Rare top quark decays $t \rightarrow \boldsymbol{b} \boldsymbol{W}^{+} \boldsymbol{Z}$ and $\boldsymbol{t} \rightarrow \boldsymbol{c} \boldsymbol{W}^{+} \boldsymbol{W}^{-}$

Elizabeth Jenkins
Department of Physics, University of California at San Diego, La Jolla, California 92093

(Received 2 December 1996)

Abstract

The large value of the top quark mass implies that the rare top quark decays $t \rightarrow b W^{+} Z, s W^{+} Z$, and $d W^{+} Z$, and $t \rightarrow c W^{+} W^{-}$and $u W^{+} W^{-}$, are kinematically allowed so long as $m_{t} \geqslant m_{W}+m_{Z}+m_{d_{i}}$ $\approx 171.5 \mathrm{GeV}+m_{d_{i}}$ or $m_{t} \geqslant 2 m_{W}+m_{u, c} \approx 160.6 \mathrm{GeV}+m_{u, c}$, respectively. The partial decay widths for these decay modes are calculated in the standard model. The partial widths depend sensitively on the precise value of the top quark mass. The branching ratio for $t \rightarrow b W^{+} Z$ is as much as 1×10^{-5} for $m_{t}=200 \mathrm{GeV}$, and could be observable at the CERN Large Hadron Collider. The rare decay modes $t \rightarrow c W^{+} W^{-}$and $u W^{+} W^{-}$are highly Glashow-Iliopoulos-Maiani (GIM) suppressed, and thus provide a means for testing the GIM mechanism for three generations of quarks in the u, c, t sector. [S0556-2821(97)01113-2]

PACS number(s): 14.65.Ha, 12.15.Ff, 12.15.Hh

Now that the top quark mass is known to be quite large, it is possible to examine the question of which rare decay modes of the top quark are kinematically allowed processes. The current average value of the top quark mass $m_{t}=175 \pm 8 \mathrm{GeV}[1,2]$ from the Collider Detector at Fermilab (CDF) and D0 Collaborations implies that the decays $t \rightarrow b W^{+} Z, s W^{+} Z$, and $d W^{+} Z$ are allowed decay modes of the top quark so long as $m_{t} \geqslant m_{W}+m_{Z}+m_{d_{i}} \approx 171.5 \mathrm{GeV}+m_{d_{i}}$. The rare decays $t \rightarrow c W^{+} W^{-}$and $u W^{+} W^{-}$also are allowed if $m_{t} \rightarrow 2 m_{W}+m_{c, u} \approx 160.6 \mathrm{GeV}+m_{c, u}$. For the present central value of the measured top quark mass, all of these processes are occurring at or near threshold, and are highly phase space suppressed. The decays $t \rightarrow c W^{+} W^{-}$and $u W^{+} W^{-}$are also highly Glashow-Iliopoulos-Maiani (GIM) suppressed, and thus are not likely to be seen at standard model rates. The decays $t \rightarrow d_{i} W^{+} Z$, however, are not GIM suppressed and are potentially observable at the CERN Large Hadron Collider (LHC). The partial decay widths for these rare decay modes rapidly increase for larger values of the top quark mass, and thus are very sensitive to the precise value of the top quark mass. Since the decay widths are proportional to $\left|V_{t d_{i}}\right|^{2}, i=1,2,3$, the rare decay $t \rightarrow b W^{+} Z$ (with $\left|V_{t b}\right|^{2} \approx 1$) will dominate unless the value of the top quark is below or nearly at threshold for this process.

We begin with the calculation of the partial decay width $\Gamma\left(t \rightarrow b W^{+} Z\right)$ in the standard model. The branching ratio for this decay process has been computed previously by Decker, Nowakowski, and Pilaftsis [3] and Mahlon and Parke [4]. ${ }^{1}$ The authors of Ref. [4] included the finite widths of the W and Z in their calculation, and found a significant enhancement in the decay width near threshold due to finite width effects. There is some disagreement in the numerical results of Refs. [3] and [4]. The numerical results presented here are basically consistent with the published results of Ref. [4] in

[^0]the narrow width approximation. There is some numerical difference with Ref. [4] which probably stems from the inclusion of finite width effects in that calculation. In addition, explicit analytic formulas for the squared amplitude of $t \rightarrow b W^{+} Z$ are presented in this work. These formulas do not appear elsewhere in the literature, and are useful for more detailed studies of the decay mode. Finally, the decay widths for the other rare decay modes $t \rightarrow c W^{+} W^{-}$and $u W^{+} W^{-}$ also are computed. A search for these decay modes directly tests Cabbibo-Kobayashi-Maskawa (CKM) unitarity in the u-quark sector.

I. $\boldsymbol{t} \rightarrow \boldsymbol{b} \boldsymbol{W}^{+} \boldsymbol{Z}$

The rare decay $t \rightarrow b W^{+} Z$ proceeds via the three treelevel graphs drawn in Fig. 1. The amplitudes for these Feynman diagrams are

$$
\begin{align*}
\mathcal{A}_{1}= & V_{t b}\left(\frac{i g}{\sqrt{2}}\right)\left(\frac{i g}{\cos \theta_{W}}\right) \epsilon_{W}^{\mu} \epsilon_{Z}^{\nu} \bar{u}\left(p_{b}\right)\left[\gamma^{\mu} P_{L}\left(\frac{i}{k_{1}-m_{t}}\right)\right. \\
& \left.\times\left\{g_{t_{L}} \gamma^{\nu} P_{L}+g_{t_{R}} \gamma^{\nu} P_{R}\right\}\right] u\left(p_{t}\right), \\
\mathcal{A}_{2}= & V_{t b}\left(\frac{i g}{\sqrt{2}}\right)\left(\frac{i g}{\cos \theta_{W}}\right) \epsilon_{W}^{\mu} \epsilon_{Z}^{\nu} \bar{u}\left(p_{b}\right)\left[\left\{g_{b_{L}} \gamma^{\nu} P_{L}+g_{b_{R}} \gamma^{\nu} P_{R}\right\}\right. \\
& \left.\times\left(\frac{i}{k_{2}-m_{b}}\right) \gamma^{\mu} P_{L}\right] u\left(p_{t}\right), \tag{2}\\
\mathcal{A}_{3}= & V_{t b}\left(\frac{i g}{\sqrt{2}}\right)\left(i g \cos \theta_{W}\right) \epsilon_{W}^{\mu} \epsilon_{Z}^{\nu}\left(\frac{-i}{k_{3}^{2}-m_{W}^{2}}\right) \\
& \times\left(g^{\lambda \rho}-\frac{k_{3}^{\lambda} k_{3}^{\rho}}{m_{W}^{2}}\right) \bar{u}\left(p_{b}\right) \gamma^{\lambda} P_{L} u\left(p_{t}\right)\left[-g^{\mu \rho}\left(k_{3}+p_{W}\right)^{\nu}\right. \\
& \left.+g^{\nu \rho}\left(p_{Z}+k_{3}\right)^{\mu}+g^{\mu \nu}\left(-p_{Z}+p_{W}\right)^{\rho}\right], \tag{3}
\end{align*}
$$

$$
\begin{gather*}
g_{b_{L}}=\left(-\frac{1}{2}+\frac{1}{3} \sin ^{2} \theta_{W}\right), \tag{5}\\
g_{b_{R}}=\left(\frac{1}{3} \sin ^{2} \theta_{W}\right) .
\end{gather*}
$$

In the above amplitudes, $P_{L, R}$ stand for the left- and righthanded projectors $P_{L, R}=\left(1 \mp \gamma_{5}\right) / 2$, and θ_{W} is the weak mixing angle. The amplitude \mathcal{A}_{3} depends on the triple gauge vertex $W^{+} W^{-} Z$. This amplitude has been written in unitary gauge, where there is a contribution to the W gauge-boson propagator proportional to $k_{3}^{\lambda} k_{3}^{\rho} / m_{W}^{2}$. The amplitude also can be written in 't Hooft-Feynman gauge ($\xi=1$), where this contribution is replaced by the exchange of the would-be Goldstone boson of the W.

