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The quantum cosmological version of the multidimensional Einstein-Yang-Mills model R>a8°x S¢
topology is studied in the framework of the Hartle-Hawking proposal. In contrast with previous work in the
literature, we consider Yang-Mills field configurations with nonvanishing time-dependent components in both
S® and S spaces. We obtain stable compactifying solutions that do correspond to extrema of the Hartle-
Hawking wave function of the Universe. Subsequently, we also show that the regions where the 4-dimensional
metric behaves classically or quantum mechanicaky, regions where the metric is Lorentzian or Euclidean
will depend on the numbet of compact space dimensiorj$0556-282197)08220-9

PACS numbd(s): 98.80.Cq, 04.40.Nr, 04.56h

[. INTRODUCTION [7], and massive vector field8] as well as in supersymmet-
ric models(see Ref[9] for a review and a complete set of
The issue of compactification is central in multidimen- referencep and to the lowest-order gravity-dilaton theory
sional theories of unification, such as generalized Kaluzaarising from string theorny{10]. The generalization of the
Klein, supergravity, and superstring theories. Consistencylartie-Hawking program to higher spacetime dimensions
with known phenomenology requires that the extra dimenhas been considered previously for the 6-dimensional
sions in these theories be of Planck size and stable. A ne&instein-Maxwell theory[11], for gravity coupled with a
essary condition for the latter is the presence of matter withD —4)th rank antisymmetric tensor field.2], where the
repulsive stresses to counterbalance the collapsing thrust &tability of compactification was achieved thanks to the pres-
gravity. For this purpose, magnetic monopolé} Casimir ence of a magnetic-monopole-type configuration, and also to
forces[2], and Yang-Mills fieldd3,4] have been considered. 11-dimensional supergravifi3].
The situation with Yang-Mills fields is particularly interest-  In this work a rather general and realistic setting to study
ing as it illustrates well the importance of considering non-the compactification process is considered in the context of
vanishing external-space components of the gauge fields, the Einstein-Yang-Mills multidimensional model of Ré4]
point that has been disregarded in previous work in the litWith an SAN) gauge field inD=4+d dimensions and an
erature. In fact, it was shown in Rd#] that it is precisely homogeneous andpartially) isotropic spacetime with a
this feature that renders compactifying solutions classicallfRx S*x S topology. We aim to study the quantum mechan-
as well as semiclassicaly stable. ics of the coset compactification of tiedimensional space-
The main motivation for considering our study of com- time MP:
pactification in the context of quantum cosmology lies in o
ascertaining how this process takes place. Indeed, this is cru- MP=RXGZIH* GM/H™, ()
cial for extracting classical predictions from any multidimen-
sional unifying theories. In fact, no cosmological descriptionwhere ~ G®(M=50(4YSOd+1)] and H®(M=
can be considered complete until specifying the set of initialSO(3)] SO(d) ] are, respectively, the homogeneity and isot-
conditions for integration of the classical equations of mo-ropy groups in 3d) dimensions. For this purpose we will
tion. Furthermore, since the quantum cosmological approackeek compactifying solutions of the Wheeler-DeWitt equa-
of Hartle and Hawkingd5] allows for a well-defined program tion for the Einstein-Yang-Mills cosmological model of Ref.
for establishing this set of initial conditions, it is quite natural [4] in the framework of the Hartle-Hawking proposal.
to extend this approach to the study of the issue of compac- In contrast with previous work in the literaturgl,12 we
tification in higher-dimensional theories. This program hasconsider Yang-Mills field configurations withonvanishing
been already applied to many different quantum models ofime-dependent components fimth $ and S° spaces. We
interest such as massive scalar fidld§ Yang-Mills fields  then derive an effective model by restricting the fields to be
homogeneous and isotropic. This construction will allow us
to study in detail the issue of compactification, which as

*Electronic address: orfeu@cosmos.ist.utl.pt discussed in Ref4], depends crucially in the contribution of
"Electronic address: pdfonsec@math.ist.utl.pt the externalgauge field components. Our analysis of the re-
*Electronic address: privm10@amtp.cam.ac.uk sulting Wheeler-DeWitt equation indicates that the regions
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where the metric is Lorentzian or Euclidean do depend on A o—J1 . o
the numbed of internal dimensionandon the potentials for Sl 9.5 x]1=— f DdX\/—_QI[E((?;LX)zjL U(x)
the external and internal components of the gauge field. Fur- M
thermore, we show that stable compactifying solutions d ~ L AN A _ . .
indeed correspond to the extrema of trr)1e wZvegfunction of th(glhe[egA 'SAdet(gW)’ 95 is the D__4+d dimensional met-
Universe, implying a correlation between compactification oI R, & k, and A are, respectively, the scalar curvature,
the extra dimensions and expansion of the macroscopig@Uge coupling, gravitational, and cosmological constants in
spacetime. We should mention that an attractive feature df dimensions. In addition, the following field variables are
our model is that it can be regarded as the bosonic sector éfefined in MP: F;=3;A;—9;,A,+[A; A;] is the field
some general unifying theories, implying that possibly mOStstrengthAM denotes the components of the gauge field, and
of the conclusions of our quantum-mechanical analysis of s the inflaton responsible for the inflationary expansion of
the compactification process and of its stability will remain h t | it () being th tential for. W
valid in those theories as well. the external space wi SX)A f—:-mg € potential ol \ve

This paper is then organized as follows. In the next sec@Ssume that the potentidl(x) is bounded from below, that
tion we present ouAnsdzefor the metric and for the gauge |E has a global minimum, and without loss of generality that
field (see Refs[4,14] for a general discussioms well as the Un,i,=0. As first suggested in Reff16], the splitting of the
resulting effective action which is the starting point of our internal and external dimensions of space in the generalized
analysis. We also obtain in that section the Wheeler-DeWitKaluza-Klein theory(2) can have its origin in the spontane-
equation of our effective model. In Sec. Il we present andous symmetry-breaking process, which is due to vacuum so-
discuss compactifying solutions of the Wheeler-DeWittlutions corresponding to a factorization of spacetime in a
equation and in Sec. IV we discuss their interpretation. Inproduct of spaces. Assuming that is indeed the case, then
Sec. V we present our conclusions. We also include an Ap- 5 4o d
pendix where the mathematical aspects of extending the ME=MTXIT, (6)
Hartle-Hawking proposal to higher-dimensional spacetimes . . . . . .
is described, \?vit% epmphasis ir? our model Wherephypersur'-v|4 being the 4-dimensional Minkowski spacetime dfica
faces are OED_1~53X5d type. Pla_nck-3|ze_d-d|men5|qnal compa_ct space. F_or the cosmo-

logical setting we are interested in consider instead

)

