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Closet non-Gaussianity of anisotropic Gaussian fluctuations
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In this paper we explore the connection between anisotropic Gaussian fluctuations and isotropic non-
Gaussian fluctuations. We first set up a large angle framework for characterizing non-Gaussian fluctua-
tions: large angle non-Gaussian spectra. We then consider anisotropic Gaussian fluctuations in two different
situations. First we look at anisotropic space-times and propose a prescription for superimposed Gaussian
fluctuations; we argue against accidental symmetry in the fluctuations and that therefore the fluctuations should
be anisotropic. We show how these fluctuations display previously known non-Gaussian effects both in the
angular power spectrum and in non-Gaussian spectra. Secondly we consider the anisotropic Grischuk-
Zel'dovich effect. We construct a flat space time with anisotropic, nontrivial topology and show how Gaussian
fluctuations in such a space-time look non-Gaussian. In particular we show how non-Gaussian spectra may
probe superhorizon anisotropy80556-282(97)07220-2

PACS numbds): 98.80.Cq, 98.70.Vc, 98.80.Hw

I. INTRODUCTION In [10Q] it is also stated that “any non-Gaussian theory is to
some extent anisotropic, favoring particular directions in the
Anisotropic models of the Universe have been often consky and somen’s over others.” The converse statement fol-
sidered in the pade.g.,[1,2]). In recent times globally an- lows: that Gaussian anisotropic fluctuations will appear as
isotropic space-times have attracted attention for theinon-Gaussian fluctuations from the standpoint of an isotropic
thought provoking value, as primordial anisotropy would ap-theory. This establishes an interesting link between the
pear to contradict inflatiof3]. It is therefore important to search for cosmological anisotropy and the search for non-
find experimental evidence for, or constraints on, primordialGaussian signatures.
anisotropy. The cosmic microwave backgroy@d/B) is the Let us consider Gaussian theories which favor an axis,
cleanest and most accurate experimental probe in curremthere() are angles defining this axis. Then the probability
cosmology. Thus it makes sense to explore the impact oflistribution conditional to this axif’(a'mm) is Gaussian.
anisotropic expansion on the CMB. For homogeneous spadegotropy is violated, but the resulting theory is Gaussian
times this was largely done i@—6]. In the more sophisti- within the reduced set of symmetries the theory now must
cated analysis i16] the effects of the unperturbed aniso- satisfy. However from an isotropic point of view the full
tropic expansion were combined with a spectrum of superensemble is made up of all the ensembles which favor an
posed Gaussian fluctuations. An admitted shortcoming ofxis, but allowing the axis to be uniformly distributed. Such
this analysis is the assumption that while the unperturbed superensemble would undoubtedly be isotropic, but it
model leaves an anisotropic pattern in the sky, the Gaussiamould also be non-Gaussian. Marginalizing with respect to
fluctuations around it are isotropic. Should the Gaussian flucthe axis reveals a non-Gaussian theory, that is
tuations in such models be anisotropic one may expect a
more stringent statistical bound on anisotropy, if the Uni-
verse is indeed isotropic. One can consider another class of
models where the background space-time is homogeneous

P(a),)= f dQP(Q)P(a,|Q),

and isotropic but anisotropic topological identifications lead sin 0

to anisotropic Gaussian fluctuations. Some of these universes P(Q)= An @)
have been considered befdid and an example of the pat-

terns in an open universe has been present¢f]in is non-Gaussian. This identifies the origin of the Gaussian/

The apparently unrelated issue of large-angle CMB nonnon-Gaussian switch. Conditionalizing to an axis renders the
Gaussianity has also been considered recently, both as @eory Gaussiar{and anisotropic Marginalizing with re-
experimental mattef9], and as a possible prediction in to- gspect to the axis reveals a non-Gaussian théouy an iso-
pological defect theorief10—16. In [10], in particular, an  tropic ensemble
outline is given of a comprehensive formalism for encoding  This phenomenon turns out to be a particular case of the
large angle non-Gaussianity based on the spherical harmonieneral phenomenon discussed in connection with the tex-

coefficientsay, in the expansion ture analytical model ifi11,12. In that model it is found that
o | the temperature anisotropies are very non-Gaussian. The
AT(n) _ 2 2 Iy theory hasC, cosmic variance error bars above their Gauss-
amYm(n). (CV I :
T =0 m=—| ian value, and there are strong correlations am@ng It
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turns out, however, that these large-angle non-Gaussian efnd unnatural assumption. Hence Gaussian fluctuations in
fects are largely due to the last textuf@s in the texture anisotropic universes should be anisotropic too. Although we
closest to us, or the texture at lower redshifthe culprit  concentrate on anisotropic fluctuations with an(3Gym-
identified, one then notices that conditionalizing the theory tametry, the definition and considerations given in Sec. Il are
the last texture redshift; reveals a Gaussian ensemble, thatquite general, as explained in more detail in Appendix A.

is, the probability distributiorP(a,|z;) is Gaussian. Mar- We then show how anisotropic Gaussian theories induce
ginalizing with respect taz;, however, produces a non- Well known non-Gaussian effects in the relation between the
Gaussian ensemble, that is the probability observed and the predicted angular power spect@jm

These effects include larger cosmic variance error bars, and

| | also the phenomenon of cosmic covariance, that is correla-
P(am):f dz;P(z1)P(ay|z1) 3 tions between the observeg . Cosmic covariance allows
for more structure to exist in each realization than in the
is non-Gaussian. predicted average power spectrum and complicates compari-

The picture is then cledrl7]. We come up with a con- son between theory and experiment. These effects are shown
struction where the full ensemble is made up of subento be present for anisotropic Gaussian theories in Sec. IV.
sembles which are Gaussian. Each subensemble is howeverThen, in Sec. V, we show how anisotropic Gaussian fluc-
labeled by an index which from the point of view of the full tuations render non-Gaussian spectra nonuniformly distrib-
ensemble is a random variable. Marginalizing with respect taited, as announced above. We also find the most general
this variable reveals a non-Gaussian ensemble. Conditionatiass of isotropic non-Gaussian theories into which aniso-
izing with respect to this index renders the theory Gaussiartropic Gaussian fluctuations may be mapped. As a concrete
Such an index was called {12] the random index, and it example in Sec. VI we proceed to characterize the non-
was conjectureldin that paper that non-Gaussianity could Gaussian spectra for the relevant, globally anisotropic space
often be characterized by a set of such indices labelingimes.