The total amplitude is given by $\mathcal{A}=\mathcal{A}_{1}+\mathcal{A}_{2}+\mathcal{A}_{3}$, and the amplitude squared is
$|\mathcal{A}|^{2}=\left|\mathcal{A}_{1}\right|^{2}+\left|\mathcal{A}_{2}\right|^{2}+\left|\mathcal{A}_{3}\right|^{2}+2 \mathcal{A}_{1} \mathcal{A}_{2}^{*}+2 \mathcal{A}_{1} \mathcal{A}_{3}^{*}+2 \mathcal{A}_{2} \mathcal{A}_{3}^{*}$,

FIG. 1. $t \rightarrow b W^{+} Z$. Feynman diagrams correspond to the amplitudes $\mathcal{A}_{1}, \mathcal{A}_{2}$, and \mathcal{A}_{3}.
where the four-momenta k_{1}, k_{2}, and k_{3} are given by

$$
\begin{align*}
& k_{1}=p_{t}-p_{Z}=p_{b}+p_{W}, \\
& k_{2}=p_{t}-p_{W}=p_{b}+p_{Z}, \tag{4}\\
& k_{3}=p_{t}-p_{b}=p_{W}+p_{Z},
\end{align*}
$$

$$
\mathcal{A}_{1} \mathcal{A}_{2}^{*}=\mathcal{A}_{2} \mathcal{A}_{1}^{*}
$$

$$
\mathcal{A}_{1} \mathcal{A}_{3}^{*}=\mathcal{A}_{3} \mathcal{A}_{1}^{*}
$$

$$
\mathcal{A}_{2} \mathcal{A}_{3}^{*}=\mathcal{A}_{3} \mathcal{A}_{2}^{*}
$$

have been used.
The square amplitude $\left|\mathcal{A}_{1}\right|^{2}$ is

$$
\begin{align*}
\left|\mathcal{A}_{1}\right|^{2}= & \left|V_{t b}\right|^{2}\left(\frac{g^{4}}{2 \cos ^{2} \theta_{W}}\right)\left(\frac{1}{k_{1}^{2}-m_{t}^{2}}\right)^{2}\left(4 g _ { t _ { L } } ^ { 2 } \left\{\left[\left(k_{1} \cdot p_{t}\right)\left(k_{1} \cdot p_{b}\right)-\frac{1}{2} k_{1}^{2}\left(p_{t} \cdot p_{b}\right)\right]+\frac{2}{m_{Z}^{2}}\left(p_{t} \cdot p_{Z}\right)\left[\left(k_{1} \cdot p_{b}\right)\left(k_{1} \cdot p_{Z}\right)\right.\right.\right. \\
& \left.-\frac{1}{2} k_{1}^{2}\left(p_{b} \cdot p_{Z}\right)\right]+\frac{2}{m_{W}^{2}}\left(p_{b} \cdot p_{W}\right)\left[\left(k_{1} \cdot p_{t}\right)\left(k_{1} \cdot p_{W}\right)-\frac{1}{2} k_{1}^{2}\left(p_{t} \cdot p_{W}\right)\right]+\frac{4}{m_{W}^{2} m_{Z}^{2}}\left(p_{t} \cdot p_{Z}\right)\left(p_{b} \cdot p_{W}\right)\left[\left(k_{1} \cdot p_{Z}\right)\left(k_{1} \cdot p_{W}\right)\right. \\
& \left.\left.-\frac{1}{2} k_{1}^{2}\left(p_{W} \cdot p_{Z}\right)\right]\right\}-12 m_{t}^{2} g_{t_{L}} g_{t_{R}}\left\{\left(k_{1} \cdot p_{b}\right)+\frac{2}{m_{W}^{2}}\left(k_{1} \cdot p_{W}\right)\left(p_{b} \cdot p_{W}\right)\right\}+2 m_{t}^{2} g_{t_{R}}^{2}\left\{\left(p_{t} \cdot p_{b}\right)+\frac{2}{m_{Z}^{2}}\left(p_{t} \cdot p_{Z}\right)\left(p_{b} \cdot p_{Z}\right)\right. \\
& \left.\left.+\frac{2}{m_{W}^{2}}\left(p_{t} \cdot p_{W}\right)\left(p_{b} \cdot p_{W}\right)+\frac{4}{m_{W}^{2} m_{Z}^{2}}\left(p_{t} \cdot p_{Z}\right)\left(p_{b} \cdot p_{W}\right)\left(p_{W} \cdot p_{Z}\right)\right\}\right) \tag{8}
\end{align*}
$$

The square amplitude $\left|\mathcal{A}_{2}\right|^{2}$ is related to $\left|\mathcal{A}_{1}\right|^{2}$ by the interchanges $g_{t_{L, R}} \leftrightarrow g_{b_{L, R}}, m_{t} \leftrightarrow m_{b}, p_{t} \leftrightarrow p_{b}$, and $k_{1} \leftrightarrow k_{2}$:

$$
\begin{align*}
\left|\mathcal{A}_{2}\right|^{2}= & \left|V_{t b}\right|^{2}\left(\frac{g^{4}}{2 \cos ^{2} \theta_{W}}\right)\left(\frac{1}{k_{2}^{2}-m_{b}^{2}}\right)^{2}\left(4 g _ { b _ { L } } ^ { 2 } \left\{\left[\left(k_{2} \cdot p_{b}\right)\left(k_{2} \cdot p_{t}\right)-\frac{1}{2} k_{2}^{2}\left(p_{t} \cdot p_{b}\right)\right]+\frac{2}{m_{Z}^{2}}\left(p_{b} \cdot p_{Z}\right)\left[\left(k_{2} \cdot p_{t}\right)\left(k_{2} \cdot p_{Z}\right)-\frac{1}{2} k_{2}^{2}\left(p_{t} \cdot p_{Z}\right)\right]\right.\right. \\
& \left.+\frac{2}{m_{W}^{2}}\left(p_{t} \cdot p_{W}\right)\left[\left(k_{2} \cdot p_{b}\right)\left(k_{2} \cdot p_{W}\right)-\frac{1}{2} k_{2}^{2}\left(p_{b} \cdot p_{W}\right)\right]+\frac{4}{m_{W}^{2} m_{Z}^{2}}\left(p_{b} \cdot p_{Z}\right)\left(p_{t} \cdot p_{W}\right)\left[\left(k_{2} \cdot p_{Z}\right)\left(k_{2} \cdot p_{W}\right)-\frac{1}{2} k_{2}^{2}\left(p_{W} \cdot p_{Z}\right)\right]\right\} \\
& -12 m_{b}^{2} g_{b_{L}} g_{b_{R}}\left\{\left(k_{2} \cdot p_{t}\right)+\frac{2}{m_{W}^{2}}\left(k_{2} \cdot p_{W}\right)\left(p_{t} \cdot p_{W}\right)\right\}+2 m_{b}^{2} g_{b_{R}}^{2}\left\{\left(p_{t} \cdot p_{b}\right)+\frac{2}{m_{Z}^{2}}\left(p_{b} \cdot p_{Z}\right)\left(p_{t} \cdot p_{Z}\right)+\frac{2}{m_{W}^{2}}\left(p_{b} \cdot p_{W}\right)\left(p_{t} \cdot p_{W}\right)\right. \\
& \left.\left.+\frac{4}{m_{W}^{2} m_{Z}^{2}}\left(p_{b} \cdot p_{Z}\right)\left(p_{t} \cdot p_{W}\right)\left(p_{W} \cdot p_{Z}\right)\right\}\right) \tag{9}
\end{align*}
$$

