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In this paper we explore the connection between anisotropic Gaussian fluctuations and isotropic non-
Gaussian fluctuations. We first set up a large angle framework for characterizing non-Gaussian fluctua-
tions: large angle non-Gaussian spectra. We then consider anisotropic Gaussian fluctuations in two different
situations. First we look at anisotropic space-times and propose a prescription for superimposed Gaussian
fluctuations; we argue against accidental symmetry in the fluctuations and that therefore the fluctuations should
be anisotropic. We show how these fluctuations display previously known non-Gaussian effects both in the
angular power spectrum and in non-Gaussian spectra. Secondly we consider the anisotropic Grischuk-
Zel’dovich effect. We construct a flat space time with anisotropic, nontrivial topology and show how Gaussian
fluctuations in such a space-time look non-Gaussian. In particular we show how non-Gaussian spectra may
probe superhorizon anisotropy.@S0556-2821~97!07220-2#

PACS number~s!: 98.80.Cq, 98.70.Vc, 98.80.Hw

I. INTRODUCTION

Anisotropic models of the Universe have been often con-
sidered in the past~e.g., @1,2#!. In recent times globally an-
isotropic space-times have attracted attention for their
thought provoking value, as primordial anisotropy would ap-
pear to contradict inflation@3#. It is therefore important to
find experimental evidence for, or constraints on, primordial
anisotropy. The cosmic microwave background~CMB! is the
cleanest and most accurate experimental probe in current
cosmology. Thus it makes sense to explore the impact of
anisotropic expansion on the CMB. For homogeneous space
times this was largely done in@4–6#. In the more sophisti-
cated analysis in@6# the effects of the unperturbed aniso-
tropic expansion were combined with a spectrum of super-
posed Gaussian fluctuations. An admitted shortcoming of
this analysis is the assumption that while the unperturbed
model leaves an anisotropic pattern in the sky, the Gaussian
fluctuations around it are isotropic. Should the Gaussian fluc-
tuations in such models be anisotropic one may expect a
more stringent statistical bound on anisotropy, if the Uni-
verse is indeed isotropic. One can consider another class of
models where the background space-time is homogeneous
and isotropic but anisotropic topological identifications lead
to anisotropic Gaussian fluctuations. Some of these universes
have been considered before@7# and an example of the pat-
terns in an open universe has been presented in@8#.

The apparently unrelated issue of large-angle CMB non-
Gaussianity has also been considered recently, both as an
experimental matter@9#, and as a possible prediction in to-
pological defect theories@10–16#. In @10#, in particular, an
outline is given of a comprehensive formalism for encoding
large angle non-Gaussianity based on the spherical harmonic
coefficientsam
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In @10# it is also stated that ‘‘any non-Gaussian theory is to
some extent anisotropic, favoring particular directions in the
sky and somem’s over others.’’ The converse statement fol-
lows: that Gaussian anisotropic fluctuations will appear as
non-Gaussian fluctuations from the standpoint of an isotropic
theory. This establishes an interesting link between the
search for cosmological anisotropy and the search for non-
Gaussian signatures.

Let us consider Gaussian theories which favor an axis,
whereV are angles defining this axis. Then the probability
distribution conditional to this axisP(am

l uV) is Gaussian.
Isotropy is violated, but the resulting theory is Gaussian
within the reduced set of symmetries the theory now must
satisfy. However from an isotropic point of view the full
ensemble is made up of all the ensembles which favor an
axis, but allowing the axis to be uniformly distributed. Such
a superensemble would undoubtedly be isotropic, but it
would also be non-Gaussian. Marginalizing with respect to
the axis reveals a non-Gaussian theory, that is

P~am
l !5E dVP~V!P~am

l uV!,

P~V!5
sin u

4p
~2!

is non-Gaussian. This identifies the origin of the Gaussian/
non-Gaussian switch. Conditionalizing to an axis renders the
theory Gaussian~and anisotropic!. Marginalizing with re-
spect to the axis reveals a non-Gaussian theory~but an iso-
tropic ensemble!.

This phenomenon turns out to be a particular case of the
general phenomenon discussed in connection with the tex-
ture analytical model in@11,12#. In that model it is found that
the temperature anisotropies are very non-Gaussian. The
theory hasCl cosmic variance error bars above their Gauss-
ian value, and there are strong correlations amongCl . It
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turns out, however, that these large-angle non-Gaussian ef-
fects are largely due to the last texture~as in the texture
closest to us, or the texture at lower redshift!. The culprit
identified, one then notices that conditionalizing the theory to
the last texture redshiftz1 reveals a Gaussian ensemble, that
is, the probability distributionP(am

l uz1) is Gaussian. Mar-
ginalizing with respect toz1 , however, produces a non-
Gaussian ensemble, that is the probability

P~am
l !5E dz1P~z1!P~am

l uz1! ~3!

is non-Gaussian.
The picture is then clear@17#. We come up with a con-

struction where the full ensemble is made up of suben-
sembles which are Gaussian. Each subensemble is however
labeled by an index which from the point of view of the full
ensemble is a random variable. Marginalizing with respect to
this variable reveals a non-Gaussian ensemble. Conditional-
izing with respect to this index renders the theory Gaussian.
Such an index was called in@12# the random index, and it
was conjectured1 in that paper that non-Gaussianity could
often be characterized by a set of such indices labeling
Gaussian ensembles. Within such a construction the strategy
for predicting experiment must be modified. One should now
not provide a direct statistical description of the full en-
semble ~that is, marginal distributions!, which would be
plagued by all sorts of non-Gaussian effects. Rather it makes
more sense to supply information on all the Gaussian suben-
sembles, plus the distribution function of their random indi-
ces.

Hence we may use a subclass of the comprehensive for-
malism for encoding large-angle non-Gaussianity outlined in
@10# to describe anisotropic Gaussian fluctuations. This is
essentially a large-angle generalization of@19# and is de-
scribed in Sec. II. The idea is to complement the angular
power spectrumCl with a set of multipole shape spectraBm
describing how the power is distributed among them’s for a
given scalel . The Bm encode information on the shape of
large angle structures. They are uniformly distributed in a
Gaussian isotropic theory, meaning its fluctuations are
shapeless. However, as we shall see in Sec. V, preferred
shapes emerge in non-Gaussian isotropic theories, as well as
in Gaussian anisotropic theories, where theBm are not uni-
formly distributed. Non-Gaussian spectra then appear as a
natural predictive tool for these theories.

In this paper we study the disguised non-Gaussianity of
anisotropic Gaussian fluctuations along two lines. Firstly, in
Sec. III, we propose a simple method for defining anisotropic
Gaussian fluctuations. Breaking isotropy essentially amounts
to choosing an alternative symmetry group under which the
covariance matrix should be invariant, and which picks a
favored direction in the sky. We can then write down the
most general form for the covariance matrix of the theory
simply by studying the representation theory of the symme-
try group. We argue that the accidental symmetry allowing
anisotropic fluctuations to be isotropic is a model dependent

and unnatural assumption. Hence Gaussian fluctuations in
anisotropic universes should be anisotropic too. Although we
concentrate on anisotropic fluctuations with an SO~2! sym-
metry, the definition and considerations given in Sec. II are
quite general, as explained in more detail in Appendix A.

