of thea(t) curve. teing— ti~ Etwtah VBZp((t)). a7

and[from integration of Eq(14)]

Examining Eq(13), we see thatly/d = /5 depends only  Substituting these results into E(LO) and using Eq/(16),
on . Hence, ¢ can be obtained as a function of by e find that

straightforward integration. After this result is substituted
into Eq.(12), a second integration yieldq 7). The solutions

B (1+3)1(23)
thus obtained Z=Min{ [®(t))/ 23 | ———
us obtained are [®(t) &l b(t) /2
a(7)=3""BQ [C(n) —bS(7)]*" " L [ at) |2
K[ S(7)] 1", < B W (18

3 For b>1, the k=—1 solution (Fig. 1) is qualitatively
—S(m) } (15) rather similar, with® again remaining essentially constant
C(n)—bS(n)] ' until the onset of inflation, but with the scale factor decreas-
ing as C—1t)*2 On the other hand, the=1 solution(Fig.
with Q an arbitrary constant. Fdt=—1, C(7) andS(#»)  3) is quite different, with a period of radiation-dominated
denote cosh and sinhy, respectively, while folkk=1 they  expansion and contractigat a roughly constant value df)
denote cog and sin. preceding the final inflationary expansion. In either case,

For small negative values of, both thek=1 and thek  dilaton-dominated inflation begins wher 5~ 1/b, with
= —1 solutions approach the=b=0 solution(8), with »  ®(t;)~Q%b"?. One finds that
=0 corresponding tdg,,. At earlier times, however, the

®(7)=Q?

behavior of these solutions is quite different. For the mo- a(ti)~b*1’2\/§/p|(ti),
ment, we concentrate on the cdse O(1), for which radia-
tion is never dominant. teing— ti~ b~ ¥2VB/p(1), (19

The k= —1 solution(see Fig. 1 remains nonsingular for
all 7<0. At very early timeglarge negative values af),a  and(for k=1)
decreases linearly with time, while the dilaton field remains 12 5/
approximately constant at a valde(—»)~Q?. The scale tiota amax~ DYAVB/ p(th), (20
factor reache; a minimum,,;, when -7 is of order un?ty, while Eq. (18) is replaced by
and then begins to grow as the universe goes over into the

dilaton-dominated inflationary epoch. By contrast, kel a(t) \?® [tgn—ti\%°
. . e . . . . 13, —-1 [¢] [

solution (Fig. 2 has an initial singularity, with vanishing Z=B"b "~ /oty \ et (21)
and diverging®, a finite timet,y, before the final singular- ' '
ity. . _— .

In either case, the solution begins to approximate the in- C. Constraints on initial conditions
flationary flat space solution when » is of order unity, The k=0 solution, Eq.(8), can be extended indefinitely
implying that® (t;)=[/p(t;)]”?>~Q? and hence that far back into the past without encountering either a singular-

ity or a point where the underlying physical assumptions
a(t;) ~amn~ VB/p(ti), (16)  clearly break down(in contrast, say, to the radiation-
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4 azd, max 1,b) 23
L az(ti)q)(ti) |(-I)0|/aoq)0.
= ol The bound corresponding to E@®2) for this case is
E (1)3 1/3
) \
3 - . z=| — (24)
E 5
S 0 ' —
(The fact thata, does not explicitly enter the bounds in this
n N _ case was to be expected, since in the inflationary epoch the
curved space solutions approximate the flat space solution,
ol oy oy by By for which there is an overall scale ambiguity in the definition
3 2 1 0 -1 -2 of a.)

log 1o{tsing—t) Furthermore by combining the relation betweg&nand
®(t;) in Eqg. (10) with the fact thatd is monotonically de-

FIG. 3. Same as Fig. 2 fdri>1. In this case, the initial singu- creasing, one obtains the bound

larity is followed by a radiation-dominated phase during which the
scale factor decreases and the Brans-Dicke field is approximately

constant. Z=(Do YW (25

(jn fact, this bound can be strengthened somewhat for certain
choices of parameters with=1.
These bounds on the amount of inflation, E@R), (24),

dominated FRW solutions, which clearly cannot be truste
once the temperature approaches the Planck)sddeause

of this, one can to a certain degree sidestep the question ?ﬁcake clear the sensitivity of pre-big-bang inflation to initial

initial conditions. " ) . . .
T . . conditions. In the case where inflation does not begin until
This is no longer the case once there is spatial curvature