The square amplitude $\left|\mathcal{A}_{3}\right|^{2}$ is

$$
\begin{align*}
\left|\mathcal{A}_{3}\right|^{2}= & \left|V_{t b}\right|^{2}\left(\frac{g^{4} \cos ^{2} \theta_{W}}{2}\right)\left(\frac{1}{k_{3}^{2}-m_{W}^{2}}\right)^{2}\left(4 (p _ { t } \cdot p _ { b }) \left\{-3\left(m_{W}^{2}+m_{Z}^{2}\right)+2 \gamma\left(m_{W}^{2}-m_{Z}^{2}\right)-\gamma^{2}\left(m_{W}^{2}+m_{Z}^{2}\right)+2\left(1-\gamma^{2}\right)\left(p_{W} \cdot p_{Z}\right)\right.\right. \\
& \left.+\left[\frac{3}{2}\left(\frac{1}{m_{W}^{2}}+\frac{1}{m_{Z}^{2}}\right)+\gamma\left(\frac{1}{m_{Z}^{2}}-\frac{1}{m_{W}^{2}}\right)-\frac{1}{2} \gamma^{2}\left(\frac{1}{m_{W}^{2}}+\frac{1}{m_{Z}^{2}}\right)\right]\left(p_{W} \cdot p_{Z}\right)^{2}+\frac{1}{m_{W}^{2} m_{Z}^{2}}\left(1-\gamma^{2}\right)\left(p_{W} \cdot p_{Z}\right)^{3}\right\}+4\left(p_{t} \cdot p_{W}\right)\left(p_{b} \cdot p_{W}\right) \\
& \times\left\{-2-4 \gamma+2 \gamma^{2}+\frac{4}{m_{W}^{2}}(1+\gamma)\left(p_{W} \cdot p_{Z}\right)+\frac{1}{m_{W}^{2} m_{Z}^{2}}\left(1+2 \gamma+\gamma^{2}\right)\left(p_{W} \cdot p_{Z}\right)^{2}\right\}+4\left(p_{t} \cdot p_{Z}\right)\left(p_{b} \cdot p_{Z}\right) \\
& \times\left\{-2+4 \gamma+2 \gamma^{2}+\frac{4}{m_{Z}^{2}}(1-\gamma)\left(p_{W} \cdot p_{Z}\right)+\frac{1}{m_{W}^{2} m_{Z}^{2}}\left(1-2 \gamma+\gamma^{2}\right)\left(p_{W} \cdot p_{Z}\right)^{2}\right\}+4\left[\left(p_{t} \cdot p_{W}\right)\left(p_{b} \cdot p_{Z}\right)+\left(p_{b} \cdot p_{W}\right)\left(p_{t} \cdot p_{Z}\right)\right] \\
& \left.\times\left\{-6+2 \gamma^{2}+\left[2\left(\frac{1}{m_{Z}^{2}}+\frac{1}{m_{W}^{2}}\right)-2 \gamma\left(\frac{1}{m_{Z}^{2}}-\frac{1}{m_{W}^{2}}\right)\right]\left(p_{W} \cdot p_{Z}\right)-\frac{1}{m_{W}^{2} m_{Z}^{2}}\left(1-\gamma^{2}\right)\left(p_{W} \cdot p_{Z}\right)^{2}\right\}\right), \tag{10}
\end{align*}
$$

where $\gamma=\left(1-m_{Z}^{2} / m_{W}^{2}\right)$ in unitary gauge. In 't Hooft-Feynman gauge, one obtains the same expression with $\gamma=\sin ^{2} \theta_{W}$ and $\cos ^{2} \theta_{W}$ replaced by $\left(m_{Z} / m_{W}\right)^{2}$. The terms in $\left|\mathcal{A}_{3}\right|^{2}$ proportional to γ are antisymmetric under $p_{t} \leftrightarrow p_{b}, p_{W} \leftrightarrow p_{Z}$ and $m_{W} \leftrightarrow m_{Z}$ while the terms which are independent of γ or proportional to γ^{2} are invariant under this interchange.