Gaussian ensembles. Within such a construction the strategy Along a totally different line in Sec. VIII we construct a
for predicting experiment must be modified. One should nowsimple example of a topologically nontrivial space time and
not provide a direct statistical description of the full en- show how the non-Gaussian spectra will indicate anisotropic
semble (that is, marginal distributions which would be topological identifications. We propose this asamisotropic
plagued by all sorts of non-Gaussian effects. Rather it makeGrischuk-Zel'Dovich effect: from subhorizon, large angle
more sense to supply information on all the Gaussian subembservables we can characterize super-horizon anisotropies.
sembles, plus the distribution function of their random indi- In Sec. IX we discuss the implications of our results and
ces. their practical implementation.

Hence we may use a subclass of the comprehensive for-
malism for encoding large-angle non-Gaussianity outlined in
[10] to describe anisotropic Gaussian fluctuations. This is Il. LARGE-ANGLE NON-GAUSSIANITY
essentially a large-angle generalization[@B] and is de-
scribed in Sec. Il. The idea is to complement the angula
power spectrunC; with a set of multipole shape spectg,
describing how the power is distributed among th's for a

We now set up a formalism for describing large-angle
hon-Gaussianity which is based f#8], but makes use !,
coefficients rather than Fourier components, and so is suit-

. ) : able for mapping large-angle non-Gaussianity. Again the
given scalel. The B, encode information on the shape of idea is to map the{a'm} into a set of spectra which for a

large angle structures. They are uniformly distributed in as L . . .
. . ) ) . . aussian isotropic theory are independent random variables.
Gaussian isotropic theory, meaning its fluctuations are(ag

shapeless. However, as we shall see in Sec. V, preferre ne of these spectra is the angular power spec@ymand

shapes emerge in non-Gaussian isotropic theories, as well 3 O,UId be a3, for a Gaussmn Isotropic theory. The other
in Gaussian anisotropic theories, where Bjg are not uni- variables make up non-Gaussian spectra which should be

formly distributed. Non-Gaussian spectra then appear as lénlformly d'St”bUte_d for a Gauss!an Isotropic theory. .
natural predictive tool for these theories. Thel transformation propoged is defmed as follows. First
In this paper we study the disguised non-Gaussianity of'® split the complex modes into moduli and phases

anisotropic Gaussian fluctuations along two lines. Firstly, in

Sec. lll, we propose a simple method for defining anisotropic a{)= s{,p{,,

Gaussian fluctuations. Breaking isotropy essentially amounts

to choosing an alternative symmetry group under which the

covariance matrix should be invariant, and which picks a le O

favored direction in the sky. We can then write down the ap=— €'’m, (4)

most general form for the covariance matrix of the theory

simply by studying the representation theory of the symme-

try group. We argue that the accidental symmetry allowingyheres,=+1 is simply the sign ofa. The fact that the

anisotropic fluctuations to be isotropic is a model dependenty—o mode is real introduces a slight modification to the
construction in[19]. There are now+1 moduli, but there
are onlyl phases(the indexm starts at 1 for the phases

IThis conjecture can in fact be promoted to a mathematical theoWWorking out the Jacobian of the transformation shows that
rem; seg18]. for a Gaussian theory the distribution of thel,, ¢!, ,sb} is
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The phases), are uniformly distributed ifi0,277]. The sign
sh has a uniform discrete distribution. The modllj are x>
distributed except fop'0 which is X% distributed. Sincepg

now does not appear in the Jacobian of the transformatio

the only way one can proceed with the constructiofli®] is
by ordering thep's by decreasing order ah, and then in-
troduce polars:

pi=r cos by,

pl_,=r sin 6; cos 6,

pl=r sin 6;...cosé,,

po=T sin 6;...sing,. (6)
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{B!., ¢l }. Gaussian theories can only allow for modulation,
that is, a nonconstant power spectrum. The most general
power spectrum has as much information as Gaussian theo-
ries can carry. White noise is the only type of fluctuations
which is more limited in terms of structure than Gaussian
fluctuations> In isotropic Gaussian theories there is no struc-
ture in the{B! ,#| ! since these are independent and uni-
formly distributed. By allowing theB'm to be not uniformly
distributed, or to be constrained by correlations amongst
hemselves and with the power spectrum, one adds shape to
the multipoles. This is because tBg, tell us how the power

in multipole | given by C' (or r) is distributed among the
various |m| modes, which reflect the shape of the fluctua-
tions. Indeed then=0 mode(zonal modé¢ has no azimuthal
dependence. It corresponds to fluctuations with strict cylin-
drical symmetry(rather than statistical symmejryThe |m|

>0 modes correspond to the various azimuthal frequencies
allowed for the scalé. Each of these modes represent a way
in which strict cylindric symmetry may be broken. The rela-
tive intensities of all then modes carry information on the
shape of the random structures at least as seen by thd scale
In a Gaussian theory all them modes must have the same
intensity, something which can be rephrased by the statement

Again, working out the Jacobian of the transformation im-that the B!, are independent and uniformly distributed.

these variables is

| exp(—r?/2C))r?
F(r,Hm,So,qﬁm):W

x]l[ COS Oy (sSin Gy) 2D > %r
(7
One can then define shape spetﬁh’;\as
Bl = (singy,) 2! ~m+1 (8)
so that for a Gaussian isotropic theory one has
(1Bl sh )= — o e L
(ml2)YeC; M4 21—-1)11 2 (2m) .

The angular power spectru@l seen as a random variable is

then related ta by

r2

__'
C=21

(10

and is ay3,,;. The multipole shape spect may be
obtained from the modulp!, according to

12

12 m—1/2

| Pm_1t - +po
Bmn= 2 2 11
pmt - +po

and are uniformly distributed if0,1]. Finally the phasea>'m
are uniformly distributed ii0,27], and the sigrs}, is a dis-
crete uniform distribution ovef—1,+1}.

Any departure from this distribution in tHE'm may then be
regarded as a evidence for more or less random shape in the
fluctuations.

On the other hand the phase$, transform under azi-
muthal rotations. Therefore they carry information on the
localization of the fluctuations. If the phases are independent
and uniformly distributed then the perturbations are delocal-
ized.

Finally there may be correlations between the various
scales defined bY. In the language of19] this is what is
called connectivity of the fluctuations. These correlations
measure how much coherent interference is allowed between
different scales, a phenomenon required for the rather ab-
stract shapes and localization on each scale to become some-
thing visually recognizable as shapeful or localized. As in
[19] this may be cast into intdreorrelators. As we shall see
these are in fact quite complicated for general anisotropic
Gaussian theories. Therefore we have chosen not to dwell on
this aspect of large-scale non-Gaussianity in this paper.

