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The large value of the top quark mass implies that the rare top quark decayst→bW1Z, sW1Z, and
dW1Z, and t→cW1W2 and uW1W2, are kinematically allowed so long asmt>mW1mZ1mdi
'171.5 GeV1mdi

or mt>2mW1mu,c'160.6 GeV1mu,c , respectively. The partial decay widths for these
decay modes are calculated in the standard model. The partial widths depend sensitively on the precise value
of the top quark mass. The branching ratio fort→bW1Z is as much as 131025 for mt5200 GeV, and could
be observable at the CERN Large Hadron Collider. The rare decay modest→cW1W2 and uW1W2 are
highly Glashow-Iliopoulos-Maiani~GIM! suppressed, and thus provide a means for testing the GIM mecha-
nism for three generations of quarks in theu, c, t sector.@S0556-2821~97!01113-2#

PACS number~s!: 14.65.Ha, 12.15.Ff, 12.15.Hh

Now that the top quark mass is known to be quite large, it
is possible to examine the question of which rare decay
modes of the top quark are kinematically allowed processes.
The current average value of the top quark mass
mt517568 GeV @1,2# from the Collider Detector at
Fermilab ~CDF! and D0 Collaborations implies that
the decayst→bW1Z, sW1Z, and dW1Z are allowed
decay modes of the top quark so long as
mt>mW1mZ1mdi

'171.5 GeV1mdi
. The rare decays

t→cW1W2 and uW1W2 also are allowed if
mt→2mW1mc,u'160.6 GeV1mc,u . For the present central
value of the measured top quark mass, all of these processes
are occurring at or near threshold, and are highly phase space
suppressed. The decayst→cW1W2 anduW1W2 are also
highly Glashow-Iliopoulos-Maiani~GIM! suppressed, and
thus are not likely to be seen at standard model rates. The
decayst→diW

1Z, however, are not GIM suppressed and
are potentially observable at the CERN Large Hadron Col-
lider ~LHC!. The partial decay widths for these rare decay
modes rapidly increase for larger values of the top quark
mass, and thus are very sensitive to the precise value of the
top quark mass. Since the decay widths are proportional to
uVtdi

u2, i51,2,3, the rare decayt→bW1Z ~with uVtbu2'1)
will dominate unless the value of the top quark is below or
nearly at threshold for this process.

We begin with the calculation of the partial decay width
G(t→bW1Z) in the standard model. The branching ratio for
this decay process has been computed previously by Decker,
Nowakowski, and Pilaftsis@3# and Mahlon and Parke@4#.1

The authors of Ref.@4# included the finite widths of theW
andZ in their calculation, and found a significant enhance-
ment in the decay width near threshold due to finite width
effects. There is some disagreement in the numerical results
of Refs.@3# and@4#. The numerical results presented here are
basically consistent with the published results of Ref.@4# in

the narrow width approximation. There is some numerical
difference with Ref.@4# which probably stems from the in-
clusion of finite width effects in that calculation. In addition,
explicit analytic formulas for the squared amplitude of
t→bW1Z are presented in this work. These formulas do not
appear elsewhere in the literature, and are useful for more
detailed studies of the decay mode. Finally, the decay widths
for the other rare decay modest→cW1W2 and uW1W2

also are computed. A search for these decay modes directly
tests Cabbibo-Kobayashi-Maskawa~CKM! unitarity in the
u-quark sector.

I. t˜bW1Z

The rare decayt→bW1Z proceeds via the three tree-
level graphs drawn in Fig. 1. The amplitudes for these Feyn-
man diagrams are

A15VtbS igA2D S ig

cosuW
D eW

m eZ
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1The decay processQ→qWZ also was considered in Ref.@5# for
very heavy fourth generation quarks and exotics with mass>240
GeV.
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where the four-momentak1, k2, andk3 are given by

k15pt2pZ5pb1pW ,

k25pt2pW5pb1pZ , ~4!

k35pt2pb5pW1pZ ,

and the couplings of theZ boson to the left- and right-handed
top and bottom quarks are
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2

3
sin2uWD ,

gtR5S 2
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3
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gbL5S 2
1

2
1
1

3
sin2uWD , ~5!

gbR5S 13sin2uWD .