The interference term $\mathcal{A}_{1} \mathcal{A}_{2}^{*}$ is

$$
\begin{align*}
& \mathcal{A}_{1} \mathcal{A}_{2}^{*}=\left|V_{t b}\right|^{2}\left(\frac{g^{4}}{2 \cos ^{2} \theta_{W}}\right)\left(\frac{1}{k_{1}^{2}-m_{t}^{2}}\right)\left(\frac{1}{k_{2}^{2}-m_{b}^{2}}\right)\left(g _ { t _ { L } } g _ { b _ { L } } \left\{-6\left(k_{1} \cdot k_{2}\right)\left(p_{t} \cdot p_{b}\right)-2\left(k_{1} \cdot p_{t}\right)\left(k_{2} \cdot p_{b}\right)-2\left(k_{1} \cdot p_{b}\right)\left(k_{2} \cdot p_{t}\right)\right.\right. \\
& -\frac{4}{m_{Z}^{2}}\left[\left(k_{1} \cdot k_{2}\right)\left(p_{b} \cdot p_{Z}\right)\left(p_{t} \cdot p_{Z}\right)+\left(k_{1} \cdot p_{Z}\right)\left(k_{2} \cdot p_{Z}\right)\left(p_{t} \cdot p_{b}\right)+\left(k_{2} \cdot p_{Z}\right)\left(k_{1} \cdot p_{t}\right)\left(p_{b} \cdot p_{Z}\right)+\left(k_{1} \cdot p_{Z}\right)\left(p_{t} \cdot p_{Z}\right)\left(k_{2} \cdot p_{b}\right)\right. \\
& \left.-2\left(p_{t} \cdot p_{Z}\right)\left(k_{1} \cdot p_{b}\right)\left(k_{2} \cdot p_{Z}\right)-2\left(k_{1} \cdot p_{Z}\right)\left(p_{b} \cdot p_{Z}\right)\left(k_{2} \cdot p_{t}\right)\right]-\frac{4}{m_{W}^{2}}\left[\left(k_{1} \cdot k_{2}\right)\left(p_{b} \cdot p_{W}\right)\left(p_{t} \cdot p_{W}\right)+\left(k_{1} \cdot p_{W}\right)\left(k_{2} \cdot p_{W}\right)\left(p_{t} \cdot p_{b}\right)\right. \\
& \left.+\left(k_{2} \cdot p_{W}\right)\left(k_{1} \cdot p_{b}\right)\left(p_{t} \cdot p_{W}\right)+\left(k_{1} \cdot p_{W}\right)\left(p_{b} \cdot p_{W}\right)\left(k_{2} \cdot p_{t}\right)-2\left(p_{b} \cdot p_{W}\right)\left(k_{1} \cdot p_{t}\right)\left(k_{2} \cdot p_{W}\right)-2\left(k_{1} \cdot p_{W}\right)\left(p_{t} \cdot p_{W}\right)\left(k_{2} \cdot p_{b}\right)\right] \\
& +\frac{4}{m_{W}^{2} m_{Z}^{2}}\left[\left(k_{1} \cdot k_{2}\right)\left(p_{W} \cdot p_{Z}\right)\left\{-\left(p_{t} \cdot p_{b}\right)\left(p_{W} \cdot p_{Z}\right)+\left(p_{b} \cdot p_{Z}\right)\left(p_{t} \cdot p_{W}\right)+\left(p_{b} \cdot p_{W}\right)\left(p_{t} \cdot p_{Z}\right)\right\}+\left(p_{W} \cdot p_{Z}\right)^{2}\left\{\left(k_{1} \cdot p_{t}\right)\left(k_{2} \cdot p_{b}\right)\right.\right. \\
& \left.+\left(k_{1} \cdot p_{b}\right)\left(k_{2} \cdot p_{t}\right)\right\}+\left(p_{t} \cdot p_{b}\right)\left(p_{W} \cdot p_{Z}\right)\left\{\left(k_{1} \cdot p_{Z}\right)\left(k_{2} \cdot p_{W}\right)+\left(k_{1} \cdot p_{W}\right)\left(k_{2} \cdot p_{Z}\right)\right\}+2\left(k_{1} \cdot p_{Z}\right)\left(k_{2} \cdot p_{Z}\right)\left(p_{b} \cdot p_{W}\right)\left(p_{t} \cdot p_{W}\right) \\
& +2\left(k_{1} \cdot p_{W}\right)\left(k_{2} \cdot p_{W}\right)\left(p_{b} \cdot p_{Z}\right)\left(p_{t} \cdot p_{Z}\right)-\left(k_{1} \cdot p_{b}\right)\left(k_{2} \cdot p_{Z}\right)\left(p_{t} \cdot p_{W}\right)\left(p_{W} \cdot p_{Z}\right)-\left(k_{2} \cdot p_{t}\right)\left(k_{1} \cdot p_{Z}\right)\left(p_{b} \cdot p_{W}\right)\left(p_{W} \cdot p_{Z}\right) \\
& -\left(k_{1} \cdot p_{t}\right)\left(k_{2} \cdot p_{Z}\right)\left(p_{b} \cdot p_{W}\right)\left(p_{W} \cdot p_{Z}\right)-\left(k_{2} \cdot p_{b}\right)\left(k_{1} \cdot p_{Z}\right)\left(p_{t} \cdot p_{W}\right)\left(p_{W} \cdot p_{Z}\right)-\left(k_{1} \cdot p_{t}\right)\left(k_{2} \cdot p_{W}\right)\left(p_{b} \cdot p_{Z}\right)\left(p_{W} \cdot p_{Z}\right) \\
& \left.\left.-\left(k_{2} \cdot p_{b}\right)\left(k_{1} \cdot p_{W}\right)\left(p_{t} \cdot p_{Z}\right)\left(p_{W} \cdot p_{Z}\right)-\left(k_{1} \cdot p_{b}\right)\left(k_{2} \cdot p_{W}\right)\left(p_{W} \cdot p_{Z}\right)\left(p_{t} \cdot p_{Z}\right)-\left(k_{2} \cdot p_{t}\right)\left(k_{1} \cdot p_{W}\right)\left(p_{b} \cdot p_{Z}\right)\left(p_{W} \cdot p_{Z}\right)\right]\right\} \\
& +2 m_{b}^{2} g_{t_{L}} g_{b_{R}}\left\{3\left(k_{1} \cdot p_{t}\right)+\frac{2}{m_{Z}^{2}}\left(k_{1} \cdot p_{Z}\right)\left(p_{t} \cdot p_{Z}\right)-\frac{4}{m_{W}^{2}}\left(p_{t} \cdot p_{W}\right)\left(k_{1} \cdot p_{W}\right)+\frac{2}{m_{W}^{2} m_{Z}^{2}}\left(p_{W} \cdot p_{Z}\right)\left[\left(k_{1} \cdot p_{W}\right)\left(p_{t} \cdot p_{Z}\right)\right.\right. \\
& \left.\left.+\left(p_{t} \cdot p_{W}\right)\left(k_{1} \cdot p_{Z}\right)-\left(p_{W} \cdot p_{Z}\right)\left(k_{1} \cdot p_{t}\right)\right]\right\}+2 m_{t}^{2} g_{t_{R}} g_{b_{L}}\left\{3\left(k_{2} \cdot p_{b}\right)+\frac{2}{m_{Z}^{2}}\left(k_{2} \cdot p_{Z}\right)\left(p_{b} \cdot p_{Z}\right)-\frac{4}{m_{W}^{2}}\left(p_{b} \cdot p_{W}\right)\left(k_{2} \cdot p_{W}\right)\right. \\
& \left.+\frac{2}{m_{W}^{2} m_{Z}^{2}}\left(p_{W} \cdot p_{Z}\right)\left[\left(k_{2} \cdot p_{W}\right)\left(p_{b} \cdot p_{Z}\right)+\left(p_{b} \cdot p_{W}\right)\left(k_{2} \cdot p_{Z}\right)-\left(p_{W} \cdot p_{Z}\right)\left(k_{2} \cdot p_{b}\right)\right]\right\} \\
& \left.+2 m_{t}^{2} m_{b}^{2} g_{t_{R}} g_{b_{R}}\left\{-5+\frac{2}{m_{W}^{2} m_{Z}^{2}}\left(p_{W} \cdot p_{Z}\right)^{2}\right\}\right) . \tag{11}
\end{align*}
$$

$\mathcal{A}_{1} \mathcal{A}_{2}^{*}$ is invariant under the simultaneous interchanges $g_{t_{L, R}} \leftrightarrow g_{b_{L, R}}, m_{t} \leftrightarrow m_{b}, p_{t} \leftrightarrow p_{b}$, and $k_{1} \leftrightarrow k_{2}$.
The two interference terms $\mathcal{A}_{1} \mathcal{A}_{3}^{*}$ and $\mathcal{A}_{2} \mathcal{A}_{3}^{*}$ are