Ill. A POSSIBLE METHOD
FOR INTRODUCING GAUSSIAN FLUCTUATIONS
IN ANISOTROPIC UNIVERSES

We now present a possible way of introducing Gaussian
fluctuations in anisotropic universes such as the Bianchi
models. In Sec. VIII we will present another context in

2t is curious to note that white noise has less structure than ge-
neric Gaussian fluctuations, but it also has more symmetry. It is
tempting to associate reduction of symmetry and addition of struc-
ture. Anisotropic fluctuations have less symmetry than isotropic

As in [19] we define non-Gaussian structure in terms offluctuations, but they also have more structure, reflected in their

departures from uniformity and independence

in thenon-Gaussian structure.
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which anisotropy appears: periodic universes. There we shall (a' al’*>: S8 C (13)
present more specific calculations of anisotropic Gaussian m&m’ UL
perturbations. Here we shall however use a method Whic“

relies simply on inspecting the reduced symmetry group an(white—noise} over a certain section of the spectrum then this

isotropic Gaussian perturbations must satlsfy._ This IS adegeneracy increases the symmetry group of the theory: ro-
simple, if somewhat phenomenological, way of IntrOdUCIngtations among differerlts are now an extra symmetry. This

thg most general Gaussmn.perturbatlon which can live in AL an accidental symmetry resulting from the degeneracy dis-
anisotropic bac_kground. \.N'thOUt actually pgrformmg a de- layed by the particular model consider@thite noise¢ and
tailed perturbation analysis of these spacetimes, one can rﬁ—

) . . ; i . Aot required by the underlying theory.
fine the analysis of6] by using this prescription and possi- . :
bly find more stringent constraints. Now suppose that the symmetry group is(8Qthat is,

Let an all-skv temperature anisotropy map be decomEhe unperturbed model supporting the fluctuations is cylin-
. Yy P - ropy P drically symmetric. Then there is a favored axis in the uni-
posed into spherical harmonics as in Ef). Then, for a

. X . verse and with respect to this axis the symmetry transforma-
general Gaussian theory, tlaé] are Gaussian random vari- P y y

i . : . . tions are
ables specified by a covariance matrix which must satisfy the

symmetries of the underlying theory. In Friedman models the R(¢)al —egiMmdgl (14)
symmetry group is S@), but the symmetry group may be m m

smaller. Anisotropic Gaussian fluctuations may be defined agpe irreps are now indexed bym with m=0. They are
Gaussian fluctuations with a covariance matrix satisfying gne-dimensional complex irreps fan>0, and one dimen-
symmetry group which picks a favoured direction in the sky.gjonal real (and trivia) irreps for m=0. For the samen
We concentrate on anisotropic fluctuations with an(80 rreps with differentl are equivalent irreps. For eathwe
symmetry, that is, with cylindrical symmetry. have a single irrep of S@) which splits intol + 1 irreps of

_The general form of the covariance matrix may be ob-g2) The covariance matrix of the theory now has the gen-
tained just from the representation theory of the symmetry, .o form

group. The symmetry group breaks t{ai,n} space into irre-
ducible r(_apresentgtion(skrreps). The a'm may then b_e reex- , <a%a:1;f>:5mm'ci:1;| (15)
pressed in a basis adapted to these irreps. Using Schur's
Lemmas[20] one knows(see Appendix A for more detail . / o
that the covariance matrix of thseheory must be a multiple oftind we may call the diagonal terr@, of Cilml the cyllndr’|-
the identity within each irrep.Furthermore correlations be- cal power spectrum. It may now happen thﬁf\'m\
tween differental, can only occur for elements of different = 5”’(:Tm‘ , and furthermore that a given model displays the
but equivalent irreps. Hence, for any Gaussian theory subjeeegeneracg,=C,, that is the cylindrical power spectrum
to a symmetry which does not lead to equivalent irreps, thgs white noise inm. In this case the S@) symmetry is
spherical harmonic coefficients, expressed in a basis adaptedcidentally restored. However this is no different from the
to the partition into irreps, must be independent random variwhite-noise modeC, = const referred to above. It is merely
ables, and their variance must be a function only of the irregn accidental enlarged symmetry displayed by a concrete
they belong to. As we shall see it may happen that the varimodel and not a fundamental symmetry imposed by the un-
ance is the same for a set of irreps. This degeneracy thegerlying model.
leads to an accidental enlarged symmetry. If some of the Accidental symmetriege.g., family symmetry in particle
irreps are equivalent then in principle one may also haveyhysics are always regarded with horror. If they happen to
correlations between coefficients belonging to different butexist, sooner or later a fundamental principle is sought which
equivalent irreps. will promote them from accidental to fundamental symme-
As an example consider an isotropic theory. Then theries. If they do not happen to exiatpriori, such as in the
{al,} for eachl are an irrep of the symmetry group 8D case of fluctuations in anisotropic models, then better not
represented by thB matrices postulate them in the first place.

the angular power spectru@, happens to be a constant

R(¢,0,¢)al,=D' (y,0,p)al,, (12) IV. NON-GAUSSIAN EFFECTS
ON THE ANGULAR POWER SPECTRUM

where (,6,¢) are Euler angles. None of these irreps is  Gaussian anisotropic theories display many of the novel-
equivalent, as indeed none of them have tPe same dimensiofles present in non-Gaussian theories, such as the texture
Hence for a Gaussian isotropic theory thg must have a models considered ifiL1,12. They trade their added predic-
covariance matrix of the form tivity in terms of non-Gaussian spectra for larger cosmic
variance error bars in the angular power spectrum. Also the
observedC, may be correlated, a phenomenon called cosmic
3Schurs’ Lemma only applies to finite dimensional representacovariance and present in the texture modelsih12. Cos-
tions, such as the ones offered by ti}e. If one instead looks atthe MIC covariance(or C' aliasing induces great mess when
real space mapST/T, then the representation spaceSfs This is ~ comparing predicted and observed power spectra. Correla-
infinite dimensional, and indeed the covariance matrix of Gaussiations allow for each observed power spectrum to have more
theories is not diagonal, and is specified by the two-point correlastructure than the average power spectrum. This may result
tion functionC(#6). in the average power spectrum corresponding to nothing that
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any observer ever sees. More subtle methods for predicting B. Cosmic covariance
power spectra are then necessary. Two prescriptions are thare are also correlations between differéht For |

given in[12]. #1" we have that
A. Cosmic variance surplus , 1 "
couC',C'")= —————— D covla | |a|?).
For a Gaussian isotropic theory the angular power spec- 2+12"+1) 2l 2|
trum (22
1 I For two (possibly correlated complex Gaussian random
[ |2 ; i ; ;
=31711 an| (16)  variablesz; and z, with uncorrelated real and imaginary
m=—I

parts, it can be shown that ddw,|?|z,|?]1=(z.2})?