In the above amplitudes,PL,R stand for the left- and right-
handed projectorsPL,R5(17g5)/2, and uW is the weak
mixing angle. The amplitudeA3 depends on the triple gauge
vertexW1W2Z. This amplitude has been written in unitary
gauge, where there is a contribution to theW gauge-boson
propagator proportional tok3

lk3
r/mW

2 . The amplitude also can
be written in ’t Hooft–Feynman gauge (j51), where this
contribution is replaced by the exchange of the would-be
Goldstone boson of theW.

The total amplitude is given byA5A11A21A3, and the
amplitude squared is

uAu25uA1u21uA2u21uA3u212A1A2*12A1A3*12A2A3* ,
~6!

where the identities

A1A2*5A2A1* ,

A1A3*5A3A1* , ~7!

A2A3*5A3A2* ,

have been used.
The square amplitudeuA1u2 is

FIG. 1. t→bW1Z. Feynman diagrams correspond to the ampli-
tudesA1, A2, andA3.
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The square amplitudeuA2u2 is related touA1u2 by the interchangesgtL,R↔gbL,R, mt↔mb , pt↔pb , andk1↔k2:
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The square amplitudeuA3u2 is
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whereg5(12mZ
2/mW

2 ) in unitary gauge. In ’t Hooft–Feynman gauge, one obtains the same expression withg5sin2uW and
cos2uW replaced by (mZ /mW)

2. The terms inuA3u2 proportional tog are antisymmetric underpt↔pb , pW↔pZ and
mW↔mZ while the terms which are independent ofg or proportional tog2 are invariant under this interchange.

The interference termA1A2* is
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A1A2* is invariant under the simultaneous interchangesgtL,R↔gbL,R, mt↔mb , pt↔pb , andk1↔k2.

The two interference termsA1A3* andA2A3* are
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where g512mZ
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2 or sin2uW. The interference terms
A2A3* and A1A3* are related by the interchangesgtL,R
↔gbL,R, mt↔mb , pt↔pb , andk1↔k2.

The above square amplitudes have been written in terms
of k1 andk2, andpt andpb in order to exhibit the symme-
tries of the square amplitudes explicitly. The total square
amplitude can be rewritten in terms of the three dot products
(pb•pW), (pb•pZ), and (pW•pZ), by eliminatingpt , k1, and
k2 in the above formulas.

The partial width for the decay modet→bW1Z is given
by the three-body phase space integral
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spin-averaged square amplitude

uAu25
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2
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since one averages rather than sums over the top quark spin.
The partial decay widthG(t→bW1Z) is plotted in Fig. 2

as a function of the top quark mass. The phase space integral

FIG. 2. G(t→bW1Z) as a function of the top quark mass for
mW580.3 GeV,mZ591.2 GeV,mb54.5 GeV, sin2uW50.23, and
uVtbu251. The partial decay width vanishes at threshold, where
mt5mb1mW1mZ .
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was performed numerically for the parameter values
mW580.3 GeV, mZ591.2 GeV, mb54.5 GeV,
sin2uW50.23, anduVtbu51. The partial width is plotted over
the range frommt5176 GeV, where the partial width van-
ishes, tomt5200 GeV, where the partial decay width is
2.531025 GeV. The branching ratioB(t→bW1Z) also is
plotted as a function of the top quark mass in Fig. 3, assum-
ing that the total width of the top quark is dominated by
t→bW1:
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where

l~x,y,z!5x21y21z222xy22yz22xz. ~17!

The CKM matrix elementuVtbu2 cancels out of the branching
ratio. The branching ratio increases from zero formt5176
GeV to 1.031025 for mt5200 GeV.2 Although this branch-
ing ratio is too small to be observed at the Tevatron, it is
large enough to be interesting for the LHC which is expected
to yield about a million fully reconstructed top quark events
per year@6#. The observability of this decay mode depends

on the precise value of the top quark mass. The branching
ratio is greater than 1026 for mt*187 GeV. The extreme
sensitivity of the branching ratio to the top quark mass im-
plies that the decay mode could be used to extract or bound
the top quark mass. The decay mode also is sensitive to the
presence of the triple gauge vertexW1W2Z with the stan-
dard model coupling.