Il. EFFECTIVE MODEL MATI=RX GYHSX GMYH ™M, (7)
AND WHEELER-DE WITT EQUATION

. . Ch T
We shall describe in this section our muItidimensionaI"i‘dm'tIng local  coordinates x*=(t,x,£™),  where

Einstein-Yang-Mills quantum cosmological model. Special#=0.1,...,3+d, i=1,2,3; m:e4{ . ’dfn?" };\{hereR de-
emphasis will be given to the differences between our modeOtes a timelike direction an@®/H®(G"/H™) the space
and others present in the literatuig1—13. Namely, the of external(interna) spatial dl_mensmns realized as a coset
gauge field in our reduced model will have time-dependengPace of the externdinterna) isometry groupG®(G™).
spatial components on the 3-dimensional physical space. We restrict ourselves to spatially homogeneous @uzd-
This contrasts with previous work on the subject where ejlially) |sotrop.|c field conflguratlons, which means that these
ther static magnetic-monopole-type configurations, whos@'€ Symmetric under the action of the gro@f < G™. Let
only nonvanishing components were the internalthe gauge groulK of the D-dimensional theory be a simple
d-dimensional one$11,12, or scalar fieldd15] were con-  Lie group. For definiteness, let us consider the case with the
sidered. Our approach provides therefore a somewhat moggauge grougk = SO(N), N=3+d and

realistic model to study the influence of higher dimensions

on the evolution of the 4-dimensional physical spacetime. In MATI=Rx S3x S, (8
addition, we shall also see hodifferent values ford, the

number of internal space dimensions, may induce fairly dif-whereS*(S?) is the 3- @-) dimensional sphere. The group of

ferent physical situations. spatial homogeneity and isotropy is, in this case,
Our model is derived from the generalized Kaluza-Klein i
action: G"=50(4)xsQ(d+1), )

A~ A oA - A A while the group of spatial isotropy is
9,0 ALX1=Sl 9,51+ Sl 945 AL+ S 945 X1
2 H'=SQ(3)x SO(d), (10)
with which allows for the alternative realization gff**9:
1 MATI=RXSO4)/SQ(3) X SOd+1)/SQ(d)
Sgr[giti]:l%kfwd“ —9(R=24A), ) —RX[SO(4)x SO(d+1)]/[SQ3)x SAd)].
(11)

A 1 A A ann . , , . .
Sul9:5,A;, :Tf dxv—gTrE;Err, A The field configurations associated with the above geom-
o O A 8e?J mP 9w @ etry were described in Reff4], using the theory of symmet-
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ric fields (see also Ref$7,17,18). The most general form of
a SQ4)x SO(+1)-invariant metric inE**Y as Eq. (8)
reads

g=—-N2(t)dt?+a%(t)3> o' w' +b2(1)3

+
4o

12

where the scale factora(t), b(t) and the lapse function
N(t) are arbitrary nonvanishing functions of time. Moreover,
w® denote local moving coframes B¥x S, and3? ;o' o'
and>%*3 ™M™ coincide with the standard metrrdﬂ2 and
dQ3 of 3- andd-dimensional spheres with local coordinates
(x',&M), respectively.

The S@4)X SO(d+1)-invariant Ansatzfor the inflaton
field y reads

X(6XLEM = x(1).

As for the S@4) X SO(d+ 1)-symmetriagauge field, the fol-
lowing Ansatzis considered:

13

1 I
A= —qug dqu(t) 3+d+p3+d+th+ 521€i<j€37§jN)w”
1 —~
+§24sm<ng37ﬂ,\2wmf3”’3
3 1 3 'I('N)
+2i=1 ZfO(t)Ej,k=1€jik ik
N 3 dfp(t) |d+3+p '
a+3 lon-3-q ZEN) m
Fim=a5%0-1 Ya(DTmarzeq|@™ (14)

where fo(t), fy(t),p=1,... N=3-d;gq(t),g=1,... N
—3—d;BPY(t),1sp<q<N-3—d are arbitrary functions;

and?f)'é) ,1=p<g=N are the generators of the gauge group
SO(N). We have used the decomposition
1@ . Fud+n
wzzgiiw“Ta-i-Elsstg,w” %+Elsm<nsdw m2n
(15

for the Cartan’s one-form is*x S, Here T and T{¢+%)
form a basis of the Lie algebra &', Ta=Ti42/2, =123
andT,=TWN 12, a=4,... d+3.

Substrtutmg theAnsdze (12), (13), and (14) into action
(2) and performing the conformal changes

N2(t)= N2(t), (16)

bmr

a¥(t)= 2(t) (17)

b(t)

where by denotes the equilibrium value df, we obtain a
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Seﬁ[aalﬂ,fo,f,g,X,N,B]

2

: 72
1la 3 1 1y
16m jd“\'a[ 87k 22 N| 327k 52 2M
N 2 2 2
A g 3 LT YD
2 N 4e a 2 N 2 N
d 1 1Dgr
ye 20— B0 _wWia, i fo.f 18
462 b2 2 (a,¢,f0.f,9.x) (18)

with k=k/v 4b3,e?=e?/v4bd, = J16mk/d(d+2),v4 is the
the volume ofS® for b=1, and where we have used

=B tIn(b/by) and y= \/vdboa;( as the dilatohand inflaton
fields, respectively. In Eq(18), the overdots denote time
derivatives and; is the covariant derivative with respect to

the remnant SQ{—3—d) gauge fieldB(t) in R:

R d R
(O+BOT(L), Dg(t) = 7 9(0) +B(1)g(L).
(19

d
Df(t) = i f

Notice thatfy(t),f={f,} represent the gauge field compo-
nents in the 4-dimensional physical space-time, while

g={gq} denotes the components in the spbtandB is an
(N—3—d)x(N—3—d) antisymmetric matrixB=(B,).
The potentiaW in Eq. (18) is given by

1 d(d-1) 1
—dBY| _a=2BYy____
W=e © 167k 4 bo
1 d(d—1)
Ay —
d 3
+em 2BV 24 gdBy Vi(fo.f),
(aby)? 322( -9) 4e2gh 1(fo.f)
(20)
where A =v 4b3A, U(x)=v4b30 (x/vgbd) and
1 2 2 2 2¢2
Vi(fo.f)= gl(f5+ - 1)2+ 43, (21)
1 2 2
Va(9)=g(g"—1) (22)

are related to the external and internal components of the
gauge field, respectively. The variable$ and B are
Lagrange multipliers associated with the symmetries of the
effective action(18). The lapse functioi is associated with

1The scale factob(t) of the internal space induces a behavior
similar to the case of a minimally coupled scalar field. In fact, by
introducing the fieldy by b~ expy, this quantity corresponds to the

1-dimensional effective reduced action for the functions ofscalar field which appears in the harmonic expansion of the Kaluza-

time that parametrize theymmetricfield configurationg4]:

Klein theory.
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the invariance 06, under arbitrary time reparametrizations,
while B is connected with the local remnant SO¢ d—3)

gauge invariance. The equations of motion for the physical

variablesa, ¢, x, fy, f, andg can be found in Refl4].