. +(z,2,)2, an
has the variance (z12)%, and so

2 "N 1 2
A= gy a7 U G % O @

wherem in the summation runs from min(l,l") to ming,l").

rZ|'_he off-diagonal elementén 1,1") in C'rL' therefore induce
correlations among the various obsen@d A possible, but
model dependent, way to do away with these correlations is
) [ to rotate theC' among themselves so as to diagonalize the
o3(CY=———> > C2. (18)  covariance matrix23). These rotatec' will then be inde-
(2141)% mi== pendent, and so their average value is a good prediction for
what each observer will see. Also, as showr i8], in the
rotated basis the cosmic variance error bars tend to be
| smaller and approach their Gaussian minimum. Therefore
C 1 (19) cosmic covariance, and larger cosmic variance error bars can

Here we use the notatio@' to denote the random variable
and C, to denote its ensemble average. For a Gaussian a
isotropic theory this variance is

If we define the average cylindrical power spectrum by

= Cim» X - o
2141 &, m be dealt with by means of this trick. However this trick does
depend on each particular model, and is not a universal pre-
then scription applicable to every model.
2
2(chy= 2Cj (20) V. THE NON-GAUSSIAN STRUCTURES EXHIBITED
o(C)= 21+1° BY ANISOTROPIC GAUSSIAN THEORIES

d Anisotropic Gaussian theories also display non-Gaussian
show that it is saturated only whe®y,=C;, that is when structure in the senses given at the end of Sec. Il, that is they
me produce nontrivial non-Gaussian spectra. Here we shall find

the fluctuations are isotropic. th ¢ l t t iSOlODI G . truct
Generally we may interpret this result as a reduction in € most general ype ot ISolropic non-t>aussian structure

the number of degrees of freedom in tg& induced by an- Wh\'/‘\:/h ca;]n ﬁ)e mapdpedtLrom theste theones. . trix i
isotropy. Suppose, for instance, that a theory is strongly an- es 6_‘ consider _e ﬁ‘{"so rop_|c_ coyarla.nce matrix in
isotropic so that only a fewn modes among the available more detail. Let the matriC;, be split into its diagonal and

It is a simple analysis exercise to prove this inequality an

21+ 1 contribute to the power spectru@, for a givenl. its off-diagonaIX'r'n' parts
Then, effectively, the observed power spectr@his the
result of these few modes. Since these are still Gaussian C'r'n':a”'cumﬁx'r;'. (24)

variables the observed power spectrum iga but with an

effective number of degrees of freedom equal to the _numbeThenX',{]'<C|‘m| , and so the bilinear form in the exponent of
of predominant modes. If for example all the power is con-the Gaussian distribution

centrate on then=0 mode, then the' is a 2. If all the

power is in am>0 mode, theC' is a 3. | B ST
We may use the ratio between the actual cosmic variance F(am) ex % < amMm am (25
of the theory and its Gaussian prediction to quantify how ’
anisotropic the fluctuations are. Quantitatively let us call anig
isotropy in the multipold to the quantity
) . 5||' XII’
02nC) 1 & (Cim|? M =Cn =5~ cc. (26)
=2 AN =511 -, (21 Im] Gy

and so the distribution factorizes into a factor which reveals
which varies betweerA'=1 for isotropic theories toA! the structure inside each multipole, and a factor which re-
=2l+1 for cylindrically symmetric multipolegfor which  veals correlations between different multipoles. We shall
all the power is in then=0 mods. analyze these two factors in turn.
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Let us first assume tha('rleo. Repeating the transfor- the Bianchi model$1]. One can describe Bianchi cosmolo-

mation presented in Sec. Il but using a covariance matrix ofi€s in terms of the metric
the form(15) one ends up with a rather complex distribution
which ha(s t)he form P P Qur=—NuNyF az[exp(Z,B)]ABeﬁeE ' (28)

wheren,, is the normal to spatial hypersurfaces of homoge-
neity, a is the conformal scale factoBag is a three matrix
only dependent on cosmic time,andeﬁ are invariant cov-
ector fields on the surfaces of homogeneity, which obey the
UnlessC,,=C,, the B!, are not uniformly distributed. Also commutation relations
the C' will in general not be ay3.,, and the function A A

. . . . e. —e. =
F(C',B'm) will not factorize. This means that not only will O

correlations exist between tre}, but the By, will also be  The structure constan@. can be used to classify the dif-
correlated with the angular power spectrum. The phases  ferent models. We shall focus on open or flat models which
on the other hand will still be uniformly distributed and in- are asymptotically Friedman. These can be obtained by tak-
dependent. The phases tell us nothing about Gaussian anisfig different limits of the type VI{ model which has struc-

Iod gl [ E 1
F(ClaBmasoa¢m)_F(Cl,Bm) 2 (2_77_)[ (27)

Chceles. (29

tropic fluctuations. ture constants
Hence anisotropic Gaussian fluctuations, when seen from
the point of view of an isotropic formalism, are an example ci=c3=1, c3=ci=\h. (30)

of delocalized shapeful fluctuatioitexplored in some detail

in [19]). In the next two sections we will explore in more It is convenient to define the parameter- Vh/(1—£),
detail the particular type of non-Gaussian effects whichwhich determines the scale on which the principal axes of
Gaussian anisotropic fluctuations may induce. The shapesfiear and rotation change orientation. By taking combina-
exhibited by these theories are not the most general shapdigns of limits of 2 andx one can obtain Bianchi type-I, V,
because there must be a scale transformation ip'thehich ~ and Vlly cosmologies.

would render the! uniformly distributed again. Clearly not ~ We are interested in large-scale anisotropies so it suffices
all shapes have this property. to evaluate the peculiar redshift a photon will feel from the

On top of this ifX!!'#0 the distributionF(al,) does not epoch of last scatterings) until now (0):

factorize into factors which only depend on onheCorrela- . N N o_
tions between the differertwill then appear, which in the ATA(r):(rlui)O_(rlui)ls_fl Pffoudr, (3D
language of{19] amount to the emergence of connected *
structures:  different scales are allowed to interfere conwherer = (cosssing,sinésing,cosp) is the direction vector of
structively. In this paper we will not explore this side of the the incoming null geodesia is the spatial part of the fluid
problem in depth. Nevertheless we have identified the nonfour-velocity vector and to first order, the shear ds;
Gaussian structures into which anisotropic Gaussian fluctua= d,Bi - To evaluate expressiof81), one must first of all
tions are mapped. These are the delocalized shagefid  determine a parameterization of geodesics on this spacetime.
possibly connectgdstructures defined inl19], or rather, a  Thijs is given by
subclass thereof.