The rare decayt→bW1Z is at threshold for the present
central value of the top quark mass, so the decays
t→sW1Z and t→dW1Z could be more important if
t→bW1Z is kinematically forbidden or just allowed. Alter-
natively, it might be possible to look at these modes by ap-
plying a tight cut on the invariant mass of theW1 and Z
momenta to excludet→bW1Z but not t→sW1Z and
dW1Z. The partial decay widths for thes andd final states
can be obtained from the partial decay width for theb mode
by replacingmb by ms or md , and uVtbu2 by uVtsu2 or
uVtdu2. The partial decay widthG(t→diW

1Z)/uVti u2 is plot-

2The value of the branching ratio for this value ofmt is consistent
with the result of Mahlon and Parke@4# in the narrow width ap-
proximation. There is some numerical difference with their narrow
width results for smaller values ofmt , which probably stems from
the inclusion of finite width effects proportional toGW /mW and
GZ /mZ in their calculation.

FIG. 3. B(t→bW1Z) as a function of the top quark mass for
mW580.3 GeV,mZ591.2 GeV,mb54.5 GeV, and sin2uW50.23.
The branching ratio vanishes at threshold, wheremt5mb

1mW1mZ .

FIG. 4. G(t→diW
1Z)/uVti u2 as a function of the top quark mass

for mW580.3 GeV,mZ591.2 GeV, sin2uW50.23, andmdi
50. The

partial decay width vanishes at threshold, wheremt5mW1mZ .
This graph is relevant for the decayst→dW1Z and t→sW1Z.

FIG. 5. t→cW1W2.

56 463RARE TOP QUARK DECAYSt→bW1Z AND t→cW1W2



ted as a function of the top quark mass for vanishingmdi
in

Fig. 4. The partial width divided by the CKM matrix element
squared is zero at threshold wheremt5mW1mZ and in-
creases to 2.731025 GeV atmt5200 GeV. For canonical
values ofuVtsu2 and uVtdu2, these partial widths will be too
small to be observed at LHC.

II. t˜cW1W2

The rare decayt→cW1W2 proceeds through tree-level
graphs with intermediated, s, andb quarks, as depicted in
Fig. 5. The amplitude for the decay is
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where the factor of 1/2 comes from averaging over the top
quark spin. Note that this square amplitude can be derived
from Eq. ~8! or ~9!. The amplitude squared can be rewritten
in terms of the three dot products (pc•pW1), (pc•pW2), and
(pW1•pW2) of the final particle momenta by eliminatingpt
andk in the above formula.

The partial width for the decay modet→cW1W2 is
given by the three-body phase space integral
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25(pi1pj )

2 are de-
fined in terms of the momenta of the final particles. It is
possible to perform themW1W2

2 integration explicitly, so that
the partial width is given by an integral overx5mcW2

2

5(pc1pW2)25(pt2pW1)25k2:

G~ t→cW1W2!5
1

~2p!3
1

32mt
3

1

2S g

A2D
4

(
j ,k

Vt jVc j* Vtk* VckE
~mc1mW!2

~mt2mW!2

dxS 1

x2mj
2D S 1

x2mk
2D

3
1

2x
l1/2~x,mc

2 ,mW
2 !l1/2~x,mt

2 ,mW
2 !H ~x1mt

22mW
2 !~x1mc

22mW
2 !

1
1

mW
2 @~x2mt

22mW
2 !~x1mc

22mW
2 !~x2mt

21mW
2 !1~x2mc

22mW
2 !~x1mt

22mW
2 !~x2mc

21mW
2 !#

1
1

mW
4 @~x2mt

21mW
2 !~x2mt

22mW
2 !~x2mc

21mW
2 !~x2mc

22mW
2 !#J . ~21!