We then show how anisotropic Gaussian theories induce
well known non-Gaussian effects in the relation between the
observed and the predicted angular power spectrumCl .
These effects include larger cosmic variance error bars, and
also the phenomenon of cosmic covariance, that is correla-
tions between the observedCl . Cosmic covariance allows
for more structure to exist in each realization than in the
predicted average power spectrum and complicates compari-
son between theory and experiment. These effects are shown
to be present for anisotropic Gaussian theories in Sec. IV.

Then, in Sec. V, we show how anisotropic Gaussian fluc-
tuations render non-Gaussian spectra nonuniformly distrib-
uted, as announced above. We also find the most general
class of isotropic non-Gaussian theories into which aniso-
tropic Gaussian fluctuations may be mapped. As a concrete
example in Sec. VI we proceed to characterize the non-
Gaussian spectra for the relevant, globally anisotropic space
times.

Along a totally different line in Sec. VIII we construct a
simple example of a topologically nontrivial space time and
show how the non-Gaussian spectra will indicate anisotropic
topological identifications. We propose this as ananisotropic
Grischuk-Zel’Dovich effect: from subhorizon, large angle
observables we can characterize super-horizon anisotropies.

In Sec. IX we discuss the implications of our results and
their practical implementation.

II. LARGE-ANGLE NON-GAUSSIANITY

We now set up a formalism for describing large-angle
non-Gaussianity which is based on@19#, but makes use ofam

l

coefficients rather than Fourier components, and so is suit-
able for mapping large-angle non-Gaussianity. Again the
idea is to map the$am

l % into a set of spectra which for a
Gaussian isotropic theory are independent random variables.
One of these spectra is the angular power spectrumCl , and
should be ax2l 11

2 for a Gaussian isotropic theory. The other
variables make up non-Gaussian spectra which should be
uniformly distributed for a Gaussian isotropic theory.

The transformation proposed is defined as follows. First
we split the complex modes into moduli and phases

a0
l 5s0

l r0
l ,

am
l 5

rm
l

&
eifm

l
, ~4!

wheres0
l 561 is simply the sign ofa0

l . The fact that the
m50 mode is real introduces a slight modification to the
construction in@19#. There are nowl 11 moduli, but there
are only l phases~the indexm starts at 1 for the phases!.
Working out the Jacobian of the transformation shows that
for a Gaussian theory the distribution of the$rm

l ,fm
l ,s0

l % is

1This conjecture can in fact be promoted to a mathematical theo-
rem; see@18#.
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l ,fm
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l !5
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The phasesfm
l are uniformly distributed in@0,2p#. The sign

s0
l has a uniform discrete distribution. The modulirm

l arex2
2

distributed except forr0
l which is x1

2 distributed. Sincer0

now does not appear in the Jacobian of the transformation,
the only way one can proceed with the construction in@19# is
by ordering ther’s by decreasing order ofm, and then in-
troduce polars:

r l
l5r cosu1 ,

r l 21
l 5r sin u1 cosu2 ,

•••

r1
l 5r sin u1 ...cosu l ,

r0
l 5r sin u1 ...sinu l . ~6!

Again, working out the Jacobian of the transformation im-
plies that for a Gaussian isotropic theory the distribution of
these variables is

F~r ,um ,s0
l ,fm!5

exp~2r 2/2Cl !r
2l

~p/2!1/2Cl
l 11/2

3)
1

l

cosum~sin um!2~ l 2 i !
1

2

1

~2p! l .

~7!

One can then define shape spectraBm
l as

Bm
l 5~sinum!2~ l 2m!11 ~8!

so that for a Gaussian isotropic theory one has

F~r ,Bm
l ,s0

l ,fm
l !5

exp~2r 2/2Cl !r
2l

~p/2!1/2Cl
l 11/2~2l 21!!!

1

2

1

~2p! l .

~9!

The angular power spectrumCl seen as a random variable is
then related tor by

Cl5
r 2

2l 11
~10!

and is ax2l 11
2 . The multipole shape spectraBm

l may be
obtained from the modulirm

l according to

Bm
l 5S rm21

l2 1•••1r0
l2

rm
l21•••1r0

l2 D m21/2

~11!

and are uniformly distributed in@0,1#. Finally the phasesfm
l

are uniformly distributed in@0,2p#, and the signs0
l is a dis-

crete uniform distribution over$21,11%.
As in @19# we define non-Gaussian structure in terms of

departures from uniformity and independence in the

$Bm
l ,fm

l %. Gaussian theories can only allow for modulation,
that is, a nonconstant power spectrum. The most general
power spectrum has as much information as Gaussian theo-
ries can carry. White noise is the only type of fluctuations
which is more limited in terms of structure than Gaussian
fluctuations.2 In isotropic Gaussian theories there is no struc-
ture in the$Bm

l ,fm
l % since these are independent and uni-

formly distributed. By allowing theBm
l to be not uniformly

distributed, or to be constrained by correlations amongst
themselves and with the power spectrum, one adds shape to
the multipoles. This is because theBm

l tell us how the power
in multipole l given by Cl ~or r ! is distributed among the
various umu modes, which reflect the shape of the fluctua-
tions. Indeed them50 mode~zonal mode! has no azimuthal
dependence. It corresponds to fluctuations with strict cylin-
drical symmetry~rather than statistical symmetry!. The umu
.0 modes correspond to the various azimuthal frequencies
allowed for the scalel . Each of these modes represent a way
in which strict cylindric symmetry may be broken. The rela-
tive intensities of all them modes carry information on the
shape of the random structures at least as seen by the scalel .
In a Gaussian theory all them modes must have the same
intensity, something which can be rephrased by the statement
that the Bm

l are independent and uniformly distributed.
Hence Gaussian fluctuation display shapeless multipoles.
Any departure from this distribution in theBm

l may then be
regarded as a evidence for more or less random shape in the
fluctuations.

On the other hand the phasesfm
l transform under azi-

muthal rotations. Therefore they carry information on the
localization of the fluctuations. If the phases are independent
and uniformly distributed then the perturbations are delocal-
ized.

Finally there may be correlations between the various
scales defined byl . In the language of@19# this is what is
called connectivity of the fluctuations. These correlations
measure how much coherent interference is allowed between
different scales, a phenomenon required for the rather ab-
stract shapes and localization on each scale to become some-
thing visually recognizable as shapeful or localized. As in
@19# this may be cast into inter-l correlators. As we shall see
these are in fact quite complicated for general anisotropic
Gaussian theories. Therefore we have chosen not to dwell on
this aspect of large-scale non-Gaussianity in this paper.