The canonical conjugate momenta associated with the ca-

nonical variables in mod€ll8) are given by

127 a. 16 ,a°. 16 ,a°.
Ta =T T Na, = 16m Wtﬁ, = 16T X
(23
12m% . a, 127 . a
= dpy _— = dpy
7Tf0 e2 e Nfo, s ez e Nth,
472 3 a®
Tg= We ZB*”WDtg. (24)

For simplicity we replacethe variables 4,4, y) by the new

variables ,¢,£):
1/2 3 1/2
|t

k 1/2
"
(25)

a=e*
67

wk

The corresponding new conjugate momenta then read

[ =

1
ze3,

) e

N

1/2e3,u )
NH o

-

The Hamiltonian and SON—3—d) gauge constraints are

then obtained by varying Eq18) with respect taN andB,
and in terms of the moment&6) are given by

1/2e3,u )

Wd)’

2k

37

2k

37

Ty

2k

P (26)

2

e
_ 2 _Adu 2 2 2u—dag 2 2
m,— et mytmte 6772[7Tf0+’n-f]

3e’b3 4k\2
2ad 0O 2. 6u _
+e dnk ™o +e —3) W=0, (27)
7Tfpfq+ nggq—wqup—ﬂ'gquZO, (29

wherea=+/12d(d+2).
The canonical quantization follows by promoting the con-
jugate momenta into operators as

°The replacemeniy— ¢ and y— ¢ is a mere rescaling, while

introducingu— Ina for the scale factor can bring some advantages.
In fact, the minisuperaspace metric becomes then proportional to
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WM!—)-Ia, Ty I%, s _Iﬁ_f'
. d .0 . d
WfOH—I&—%, Ty Iﬁ' Ty —Ia—g. (29)

The Hamiltonian constraint27) is then quantized to yield
the Wheeler-DeWitt equation:

2 2 2 2 2 2
a__e4/-’«_(9__{9__e2/i7da¢e_ (7__11_(9_
au? A 9E? 62 af5 of?

3e?h? 42 4k 2
204 0 6u| =
Gk g e 3) W ¥ =0, (30)

where in the usual parametrization of the factor ordering am-
biguity, 75— — u (9l dp) (uP(31dp)), we have sep=0.

The richness of the effective mod€&l8) and the corre-
sponding Wheeler-DeWitt equatiaqB0) is quite evident. In
this reduced model the gauge field has nonvanishing time-
dependent components iboth the external and internal
spaces. Moreover, we have also two time-dependent scalar
fields, the dilaton and the inflaton. This contrasts with previ-
ous work in the literature, where either static magnetic
monopole configurations with nonzero components only in
19 or scalar fields were present. Our model allows thus to
consider several possibilities.

Aiming to study the compactification process we shall
focus our analysis on the variablgsand ¢ and the contri-
butions to the potentidlv from the gauge field. This choice
is justifiable as it can be seen from E&Q) that the kinetic
term for the external components of the gauge field is sup-
pressed in an expanding Universe, while for the internal
components the kinetic term is not relevant as compactifying
solutions requirgy to seat at the extremum of the potential
V,(g) [4]. In doing that, we shall keep the inflaton field
frozen as it has been shown that this field does not affect the
compactification procespt]. Of course, we could instead
consider takingu and y as the physically relevant variables
and freeze the remaining ones and actually models of this
type have been studied in R¢L5].

Hence, in what follows we shall restrict ourselves to the
study of compactification and hence concentrate our study on
the subsystem where the relevant variables @arand ¢.
Hence, it requires solving the Wheeler-DeWitt equaiidd)
for the static vacuum configuration of the gauge and inflaton
fields:

f

g_gvy fO:fU, _fU!

9=9"=0; (31

we also assume th&t(&”) =0 and thaf andg are orthogo-
nal. The notatiorv =V, (f5,) andv,=V,(g")=3 will be

used throughout this paper. The Wheeler-DeWitt equation
suitable for the study of compactification is the following:

62

U(w, @) |W(u,¢)=0,
o a¢2+ (1, 0) |V (1, )

(32

diag(1- 1) with useful consequences as far as the Wheeler-DeWitt

equation is concerngd 9].

where
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of the u¢ plane. Let us first address the latter issue, i.e., the
U(uwd) scenario for dynamical compactification in our model.
As discussed in Ref4], from the classical point of view,
different values for the cosmological constantead to dif-
(@) ferent compactifying scenarios. Indeed, far>c,/16mk
(c,=[(d+2)*(d—1)/(d+4)]e*/16v,) there are no com-
pactifying solutions and for

(®)

-0.5 \4(/0) 0.5 1 1.5 2 167k 167k

_ [c,=d(d—1)e*/16v,] a compactifying solution exists
FIG. 1. Potentialu(n=constg) for some values ofA and  hich is classicaly stable, but semiclassically unstable. Fi-
d=6 [(@ A>cy/16mk, (b) c/16mk<A<c,/167k, (C) nally, a value ofA <c;/16xk implies that the value of the

A<cy/16mk]. effective  4-dimensional cosmological constant\ ()
) =8wkQ(»,d), is negative (see Fig. 1L Since the
U(M,¢):e6/‘(4—k) Q(p, ) —e* (33) 4-dimensional cosmological constanf*) must satisfy the
3 bound
and L
AW]<107 10—, 36
1 d(d-1) 1 | | 167k (36)

_ a—da —2a
Qp.p)=e q{ e (bMTb_S
we are led to choosA =c,/16xk. On the other hand, since
we are interested in compactifying solutions, for which
$~0, we shall takeA such that¢p=0 corresponds to the
absolute minimum of Eq.(33). This corresponds to

bj=16mkv,/€?, and the fine-tuning4]