We should note that although th€' B!, #|} decompo- d(n)\ . [o
sition is not S@B) invariant, the{C',B!.} already are S) tan——-/=an %
invariant? Since the phases contain no information whatso-

exf — (7— mo)\h],

ever on Gaussian anisotropic fluctuations they do not count 0(7)= 6o+ (17— 70),

as a device for making predictions in these theof@ssmuch

as one does not compuﬂén for Gaussian isotropic theories 1 o[ %o ®o

Hence the set of variabld<',B! ! is suitable for represent- Jh Iny sir 2 +cos 72 |exH2(7= 7o) hl @2

ing invariantly the most general form of non-Gaussian fluc-

tuation which can be mapped from Gaussian anisotropiSolving Einstein’s equation@nd assuming that matter is a

fluctuations. pressureless flujdone can determine and oj; . A general
expression for Eq(31) was determined if5]:

g 2\ 1_90

VI. GLOBALLY ANISOTROPIC UNIVERSES
A( ) ( I I)O QO [ [ 0 0

A useful set of models in which to explore these concepts
are the homogeneous, anisotropic cosmologies, also know as _
- Sln(;b|sCOSt9|s(l+ le)]

70 3h(1—Qg) .
“We are assuming that not only the universe is anisotropic but that - f . sin2¢[ cog 0)
we know,a priori, what its symmetry axis is; e.g., by the detection Tls 0
of a Hubble-size coherent magnetic field. Alternatively we leave the dr
Euler angles of this axis free, to be estimated by some Maximum +5in(6)] —] ) (33

Likelihood Estimator. sintt(\/n7/2)
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A useful discussion of the different cosmic microwave
background(CMB) patterns imprinted by the unperturbed
anisotropic expansion is presented®). The patterns can be
roughly said to be constructed out of two ingredients: a
focusing of the quadrupole whed<<1 and a spiral pattern
whenx is finite. The Bianchi type-V| is most general form
of homogeneous, anisotropic universes ifbs 1 which are
asymptotically Friedmann-Robertson-Walker. The pattern is
of the form

AT ~
5 =fu(0)cod o—¢(0)]. (34) _ _ _ _ _
FIG. 1. An isotropic Gaussian map as seen with a resolution of

. . about 20°. The power spectrum was assumed to be scale invariant.
In eachd= const circle the pattern has a dependencé of

the form cos$—¢). The phasep depends org, and hence production of Gaussian fluctuations. From what we have said
the spiralling of the simple cold and hot bump induced by then Sec. V it is clear that anisotropic Gaussian fluctuations
cosp dependence. The functiorig(6) and ¢(6) are rather could escape detection much more easily. They are delocal-
complicated functions which have to be evaluated numeriized non-Gaussian features, and most non-Gaussian tests, in-
cally, and depend on various details of the particular Bianchtluding our eyes, target localization. As showr{ 18] delo-
model within the type we have chosen. It is curious to notecalized features escape traditional methods of non-Gaussian
however, that only the power spectru®y and the phase$  detection. These include skewness and kurtosis, the three-
are sensitive to these details. All the spirals imprinted bypoint correlation function, density of peaks above a given

Bianchi type-VI}, models have moduli of the form height, genus number of isotemperature lines, and the ubig-
| uitous plotting of pixel histograms. We will reiterate this
Pm= Omfa(l.%). (39 point here with one class of anisotropic Gaussian fluctua-

tions.
Let us consider anisotropic Gaussian fluctuations with a
covariance matrix of form

Therefore their shape spectra will always be
Bl =1, for 2<m=lI,
B! =0, for m=1. (36) (@ )= Sy 811/ Cijm - (38)

The background patterns in Bianchi type-ythodels are all  These theories are characterized by an angular power spec-

localized, shapeful, and connected structures. Depending di/m which is now a function of two indices,andm. Iso-

the model they will however have different positions, powertropic Gaussian theories may be regarded in this context as a

spectra, and connectivity. Nevertheless, their shape spectragrticular type of spectrum in then dimension:  they are

always the same exact shape, of fof®6), without any cos- White noise inm that is, the power is constant as a function

mic variance error bars. Confusion with a Gaussian is zerc@f M. Anisotropy manifests itself in the form of departures

Confusion with the shape of a perfect texture hot spot is zer§om white noise in then dimension of the power spectrum.

as well. These have a non-Gaussian spectrum of the form These departures may in principle take any functional form,
but for simplicity let us consider a linear dependence, that is,

B'mzl, for 1=sm=I. (370  we merely tilt the white noise spectrum. Then

Although the shape spectrum is the same up to theBlast Cyjm=Ci(n|m[—B), (39
the confusion between the two theories is zero. Of course

real textures are not perfect circular spots. Cosmic variancéhere 8 is defined so thaC, is indeed the angular power
in their irregularities will further complicate the problem. spectrum. We calh the m-tilt. An isotropic theory has zero

Nevertheless some sort of peak around s prediction ~ M-tilt. A positive m-tilt will favor high azimuthal frequen-
should exist in real life. cies, a negative tilt will favor modes which disrupt strict

cylindrical symmetry the least, that is lom modes. The
VII. ANISOTROPIC GAUSSIAN FLUCTUATIONS larger them_-t_ilt th(_e mgre a_misotropic the f_Iuctuations are. For
IN BIANCHI MODELS everyl a crl’qcal tilt n* exists beyond wh|c_h somma modes _
do not receive any power. We may consider exceeding this
In the previous section we explored the fact that in Bian-tilt unreasonable.
chi models the CMB is not isotropic even before fluctuations In Fig. 1 we produced an isotropic Gaussian map with a
are introduced. A rather non-Gaussian spiral pattern of formesolution of 20° and a scale-invariant power spectrum. In
(34) is imprinted by the universal rotation on the CMB. This Fig. 2 we produced an anisotropic Gaussian map with the
pattern is obviously non-Gaussian and is a localized featuresame power spectrum, and using the same random numbers.
It is therefore not hard to place tight constraints on anisot-The tilt is the critical negative tiln*. It is curious to note
ropy on the grounds of this prediction. A possibility remainshow similar the two maps are. The point is that it is the
however that anisotropy might manifest itself in a morephases that determine what the maps look like and they are
subtle way. Anisotropic expansion would certainly affect thethe same random phases in both maps. Clearly it will be
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FIG. 2. An anisotropic Gaussian map obtained with the same FIG. 3. A theory with exact cylindrical symmetry in all realiza-
random numbers as in Fig. 1. However this theory is maximallytions is an extreme case of Gaussian anisotropic fluctuation. This
tilted in m in all scales. Since the azimuthal phases are random, an@ap has still the same random numbers as before. Now it does
they are the same in both realizations the outcome looks the sambgcome obvious that the theory is non-Gaussian isotropic, or aniso-
although this map is extremely anisotropic, or, from the point oftropic in the first place.
view of an isotropic formalism, extremely non-Gaussian.