III. A POSSIBLE METHOD
FOR INTRODUCING GAUSSIAN FLUCTUATIONS

IN ANISOTROPIC UNIVERSES

We now present a possible way of introducing Gaussian
fluctuations in anisotropic universes such as the Bianchi
models. In Sec. VIII we will present another context in

2It is curious to note that white noise has less structure than ge-
neric Gaussian fluctuations, but it also has more symmetry. It is
tempting to associate reduction of symmetry and addition of struc-
ture. Anisotropic fluctuations have less symmetry than isotropic
fluctuations, but they also have more structure, reflected in their
non-Gaussian structure.
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which anisotropy appears: periodic universes. There we shall
present more specific calculations of anisotropic Gaussian
perturbations. Here we shall however use a method which
relies simply on inspecting the reduced symmetry group an-
isotropic Gaussian perturbations must satisfy. This is a
simple, if somewhat phenomenological, way of introducing
the most general Gaussian perturbation which can live in an
anisotropic background. Without actually performing a de-
tailed perturbation analysis of these spacetimes, one can re-
fine the analysis of@6# by using this prescription and possi-
bly find more stringent constraints.

Let an all-sky temperature anisotropy map be decom-
posed into spherical harmonics as in Eq.~1!. Then, for a
general Gaussian theory, theam

l are Gaussian random vari-
ables specified by a covariance matrix which must satisfy the
symmetries of the underlying theory. In Friedman models the
symmetry group is SO~3!, but the symmetry group may be
smaller. Anisotropic Gaussian fluctuations may be defined as
Gaussian fluctuations with a covariance matrix satisfying a
symmetry group which picks a favoured direction in the sky.
We concentrate on anisotropic fluctuations with an SO~2!
symmetry, that is, with cylindrical symmetry.

The general form of the covariance matrix may be ob-
tained just from the representation theory of the symmetry
group. The symmetry group breaks the$am

l % space into irre-
ducible representations~irreps!. The am

l may then be reex-
pressed in a basis adapted to these irreps. Using Schur’s
Lemmas@20# one knows~see Appendix A for more detail!
that the covariance matrix of the theory must be a multiple of
the identity within each irrep.3 Furthermore correlations be-
tween differentam

l can only occur for elements of different
but equivalent irreps. Hence, for any Gaussian theory subject
to a symmetry which does not lead to equivalent irreps, the
spherical harmonic coefficients, expressed in a basis adapted
to the partition into irreps, must be independent random vari-
ables, and their variance must be a function only of the irrep
they belong to. As we shall see it may happen that the vari-
ance is the same for a set of irreps. This degeneracy then
leads to an accidental enlarged symmetry. If some of the
irreps are equivalent then in principle one may also have
correlations between coefficients belonging to different but
equivalent irreps.

As an example consider an isotropic theory. Then the
$am

l % for eachl are an irrep of the symmetry group SO~3!
represented by theD matrices

R~c,u,f!am
l 5Dmm8

l
~c,u,f!am8

l , ~12!

where ~c,u,f! are Euler angles. None of these irreps is
equivalent, as indeed none of them have the same dimension.
Hence for a Gaussian isotropic theory theam

l must have a
covariance matrix of the form

^am
l am8

l 8* &5d l l 8dmm8Cl . ~13!

If the angular power spectrumCl happens to be a constant
~white-noise! over a certain section of the spectrum then this
degeneracy increases the symmetry group of the theory: ro-
tations among differentl ’s are now an extra symmetry. This
is an accidental symmetry resulting from the degeneracy dis-
played by the particular model considered~white noise! and
not required by the underlying theory.

Now suppose that the symmetry group is SO~2!, that is,
the unperturbed model supporting the fluctuations is cylin-
drically symmetric. Then there is a favored axis in the uni-
verse and with respect to this axis the symmetry transforma-
tions are

R~f!am
l 5eimfam

l . ~14!

The irreps are now indexed byl ,m with m>0. They are
one-dimensional complex irreps form.0, and one dimen-
sional real~and trivial! irreps for m50. For the samem
irreps with differentl are equivalent irreps. For eachl we
have a single irrep of SO~3! which splits intol 11 irreps of
SO~2!. The covariance matrix of the theory now has the gen-
eral form

^am
l am8

l 8* &5dmm8Cumu
l l 8 ~15!

and we may call the diagonal termsClm of Cumu
l l 8 the cylindri-

cal power spectrum. It may now happen thatCumu
l l 8

5d l l 8Cumu
l , and furthermore that a given model displays the

degeneracyCl umu5Cl , that is the cylindrical power spectrum
is white noise inm. In this case the SO~3! symmetry is
accidentally restored. However this is no different from the
white-noise modelCl5const referred to above. It is merely
an accidental enlarged symmetry displayed by a concrete
model and not a fundamental symmetry imposed by the un-
derlying model.

Accidental symmetries~e.g., family symmetry in particle
physics! are always regarded with horror. If they happen to
exist, sooner or later a fundamental principle is sought which
will promote them from accidental to fundamental symme-
tries. If they do not happen to exista priori, such as in the
case of fluctuations in anisotropic models, then better not
postulate them in the first place.

IV. NON-GAUSSIAN EFFECTS
ON THE ANGULAR POWER SPECTRUM

Gaussian anisotropic theories display many of the novel-
ties present in non-Gaussian theories, such as the texture
models considered in@11,12#. They trade their added predic-
tivity in terms of non-Gaussian spectra for larger cosmic
variance error bars in the angular power spectrum. Also the
observedCl may be correlated, a phenomenon called cosmic
covariance and present in the texture models in@11,12#. Cos-
mic covariance~or Cl aliasing! induces great mess when
comparing predicted and observed power spectra. Correla-
tions allow for each observed power spectrum to have more
structure than the average power spectrum. This may result
in the average power spectrum corresponding to nothing that

3Schurs’ Lemma only applies to finite dimensional representa-
tions, such as the ones offered by theam

l . If one instead looks at the
real space mapsdT/T, then the representation space isS2. This is
infinite dimensional, and indeed the covariance matrix of Gaussian
theories is not diagonal, and is specified by the two-point correla-
tion functionC(u).
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any observer ever sees. More subtle methods for predicting
power spectra are then necessary. Two prescriptions are
given in @12#.

A. Cosmic variance surplus

For a Gaussian isotropic theory the angular power spec-
trum

Cl5
1

2l 11 (
m52 l

l

uam
l u2 ~16!

has the variance

s2~Cl !5
2Cl

2

2l 11
. ~17!

Here we use the notationCl to denote the random variable
and Cl to denote its ensemble average. For a Gaussian an-
isotropic theory this variance is

s2~Cl !5
2

~2l 11!2 (
m52 l

l

Clm
2 . ~18!

If we define the average cylindrical power spectrum by

Cl5
1

2l 11 (
m52 l

l

Clm , ~19!

then

s2~Cl !>
2Cl

2

2l 11
. ~20!