- : P . o . Sometime aftet=t, either an increase in the initial curva-
Fork=1, where there is an initial singularity, this is obvious. ; ; : .
B . ; o 9 : ) ture, i.e., decreasingy, or an increase in the amount of
For k=—1 there is neither an initial singularity nor a fixed o . . - .
. . . radiation, i.e., largeb, with all other quantities held fixed,
time at which the solution must break down. However, as : L -
. : : . can reduce to the point where it is insufficient to solve the
t— — oo the physical size of the region corresponding to the, _ . .
) . horizon and flatness problems. In the other case, when infla-
presently observed universe diverges. Unless we want tQ o tel i o
have an infinitely large homogeneous region in the far pastion Pegins immediately at=t,, an increase inb, or a

we must assume the appearariegy., by some stringy or Jecrease inbq can defeat inflation.
quantum gravitational mechanigrat some initial timet, of Recently, Veneziano has studied another, not unrelated,

a smooth region that is sufficiently homogeneous and isotro@SPect—the effect of initial innomogeneity and anisotropy on

pic to be described by a Robertson-Walker metric. The subPré-Pig-bang inflatior7]. Making the assumption of small

sequent development of this region will be determined by thénitial curvature, he showed that small amounts of inhomo-

initial valueg ag, ®,, and®,. The bounds obtained in the geneity and anisotropy do not prevent the ultimate transition

) . : o to the pre-big-bang inflationary phase and concluded that
previous subsections place constraints on these initial condi- " ; = . ; .
fions pre-big-bang inflation is robust. The first statement is consis-

. : : t(?nt with our results—we find that radiation and spatial cur-
We consider separately the cases where inflation does NOLiure onlv postoonethe inflationary bhase—and extends
begin until some time aftet, and that where it begins im- Y POStD y b

. ) . these to small levels of anisotropy and inhomogeneity. How-
mediately atto; these correspond tag|o|/Po being less  gyer our interpretation is less rosy than Veneziano's. Since
than or greater than max(), respectively. In the former

. - the end of pre-big-bang inflation is fixed by other consider-
pas?, thtﬁ rtelatlon betweeh and B in Egs. (18) and (21)  4fions, postponing the onset of the dilaton-dominated phase
implies tha

can severely limit the beneficial effects of pre-big-bang in-
2313 flation. We speculate that anisotropy and inhomogeneity may
(~apPo) (22) also be able to defeat pre-big-bang inflation by postponing
max1b) the onset of the dilaton-dominated phase.

If, instead, inflation begins immediately &, Eq. (9) for
Z must be corrected to take into account the fact that the
portion of the classical solution in the interval betwégand The theory defined by action of E€L) can be recast in a
ty does not correspond to actually realized inflation; the achumber of different, but equivalent, forms by conformal res-
tual amount of inflatior(i.e., fromt, until t;) is reduced by calings of the metric. In particular, the conformal transfor-

a factor of mation g,,=(®/mp?)g,, [and hence a/a=dt/dt
=®Y%/m,|] takes the Jordan frame description that we have
used thus far into the Einstein frame description in which the

2There is also a discrete choice fag corresponding to the sign gravitational part of the action takes the standard Einstein-
ambiguity in Egs.(12) and (13); we will assume that the value Hilbert form.

corresponding to the inflationary solution is chosen. The behavior in this frame is qualitatively quite different

Ill. THE VIEW FROM THE EINSTEIN FRAME
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than that in the Jordan frame. Foe — 1, a (which, as noted no fundamental length. The only natural way to characterize
earlier, is proportional toyy) decreases monotonically, distances as “large” or “small” is relative to the time-