$$
\begin{aligned}
\mathcal{A}_{1} \mathcal{A}_{3}^{*}= & \left|V_{t b}\right|^{2}\left(\frac{g^{4}}{2}\right)\left(\frac{1}{k_{1}^{2}-m_{t}^{2}}\right)\left(\frac{1}{k_{3}^{2}-m_{W}^{2}}\right)\left(g _ { t _ { L } } \left\{-4\left[(2-\gamma)\left(k_{1} \cdot p_{W}\right)\left(p_{t} \cdot p_{b}\right)+\left(k_{1} \cdot p_{b}\right)\left(p_{t} \cdot p_{W}\right)-3\left(k_{1} \cdot p_{t}\right)\left(p_{b} \cdot p_{W}\right)\right]\right.\right. \\
& +4\left[(2+\gamma)\left(k_{1} \cdot p_{Z}\right)\left(p_{t} \cdot p_{b}\right)+\left(k_{1} \cdot p_{t}\right)\left(p_{b} \cdot p_{Z}\right)-3\left(k_{1} \cdot p_{b}\right)\left(p_{t} \cdot p_{Z}\right)\right]-\frac{4}{m_{W}^{2}}(1+\gamma)\left(k_{1} \cdot p_{W}\right)\left[2\left(p_{t} \cdot p_{W}\right)\left(p_{b} \cdot p_{W}\right)\right. \\
& \left.+\left(p_{t} \cdot p_{W}\right)\left(p_{b} \cdot p_{Z}\right)-\left(p_{W} \cdot p_{Z}\right)\left(p_{t} \cdot p_{b}\right)+\left(p_{b} \cdot p_{W}\right)\left(p_{t} \cdot p_{Z}\right)\right]+\frac{4}{m_{Z}^{2}}(1-\gamma)\left(k_{1} \cdot p_{Z}\right)\left[2\left(p_{t} \cdot p_{Z}\right)\left(p_{b} \cdot p_{Z}\right)\right. \\
& \left.+\left(p_{t} \cdot p_{Z}\right)\left(p_{b} \cdot p_{W}\right)-\left(p_{W} \cdot p_{Z}\right)\left(p_{t} \cdot p_{b}\right)+\left(p_{b} \cdot p_{Z}\right)\left(p_{t} \cdot p_{W}\right)\right]-\frac{2}{m_{W}^{2}}(3+\gamma)\left(p_{W} \cdot p_{Z}\right)\left[\left(k_{1} \cdot p_{W}\right)\left(p_{t} \cdot p_{b}\right)\right. \\
& \left.-\left(p_{t} \cdot p_{W}\right)\left(k_{1} \cdot p_{b}\right)+\left(p_{b} \cdot p_{W}\right)\left(k_{1} \cdot p_{t}\right)\right]+\frac{2}{m_{Z}^{2}}(3-\gamma)\left(p_{W} \cdot p_{Z}\right)\left[\left(k_{1} \cdot p_{Z}\right)\left(p_{t} \cdot p_{b}\right)-\left(p_{b} \cdot p_{Z}\right)\left(k_{1} \cdot p_{t}\right)\right. \\
& \left.+\left(p_{t} \cdot p_{Z}\right)\left(k_{1} \cdot p_{b}\right)\right]+\frac{4}{m_{W}^{2} m_{Z}^{2}}(1+\gamma)\left(p_{W} \cdot p_{Z}\right)\left(p_{b} \cdot p_{W}\right)\left[\left(k_{1} \cdot p_{W}\right)\left(p_{t} \cdot p_{Z}\right)-\left(p_{W} \cdot p_{Z}\right)\left(k_{1} \cdot p_{t}\right)+\left(p_{t} \cdot p_{W}\right)\left(k_{1} \cdot p_{Z}\right)\right] \\
& \left.-\frac{4}{m_{W}^{2} m_{Z}^{2}}(1-\gamma)\left(p_{W} \cdot p_{Z}\right)\left(p_{t} \cdot p_{Z}\right)\left[\left(k_{1} \cdot p_{W}\right)\left(p_{b} \cdot p_{Z}\right)-\left(p_{W} \cdot p_{Z}\right)\left(k_{1} \cdot p_{b}\right)+\left(p_{b} \cdot p_{W}\right)\left(k_{1} \cdot p_{Z}\right)\right]\right\} \\
& +4 m_{t}^{2} g_{t_{R}}\left((-4+\gamma)\left(p_{b} \cdot p_{W}\right)+(-2+\gamma)\left(p_{b} \cdot p_{Z}\right)+\frac{1}{m_{W}^{2}}\left(\frac{7}{2}+\frac{1}{2} \gamma\right)\left(p_{W} \cdot p_{Z}\right)\left(p_{b} \cdot p_{W}\right)\right.
\end{aligned}
$$

$$
\begin{equation*}
\left.\left.+\frac{1}{m_{Z}^{2}}\left(\frac{3}{2}-\frac{1}{2} \gamma\right)\left(p_{W} \cdot p_{Z}\right)\left(p_{b} \cdot p_{Z}\right)+\frac{1}{m_{W}^{2} m_{Z}^{2}}(1+\gamma)\left(p_{W} \cdot p_{Z}\right)^{2}\left(p_{b} \cdot p_{W}\right)\right\}\right) \tag{12}
\end{equation*}
$$

and

$$
\begin{align*}
\mathcal{A}_{2} \mathcal{A}_{3}^{*}= & \left|V_{t b}\right|^{2}\left(\frac{g^{4}}{2}\right)\left(\frac{1}{k_{2}^{2}-m_{b}^{2}}\right)\left(\frac{1}{k_{3}^{2}-m_{W}^{2}}\right)\left(g _ { b _ { L } } \left\{-4\left[(2-\gamma)\left(k_{2} \cdot p_{W}\right)\left(p_{t} \cdot p_{b}\right)+\left(k_{2} \cdot p_{t}\right)\left(p_{b} \cdot p_{W}\right)-3\left(k_{2} \cdot p_{b}\right)\left(p_{t} \cdot p_{W}\right)\right]\right.\right. \\
& +4\left[(2+\gamma)\left(k_{2} \cdot p_{Z}\right)\left(p_{t} \cdot p_{b}\right)+\left(k_{2} \cdot p_{b}\right)\left(p_{t} \cdot p_{Z}\right)-3\left(k_{2} \cdot p_{t}\right)\left(p_{b} \cdot p_{Z}\right)\right]-\frac{4}{m_{W}^{2}}(1+\gamma)\left(k_{2} \cdot p_{W}\right)\left[2\left(p_{b} \cdot p_{W}\right)\left(p_{t} \cdot p_{W}\right)\right. \\
& \left.+\left(p_{b} \cdot p_{W}\right)\left(p_{t} \cdot p_{Z}\right)-\left(p_{W} \cdot p_{Z}\right)\left(p_{t} \cdot p_{b}\right)+\left(p_{t} \cdot p_{W}\right)\left(p_{b} \cdot p_{Z}\right)\right]+\frac{4}{m_{Z}^{2}}(1-\gamma)\left(k_{2} \cdot p_{Z}\right)\left[2\left(p_{b} \cdot p_{Z}\right)\left(p_{t} \cdot p_{Z}\right)\right. \\
& \left.+\left(p_{b} \cdot p_{Z}\right)\left(p_{t} \cdot p_{W}\right)-\left(p_{W} \cdot p_{Z}\right)\left(p_{t} \cdot p_{b}\right)+\left(p_{t} \cdot p_{Z}\right)\left(p_{b} \cdot p_{W}\right)\right]-\frac{2}{m_{W}^{2}}(3+\gamma)\left(p_{W} \cdot p_{Z}\right)\left[\left(k_{2} \cdot p_{W}\right)\left(p_{t} \cdot p_{b}\right)\right. \\
& \left.-\left(p_{b} \cdot p_{W}\right)\left(k_{2} \cdot p_{t}\right)+\left(p_{t} \cdot p_{W}\right)\left(k_{2} \cdot p_{b}\right)\right]+\frac{2}{m_{Z}^{2}}(3-\gamma)\left(p_{W} \cdot p_{Z}\right)\left[\left(k_{2} \cdot p_{Z}\right)\left(p_{t} \cdot p_{b}\right)-\left(p_{t} \cdot p_{Z}\right)\left(k_{2} \cdot p_{b}\right)\right. \\
& \left.+\left(p_{b} \cdot p_{Z}\right)\left(k_{2} \cdot p_{t}\right)\right]+\frac{4}{m_{W}^{2} m_{Z}^{2}}(1+\gamma)\left(p_{W} \cdot p_{Z}\right)\left(p_{t} \cdot p_{W}\right)\left[\left(k_{2} \cdot p_{W}\right)\left(p_{b} \cdot p_{Z}\right)-\left(p_{W} \cdot p_{Z}\right)\left(k_{2} \cdot p_{b}\right)+\left(p_{b} \cdot p_{W}\right)\left(k_{2} \cdot p_{Z}\right)\right] \\
& \left.-\frac{4}{m_{W}^{2} m_{Z}^{2}}(1-\gamma)\left(p_{W} \cdot p_{Z}\right)\left(p_{b} \cdot p_{Z}\right)\left[\left(k_{2} \cdot p_{W}\right)\left(p_{t} \cdot p_{Z}\right)-\left(p_{W} \cdot p_{Z}\right)\left(k_{2} \cdot p_{t}\right)+\left(p_{t} \cdot p_{W}\right)\left(k_{2} \cdot p_{Z}\right)\right]\right\} \\
& +4 m_{b}^{2} g_{b_{R}}\left\{(-4+\gamma)\left(p_{t} \cdot p_{W}\right)+(-2+\gamma)\left(p_{t} \cdot p_{Z}\right)+\frac{1}{m_{W}^{2}}\left(\frac{7}{2}+\frac{1}{2} \gamma\right)\left(p_{W} \cdot p_{Z}\right)\left(p_{t} \cdot p_{W}\right)\right. \\
& \left.\left.+\frac{1}{m_{Z}^{2}}\left(\frac{3}{2}-\frac{1}{2} \gamma\right)\left(p_{W} \cdot p_{Z}\right)\left(p_{t} \cdot p_{Z}\right)+\frac{1}{m_{W}^{2} m_{Z}^{2}}(1+\gamma)\left(p_{W} \cdot p_{Z}\right)^{2}\left(p_{t} \cdot p_{W}\right)\right\}\right), \tag{13}
\end{align*}
$$