It is a simple analysis exercise to prove this inequality and
show that it is saturated only whenClm5Cl , that is when
the fluctuations are isotropic.

Generally we may interpret this result as a reduction in
the number of degrees of freedom in thex2 induced by an-
isotropy. Suppose, for instance, that a theory is strongly an-
isotropic so that only a fewm modes among the available
2l 11 contribute to the power spectrumCl , for a given l .
Then, effectively, the observed power spectrumCl is the
result of these few modes. Since these are still Gaussian
variables the observed power spectrum is ax2, but with an
effective number of degrees of freedom equal to the number
of predominant modes. If for example all the power is con-
centrate on them50 mode, then theCl is a x1

2. If all the
power is in am.0 mode, theCl is a x2

2.
We may use the ratio between the actual cosmic variance

of the theory and its Gaussian prediction to quantify how
anisotropic the fluctuations are. Quantitatively let us call an-
isotropy in the multipolel to the quantity

Al5
sGA

2 ~Cl !

sGI
2 ~Cl !

5
1

2l 11 (
m52 l

l S Clm

Cl
D 2

, ~21!

which varies betweenAl51 for isotropic theories toAl

52l 11 for cylindrically symmetric multipoles~for which
all the power is in them50 mode!.

B. Cosmic covariance

There are also correlations between differentCl . For l
Þ l 8 we have that

cov~Cl ,Cl 8!5
1

~2l 11!~2l 811! (
m,m8

cov~ uam
l u2,uam8

l 8 u2!.

~22!

For two ~possibly correlated! complex Gaussian random
variablesz1 and z2 with uncorrelated real and imaginary
parts, it can be shown that cov@ uz1u2,uz2u2#5^z1z2* &2

1^z1z2&
2, and so

cov~Cl ,Cl 8!5
1

~2l 11!~2l 811! (
m

Cm
ll 82, ~23!

wherem in the summation runs from2min(l,l8) to min(l,l8).

The off-diagonal elements~in l ,l 8! in Cm
ll 8 therefore induce

correlations among the various observedCl . A possible, but
model dependent, way to do away with these correlations is
to rotate theCl among themselves so as to diagonalize the
covariance matrix~23!. These rotatedCl will then be inde-
pendent, and so their average value is a good prediction for
what each observer will see. Also, as shown in@12#, in the
rotated basis the cosmic variance error bars tend to be
smaller and approach their Gaussian minimum. Therefore
cosmic covariance, and larger cosmic variance error bars can
be dealt with by means of this trick. However this trick does
depend on each particular model, and is not a universal pre-
scription applicable to every model.

V. THE NON-GAUSSIAN STRUCTURES EXHIBITED
BY ANISOTROPIC GAUSSIAN THEORIES

Anisotropic Gaussian theories also display non-Gaussian
structure in the senses given at the end of Sec. II, that is they
produce nontrivial non-Gaussian spectra. Here we shall find
the most general type of isotropic non-Gaussian structure
which can be mapped from these theories.

We shall consider the anisotropic covariance matrix in

more detail. Let the matrixCm
ll 8 be split into its diagonal and

its off-diagonalXm
ll 8 parts

Cm
ll 85d l l 8Cl umu1Xm

ll 8 . ~24!

ThenXm
ll 8!Cl umu , and so the bilinear form in the exponent of

the Gaussian distribution

F~am
l !} expS 2(

m
(
l ,l 8

am
l Mm

ll 8am
l 8D ~25!

is

Mm
ll 85Cm

ll 8215
d l l 8

Cl umu
2

Xm
ll 8

ClCl 8
~26!

and so the distribution factorizes into a factor which reveals
the structure inside each multipole, and a factor which re-
veals correlations between different multipoles. We shall
analyze these two factors in turn.
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Let us first assume thatXm
ll 850. Repeating the transfor-

mation presented in Sec. II but using a covariance matrix of
the form~15! one ends up with a rather complex distribution
which has the form

F~Cl ,Bm
l ,s0

l ,fm
l !5F~Cl ,Bm

l !
1

2

1

~2p! l . ~27!

UnlessClm5Cl , theBm
l are not uniformly distributed. Also

the Cl will in general not be ax2l 11
2 , and the function

F(Cl ,Bm
l ) will not factorize. This means that not only will

correlations exist between theBm
l but the Bm

l will also be
correlated with the angular power spectrum. The phasesfm

l

on the other hand will still be uniformly distributed and in-
dependent. The phases tell us nothing about Gaussian aniso-
tropic fluctuations.

Hence anisotropic Gaussian fluctuations, when seen from
the point of view of an isotropic formalism, are an example
of delocalized shapeful fluctuations~explored in some detail
in @19#!. In the next two sections we will explore in more
detail the particular type of non-Gaussian effects which
Gaussian anisotropic fluctuations may induce. The shapes
exhibited by these theories are not the most general shapes,
because there must be a scale transformation in therm

l which
would render theBm

l uniformly distributed again. Clearly not
all shapes have this property.

On top of this ifXm
ll 8Þ0 the distributionF(am

l ) does not
factorize into factors which only depend on onel . Correla-
tions between the differentl will then appear, which in the
language of@19# amount to the emergence of connected
structures: different scales are allowed to interfere con-
structively. In this paper we will not explore this side of the
problem in depth. Nevertheless we have identified the non-
Gaussian structures into which anisotropic Gaussian fluctua-
tions are mapped. These are the delocalized shapeful~and
possibly connected! structures defined in@19#, or rather, a
subclass thereof.

We should note that although the$Cl ,Bm
l ,fm

l % decompo-
sition is not SO~3! invariant, the$Cl ,Bm

l % already are SO~2!
invariant.4 Since the phases contain no information whatso-
ever on Gaussian anisotropic fluctuations they do not count
as a device for making predictions in these theories~as much
as one does not computeBm

l for Gaussian isotropic theories!.
Hence the set of variables$Cl ,Bm

l % is suitable for represent-
ing invariantly the most general form of non-Gaussian fluc-
tuation which can be mapped from Gaussian anisotropic
fluctuations.

VI. GLOBALLY ANISOTROPIC UNIVERSES

A useful set of models in which to explore these concepts
are the homogeneous, anisotropic cosmologies, also know as

the Bianchi models@1#. One can describe Bianchi cosmolo-
gies in terms of the metric

gmn52nmnn1a2@exp~2b!#ABem
Aen

B , ~28!

wherena is the normal to spatial hypersurfaces of homoge-
neity, a is the conformal scale factor,bAB is a three matrix
only dependent on cosmic time,t, andem

A are invariant cov-
ector fields on the surfaces of homogeneity, which obey the
commutation relations

em;n
A 2en;m

A 5CBC
A em

Ben
C . ~29!