decide between isotropic and anisotropic Gaussian theories
difficult to identify the anisotropy, or equivalently the non- On the grounds of theity; and y,. The situation is even
Gaussianity, ofn-tilted maps. They will look very Gaussian Worse ifn is not too much larger then*/2. Then the distri-
and isotropic even for the large titt*. butlons_ of y3 gnd Y4 @re in practice the same for isotropic

One would have to do something extreme, such as Cona_lnd anisotropic Gaussian fluctuations. We show this fact in
sidern=—c, for the anisotropy ofm-tilted theories to be- Fig. 4, W.here we plotted'h|stograms of skewngss anc_i kurtosis
come obvious. The map in Fig. 3 has the same power S‘pe@‘:r_om an isotropic Gaussian theory, and an anisotropic Gauss-
trum and random number as the two previous maps but it hd@n theory with the same power spectrum ametilt n=
n=—o. This means that the moda=0 receives all the —N*/2/2. This plot shows that not only that andy, can-
power for anyl. The surprise now is that the map obtained isn°t be us_ed to dlstlngglsh between the theories, but also the
Gaussian at all, in some sense. The features shown in thi§€ theories are statistically the same as fayaandy, are
maps appear to be not only blatantly anisotropic, but alsgoncerned.
very non-Gaussian. In spite of the failure of classical tests, tB{;1 should still

It should not come as a surprise that for any theory with ietect the non-Gaussianity m-tilted maps. They contain all
reasonablen-tilt classic Gaussian tests will fail to detect the degrees of freedom in they, apart from the phasegy,
non-Gaussianity. We exemplify this with skewnegsand  Which are Gaussian in these theories. Therefore if the initial
kurtosis y,. In all anisotropic Gaussian theories with a,, are non-Gaussian thB}, have to accuse their non-
<n* the averagey; and vy, are always well within the cos- Gaussianity. In Fig. 5 we pIoIB'm spectra for an isotropic
mic variance error bar for a Gaussian. In no case could w&aussian theory and for a theory with= —n*/2. We chose
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FIG. 4. Histograms of skewnegkeft) and kurtosiqright) obtained from 8000 realizations for an isotropic Gaussian th@iorg) and an
anisotropic Gaussian theory with half the maximal transverse'ilon all scales.
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FIG. 5. TheB#o spectra with errorbars for an isotropic Gaussian theory and for an anisotropic Gaussian theary witli /2. The error
bars are misleading as the distributions may not be peaked. In particuIzB'mtmbstribution in the Gaussian case is simply uniform.
Nevertheless it should be obvious that a peaked distribution is emerging inBirQrinahe bottom plot. These correspond to the emergence
of preferred shapes in these theories.

multipole | =10 and in analogy withC, spectra plotted our more peaked than their error bars suggest. Hence this method
results in the form of an average and a érror bar. This over rates confusion with a Gaussian. Even so it is clear that
may be misleading. For instance in the isotropic Gaussiadepartures from uniformity are being observed, at least in
case the distributions are simply uniform distributions, forsomem’s. Peaked distributions are emerging and concept of
which the average 1/2 does not represent any favored vaIL&'m spectrum is acquiring a meaning, in the same Wy
where the distribution peaks. Also the distributions for an-spectra are meaningful.

isotropic Gaussian theories are very skewed and tend to be In Fig. 6 we plot histograms of varioué.'m for a tilted
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2 - — 2 —
i o i ]
L R L 4
1.5 |- Rt 1.5 -
= I ] 1 — - .
EL o | L L ]
a |1 - a | g
a | | a L ]
'r ] LR ]
05 T - 0.5 f= -
L i i i
_'_|‘ N » 4
0 1 L 1 [ 1 1 1 I L 1 1 ’ 1 1 1 l 1 1 1 ] 0 i 1 1 1 J 1 1 | l L1 1 I 1 1 1 I 1 1 1 ]
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Bl B

FIG. 6. The distributions oBZ’ (line, left), B3° (dash, left, B (line, right, andB1° (dash, righ}, for a tilted theory withn=—n*/2.
Although for smallm the B'm are still very Gaussian, fan close tol the distributions peak around 1. Recall that for an isotropic Gaussian
theory allB, should be uniformly distributed.
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theory with n=—n*/2. These show much more clearly il=1 Hé i1(GA)j) (qA)
-7 5mm,f kdk}j: —

where the peak value is obtained and what the error bar (aj.a;/m)=

should be for theB!,,. Form close tol the B, distributions 4 ¢

peak at 1, falling off more steeply the closerltthem. It is <P (@)D (8 4
only for low m that the distributions become again very close im( @) Py (@) 49
to uniform. It is convenient to definge=Ak and u;=2maj where a

Although we have chosem= —n*/2 in the above discus- =A/L, i.e., the ration of our horizon to the topological iden-

sion the method described applies for lower values of transgfication scale. If we now defing= pu;/ [7+ 2 the ex-
verse tilt. It is important to realize that tig, contain all the pression simplifies to .

non-Gaussian degrees of freedom in Lﬂefor anisotropic

Gaussian theories, and therefore tHegve todetect non- ML M
Gaussianity should there be any. One must realize that the i'" 7T HAA 1 J'(V)“’(V)
BI are not a single statistic but a whole spectrum of statis- (@maym) = T v 5mm’f yE -
tics, and that even a faint signal in only some of thendm
would combine into a rather powerful signal when the whole X Pim(Y) Py (Y). (46)
spectrum is taken into account.