4 gtep L (@-D) A

bi ge? 2 8wk

6|2 3
dad—4n
+e < K 482U1. (34)
d(d—1)
The scenario associated with this choice is analogous to A= 1602 (37)
0

the ones of Ref§11-13,2(, with the novel feature of taking

into account the external components of the gauge field. As it . -

will be seen, the last term in E¢34) is central in our model | N€ Potential33) simplifies then to
and constitutes one of thraajor differenceswith respect to,

for instance, Ref[11]. Indeed, it is precisely this term sets 2kA
the dependence of early Universe scenarips<Q, i.e., U(,u,q&)=e6”‘d“¢9—(e‘2“¢—1)2—e4“
a—0) on different values ofl andv,, brought about by the .
gauge field components in the 4-dimensional spacetime. 37 v,
Moreover, as it will be discussed in the next section, it is +92"+d“‘f’7 v—zbz, (39)

the terme¥*4~44(61/k)?3/4e?v ; in Eq. (34) that establishes
that the external spatial dimensions and the intedndimen- ) _ I
sions are at thsame footingn the early Universe prior to 2Nd itS form is shown in Fig. 2. Moreover, as can be seen
compactification, i.e., whep <0. It is only through the ex- from the plot on(chonst;ﬁ) in Fig. 3[Cf'_ Eq. (33)], for
pansion of the external dimensiofiscrease ofu) that com-  # 9réater than a critical value., the potential (u, ¢) has
pactification p— b,) is achieved. Thus, it is the dynamics of aizi?écal maximum éma, given  approximately by
the 3-dimensional physical space which induces the evoll . == d/(d+4). This critical value arises from the last
tion of 19 towards compactification. Furthermore, we shajiterm in Eq.(38) and in a first order approximation is given
see how different values far, andd do lead to different

guantum scenarios, i.e., solutions of the Wheeler-DeWitt

equation, whose physical features can be compared with —B- JB?—4AC
those of Refs[11,17. ag~ete= oA : (39
I1l. SOLUTIONS WITH DYNAMICAL h
COMPACTIFICATION where
In this section we shall establish the boundary conditions 5
for the Wheeler-DeWitt equation82)—(34) and obtain so- A= — aA A 2kA (40)
lutions with dynamical compactification for certain regions 29 |



56 QUANTUM COSMOLOGICAL MULTIDIMENSIONAL . .. 4535

Q(u,0)

D
Dy
S

ffggﬁgggggggg@a@gggg§§g§§§53;,
) @ﬁ% i ggggé';%%gigggggggggggéé
W A
é?ff §§§§§§§§g§§§§amag B350

i

B <Uc

8
i
S

, U(w,9)

FIG. 3. Potentiak)(u=constg) for d=6 and some values of
2 M.

N2 72 3 i 2 d+3 m_ m
FIG. 2. PotentialU(u,¢) for d=6 and largexw (u>pu.; see g=dritai(niie e tbi(n s g0te “3
Fig. 3. is compact. In Ref[11] the following conditions were sug-
gested:a=0, b>0, da/dr=1, and db/dr=0 at =0,
which can also be inferred from the regularity of the Euclid-
ean equations of motioflL2]. Notice that physical reasons,
such as the vanishing of the internal gauge field components
) and of the gravitational coupling in 4 dimensions, prevent
the interchange of these conditions. Clearly, this approach to
select the boundary conditions to the Hartle-Hawking wave
C— adSe2dado 3w V12 2 function is not quite correct from the quantum point of view
—ad'e k v, ° "’ as it implies a simultaneous fixing of both canonical and
corresponding conjugated momentum variables.
with A;=—8e ?*%ma= —8d/d+4, A,=[(d+4)%e 4*¢o As far as our reduced modidee Eq(18)] is concerned,
—d?)/2, and e ?*%o=[(d+2)>—(d+2)*—d?(d+4)?]/  consistent boundary conditions can be implemented as fol-
(d+4)2 lows. Let us first point out that our reduced model is similar
We now turn to the discussion of the boundary conditiongo a closed Friedmann-Robertson-Walker model with a sca-
for the Wheeler-DeWitt equatiohWe shall use the path lar field ¢ (or ¢) [11]. Hence, our boundary conditions
integral representation for the ground state of the Universewhich are consistent with a 4-geometry closing off in a regu-
lar way and with regular field configurationa(0)=0 and
(dy/d7)(0)=0. The next step is to note that the correspond-
Yliu,pl= f D uD ¢exp(— Sg), (41)  ing constrain{Friedmann equation in our model imples that
¢ (da/d7)(0)=1 [21,22; i.e., the conditiona(0)=0 is
equivalent to ¢la/d7)(0)=1. In addition [6,19] (dy/
d7)(0)=0 leads, usingy~Inb, to (db/d7)(0)=0 and
b(0)>0. It is important to realize that the geometries
summed over in the path integral will be closedratO for
the 4-dimensional physical spacetime, but generally not

2A Ul [ 1
B=d— —b2 dA eZd“¢0(—+ad
3 U2 0 ! max_¢0

+A262d“‘/’ma'<( — ad)

max ¢0

which does allow us to evaluat®(u,¢) close tou= —oo.
In here,Sg= — iS¢ is the Euclidean action, obtained through
the effective actior{18) and takingdr=iNdt:

6 o372 & s e 2as oA regular, and also that the geometries will be regular-ad
Se= | dr | —aata'et— g+ate T(e T —1)"=  for the extrad-dimensional space. From the constraint equa-
tion, the other condition da/d7)(0)=1 (regularity) will
1 2.7k hold at saddle points and, similarly, fo(0)>0 which will
+ aed“"’—zvl . (420  follow from the corresponding regularity of the equations of
e motion[12].

Thus, integrating Eq(42) from an initial point7=0 to

To ensure that the surn® does corresponds to compact A, a very close point ta=0, we get

(d+4)-metrics we must impose conditions aiit) andb(t)

at 7=0 (wherer is the Euclidean timé r=iNdt), such that

the Euclidean metric Ar 6 r
Se= fo dr

T A
| 3a—dad o= 2ad 2"
K ot e (e 1) 3

3A discussion on the mathematical aspects of generalizing the
. . . . 1 27k
Hartle-Hawking no-boundary proposal to higher dimensions can be + _edacb_vl
found in the Appendix. T 2

: (44)
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TABLE |. Boundary conditions o ~ for W.

U1:0 017&0
onZ  and¢<0 ¥=0(1) for d<19 (d=19) v=0
onZ~ and¢>0 V=1 v=0

where we useda~ 7 close to 7=0. Finally, by setting
a=e*k/6, the integration yields

5 kA
_ _a2u Au—dad n—2a¢d _ 1\2 —
et +e e 1 for v,=0,
S={ 8 ( 7oy Toru
+o  for v;#0. FIG. 4. U=0 curves in theu¢ plane ford=6 and different
(45 values of the ratiov; /v, [(@) vq/v,=0, (b) vy/v,=3 and (c)
Since, with a suitable choice of the metric, we can have’:/v2=1l