The structure constantsCBC
A can be used to classify the dif-

ferent models. We shall focus on open or flat models which
are asymptotically Friedman. These can be obtained by tak-
ing different limits of the type VIIh model which has struc-
ture constants

C31
2 5C21

3 51, C21
2 5C31

3 5Ah. ~30!

It is convenient to define the parameterx5Ah/(12V0),
which determines the scale on which the principal axes of
shear and rotation change orientation. By taking combina-
tions of limits of V andx one can obtain Bianchi type-I, V,
and VII0 cosmologies.

We are interested in large-scale anisotropies so it suffices
to evaluate the peculiar redshift a photon will feel from the
epoch of last scattering~ls! until now ~0!:

DTA~ r̂ !5~ r̂ iui !02~ r̂ iui ! ls2E
ls

0

r̂ j r̂ ks jkdt, ~31!

wherer̂5(cosusinf,sinusinf,cosf) is the direction vector of
the incoming null geodesic,u is the spatial part of the fluid
four-velocity vector and to first order, the shear iss i j
5]tb i j . To evaluate expression~31!, one must first of all
determine a parameterization of geodesics on this spacetime.
This is given by

tanS f~t!

2 D5tanS f0

2 Dexp@2~t2t0!Ah#,

u~t!5u01~t2t0!,

2
1

Ah
lnH sin2S f0

2 D1cos2S f0

2 Dexp@2~t2t0!Ah#J . ~32!

Solving Einstein’s equations~and assuming that matter is a
pressureless fluid! one can determineu and s i j . A general
expression for Eq.~31! was determined in@5#:

DTA~ r̂ !5S s

H D
0

2A12V0

V0
H @sinf0cosu0

2sinf lscosu ls~11zls!#

2E
t ls

t0 3h~12V0!

V0
sin2f@cos~u!

1sin~u!#
dt

sinh4~Aht/2!
J . ~33!

4We are assuming that not only the universe is anisotropic but that
we know,a priori, what its symmetry axis is; e.g., by the detection
of a Hubble-size coherent magnetic field. Alternatively we leave the
Euler angles of this axis free, to be estimated by some Maximum
Likelihood Estimator.
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A useful discussion of the different cosmic microwave
background~CMB! patterns imprinted by the unperturbed
anisotropic expansion is presented in@5#. The patterns can be
roughly said to be constructed out of two ingredients: a
focusing of the quadrupole whenV,1 and a spiral pattern
whenx is finite. The Bianchi type-VIIh is most general form
of homogeneous, anisotropic universes in anV<1 which are
asymptotically Friedmann-Robertson-Walker. The pattern is
of the form

DT

T
5 f 1~u!cos@f2f̃~u!#. ~34!

In eachu5const circle the pattern has a dependence inf of
the form cos(f2f̃). The phasef̃ depends onu, and hence
the spiralling of the simple cold and hot bump induced by the
cosf dependence. The functionsf 1(u) and f̃(u) are rather
complicated functions which have to be evaluated numeri-
cally, and depend on various details of the particular Bianchi
model within the type we have chosen. It is curious to note,
however, that only the power spectrumCl and the phasesf
are sensitive to these details. All the spirals imprinted by
Bianchi type-VIIh models have moduli of the form

rm
l 5dm1f 2~ l ,x!. ~35!

Therefore their shape spectra will always be

Bm
l 51, for 2<m< l ,

Bm
l 50, for m51. ~36!

The background patterns in Bianchi type-VIIh models are all
localized, shapeful, and connected structures. Depending on
the model they will however have different positions, power
spectra, and connectivity. Nevertheless, their shape spectra is
always the same exact shape, of form~36!, without any cos-
mic variance error bars. Confusion with a Gaussian is zero.
Confusion with the shape of a perfect texture hot spot is zero
as well. These have a non-Gaussian spectrum of the form

Bm
l 51, for 1<m< l . ~37!

Although the shape spectrum is the same up to the lastBm
l ,

the confusion between the two theories is zero. Of course
real textures are not perfect circular spots. Cosmic variance
in their irregularities will further complicate the problem.
Nevertheless some sort of peak around thisBm

l prediction
should exist in real life.

VII. ANISOTROPIC GAUSSIAN FLUCTUATIONS
IN BIANCHI MODELS

In the previous section we explored the fact that in Bian-
chi models the CMB is not isotropic even before fluctuations
are introduced. A rather non-Gaussian spiral pattern of form
~34! is imprinted by the universal rotation on the CMB. This
pattern is obviously non-Gaussian and is a localized feature.
It is therefore not hard to place tight constraints on anisot-
ropy on the grounds of this prediction. A possibility remains
however that anisotropy might manifest itself in a more
subtle way. Anisotropic expansion would certainly affect the

production of Gaussian fluctuations. From what we have said
in Sec. V it is clear that anisotropic Gaussian fluctuations
could escape detection much more easily. They are delocal-
ized non-Gaussian features, and most non-Gaussian tests, in-
cluding our eyes, target localization. As shown in@19# delo-
calized features escape traditional methods of non-Gaussian
detection. These include skewness and kurtosis, the three-
point correlation function, density of peaks above a given
height, genus number of isotemperature lines, and the ubiq-
uitous plotting of pixel histograms. We will reiterate this
point here with one class of anisotropic Gaussian fluctua-
tions.

Let us consider anisotropic Gaussian fluctuations with a
covariance matrix of form

^am
l am8

l 8* &5dmm8d l l 8Cl umu . ~38!

These theories are characterized by an angular power spec-
trum which is now a function of two indices,l andm. Iso-
tropic Gaussian theories may be regarded in this context as a
particular type of spectrum in them dimension: they are
white noise inm that is, the power is constant as a function
of m. Anisotropy manifests itself in the form of departures
from white noise in them dimension of the power spectrum.
These departures may in principle take any functional form,
but for simplicity let us consider a linear dependence, that is,
we merely tilt the white noise spectrum. Then

Cl umu5Cl~numu2b!, ~39!

whereb is defined so thatCl is indeed the angular power
spectrum. We calln the m-tilt. An isotropic theory has zero
m-tilt. A positive m-tilt will favor high azimuthal frequen-
cies, a negative tilt will favor modes which disrupt strict
cylindrical symmetry the least, that is lowm modes. The
larger them-tilt the more anisotropic the fluctuations are. For
every l a critical tilt n* exists beyond which somem modes
do not receive any power. We may consider exceeding this
tilt unreasonable.

In Fig. 1 we produced an isotropic Gaussian map with a
resolution of 20° and a scale-invariant power spectrum. In
Fig. 2 we produced an anisotropic Gaussian map with the
same power spectrum, and using the same random numbers.
The tilt is the critical negative tiltn* . It is curious to note
how similar the two maps are. The point is that it is the
phases that determine what the maps look like and they are
the same random phases in both maps. Clearly it will be

FIG. 1. An isotropic Gaussian map as seen with a resolution of
about 20°. The power spectrum was assumed to be scale invariant.
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difficult to identify the anisotropy, or equivalently the non-
Gaussianity, ofm-tilted maps. They will look very Gaussian
and isotropic even for the large tiltn* .