C M

In the limit where the identification scale goes to infinity

VIIl. AN ANISOTROPIC GRISCHUK-ZEL'DOVICH we get the standard result
EFFECT

We shall now consider an example of a flat homogeneous 1M (&ia) m: ) jo dyjf(y) St Omumt * 72 Ot O
and isotropic universe with topological identification along o 47)
one axis. This example is simpler than most of those consid-
ered in the literature but illustrates one of the key features ofe., a scale invariant, diagonal covariance matrix. In the case
such models: the breaking of statistical isotropy in the fluc-of finite « this is not the case. Consider the quadrupole. The
tuations. Let us consider a universe with a topological idenring spectra has two componens, andB, with a probabil-
tification along thez axis. All functions defined on such a ity distribution function

space satisfy .

r
d(x,y,2)=D(x,y,z+L). (40) F(r,Bl,Bz)=mexp{—(r2/2cr§)[coBiB§’2
331

By considering a flat universe we can restrict ourselves to 3124 Rp2 _ R
calculating the Sachs-Wolfe effect. The temperature anisot- TeiB(1-BY+cy(1-B ﬁ}’ “8)
ropy from the surface of last scattering will be given by \yhere we have defined

AT 1H2 glanq 2 ((lasd 2V aa12) | aqq2) ) V3
? (n)= f d2k 2 S —2— (41) o3=({[azd “)(|azdl*){|azd *)) ™",
a3
whereA = 7~ 7, is radius of the surface of last scatter and S a® (49
=[kcosp,ksing,2m(j/L)].
The a,, s are given by By exploring the dependence of, c;, andc, on @ we can

L2 see how the probability distribution function of th's

i~ Ho Ji(A Q) change with topology scale; to a very good approximation
—_— 2 1
A== @ | Pk 8 "o Vi@ (42 \efing
We now assume statistical homogeneity and isotrop§ of co— 1+5(2a)? _ 1+3(2a)®
and a scale invariant power spectrum "1+2(2a)?’ "' 1+502a)¥
(8800 =28%k—k) ;a7 q= K>+ (2mj/L)? _1+7(2a)? -
(43) 2T 17 10020)% (50
This leads to the covariance matrix for thg,’s: We can see the signature for non-Gaussianity arising here.
L e _ _ For a nonzeroa there are correlations between the three
. _ 7 Ho kS J1(gA)ji(qa) statistical quantities. The probability distribution function for
(@imayrm) = - 3 B, and B, (defined on[0,1]x[0,1]) becomes peaked at 1.

. A We have focused on the quadrupole where the effect is easy
XY@ Yrm (Q). (44)  to see. The method is systematic however, and one can con-
_ _ struct the probability distribution function of the high order
ExpressingY,m(n) =P(cos®)€™® and performing the ring spectra in the same way.
azimuthal integral, one immediately finds that the covariance To exemplify the strength of the technique we shall con-
matrix is diagonal irm, so one has trast it with two standard measures of non-Gaussianity, the
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FIG. 7. A comparison of the probability distribution function of skewnésé pane) and kurtosis(right pane] for an anisotropic
ensemblgsolid line) with «=1 and am isotropic, Guassian ensemiaashed lingwith the same power spectrum.

skewness,y;, and kurtosis,y,. Unlike with our method, covariance matrix which may be statistically significant with
where one can calculate the probability distribution functioncurrent data. This will be pursued in a future publication
analytically, for these more conventional methods one has tf23].

resort to Monte Carlo simulations. The procedure for gener-

ating topologically anisotropic skies is a slight modification IX. CONCLUSIONS

of the one proposed if21] for generating isotropic skies. In

the latter, one generates an uncorrelated set,pf(the co- In this paper we have presented a new technique for quan-
variance matrix is diagonal Given a nondiagonal covari- tifying non-Gaussianity on large scales. It is the extension of
ance matrixC;,=(a’a, ) wherei=I(l+1)+m+1 [i’ the non-Gaussian spectra developeflli®] to the surface of
=1"(I"+1)+m’+1], one can Cholesky decompose @, the two sphere. As we have shown in Sec. Il the construction
=LLT. One can then generate a set of uncorrelated randofg Slightly different to take into account the particularities of
numbers,r from a Gaussian distribution with 0 mean and

unit variance. The vectas=Lr will satisfy (s;s{)=C;;» and 10[
therefore is a set od,, with the correct covariance matrix.

In Fig. 7 we show the results for two ensembles of 1000
realizations. In one ensemb{8) we generate skies with an
a=2, each realization having a random orientation. The ri-
val, Gaussian ensemh(B has as many Gaussian realizations
of skies with the same power spectrum as ensemble A.
Clearly we are well within the region where the probability
distribution function for the shape spectra deviates from |
unity (co=5/2, c,=3/5, andc,;=7/10). In Fig. 7, we plot the 0.4k
histograms fory; and y,. Although y; for ensemble A has :
a marginally larger variance than ensemble B it is clear that
in practice it is difficult to disentangle the two. The probabil-
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ity distribution functions fory, are, in practice, indistin- 0‘25
guishable. This to be compared to Fig. 8 where we plot the
ratio of the joint probability distribution functioffor a fixed ool . | | ‘
r) of the completely anisotropic case relative to the com- e
pletely isotropic case. There is a clear departure from unifor- 0.0 0.2 0.4 5 0.6 0.8 10
mity. !
This a curious application of the idea put forward 2], FIG. 8. A comparison of the joint probability distribution func-

an anisotropic Grischuk-Zel'Dovich effect. By looking at the tjon of B, andB, for the isotropic and completely anisotropic case.
shape of the low multipole moments we can constrain the Forr?/(2¢3)=1 we plot ratio of the anisotropic likelihood function

degree of statistical anisotropy outside the current horizono the isotropic likelihood function. Recall that for an isotropic
Note that, already forx<<1 there are deformations in the theory theB's are uniformly distributed.
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the spherical harmonic basis. However the qualititative interequate parametrization of the non-Gaussian spectra. The fact
pretation of the different levels of non-Gaussianity follows that we have devised a consistent method for characterizing
through, exactly as ifil9]. One can identify the information non-Gaussianity on all scales may allow us to use the cumu-
contained in the ring, interring and phase spectra with shapéative information of alll>2 to infer the behavior on large
connectivity and localization. scales; all modes will be affected to some extent by large
An interesting and untapped app"ca’[ion is to universe§cale aniSOtrOpy. Flna”y it would be interesting to analyze in
with statistically anisotropic fluctuations. Developing the more detail the observability of the anisotropic Grischuk-
idea put forward in[10] we explain how statistical anisot- ZteDowch effect, taking into consideration issues of cosmic
ropy and non-Gaussianity are intimately related. From this/@rance.
one can infer some novel properties of the covariance matrix

of fluctuations in statistically anisotropic spacetimes. In par- ACKNOWLEDGMENTS
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tropic Gaussian random fields with such propertinsvhich

the covariance matrix satisfies those symmetries, and not APPENDIX A: GAUSSIAN FLUCTUATIONS

more. In fact it can be shown that these symmetries can be WITH A SYMMETRY

deduced from the geodesic structure of the space fidg

This can be a first step in extending the prescription used in In this appendix we detail the group theory argument