W =e" %€ near the past null infinitysee Ref[11]), 7™, we _ _ . _ .
can easily obtain the boundary conditions. This analysis ig@nd ¥ will be oscillatory if U>0 and exponential type if

simplified by introducing the following new variables: U <0, assuming that its dependence?bris small.
Similarly, when the surfaces of constddtcorrepond to
X=etsinhg, timelike regions of the minisuperspace metric, a Lorentz-

type transformation can rotate coordinates ¢) such that
they become parallel to the axis. The potentiall will then
depend only onp, and¥ will be exponential type fotJ <0
such that the past null infinitf ~ now corresponds to the and oscillatory type fol >0, assuming now that the wave

lines x=y and x=—y. The boundary conditions o ~,  function dependence om is small. The surfacesl=0 de-

which are shown in Table I, can be easily obtained from Eqpend on the relation, /v, and are given by the expression
(45). For all over Z~, the normal derivative vanishes,

y=e*coshp, (46)

d¥/on=0.
Let us now further proceed with our search for solutions » 9w gdad / d(d—-1) v,
to the Wheeler-DeWitt equation. In this situation, one must & aKA (e 206 1)2| 1=1=—% v,

generally begin by determining the regions where the solu-
tion is oscillatory and where it is exponential. This can be 12
heuristically done by examining the regions where for sur- X(ez’w—l)z} ) (49
faces of constant U, the minisuperspace metric
ds’=du?—d¢? is either spacelike ds>>0) or timelike
(ds’<0):

In spacelike regions we can locally perform a Lorentz-
type transformation to new coordinates, @):

These surfacetee Fig. 4 provide all points for which a
Euclidean solution can be smoothly matched into a Lorentz-

ian one, that isp. = ¢ (the extrinsic curvature being continu-
ous. Forv,/v,=0 we recover the result found in R¢i.1].
In order to further characterize the regions where solutions
are oscillatory or exponential, we further summarize the
(47) asymptotic branches of the surfade=0 as follows:(i) For
v1/v,=0 and ¢—+w, b—+w, we have
e?*— (9m/2kA)ed*? a— \3/4A; (ii) whengp— — o, b—0,
where ¢ is a constant, such that the surfaces of consthnt we havee?*— (97/2kA)e*@* 4% 2 0; (iii) finally, when
are parallel to thep axis. The potential will then depend, at ¢—0, b—b,, we obtaine?*« ¢, a—0; (iv) for v,/v,
least locally, only onuz and the Wheeler-DeWitt equation # 0 only the asymptotic brancih—0 survives.
can be rewritten as However, besides the surfaces of constdnthat corre-
spond to timelike or spacelike regions, we have also to look
for the curves of constal surfaces for which the minisu-
U (%, $)=0, (49) perspace me’;ric _is nulgdu/d¢p==1. The exp_ression for
these curves is given byU/du=*+dU/d¢, that is,

= pucoshg— ¢sinhg,

@=— psinhg+ pcosty,

P FP -
—— —==+U(w)
du?  dd? H

b, 97 ¢1“i”(1—[d(d—1)/96](v1/vz)(e_2“‘/’—1)(21da){e_2”‘¢[6ia(d+4)]—(6ida)})l/2
e= e —2a —2a ’ (50)
kA (e72%9—1){e 2*Y[6+ a(d+4)]—(6=da)}
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C.
exp. os

4

/ //
< —1;/ - %o 5 os 1 1.9
-1 37 /%05 . : VA 2, : :
FIG. 5. U=0 (dashed lingand null curvegbold line) in the u ¢ FIG. 7. U=0 (dashed lingand null curvegbold line) in the u ¢
plane ford=3 andv,/v,=0. plane ford=6 andv,/v,=0.

where the sign ‘=" is independent of the remaining ones T A 12
appearing in Eq(50). It is quite important to point out that :

the sign of one of the terms in E450) dependson the (iif) For ¢— =, b—0, andv, /v,=0 we have

number of extra dimensions;
) 97 2
e, —gldtdae____—_
6—a(d+4)>0 for d=4, kA 6+ a(d+4)
6—a(d+4)<0 for d<4. (52 a—0. The lower sign branch exists only fde4.

(iv) When ¢— — andv4/v,#0, we have
This implies that there will be different solutions for differ-

ent values ofl. As far as the asymptotic branches of EgD) by 9T s d(d—1) (—2*=da) v,
are concerned, we have the following. e eldraad %6  6=a(drd) o,
(i) For ¢— +x, b—oo, we have the asymptotic branch - 2
9 144/C a—0, and the lower sign branch exists only fibx 4.
ezf‘—>med‘“ZS 6——d+ , (v) Finally, when¢—0, b—b,, thene?#o« ¢ 1.

@ (vi) There is an additional asympototic branch for
~ o _p d— ., where exp{2ad.)=(6-da)/[6*a(d+4)], with
ac A~ where e?#~|¢p—¢.| 1. The lower branch¢_ exists only for

d(d-1) v, d=4. .
.= —TU—(ZIda)mtda). In Figs. 5, 6 and Figs. 7, 8 we plot the curvbls=0
2

(dashed linestogether with the ones for whiahu/d¢=*+1
(i) If vylv, verifies the conditionv,/v,<96[d(d  (bold lines for casesd=3 andd=6. Notice thedifference
—1)(2+da)(6—da)], then there are two other asymptotic between thed<4 and thed=4 cases. For each region we
branches further indicate whetheW is expected to be oscillatolpso
or exponentialexp).
9 <1i C) In the following subsections we shall analyze in some

detail different physical situations and derive the correspond-

osc.

N d)
1.5 —/-0.5 [ 0.5 1 1.5
2

FIG. 6. U=0 (dashed lingand null curvegbold line) in the u ¢ FIG. 8. U=0 (dashed lingand null curvegbold line) in the u¢
plane ford=3 andv,/v,=1. plane ford=6 andv,/v,=1.
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ing Hartle-Hawking(no-boundary wave function. We shall which different behaviors are expected. On the lower region
employ the transformatiori47), after which the Wheeler- (1) in Fig. 7 [u<(da/2)¢] the potential is approximately

DeWitt equation takes the general form given by
P2 5 L o —et# for v,/v,=0,
= "= tU(u, @) | W (i, ¢)=0. (52)
2 2 ~ 3
I &(ﬁ U(M’¢) e2u+da¢%ﬂbg for 01/02?&0. (57)
U2

We can anticipate that Secs. Il D and Il E contain the most
interesting physical results as far as the process of compagyry,, /3,0 we can choose sirh=—(d+ 2)/2(d— 1), so

tification is concerned. that
A. Wave function for p>0 and ¢<<0 - — 37 vq
. . o . U~U(¢)=e"?— —b?2,
This case represents the physical situation prior to the kK v,
compactification process. Fu>0 (i.e., a>0) and ¢<0
(i.e.,b—0 with U>1) the potential38) becomes wherew=/8(d—1)/(d+2). The solution is then
2kA
U , w_eﬁ,u.f(d+4)m/>, 53 L 2(3m v 12
(d)=5r 3 ‘P(M,Q'))”emK(z/aT)\e === —b3| e,
o\ K vz
and we can distinguish two situation®) d<4, for which (58

we can choose sith=-6/w and hence U~U(9) _

=(2kA/9m)e~“?; (b) d=4, for which we can choose Wheree is the separation constant. o

cosh¥=6/w and henceU~U(ﬁ)=(2kA/97r)e“’;, where For v,/v,=0 the wave function is a combination of

w?=|24(—d?+d+8)/d(d+2)|, with @>0. Ko(z) andl(z), with z=3e**. These solutions are, as ex-
We can now solve Eq52) with Eq. (53) by separation of ~pected, exponential type and are also valid in the region

variables to find that fod<4, the solution is a combination ¢>1 andu<0.