One would have to do something extreme, such as con-
sider n52`, for the anisotropy ofm-tilted theories to be-
come obvious. The map in Fig. 3 has the same power spec-
trum and random number as the two previous maps but it has
n52`. This means that the modem50 receives all the
power for anyl . The surprise now is that the map obtained is
Gaussian at all, in some sense. The features shown in this
maps appear to be not only blatantly anisotropic, but also
very non-Gaussian.

It should not come as a surprise that for any theory with a
reasonablem-tilt classic Gaussian tests will fail to detect the
non-Gaussianity. We exemplify this with skewnessg3 and
kurtosis g4 . In all anisotropic Gaussian theories withn
,n* the averageg3 andg4 are always well within the cos-
mic variance error bar for a Gaussian. In no case could we

decide between isotropic and anisotropic Gaussian theories
on the grounds of theirg3 and g4 . The situation is even
worse ifn is not too much larger thenn* /2. Then the distri-
butions ofg3 and g4 are in practice the same for isotropic
and anisotropic Gaussian fluctuations. We show this fact in
Fig. 4, where we plotted histograms of skewness and kurtosis
from an isotropic Gaussian theory, and an anisotropic Gauss-
ian theory with the same power spectrum andm-tilt n5
2n* /2/2. This plot shows that not only thatg3 andg4 can-
not be used to distinguish between the theories, but also the
the theories are statistically the same as far asg3 andg4 are
concerned.

In spite of the failure of classical tests, theBm
l should still

detect the non-Gaussianity inm-tilted maps. They contain all
degrees of freedom in theam

l apart from the phasesfm
l

which are Gaussian in these theories. Therefore if the initial
am

l are non-Gaussian theBm
l have to accuse their non-

Gaussianity. In Fig. 5 we plotBm
l spectra for an isotropic

Gaussian theory and for a theory withn52n* /2. We chose

FIG. 2. An anisotropic Gaussian map obtained with the same
random numbers as in Fig. 1. However this theory is maximally
tilted in m in all scales. Since the azimuthal phases are random, and
they are the same in both realizations the outcome looks the same,
although this map is extremely anisotropic, or, from the point of
view of an isotropic formalism, extremely non-Gaussian.

FIG. 3. A theory with exact cylindrical symmetry in all realiza-
tions is an extreme case of Gaussian anisotropic fluctuation. This
map has still the same random numbers as before. Now it does
become obvious that the theory is non-Gaussian isotropic, or aniso-
tropic in the first place.

FIG. 4. Histograms of skewness~left! and kurtosis~right! obtained from 8000 realizations for an isotropic Gaussian theory~line! and an
anisotropic Gaussian theory with half the maximal transverse tiltn* on all scales.
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multipole l 510 and in analogy withCl spectra plotted our
results in the form of an average and a 1s error bar. This
may be misleading. For instance in the isotropic Gaussian
case the distributions are simply uniform distributions, for
which the average 1/2 does not represent any favored value
where the distribution peaks. Also the distributions for an-
isotropic Gaussian theories are very skewed and tend to be

more peaked than their error bars suggest. Hence this method
over rates confusion with a Gaussian. Even so it is clear that
departures from uniformity are being observed, at least in
somem’s. Peaked distributions are emerging and concept of
Bm

l spectrum is acquiring a meaning, in the same wayCl

spectra are meaningful.
In Fig. 6 we plot histograms of variousBm

l for a tilted

FIG. 5. TheBm
10 spectra with errorbars for an isotropic Gaussian theory and for an anisotropic Gaussian theory withn52n* /2. The error

bars are misleading as the distributions may not be peaked. In particular theBm
l distribution in the Gaussian case is simply uniform.

Nevertheless it should be obvious that a peaked distribution is emerging in someBm
l in the bottom plot. These correspond to the emergence

of preferred shapes in these theories.

FIG. 6. The distributions ofB9
10 ~line, left!, B7

10 ~dash, left!, B5
10 ~line, right!, andB1

10 ~dash, right!, for a tilted theory withn52n* /2.
Although for smallm the Bm

l are still very Gaussian, form close tol the distributions peak around 1. Recall that for an isotropic Gaussian
theory allBm

l should be uniformly distributed.
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theory with n52n* /2. These show much more clearly
where the peak value is obtained and what the error bar
should be for theBm

l . For m close tol the Bm
l distributions

peak at 1, falling off more steeply the closer tol them. It is
only for low m that the distributions become again very close
to uniform.

Although we have chosenn52n* /2 in the above discus-
sion the method described applies for lower values of trans-
verse tilt. It is important to realize that theBm

l contain all the
non-Gaussian degrees of freedom in theam

l for anisotropic
Gaussian theories, and therefore theyhave to detect non-
Gaussianity should there be any. One must realize that the
Bm

l are not a single statistic but a whole spectrum of statis-
tics, and that even a faint signal in only some of thel andm
would combine into a rather powerful signal when the whole
spectrum is taken into account.

VIII. AN ANISOTROPIC GRISCHUK-ZEL’DOVICH
EFFECT

We shall now consider an example of a flat homogeneous
and isotropic universe with topological identification along
one axis. This example is simpler than most of those consid-
ered in the literature but illustrates one of the key features of
such models: the breaking of statistical isotropy in the fluc-
tuations. Let us consider a universe with a topological iden-
tification along thez axis. All functions defined on such a
space satisfy

F~x,y,z!5F~x,y,z1L !. ~40!

By considering a flat universe we can restrict ourselves to
calculating the Sachs-Wolfe effect. The temperature anisot-
ropy from the surface of last scattering will be given by

DT

T
~n!52

1

2

H0
2

c2 E d2k (
j 52`

1`

dk j

eiDn–q

q2 , ~41!

whereD5h02h ls is radius of the surface of last scatter and
q5@kcosf,ksinf,2p( j /L)#.

The alm’ s are given by

alm52
i 2 l

2

H0
2

c2 E d2k(
j

dk j

j l~Dq!

q2 Ylm* ~ q̂!. ~42!

We now assume statistical homogeneity and isotropy ofd
and a scale invariant power spectrum

^dk j* dk8 j 8&5d2~k2k8!d j j 8q
21 q5Ak21~2p j /L !2

~43!

This leads to the covariance matrix for thealm’s:

^alm* al 8m8&5
i l 82 l

4

H0
4

c4 E d2k(
j

j l~qD! j l 8~qD!

q3

3Ylm* ~ q̂!Yl 8m8~ q̂!. ~44!