where $\gamma=1-m_{Z}^{2} / m_{W}^{2}$ or $\sin ^{2} \theta_{W}$. The interference terms $\mathcal{A}_{2} \mathcal{A}_{3}^{*}$ and $\mathcal{A}_{1} \mathcal{A}_{3}^{*}$ are related by the interchanges $g_{t_{L, R}}$ $\leftrightarrow g_{b_{L, R}}, m_{t} \leftrightarrow m_{b}, p_{t} \leftrightarrow p_{b}$, and $k_{1} \leftrightarrow k_{2}$.

The above square amplitudes have been written in terms of k_{1} and k_{2}, and p_{t} and p_{b} in order to exhibit the symmetries of the square amplitudes explicitly. The total square amplitude can be rewritten in terms of the three dot products $\left(p_{b} \cdot p_{W}\right),\left(p_{b} \cdot p_{Z}\right)$, and $\left(p_{W} \cdot p_{Z}\right)$, by eliminating p_{t}, k_{1}, and k_{2} in the above formulas.

The partial width for the decay mode $t \rightarrow b W^{+} Z$ is given by the three-body phase space integral

$$
\begin{equation*}
\Gamma\left(t \rightarrow b W^{+} Z\right)=\frac{1}{(2 \pi)^{3}} \frac{1}{32 m_{t}^{3}} \int d m_{23}^{2} d m_{12}^{2} \overline{|\mathcal{A}|^{2}} \tag{14}
\end{equation*}
$$

where the invariant square masses $m_{i j}^{2}=\left(p_{i}+p_{j}\right)^{2}$ are defined in terms of the momenta of the final particles, and the spin-averaged square amplitude

$$
\begin{equation*}
\overline{|\mathcal{A}|^{2}}=\frac{1}{2}|\mathcal{A}|^{2} \tag{15}
\end{equation*}
$$

since one averages rather than sums over the top quark spin.
The partial decay width $\Gamma\left(t \rightarrow b W^{+} Z\right)$ is plotted in Fig. 2 as a function of the top quark mass. The phase space integral

FIG. 2. $\Gamma\left(t \rightarrow b W^{+} Z\right)$ as a function of the top quark mass for $m_{W}=80.3 \mathrm{GeV}, m_{Z}=91.2 \mathrm{GeV}, m_{b}=4.5 \mathrm{GeV}, \sin ^{2} \theta_{W}=0.23$, and $\left|V_{t b}\right|^{2}=1$. The partial decay width vanishes at threshold, where $m_{t}=m_{b}+m_{W}+m_{Z}$.

FIG. 3. $B\left(t \rightarrow b W^{+} Z\right)$ as a function of the top quark mass for $m_{W}=80.3 \mathrm{GeV}, m_{Z}=91.2 \mathrm{GeV}, m_{b}=4.5 \mathrm{GeV}$, and $\sin ^{2} \theta_{W}=0.23$. The branching ratio vanishes at threshold, where $m_{t}=m_{b}$ $+m_{W}+m_{Z}$.
was performed numerically for the parameter values $m_{W}=80.3 \mathrm{GeV}, \quad m_{Z}=91.2 \mathrm{GeV}, \quad m_{b}=4.5 \mathrm{GeV}$, $\sin ^{2} \theta_{W}=0.23$, and $\left|V_{t b}\right|=1$. The partial width is plotted over the range from $m_{t}=176 \mathrm{GeV}$, where the partial width vanishes, to $m_{t}=200 \mathrm{GeV}$, where the partial decay width is $2.5 \times 10^{-5} \mathrm{GeV}$. The branching ratio $B\left(t \rightarrow b W^{+} Z\right)$ also is plotted as a function of the top quark mass in Fig. 3, assuming that the total width of the top quark is dominated by $t \rightarrow b W^{+}$:

$$
\begin{align*}
\Gamma\left(t \rightarrow b W^{+}\right)= & \left|V_{t b}\right|^{2} \frac{g^{2}}{64 \pi} \frac{1}{m_{W}^{2} m_{t}^{3}} \lambda^{1 / 2}\left(m_{t}^{2}, m_{W}^{2}, m_{b}^{2}\right) \\
& \times\left\{m_{t}^{4}+m_{b}^{4}-2 m_{W}^{4}+m_{t}^{2} m_{W}^{2}\right. \\
& \left.+m_{b}^{2} m_{W}^{2}-2 m_{t}^{2} m_{b}^{2}\right\} \tag{16}
\end{align*}
$$

where

$$
\begin{equation*}
\lambda(x, y, z)=x^{2}+y^{2}+z^{2}-2 x y-2 y z-2 x z . \tag{17}
\end{equation*}
$$

The CKM matrix element $\left|V_{t b}\right|^{2}$ cancels out of the branching ratio. The branching ratio increases from zero for $m_{t}=176$ GeV to 1.0×10^{-5} for $m_{t}=200 \mathrm{GeV} .{ }^{2}$ Although this branching ratio is too small to be observed at the Tevatron, it is large enough to be interesting for the LHC which is expected to yield about a million fully reconstructed top quark events per year [6]. The observability of this decay mode depends

[^1]

FIG. 4. $\Gamma\left(t \rightarrow d_{i} W^{+} Z\right) /\left|V_{t i}\right|^{2}$ as a function of the top quark mass for $m_{W}=80.3 \mathrm{GeV}, m_{Z}=91.2 \mathrm{GeV}, \sin ^{2} \theta_{W}=0.23$, and $m_{d_{i}}=0$. The partial decay width vanishes at threshold, where $m_{t}=m_{W}+m_{Z}$. This graph is relevant for the decays $t \rightarrow d W^{+} Z$ and $t \rightarrow s W^{+} Z$.
on the precise value of the top quark mass. The branching ratio is greater than 10^{-6} for $m_{t} \gtrsim 187 \mathrm{GeV}$. The extreme sensitivity of the branching ratio to the top quark mass implies that the decay mode could be used to extract or bound the top quark mass. The decay mode also is sensitive to the presence of the triple gauge vertex $W^{+} W^{-} Z$ with the standard model coupling.