of the Bessel functions of the first kind,(z), and of the For the other casdregion (2) in Fig. 7], we have

second kindK ,(z). Ford=4, we have a combination of the U=~e® ~9¢2kA/97. Choosing sinfi=\/d/2(d+3) we get

modified Bessel functions of the first kind,(z), and of the  U~U () =e“#2kA /97, with w=+24(d+3)/(d+2), and

second kind,Y,(z). The study of the boundary conditions y is 3 combination ofl,(2) and Y (2), with v=(2/?[))\/§
carried out above allows us to pick the appropriate Bessel,q

function:
- — (2 2kA\ 12 - 2(2kA\Y2 -
~a*tVe I il it - (w/2 =_| — (0l2)p
Y(u. dp)~e ”K(Z/w)\ew( 977) e ! )d’} for d<4, z = on e ,
(54)
~ Fo [ 2kA | 12 ~ € b_?lintg a separation constant. This solution is, as expected,
~ N aled Bt it RN = oscillatory.
"I,(/.L,(ﬁ) e J(Z/w)ys_w( o ) e j| for d=4,
(59 C. Wave function for p<0
_— 2(2kA\1? (wl2); This case corresponds to a 4-dimensional physical uni-
Wn d)~do| -\ 5| €7 ford=19 andv,=0,  verse at a very early stage and with a gen&fisection. In

(560  the regionu<O0 [i.e., a(t)—0] and ¢>0 the potential is
B _ B also given by Eq(57). Forv,/v,#0 we obtain

wheree™ ** means a combination &** ande™ **, ande
is the separation constant, which is determined by matching
this solution onto the solution in the adjacent regione can
also see tha¢~0). In Egs.(54)—(56) we have assumed that
e=0. The casee<0 is not consistent with the Hartle-
Hawking boundary conditions for a wave function of the
type | sonsic v2(2) . Notice that, as expected<4 implies an
exponential behavior, whild=4 corresponds to an oscilla-
tory one.

—
* ~ ~
W~e™ Yl gy Ve

2/(3 12
(_”Ebg) e(w/2)¢l' (59)

o\ K vy

while for v/v,=0 we haveW¥(u,d)~I,[ 2€?*]. In both
cases the behavior is exponential. These solutions also apply
for <0 andu<[a(d+4)/2]¢.

For the particular situation wherg<0 together with
$<<0, we further distinguish two different situations) For
u>[(d+2)a/2]d we expect a behavior similar to the one
found for u>0 and <0 (see Sec. lll A; (b) As for the

This case corresponds to the situation where the radii ofegion [(d+2)a/2]p<u<[(d+4)al2] ¢, this is a transi-
the S® andSU sections are large. Far=>1 and¢>1 one has tion region and one should expect a mixture of the previous
to deal with two regions separated hy=(da/2)¢, on  wave functions.

B. Wave function for p>1 and ¢>1
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D. Wave function in the neighborhood of = ¢z b~by. In the neighborhood ofp=0, at the minimum of
We shall now obtain approximate solutions in the neigh-Y (#=Constg), we consider the dominant term of the po-

borhood of = s, USNg the semiclassical approximation tential for larges.:

to the path integraf41l), 8a2kA

97
(66)

2kA
~ 6 7d0‘¢_ *Zﬂl(i’_ 2% 6 2
V(. d)=A(p, p)e” 5 H), (6o U dTeT g (e T T=ETY

where ¢ .y IS the local maximum ol (w=constg) and is
given approximately bye 2¢¢ma=d/d+4. This corre- Notice that the potential vanishes fgr=0 and that in Eq.
sponds to the physical state of our universe where the extrd®6) we exhibit the dominant term for values g¢faround the
d_dimensiona' Space is at an equ“ibrium point, Correspondminimum. Quadra.tic pOtentials of this kind are found in mas-
ing to its maximum value. sive scalar field model&]

Using then the classical field equations of motion ob- We now perform a simple change of variables,
tained fromS,; to integrate the Euclidean action we get, for

U]_/l)z:o, X:e3'u1
3 4K\ 2 312 y=e 299, (67)
Se=— Hl—(?) e’r() —1}, (61)
16k°€) from which yields the Wheeler-DeWitt equation
where the potential) (u, ¢), given by 52 92 p P
X2 — —4a’y*— +9x— —4a’y —
2 ax? ay? 2 ay
Q(p <¢>)=9‘d“¢’—A (e72ab_1)24 ed“¢"4#<—2777b0 ﬂ)
| Bk 16¢ v2) 2,12 2 2kA
(62 XYYy -1 5| (xy)=0. (68)

was assumed to be approximately constant rkared,ax.

Hence, in the regioty <0, As we are interested in the limik<1 andy~1, we ac-

tually have to solve

‘I’%A(,umﬁ)exl{ > 1 2(9_2 9L ., 2 2KA _
16k=Q) X ,9X2+Xax+9xy (y-1 e ¥(x,y)=0.
3 4k\? 32 (69)
Xexp — ———1- ?) e , (83
16k°Q) Thus, choosing
where the prefactoA is such that it verifies the condition 1 [2KA
A(—,p)=1. z=3 gwxyd/4|y_1|'

In the regionU>0 the wave function becomes oscilla-

tory, and the WKB procedure shows that one easily sees thalt is a combination of Bessel functions

] Jo(2) andYy(z), where

3
16k%Q) 2kA 2«
z= —e®#| ).
4 T 3

3 K\ 2 312 97
X O [(—) eZ“Q—l} ——t. (69
5{16k29 3 4 If WoJy(z), then, asz—0, the wave function behaves as
W ~1—27%/4. If, on the other handy also depends o¥y(z),
Replacing Eq(64) in the Wheeler-DeWitt equation one ob- then, as z—0, ¥ behaves asymptotically as¥
tains the prefactor ~(2/7)In(z'2). This behavior is depicted in Fig. 9.
According to the standard interpretational rules of quan-
tum cosmology(see, for instance, Reff23]), the probabilis-
65 i interpretation of the wave function does make sense in the
classical and the semiclassical regions. Therefore, as the
For v,/v,#0 these results are still valid fge>0. For  largew region corresponds to a classical region, the fact that

w<0 we expect the behavior described in Sec. Il C. the wave function is highly peaked arougd=0 means that
the most probable configuration does indeed correspond to

solutions with compactification for expanding external
spacetime. In the next section we shall draw additional

Flnally, we consider the case where the 4-dimensionaphysical information concerning some of the solutions in this
physical universe is in a stage of lar§ radius and with  section.