ExpressingYlm(n)5 P̃lm(cosu)eimf and performing the
azimuthal integral, one immediately finds that the covariance
matrix is diagonal inm, so one has

^alm* al 8m8&5
i l 82 l

4

H0
4

c4 dmm8E kdk(
j

j l~qD! j l 8~qD!

q3

3 P̃lm~ q̂! p̂l 8m8~ q̂!. ~45!

It is convenient to definex5Dk and m j52pa j where a
5D/L, i.e., the ration of our horizon to the topological iden-
tification scale. If we now definey5m j /Am j

21x2 the ex-
pression simplifies to

^alm* al 8m8&5
i l 82 l

4

H0
4D

c4 dmm8E
0

1

dy(
j

j l S m j

y D j l 8S m j

y D
m j

3 P̃lm~y!P̃l 8m8~y!. ~46!

In the limit where the identification scale goes to infinity
we get the standard result

lim
a→0

^alm* al 8m8&}E
0

1

dy jl
2S 1

yD d l l 8dmm8}
1

l 2 d l l 8dmm8 ,

~47!

i.e., a scale invariant, diagonal covariance matrix. In the case
of finite a this is not the case. Consider the quadrupole. The
ring spectra has two components,B1 andB2 with a probabil-
ity distribution function

F~r ,B1 ,B2!5
r 4

~p/2!1/2s2
33!!

exp$2~r 2/2s2
2!@c0B1

2B2
3/2

1c1B2
3/2~12B1

2!1c2~12B
3/2

#%, ~48!

where we have defined

s2
25~^ua20u2&^ua21u2&^ua22u2&!1/3,

ci5
s2

2

^ua2i u2&
. ~49!

By exploring the dependence ofc0 , c1 , andc2 on a we can
see how the probability distribution function of theB’s
change with topology scale; to a very good approximation
we find

c05
115~2a!2

112~2a!2 , c15
113~2a!8

115~2a!8 ,

c25
117~2a!2

1110~2a!2 . ~50!

We can see the signature for non-Gaussianity arising here.
For a nonzeroa there are correlations between the three
statistical quantities. The probability distribution function for
B1 and B2 ~defined on@0,1#3@0,1#! becomes peaked at 1.
We have focused on the quadrupole where the effect is easy
to see. The method is systematic however, and one can con-
struct the probability distribution function of the high order
ring spectra in the same way.

To exemplify the strength of the technique we shall con-
trast it with two standard measures of non-Gaussianity, the
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skewness,g3 , and kurtosis,g4 . Unlike with our method,
where one can calculate the probability distribution function
analytically, for these more conventional methods one has to
resort to Monte Carlo simulations. The procedure for gener-
ating topologically anisotropic skies is a slight modification
of the one proposed in@21# for generating isotropic skies. In
the latter, one generates an uncorrelated set ofalm ~the co-
variance matrix is diagonal!. Given a nondiagonal covari-
ance matrixCi i 85^alm* al 8m8& where i 5 l ( l 11)1m11 @ i 8
5 l 8( l 811)1m811#, one can Cholesky decompose it,C
5LLT. One can then generate a set of uncorrelated random
numbers,r from a Gaussian distribution with 0 mean and
unit variance. The vectors5Lr will satisfy ^sisi8&5Ci i 8 and
therefore is a set ofalm with the correct covariance matrix.

In Fig. 7 we show the results for two ensembles of 1000
realizations. In one ensemble~A! we generate skies with an
a52, each realization having a random orientation. The ri-
val, Gaussian ensemble~I! has as many Gaussian realizations
of skies with the same power spectrum as ensemble A.
Clearly we are well within the region where the probability
distribution function for the shape spectra deviates from
unity ~c0.5/2,c2.3/5, andc1.7/10!. In Fig. 7, we plot the
histograms forg3 andg4 . Althoughg3 for ensemble A has
a marginally larger variance than ensemble B it is clear that
in practice it is difficult to disentangle the two. The probabil-
ity distribution functions forg4 are, in practice, indistin-
guishable. This to be compared to Fig. 8 where we plot the
ratio of the joint probability distribution function~for a fixed
r ! of the completely anisotropic case relative to the com-
pletely isotropic case. There is a clear departure from unifor-
mity.

This a curious application of the idea put forward in@22#,
an anisotropic Grischuk-Zel’Dovich effect. By looking at the
shape of the lowl multipole moments we can constrain the
degree of statistical anisotropy outside the current horizon.
Note that, already fora,1 there are deformations in the

covariance matrix which may be statistically significant with
current data. This will be pursued in a future publication
@23#.

IX. CONCLUSIONS

In this paper we have presented a new technique for quan-
tifying non-Gaussianity on large scales. It is the extension of
the non-Gaussian spectra developed in@19# to the surface of
the two sphere. As we have shown in Sec. II the construction
is slightly different to take into account the particularities of

FIG. 7. A comparison of the probability distribution function of skewness~left panel! and kurtosis~right panel! for an anisotropic
ensemble~solid line! with a51 and am isotropic, Guassian ensemble~dashed line! with the same power spectrum.

FIG. 8. A comparison of the joint probability distribution func-
tion of B1 andB2 for the isotropic and completely anisotropic case.
For r 2/(2s2

2)51 we plot ratio of the anisotropic likelihood function
to the isotropic likelihood function. Recall that for an isotropic
theory theB’s are uniformly distributed.
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the spherical harmonic basis. However the qualititative inter-
pretation of the different levels of non-Gaussianity follows
through, exactly as in@19#. One can identify the information
contained in the ring, interring and phase spectra with shape,
connectivity and localization.

An interesting and untapped application is to universes
with statistically anisotropic fluctuations. Developing the
idea put forward in@10# we explain how statistical anisot-
ropy and non-Gaussianity are intimately related. From this
one can infer some novel properties of the covariance matrix
of fluctuations in statistically anisotropic spacetimes. In par-
ticular, features which appear in non-Gaussian theories of
structure formation, like textures@11,12# will appear
here: a surplus of cosmic variance and cosmiccovariance
of the power spectra.

There are a number of situations where these results are
applicable. One is in the case of anisotropic universes, i.e.,
universes which are not Friedmann-Robertson-Walker uni-
verses. There are a number of known examples@1,2#. With-
out actually doing perturbation theory on them we argue for
a natural prescription for adding fluctuations in the CMB to
such models. It consists of finding the reduced symmetry
group of the temperature patterns and constructing aniso-
tropic Gaussian random fields with such properties~in which
the covariance matrix satisfies those symmetries, and not
more!. In fact it can be shown that these symmetries can be
deduced from the geodesic structure of the space time@24#.
This can be a first step in extending the prescription used in
@6# for constraining general anisotropic models with the Cos-
mic Background Explorer~COBE! four year data. A brief
analysis is made of the relevant Bianchi models for which
we present the non-Gaussian spectra.