The rare decay $t \rightarrow b W^{+} Z$ is at threshold for the present central value of the top quark mass, so the decays $t \rightarrow s W^{+} Z$ and $t \rightarrow d W^{+} Z$ could be more important if $t \rightarrow b W^{+} Z$ is kinematically forbidden or just allowed. Alternatively, it might be possible to look at these modes by applying a tight cut on the invariant mass of the W^{+}and Z momenta to exclude $t \rightarrow b W^{+} Z$ but not $t \rightarrow s W^{+} Z$ and $d W^{+} Z$. The partial decay widths for the s and d final states can be obtained from the partial decay width for the b mode by replacing m_{b} by m_{s} or m_{d}, and $\left|V_{t b}\right|^{2}$ by $\left|V_{t s}\right|^{2}$ or $\left|V_{t d}\right|^{2}$. The partial decay width $\Gamma\left(t \rightarrow d_{i} W^{+} Z\right) /\left|V_{t i}\right|^{2}$ is plot-

FIG. 5. $t \rightarrow c W^{+} W^{-}$.
ted as a function of the top quark mass for vanishing $m_{d_{i}}$ in Fig. 4. The partial width divided by the CKM matrix element squared is zero at threshold where $m_{t}=m_{W}+m_{Z}$ and increases to $2.7 \times 10^{-5} \mathrm{GeV}$ at $m_{t}=200 \mathrm{GeV}$. For canonical values of $\left|V_{t s}\right|^{2}$ and $\left|V_{t d}\right|^{2}$, these partial widths will be too small to be observed at LHC.

II. $t \rightarrow c W^{+} W^{-}$

The rare decay $t \rightarrow c W^{+} W^{-}$proceeds through tree-level graphs with intermediate d, s, and b quarks, as depicted in Fig. 5. The amplitude for the decay is

$$
\begin{align*}
\mathcal{A}= & \sum_{j=d, s, b} V_{t j} V_{c j}^{*}\left(\frac{i g}{\sqrt{2}}\right)^{2} \epsilon_{W^{-}}^{\mu} \epsilon_{W^{+}}^{\nu} \bar{u}\left(p_{c}\right) \\
& \times\left[\gamma^{\mu} P_{L}\left(\frac{i}{k-m_{j}}\right) \gamma^{\nu} P_{L}\right] u\left(p_{t}\right), \tag{18}
\end{align*}
$$

where $k=p_{c}+p_{W^{-}}=p_{t}-p_{W^{+}}$. The spin-averaged amplitude squared is given by

$$
\begin{align*}
\overline{|\mathcal{A}|^{2}}= & \frac{1}{2} \sum_{j, k} V_{t j} V_{c j}^{*} V_{t k}^{*} V_{c k}\left(\frac{g}{\sqrt{2}}\right)^{4}\left(\frac{1}{k^{2}-m_{j}^{2}}\right)\left(\frac{1}{k^{2}-m_{k}^{2}}\right) 4\left\{\left[\left(k \cdot p_{t}\right)\left(k \cdot p_{c}\right)-\frac{1}{2} k^{2}\left(p_{c} \cdot p_{t}\right)\right]\right. \\
& +\frac{2}{m_{W}^{2}}\left(\left(p_{t} \cdot p_{W^{+}}\right)\left[\left(k \cdot p_{c}\right)\left(k \cdot p_{W^{+}}\right)-\frac{1}{2} k^{2}\left(p_{c} \cdot p_{W^{+}}\right)\right]+\left(p_{c} \cdot p_{W^{-}}\right)\left[\left(k \cdot p_{t}\right)\left(k \cdot p_{W^{-}}\right)-\frac{1}{2} k^{2}\left(p_{t} \cdot p_{W^{-}}\right)\right]\right) \\
& \left.+\frac{4}{m_{W}^{4}}\left(p_{t} \cdot p_{W^{+}}\right)\left(p_{c} \cdot p_{W^{-}}\right)\left[\left(k \cdot p_{W^{+}}\right)\left(k \cdot p_{W^{-}}\right)-\frac{1}{2} k^{2}\left(p_{W^{+}} \cdot p_{W^{-}}\right)\right]\right\}, \tag{19}
\end{align*}
$$

where the factor of $1 / 2$ comes from averaging over the top quark spin. Note that this square amplitude can be derived from Eq. (8) or (9). The amplitude squared can be rewritten in terms of the three dot products $\left(p_{c} \cdot p_{W^{+}}\right),\left(p_{c} \cdot p_{W^{-}}\right)$, and ($p_{W^{+}} \cdot p_{W^{-}}$) of the final particle momenta by eliminating p_{t} and k in the above formula.

The partial width for the decay mode $t \rightarrow c W^{+} W^{-}$is given by the three-body phase space integral

$$
\begin{equation*}
\Gamma\left(t \rightarrow c W^{+} W^{-}\right)=\frac{1}{(2 \pi)^{3}} \frac{1}{32 m_{t}^{3}} \int d m_{23}^{2} d m_{12}^{2}{\left.\overline{\mathcal{A}}\right|^{2}}^{2} \tag{20}
\end{equation*}
$$

where the invariant square masses $m_{i j}^{2}=\left(p_{i}+p_{j}\right)^{2}$ are defined in terms of the momenta of the final particles. It is possible to perform the $m_{W^{+} W^{-}}^{2}$ integration explicitly, so that the partial width is given by an integral over $x=m_{c W^{-}}^{2}$ $=\left(p_{c}+p_{W^{-}}\right)^{2}=\left(p_{t}-p_{W^{+}}\right)^{2}=k^{2}:$

$$
\begin{align*}
\Gamma\left(t \rightarrow c W^{+} W^{-}\right)= & \frac{1}{(2 \pi)^{3}} \frac{1}{32 m_{t}^{3}} \frac{1}{2}\left(\frac{g}{\sqrt{2}}\right)^{4} \sum_{j, k} V_{t j} V_{c j}^{*} V_{t k}^{*} V_{c k} \int_{\left(m_{c}+m_{W}\right)^{2}}^{\left(m_{t}-m_{W}\right)^{2}} d x\left(\frac{1}{x-m_{j}^{2}}\right)\left(\frac{1}{x-m_{k}^{2}}\right) \\
& \times \frac{1}{2 x} \lambda^{1 / 2}\left(x, m_{c}^{2}, m_{W}^{2}\right) \lambda^{1 / 2}\left(x, m_{t}^{2}, m_{W}^{2}\right)\left\{\left(x+m_{t}^{2}-m_{W}^{2}\right)\left(x+m_{c}^{2}-m_{W}^{2}\right)\right. \\
& +\frac{1}{m_{W}^{2}}\left[\left(x-m_{t}^{2}-m_{W}^{2}\right)\left(x+m_{c}^{2}-m_{W}^{2}\right)\left(x-m_{t}^{2}+m_{W}^{2}\right)+\left(x-m_{c}^{2}-m_{W}^{2}\right)\left(x+m_{t}^{2}-m_{W}^{2}\right)\left(x-m_{c}^{2}+m_{W}^{2}\right)\right] \\
& \left.+\frac{1}{m_{W}^{4}}\left[\left(x-m_{t}^{2}+m_{W}^{2}\right)\left(x-m_{t}^{2}-m_{W}^{2}\right)\left(x-m_{c}^{2}+m_{W}^{2}\right)\left(x-m_{c}^{2}-m_{W}^{2}\right)\right]\right\} . \tag{21}
\end{align*}
$$

The integrand of Eq. (21) is symmetric under the interchange $m_{t}^{2} \leftrightarrow m_{c}^{2}$, but this symmetry is broken by the limits of integration of the remaining phase space integral. An important observation about the decay width is that the width vanishes for $m_{j}^{2}=0$ or $m_{k}^{2}=0$ by CKM unitarity:

$$
\begin{equation*}
\sum_{j=d, s, b} V_{t j} V_{c j}^{*}=0 \tag{22}
\end{equation*}
$$

$$
\begin{equation*}
\left(\frac{1}{x-m_{j}^{2}}\right) \rightarrow\left[\left(\frac{1}{x-m_{j}^{2}}\right)-\frac{1}{x}\right]=\frac{m_{j}^{2}}{x\left(x-m_{j}^{2}\right)} \tag{23}
\end{equation*}
$$

which implies that the integrand is multiplied by

$$
\begin{equation*}
\frac{m_{j}^{2} m_{k}^{2}}{x^{2}} \tag{24}
\end{equation*}
$$