‘I’~B(M,¢)exr{

-1/4

4k\?
B(u,p)~e™# (g) e?*0—1

E. Wave function in the neighborhood of =0 and large u
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whereS is a rapidly varying phase arm@d a slowly varying
prefactor. One chooseS to satisfy the classical Hamilton-
Jacobi equation

3S 2+

ol "\
The significance ofS becomes evident when operating,
on WV (for 7, the procedure is analoggus

2
+U(u,¢)=0. (73

a, V=

)

v, (74

Ay InC
u I&,u,n

Since in the WKB approximation we assume

0S J
(9_ > a—InC ,
FIG. 9. Wave function in the neighborhood @f=0. 12 y72
IV. INTERPRETATION OF THE WAVE FUNCTION we have
In order to interpret the wave function we shall use the - :(9_8 . :a_S 79
trace of the square of the extrinsic curvatué=K;j;K'”, to B o " 9

see whether the wave function in the semiclassical limit cor- Th ¢ . ds th

responds to a Lorentzian or to a Euclidean geometry. This is b € stel unction ﬁpt‘r:estp:on é’ ¢ (;n toda Lwo-paralr)neter
justified as the Wheeler-DeWitt equation is the same fronpubset of so utlor'13. which obey Eqe75) anc that can be
whatever metric(Lorentzian or Euclideanone derives it. rggarded as providing the boundary con(_jltlons for the; clas-
The extrinsic curvature is a measure of the variation of the?Cal solutions. We shall now try to obtain an approximate

normal to the hypersurfaces of constant time, and is given bi%gteiotg {ﬁretgsatgrzggorggfé%bgﬁg;aiizm) ian\st?teisriggg
- max

1 ohi3 that classical trajectories start. Assuming tBas separable
—5 5 TVaNi|, (700 and that|aS/9u|>|3S/a¢| we can use a series expansion
around¢= ¢ax to obtain

Kis=N"*

wherehij is the d+ 3)-metrics and\; are the components

3 1/2 d/4 2
of the shift vector. From Eq(12) and using Eq.(26) we S%Jre_ﬂ ZKA) d 4 —El e20¢_ d
obtain 3\ 97/ |d+4/ |d+4 d+4/ |

(76)
3ql o2 da\2 2 2
2_ _ o~ 6utdadp —_| | — h
K e oK 90M2+( 2) a¢2+3da¢9,w9¢ . where
(72) 3 (d+2)(d+4) 4(d+4\]v2

16 d || T3larz)| Y

Performing the Lorentz-type transformatiofd?7) with

sinhg=\/d/2(d+3), and usingw=24(d+3)/(d+2), K*  The upperlowen sign on Eq(76) corresponds to a collaps-
simplifies to ing (expanding universe. This result agrees with E@4).
Using Eqgs.(75) and(26) we have, for the gaugi=1,

KZ— _;;977 d+3 (92 72
=—e ke ﬂT/.LZ (72 - émidmi_E e72a¢_iz
K 3/ \d+4) |d+4 d+4/ |
and we see that, in regions where the wave function behaves (77)

as an exponential, the quanti§?W/¥ is negative. There-
fore, in the classical limitK is imaginary and we have a : ~+(
Euclidean {1+ 4)-geometry. When the wave function is os- P~= 3
cillatory, the corresponding K is real, and the
(d+4)-geometry is Lorentzian. Note that a Lorentz geom- [f ¢, the initial value ofé, is close today, thend will
etry corresponds to a classical state of the Universe, while Be very small and the scale factaft) will grow exponen-
Euclidean one is normally associated with a quantum or tuntially like
neling state. As shown in Figs. 7 and 8 there existder4,
well defined Lorentzian regions fdifferent values of the A2
ratio v, /v,. These regions are, however, inexistent when ex 3
d<4 as depicted in Figs. 5 and 6.

In the oscillatory region, the wave function can be furtherfor an expanding universe. Given the fine-tuni(®y) this
interpreted using the WKB approximatiow =Re(C€'S),  last expression becomes

e*2a¢_i

_ —2ad
Ee d+4

3

A4
Ptegafa S on

d/a 4 .
d+4

d
d+4
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iyl

-2 1L y 2 el
FIG. 10. Module of the wave function fqz>0 and ¢<O0. FIG. 12. Module of the wave function in the neighborhood of
¢= bmaxand u>0.
1 d (d+2)/4 d—1 1/2
2
~ - e \“d(d-1
a®) eXp[bo d+4 3(d+4)) t}' 79 Il
127 2v,
which gives [where Eq.(37) was usedl Furthermore, using the value of
11 the radius of compactificatiomgz 16mkv,/€?, we can see
a(t)~exp — —t that the term
bo \/3e
2V1_ U1 o2
for d— +oo. Ov, 167k

Thus, we confirm the expectation thatconfigurations to
which the main contribution to the potential after compacti-in Eg. (38) does not depend om,. We hence conclude that
fication is an effective cosmological constant do correspondsolutions depending on will depend onv, *.
in the semiclassical regime, to inflationary solutions for ex- We are only interested in regions whege>0 (a>0),

panding universes. i.e., in regions where the probabilistic interpretation can be
unambiguously used, from which implies that we have the
A. Wave function for the vacuum configuration v,=V,(g") following cases.

(@ For >0 and ¢<0 [i.e., b(t)—0], =K (AY?

Throughout the previous sections we have assumed that. 1 Wl (AYD) (Fig. 1 dind to th | f
v,>0. This corresponds to the choige= 0 for the potential zh[%f v?a\?vra fuor:c{}ig)ns(;)S)( a:?\d (5])4)?.0cor g 1o the value o

(22), which is obviously associated to a classically unstable (b) For u>1, ¢>1 andu>(da/2)¢, ¥ is a combina-
situation. Nevertheless, since the wave function can be integ | -« 5 (A1) ’andY (AY). If g is not’ too large, the be-
preted, at least in a semiclassical situation, as giving th H v ' '
probability of a certain configuration, one expects, for con-
sistency, to have the wave function peaked arogsd0
when unfreezing , and varyingg. This means that the most
probable configuration should correspond to the chgic@.

The dependence oF onv, can be seen fixing the value
of the gauge coupling constaet and rewriting the term
2kA /97 in potential(38) as

avior ofY,, is similar to the one o8, (Fig. 11).

(c) For ¢~ ¢max and u>0 the wave function is given by
either Eq.(63) or (64) (Fig. 12.