[6] for constraining general anisotropic models with the Cos-sketched in Sec. Ill. This argument is not necessary in the

mic Background ExplorefCOBE) four year data. A brief SO(2) case targeted in this paper, where the covariance ma-

analysis is made of the relevant Bianchi models for whichtfix may be easily derived directly. However, it opens doors

we present the non-Gaussian Spectra. to more general aniSOtrOpiC Symmetry groups. It also shows
Another, different application is the case of homogeneou&ow the general form of the covariance matrix depends not

isotropic models where an anisotropic topological identifica-0n the symmetry group, but only on its irreducible represen-

tion has been imposed. As an example we identify one ditations(irreps.

rection in space. One finds that statistical isotropy is broken. Fluctuations(Gaussian or notin any universe must be

This can be easily from the following: if we look along the Subject to the symmetries of the underlying cosmological

axis of identification, and the identification scale is smallermodel. However, due to the random nature of the fluctua-

than our horizon, one will find strong correlations betweentions, they must satisfy these symmetries only statistically.

patches of the microwave Sky which are reflected about thgy this we mean that the statistical ensemble of ﬂUCtuationS,

uncompactified plang7]. By looking at the structure of the and not each realization, should be subject to the symmetries.

covariance matrix one can see that this anisotropy will manilf @ symmetry transformation is applied to each member of

fest itself by inducing not only non-Gaussian ring spectra buthe ensemble, then each member may change, but the en-

also inter-ring spectra. This non-Gaussian manifestation magemble should remain the same. For instance, for th@)SO

persist if we consider the identification scale to be large thagymmetry group only realizations containing only a mono-

our horizon. We name this effect ttamisotropic Grischuk- ~ polel =0 are left unchanged by rotations. Nevertheless much

Zel'Dovich effect. more general fluctuations respect statistical isotropy. Simi-
Although we now have a high quality measurement offarly, only them=0 modes are cylindrically symmetric, but

anisotropies on large angular scales we are confronted witfore general fluctuations are S statistically invariant.

the hardships of the real world. Galactic contamination leads Gaussian fluctuations are fully specified by their covari-

one to consider an anisotropic rendition of the sky and conance matrix

siderably complicates the analysis of the COBE four year

data. It is well known that one of the consequences is that the Clrﬁlfn :<a'r; a'n21*>' (A1)

guadrupole measurement should be viewed with scepticism. 172 12

Unfortunately it is the quadrupole which could supply us

with a probe of primordial CMB on the largest angular

scales. There may be ways around these shortcomings. Onéspme texture models exhibit approximate (80symmetry at

can try and reformulate our non-Gaussian spectra on thew | in each realization. Then an axes system exists in which the

largest angular scales using the techniques put forward im=0 mode has much more power than any other. This is of course

[25]. This would involve a proper likelihood analysis and to a very non-Gaussian effect which cannot be simply reproduced by

make the problem tractable one would need to find an adanisotropic Gaussian fluctuations.
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which may be seen as a bilinear form on t{aé.n} space. An interesting result is that i& breaks the{a'm} space into
Hence the statistical symmetries of a Gaussian theory amon-equivalent irreps spanned bat,}, then these must be
equivalent to the requirement that the covariance matrix isndependent random variables with a variance which can
left unchanged by any symmetry transformation. Getboe  only depend on the irrep they belong to. This argument ap-
the symmetry group of the underlying cosmological modelplies for instance if the symmetry group is &0 in which

as projected on the sky. Let us first suppose Gatreaks the caseL=1 andM=m.

{a'm} into a set on nonequivalent irreps. Then, let us find a The argument just present breaks down however, if some
new basisay, adapted td3, whereL now labels the irrep the of the irreps defined b are equivalent. Let thgal } space
basis element belongs to, aMithe actual element. Thé8  now be spanned by an adapted bdsi§’}, whereL labels

is represented by a set of matricﬁ#wl, acting ona',;,I as each class of equivalent representatidddabels the actual
irrep within this class, ant¥ labels the elements within each
Ay =Galy =Gy ay - (A2)  Irrep. Then, from the second Schur's Lemma we know that
within the same irrep we still have
The covariance matrix for thay, , Lb_LD
(anan, )= 6m,m,C ", (A9)
1L2 |—1 Ly M, “M MM,
Cu M2_< -y > (A3)

but for different but equivalent irrepsD(;#D,) we now
must remain unchanged by the transformatié@), so that  have

LD . LDo*x LD,D
C i, = @A) =000, O Cot, = Ol B, Bz = oy .
(Ad4)  with detC+0, whereas for nonequivalent irrepk L)
. . . we still have
which for unitary representations amounts to the commuta-
tion relation (akﬂlflakﬂzfz*>=0. (A11)
Ghictite=ClitGle, (A5)

Therefore, although thel® are independent within each ir-
Let us now recall Schur's Lemm480]. rep and among different non-equivalent irreps, correlations
Schur's Lemma 1Let T andT’ be two irreps of a group may exist between different but equivalent irreps. Of course

G with dimensiongd andd’, and let there be dx d’ matrix ~ ON€ may always rotate tre” within each class of equiva-
A such that lent irreps so as to diagonalize the covariance matrix. How-
ever such a rotation is model dependent, and cannot be de-
I'(g)A=AlI"(9) (A6)  termined from the symmetries. This situation happens for
instance in the case of $8), with L=m andD=I (no M
for all group elementgy. Then eitherA=0 or d=d’ and index, since the irreps are one dimension&achm pro-
detA#0. vides a class of equivalent representations, with the same

It follows that if A#0 thenI” andI"" are equivalent. but differentl. Then the covariance matrix takes the general
Schur's Lemma 2f T' is ad-dimensional irrep of a group form
G andB is adxd matrix such that | |
(ag a > 5m1m2Cnﬁ 2 (Al12)
I'(g)B=BI'(g) (A7) !
and as we see although correlations among diffenerare
not allowed, now we may have correlations between differ-
entl, for the saman. We could rotate tha!, in | for each
fixed m so as to diagonalize the covariance matrix, but such
L1L2 L1~ LZ* Ll procedure naturally would depend on the covariance matrix
Cu —<a , 1= 0 20mm, s (A8) one starts from, and would therefore be model dependent.

for all group elementg, thenB=2\1.
Combining the two Lemmas we can then find that the
covariance matrix must take the form
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