Thus, the final formula for the partial width is

$$
\begin{equation*}
\Gamma\left(t \rightarrow c W^{+} W^{-}\right)=\frac{1}{(2 \pi)^{3}} \frac{1}{32 m_{t}^{3}} \frac{1}{2}\left(\frac{g}{\sqrt{2}}\right)^{4} \sum_{j, k} V_{t j} V_{c j}^{*} V_{t k}^{*} V_{c k} I\left(m_{j}^{2}, m_{k}^{2}, m_{c}^{2}, m_{t}^{2}, m_{W}^{2}\right) \tag{25}
\end{equation*}
$$

where the integral equals

$$
\begin{align*}
I\left(m_{j}^{2}, m_{k}^{2}, m_{c}^{2}, m_{t}^{2}, m_{W}^{2}\right)= & m_{j}^{2} m_{k}^{2} \int_{\left(m_{c}+m_{W}\right)^{2}}^{\left(m_{t}-m_{W}\right)^{2}} d x\left(\frac{1}{x-m_{j}^{2}}\right)\left(\frac{1}{x-m_{k}^{2}}\right) \frac{1}{2 x^{3}} \lambda^{1 / 2}\left(x, m_{c}^{2}, m_{W}^{2}\right) \lambda^{1 / 2}\left(x, m_{t}^{2}, m_{W}^{2}\right) \\
& \times\left\{\left(x+m_{t}^{2}-m_{W}^{2}\right)\left(x+m_{c}^{2}-m_{W}^{2}\right)+\frac{1}{m_{W}^{2}}\left[\left(x-m_{t}^{2}-m_{W}^{2}\right)\left(x+m_{c}^{2}-m_{W}^{2}\right)\left(x-m_{t}^{2}+m_{W}^{2}\right)\right.\right. \\
& \left.+\left(x-m_{c}^{2}-m_{W}^{2}\right)\left(x+m_{t}^{2}-m_{W}^{2}\right)\left(x-m_{c}^{2}+m_{W}^{2}\right)\right]+\frac{1}{m_{W}^{4}}\left[\left(x-m_{t}^{2}+m_{W}^{2}\right)\left(x-m_{t}^{2}-m_{W}^{2}\right)\right. \\
& \left.\left.\times\left(x-m_{c}^{2}+m_{W}^{2}\right)\left(x-m_{c}^{2}-m_{W}^{2}\right)\right]\right\} . \tag{26}
\end{align*}
$$

Numerical integration of Eq. (26) (which assumes that GIM suppression is operative) shows that the decay width is completely dominated by the contribution with $m_{j}^{2}=m_{k}^{2}=m_{b}^{2}$. The partial width is plotted in Fig. 6 as a function of the top quark mass for $m_{W}=80.3 \mathrm{GeV}$, $m_{c}=1.5 \mathrm{GeV}, \sin ^{2} \theta_{W}=0.23$, and $V_{c b}=0.036-0.046$. The two curves correspond to the lower and upper values of the CKM matrix element $V_{c b}$. The partial width vanishes at threshold where $m_{t}=m_{c}+2 m_{W}$, and is at most $\approx 10^{-12}$ GeV for $m_{t}=200 \mathrm{GeV}$. This extremely small partial width is a direct consequence of three-family unitarity of the CKM matrix in the u-quark sector. If the GIM suppression condition Eq. (22) is relaxed, the integral appearing in Eq. (21) is a factor of 2×10^{5} larger than $I\left(m_{b}^{2}, m_{b}^{2}, m_{c}^{2}, m_{t}^{2}, m_{W}^{2}\right)$ for each value of m_{j}^{2} and m_{k}^{2}. Thus, it is quite possible that the rare decay $t \rightarrow c W^{+} W^{-}$occurs at an observable level in nonstandard model theories. A search for this rare decay mode would directly test CKM unitarity of the $t c$ rows of the CKM matrix.

The partial width for the rare decay $t \rightarrow u W^{+} W^{-}$can be obtained from the above with the replacement $c \leftrightarrow u$. The partial width for the up mode is even smaller than for the charm mode due to smaller CKM matrix elements. This decay mode can be used to test CKM unitarity of the $t u$ rows of the CKM matrix.

III. CONCLUSIONS

The partial widths for the rare top quark decay modes $t \rightarrow b W^{+} Z, s W^{+} Z, d W^{+} Z, c W^{+} W^{-}$, and $u W^{+} W^{-}$have been calculated in the standard model. The decay mode
$t \rightarrow b W^{+} Z$ is potentially observable at LHC rates for top quark masses above 187 GeV , and could be used to accurately determine the top quark mass. The decay amplitude also depends on the triple decay vertex $W^{+} W^{-} Z$, and therefore tests for the presence of this coupling and its value. The

FIG. 6. $\Gamma\left(t \rightarrow c W^{+} W^{-}\right)$as a function of the top quark mass for $m_{W}=80.3 \mathrm{GeV}, m_{c}=1.5 \mathrm{GeV}, \sin ^{2} \theta_{W}=0.23$, and $V_{c b}=0.036$ -0.046 . The partial decay width vanishes at threshold, where $m_{t}=m_{c}+2 m_{W}$.
decays $t \rightarrow c W^{+} W^{-}$and $u W^{+} W^{-}$are extremely GIM suppressed in the standard model, but may be much larger in nonstandard scenarios. A search for these rare decay modes tests CKM unitarity of the $t c$ and $t u$ rows of the CKM matrix,

$$
\begin{equation*}
\sum_{j=d, s, b} V_{t j} V_{u_{i} j}^{*}=0 \tag{27}
\end{equation*}
$$

ACKNOWLEDGMENTS

This work was supported in part by the U.S. Department of Energy under Grant No. DOE-FG03-90ER40546. E.J. also was supported in part by the NYI program through Grant No. PHY-9457911 from the National Science Foundation and by the Alfred P. Sloan Foundation.
[1] CDF Collaboration, F. Abe et al., Phys. Rev. D 50, 2966 (1994); F. Abe et al., Phys. Rev. Lett. 73, 225 (1994); D0 Collaboration, S. Abachi et al., ibid. 74, 2632 (1995).
[2] G. F. Tartarelli, in Proceedings of the XXXIst Rencontres de Moriond, 1996; M. Narain, Proceedings of the 1996 Les Rencontres de Physique de la Vallee d'Aoste, 1996; for a review, see C. Campagnari and M. Franklin, Rev. Mod. Phys. 69, 137 (1997).
[3] R. Decker, M. Nowakowski, and A. Pilaftsis, Z. Phys. C 57, 339 (1993).
[4] G. Mahlon and S. Parke, Phys. Lett. B 347, 394 (1995).
[5] V. Barger, W.-Y. Keung, and T. G. Rizzo, Phys. Rev. D 40, 2274 (1989).
[6] ATLAS Technical Proposal No. CERN/LHCC/94-43, LHCC/ P2, 1994 (unpublished).

[^0]: ${ }^{1}$ The decay process $Q \rightarrow q W Z$ also was considered in Ref. [5] for very heavy fourth generation quarks and exotics with mass $\geqslant 240$ GeV .

[^1]: ${ }^{2}$ The value of the branching ratio for this value of m_{t} is consistent with the result of Mahlon and Parke [4] in the narrow width approximation. There is some numerical difference with their narrow width results for smaller values of m_{t}, which probably stems from the inclusion of finite width effects proportional to Γ_{W} / m_{W} and Γ_{Z} / m_{Z} in their calculation.