Another, different application is the case of homogeneous
isotropic models where an anisotropic topological identifica-
tion has been imposed. As an example we identify one di-
rection in space. One finds that statistical isotropy is broken.
This can be easily from the following: if we look along the
axis of identification, and the identification scale is smaller
than our horizon, one will find strong correlations between
patches of the microwave sky which are reflected about the
uncompactified plane@7#. By looking at the structure of the
covariance matrix one can see that this anisotropy will mani-
fest itself by inducing not only non-Gaussian ring spectra but
also inter-ring spectra. This non-Gaussian manifestation may
persist if we consider the identification scale to be large than
our horizon. We name this effect theanisotropicGrischuk-
Zel’Dovich effect.

Although we now have a high quality measurement of
anisotropies on large angular scales we are confronted with
the hardships of the real world. Galactic contamination leads
one to consider an anisotropic rendition of the sky and con-
siderably complicates the analysis of the COBE four year
data. It is well known that one of the consequences is that the
quadrupole measurement should be viewed with scepticism.
Unfortunately it is the quadrupole which could supply us
with a probe of primordial CMB on the largest angular
scales. There may be ways around these shortcomings. One
can try and reformulate our non-Gaussian spectra on the
largest angular scales using the techniques put forward in
@25#. This would involve a proper likelihood analysis and to
make the problem tractable one would need to find an ad-

equate parametrization of the non-Gaussian spectra. The fact
that we have devised a consistent method for characterizing
non-Gaussianity on all scales may allow us to use the cumu-
lative information of alll .2 to infer the behavior on large
scales; all modes will be affected to some extent by large
scale anisotropy. Finally it would be interesting to analyze in
more detail the observability of the anisotropic Grischuk-
Zel’Dovich effect, taking into consideration issues of cosmic
variance.
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APPENDIX A: GAUSSIAN FLUCTUATIONS
WITH A SYMMETRY

In this appendix we detail the group theory argument
sketched in Sec. III. This argument is not necessary in the
SO~2! case targeted in this paper, where the covariance ma-
trix may be easily derived directly. However, it opens doors
to more general anisotropic symmetry groups. It also shows
how the general form of the covariance matrix depends not
on the symmetry group, but only on its irreducible represen-
tations~irreps!.

Fluctuations~Gaussian or not! in any universe must be
subject to the symmetries of the underlying cosmological
model. However, due to the random nature of the fluctua-
tions, they must satisfy these symmetries only statistically.
By this we mean that the statistical ensemble of fluctuations,
and not each realization, should be subject to the symmetries.
If a symmetry transformation is applied to each member of
the ensemble, then each member may change, but the en-
semble should remain the same. For instance, for the SO~3!
symmetry group only realizations containing only a mono-
pole l 50 are left unchanged by rotations. Nevertheless much
more general fluctuations respect statistical isotropy. Simi-
larly, only them50 modes are cylindrically symmetric, but
more general fluctuations are SO~2! statistically invariant.5

Gaussian fluctuations are fully specified by their covari-
ance matrix

Cm1m2

l 1l 2 5^am1

l 1 am2

l 2* &, ~A1!

5Some texture models exhibit approximate SO~2! symmetry at
low l in each realization. Then an axes system exists in which the
m50 mode has much more power than any other. This is of course
a very non-Gaussian effect which cannot be simply reproduced by
anisotropic Gaussian fluctuations.
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which may be seen as a bilinear form on the$am
l % space.

Hence the statistical symmetries of a Gaussian theory are
equivalent to the requirement that the covariance matrix is
left unchanged by any symmetry transformation. LetG be
the symmetry group of the underlying cosmological model
as projected on the sky. Let us first suppose thatG breaks the
$am

l % into a set on nonequivalent irreps. Then, let us find a
new basisaM

L adapted toG, whereL now labels the irrep the
basis element belongs to, andM the actual element. ThenG
is represented by a set of matricesGMM8

L acting onaM
L as

ãM
L 5GaM

L 5GMM8
L aM8

L . ~A2!

The covariance matrix for theaM
L ,

CM1M2

L1L2 5^aM1

L1 aM2

L2* &, ~A3!

must remain unchanged by the transformation~A2!, so that

C̃ M1M2

L1L2 5^ã M1

L1 ã M2

L2* &5G
M1M

18

L1 G
M2M

28

L2* C
M

18M
28

L1L2 5CM1M2

L1L2 ,

~A4!

which for unitary representations amounts to the commuta-
tion relation

GL1CL1L25CL1L2GL2. ~A5!

Let us now recall Schur’s Lemmas@20#.
Schur’s Lemma 1.Let G andG8 be two irreps of a group

G with dimensionsd andd8, and let there be ad3d8 matrix
A such that

G~g!A5AG8~g! ~A6!

for all group elementsg. Then eitherA50 or d5d8 and
detAÞ0.

It follows that if AÞ0 thenG andG8 are equivalent.
Schur’s Lemma 2.If G is ad-dimensional irrep of a group

G andB is a d3d matrix such that

G~g!B5BG~g! ~A7!

for all group elementsg, thenB5l1.
Combining the two Lemmas we can then find that the

covariance matrix must take the form

CM1M2

L1L2 5^ã M1

L1 ã M2

L2* &5dL1L2dM1M2
CL1

. ~A8!

An interesting result is that ifG breaks the$am
l % space into

non-equivalent irreps spanned by$aM
L %, then these must be

independent random variables with a variance which can
only depend on the irrep they belong to. This argument ap-
plies for instance if the symmetry group is SO~3!, in which
caseL5 l andM5m.

The argument just present breaks down however, if some
of the irreps defined byG are equivalent. Let the$am

l % space
now be spanned by an adapted basis$aM

LD%, whereL labels
each class of equivalent representations,D labels the actual
irrep within this class, andM labels the elements within each
Irrep. Then, from the second Schur’s Lemma we know that
within the same irrep we still have

^aM1

LDaM2

LD* &5dM1M2
CLD, ~A9!

but for different but equivalent irreps (D1ÞD2) we now
have

^aM1

LD1aM2

LD2* &5CM1M2

LD1D2 ~A10!

with detCÞ0, whereas for nonequivalent irreps (L1ÞL2)
we still have

^aM1

L1D1aM2

L2D2* &50. ~A11!

Therefore, although theaM
LD are independent within each ir-

rep and among different non-equivalent irreps, correlations
may exist between different but equivalent irreps. Of course
one may always rotate theaM

LD within each class of equiva-
lent irreps so as to diagonalize the covariance matrix. How-
ever such a rotation is model dependent, and cannot be de-
termined from the symmetries. This situation happens for
instance in the case of SO~2!, with L5m and D5 l ~no M
index, since the irreps are one dimensional!. Eachm pro-
vides a class of equivalent representations, with the samem
but differentl . Then the covariance matrix takes the general
form

^am1

l 1 am2

l 2* &5dm1m2
Cm1

l 1l 2 ~A12!

and as we see although correlations among differentm are
not allowed, now we may have correlations between differ-
ent l , for the samem. We could rotate theam

l in l for each
fixed m so as to diagonalize the covariance matrix, but such
procedure naturally would depend on the covariance matrix
one starts from, and would therefore be model dependent.
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