The integrand of Eq.~21! is symmetric under the interchangemt
2↔mc

2 , but this symmetry is broken by the limits of integration
of the remaining phase space integral. An important observation about the decay width is that the width vanishes for
mj
250 ormk

250 by CKM unitarity:

(
j5d,s,b

Vt jVc j* 50. ~22!

This GIM suppression can be made manifest by replacing the twod-quark propagators by
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S 1

x2mj
2D→F S 1

x2mj
2D 2

1

xG5
mj
2

x~x2mj
2!
, ~23!

which implies that the integrand is multiplied by

mj
2mk

2

x2
. ~24!

Thus, the final formula for the partial width is

G~ t→cW1W2!5
1

~2p!3
1

32mt
3

1

2S g

A2D
4

(
j ,k

Vt jVc j* Vtk* Vck I ~mj
2 ,mk

2 ,mc
2 ,mt

2 ,mW
2 !, ~25!

where the integral equals

I ~mj
2 ,mk

2 ,mc
2 ,mt

2 ,mW
2 !5mj

2mk
2E

~mc1mW!2

~mt2mW!2

dxS 1

x2mj
2D S 1

x2mk
2D 1

2x3
l1/2~x,mc

2 ,mW
2 !l1/2~x,mt

2 ,mW
2 !

3H ~x1mt
22mW

2 !~x1mc
22mW

2 !1
1

mW
2 @~x2mt

22mW
2 !~x1mc

22mW
2 !~x2mt

21mW
2 !

1~x2mc
22mW

2 !~x1mt
22mW

2 !~x2mc
21mW

2 !#1
1

mW
4 @~x2mt

21mW
2 !~x2mt

22mW
2 !

3~x2mc
21mW

2 !~x2mc
22mW

2 !#J . ~26!

Numerical integration of Eq.~26! ~which assumes that
GIM suppression is operative! shows that the decay width is
completely dominated by the contribution with
mj
25mk

25mb
2 . The partial width is plotted in Fig. 6 as a

function of the top quark mass formW580.3 GeV,
mc51.5 GeV, sin2uW50.23, andVcb50.03620.046. The
two curves correspond to the lower and upper values of the
CKM matrix elementVcb . The partial width vanishes at
threshold wheremt5mc12mW , and is at most'10212

GeV formt5200 GeV. This extremely small partial width is
a direct consequence of three-family unitarity of the CKM
matrix in theu-quark sector. If the GIM suppression condi-
tion Eq. ~22! is relaxed, the integral appearing in Eq.~21! is
a factor of 23105 larger thanI (mb

2 ,mb
2 ,mc

2 ,mt
2 ,mW

2 ) for
each value ofmj

2 andmk
2 . Thus, it is quite possible that the

rare decayt→cW1W2 occurs at an observable level in non-
standard model theories. A search for this rare decay mode
would directly test CKM unitarity of thetc rows of the CKM
matrix.

The partial width for the rare decayt→uW1W2 can be
obtained from the above with the replacementc↔u. The
partial width for the up mode is even smaller than for the
charm mode due to smaller CKM matrix elements. This de-
cay mode can be used to test CKM unitarity of thetu rows
of the CKM matrix.

III. CONCLUSIONS

The partial widths for the rare top quark decay modes
t→bW1Z, sW1Z, dW1Z, cW1W2, and uW1W2 have
been calculated in the standard model. The decay mode

t→bW1Z is potentially observable at LHC rates for top
quark masses above 187 GeV, and could be used to accu-
rately determine the top quark mass. The decay amplitude
also depends on the triple decay vertexW1W2Z, and there-
fore tests for the presence of this coupling and its value. The

FIG. 6. G(t→cW1W2) as a function of the top quark mass for
mW580.3 GeV, mc51.5 GeV, sin2uW50.23, and Vcb50.036
20.046. The partial decay width vanishes at threshold, where
mt5mc12mW .
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decayst→cW1W2 and uW1W2 are extremely GIM sup-
pressed in the standard model, but may be much larger in
nonstandard scenarios. A search for these rare decay modes
tests CKM unitarity of thetc and tu rows of the CKM ma-
trix,

(
j5d,s,b

Vt jVui j
* 50. ~27!
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