. .= , - ' - dependent Planck length. But this leads immediately to a
while for k=1, a vanishes at both the initial and final sin difficulty. The bounds in Eqs(18) and (21) tell us that sig-

gularities, with only a single maximum in between, no matternificant inflation during the dilaton-dominated era is possible
what the value ob. The inflationary epoch itself, instead of . ; 9 - > P
only in a universe whose characteristic cosmological scales

being a period of accelerated expansion, is one of ever morée
gap P [ MO (1), (taing=ti), @min [for k=—1], andt gy [for k=1] —

rapid contraction, witra (t) < (T sng— t)"% so thata anda  are all enormous when measured in units of its characteristic
are both negative. Of course, the answers to physical quepianck length/p(t;). The flatness problem is just such a
tions cannot be changed by a field redefinition, so if themismatch in scales. Thus, the price of curing one set of natu-

horizon problem is solved in one frame it must be solved inralness problems is the reintroduction of an earlier natural-
the other[8]. Indeed, the ratio in Eq(9) that we used to ness problem.

characterize the amount of inflation is the same in either
frame: IV. CONCLUDING REMARKS

1+ 3IGE [ —~\ 23 One measure of the naturalness of a cosmological sce-
H(tpa(ty) :(tsing_ti) R nario is its sensitivity to initial conditions. Indeed, the pri-
H(t))a(t;) tsing— ts T mary motivation for the inflationary paradigm was to solve
the naturalness problems that arose because the standard cos-
H(t)a(ty) mology appeared to require a finely tuned initial state. A
:m- (26) characteristic of previqu_s implemgn_tgtions of inflation is that
: : they are rather insensitive to the initial curvat(igel0Q]. For
example, in slow-roll inflation

Here, we have used the fact that during inflatida o 1/a2.

In the Einstein frame, the sensitivity of the amount of _ 87 [dendV(P)dp
inflation to the amount of curvaturéor radiation can be InZ= m 2L)_ V'(p)
understood as follows. The terms in the Friedmann equation P
corresponding to curvature, radiation energy density, ané determined by the shape of the inflationary potential, the
Brans-Dicke-field energy density vary asa?/ 1/a*, and initial value ¢; of the inflaton field, and the valuge,qof the
1/a®, respectively. Inflation only begins wh@nhas become inflaton at which the slow-roll approximation breaks down;

small enough that the last of these terms is dominant. HencéTJe r?nlyl constram:'on th? |n|:|r]altcurva|t|ure IS thatlgt not ha\t/)e
by increasing the curvature or the amount of radiation, th?‘5 ¢ _aﬂ a;ge pOS|I(|jve vaiue tha r\/E{co agsg \;vhou o<;cutr fe-
duration of inflation is made shorter. ore inflation could commence. Viewed in the context o

Although the two frames are mathematically equivalent,inhqn_mgeneous cosmological model_s, th?s means t_hat all
they do suggest different levels of “naturalness.” The sufficiently large regions of space with either negative or

initial-condition constraints that we obtained in the previousnOt'too'large positive curvature will mfla(a.l,lﬂ_. .
In pre-big-bang inflation the end of the inflationary era is

section arisein different formg in both frames. However, in fixed. while its beginning is delaved b ¢ T h
the Einstein frame the picture of inflation is far less compel- Ixed, whiie IS beginning IS delayed by curvature. 100 muc
curvature — of either sign — shortens the duration of the

ling: A big, smooth region emerges at the end of inflation, lati o th int that the flat 4 hori
because an even bigger smooth region was present at tHgalonary eéra 10 the point that the Tatness and horizon

beginning of inflation. These considerations can be rephrase%fOblemS are not solved. Thus, in the absence of a mecha-

in terms of fundamental length scales. If one views the dilaMSM Fh"’.‘t WO‘.JId qaturally cause a Iarge region of space to
naterialize with tiny curvature, pre-big-bang inflation re-

ton theory as being an effective theory based on an underly- . . L .
quires fine-tuning of initial conditions to solve these cosmo-

ing string theory with a fundamental length scalg, then IIogical problems. This makes it less robust, and therefore

the Jordan-frame picture, with inflation taking a smalI ttracti imol tati f the inflat
smooth region into a large smooth one, is perhaps more natg>S attractive as an impiementation ot the inflationary para-

ral. However, nothing that we have done has relied on an)(}j'gm'
underlying string physics; a similar scenatigp to the imple
mentation of the graceful eXitould be obtained from any
generalized Brans-Dicke theotyin this latter case, there is We thank Janna Levin and other participants of the Aspen
Center for Physics Workshop on Inflation for valuable dis-
cussions. This work was supported by the U.S. D@EChi-
3Some of the difficulties associated with achieving sufficient in-cago, Columbia, and Fermilaand by NASA through Grant
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