(d) Finally, for ¢~0 , the wave functionV' is a combi-
nation of Jo(AY?) andYy(AY?, whose behavior is similar
to the one depicted in Fig. 11.

Notice that when?V' is oscillatory, the peak fog=0 will
disappear for certain values pf. Nevertheless, we have al-
ways ¥ (|g/==1)=0. We can therefore conclude that we
[\P| do observe the expected maximum of the wave function for
g=0.

V. CONCLUSIONS

In this paper we have obtained solutions of the Wheeler-

DeWitt equation derived from the effective model that arises
from dimensionally reducing to 1 dimension the Einstein-
Yang-Mills generalized Kaluza-Klein theory D=4+d di-
mensions. We considered ax S*x S topology and the

5 lel corresponding Hartle-Hawking boundary conditions. The di-
mensional reduction was achieved by restricting the field
configurations to be homogeneous and isotropic through

FIG. 11. Module of the wave function in the regi¢®) of Fig. 7. coset space compactification as indicated in Secs. | and IlI.

-2 -1 1
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This model of compactification has been proposed in Refsauthors are grateful to A. Zhuk, V. Ivashchuck, V. Melnikov,
[3,4]. In particular, the crucial role played by the external M. Rainer, and K. Bronnikov for conversations and discus-
space components of the gauge field in order to achieve clasions which have motivated this work and to Yu.A. Kuby-
sically as well as semiclassically stable compactificationsshin for valuable discussions and suggestions.

was shown in Ref{4].

In Sec. Il we have presented the most salient features of
the model and set up the Hamiltonian constraint which al-
lows us to obtain the Wheeler-DeWitt equation to study the
compactification process from the quantum-mechanical point
of view. Notice that in our model the gauge-field-associated For clarification purposes, let us briefly outline here the
angular momentum is also constrained to vanish. The richmain features of the Hartle-Hawking propogal and its
ness of our effective modgll8) is quite evident. In this generalization to higher spacetime dimensifit (see also
reduced model the gauge field hasn-vanishingtime-  Refs.[12,13,20,2%. In quantum cosmology it is assumed
dependent components iboth the external and internal that the quantum state of@=4 universe is described by a
spaces. Moreover, we have also two time-dependent scal@fave function¥[h;; ,®], which is a functional of the spatial
fields, the dilaton and the inflaton. This contrasts with preVi'S—metric,hij , and matter fields generically denoted ®yon
ous work in the literature, where either static magnetica compact 3-dimensional hypersurfaﬁeThe hypersurface
monopole configurations with nonzero components only ins, js then regarded as the boundary of a compact 4-manifold
19 or scalar fields were present. M?* on which the 4-metrig,,, and the matter field® are

In Sec. Il we have obtained no-boundary solutions of theregular. The metrig,,, and the fieldsP coincide withh;;
Wheeler-DeWitt equation which exhibit very interesting fea-andd, on S, and the wave function is then defined through
tures. The term the path integral over 4-metricég, and matter fields:

67\ 3
k| 282

APPENDIX A: HARTLE-HAWKING PROPOSAL
AND ITS GENERALIZATION
TO HIGHER SPACETIME DIMENSIONS

eda¢*4,u

Wi, ol | DIgIDI@Texn - ST'g.01), (A1

in Eq. (34) establishes that the external spatial dimensions
and the internall dimensions are at thgame footingn the  \where S; is the Euclidean action and is the class of

early Universe prior to compactification, i.e., wher<0. It 4-metricsg,,, and regular fieldsb defined on Euclidean
is only through the expansion of the external dimensiongompact manifold$1* and withno otherboundary thark..
(increase ofu) that compactification{—bo) is achieved. An extension of the Hartle-Hawking proposal for universes
Thus, it is the dynamics of the 3-dimensional physical spacgith D>4 dimensions was first discussed in Refl]. Let
which induces the evolution dfj towards CompaCtiﬁcation. us summarize it, mentioning some of its difficulties and com-
We also find that stable compactifying solutions do cor-paring it with theD =4 case.
respond to extrema of the wave function of the Universe, |n D=4 the theory of cobordisif24] guarantees that for
showing that the process of compactification does indeeg|| compact 3-surfaces theralways exists a compact
takes place for expanding universes. Furthermore, our analyr.dimensional manifold such th&8 is theonly boundary, or
sis indicates that the main properties of the Hartle-Hawkingquivalently, all 3-dimensionatompacthypersurfaces are
wave function do depend on the following two features. Oncohordant to zerd24]. Let us now consider the case for
the one hand, on a nonvanishing contribution to the potentigh~ 4. |n theseD-dimensional models, the wave function
(38) of the external physical space dimensions of the gaug@ouid be a functional of the@— 1) spatial metrich,, and
field, a feature already found in the classical analysis of Refimagter fieldsd on a (O —1)-hypersurfac&_, and is de-

[4], on the other hand, also on the numHesf internal space  fined as the result of performing a path integral over all com-
dimensions. In the case we set the contribution of the exteyact D-metrics and regular matter fields ®nP that match

nal space dimensions of the gauge field to the pote(R&l h,, and the matter fields oB_ .
to vanish, we find that we recover the main aspects of the ™| ot ys then start by assuming that thB - 1)-surface

discussion of Ref[11], where compactification was dis- S,_, does not possess any disconnected garts Would
cussed in the framework of an Einstein-Maxwell model withare always be D-dimensional manifoldMP® such that

a magnetic monopole configuration whose ga(exwell) 5 = s the only boundary? In higher-dimensional manifolds
field contribution was nonvanishing only for the internal \,5\vever this is not guaranteed. There exist compact
space. The same can be said about REf], where a stable 5 _ 1) pynersurface® ,_, for which there is no compact
compactification was achieved through the nonvanishin _dimensional manifold such th&,_, is the only bound-

contribution of the internal components of B £ 4)th rank 5. ‘This seems to indicate thatv>4 dimensions there are

anﬂsymmetnc ten;or f|_eld. FmaIIy,.we also find that.for ex- configurations which cannot be attained by the sum over
pandlng models, |_nf_lat|onary s_olutlo_ns can_be pred'Cted’_aﬁistorieS in the path integral. The wave function for such
shown in Sec. IV, if in the semiclassical regime the potential

. il di b frocti ogical configurations would therefore be zero. In Rdfl] this situ-
Is essentially given by an effective cosmological constant. ation was be circumvented so as to obtain nonzero wave

functions for such configurations, namely, by dropping the

assumption that thel— 1)-surface> ,_,; does not possess
One of us(P.V.M.) gratefully acknowledges the support any disconnected parts.

of the JNICT/PRAXIS XXI Grant No. BPD/6095/95. The  As described in11], if one assumes that the hypersur-
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facesXp_; consist of any numben>1 of disconnected amplitude could be obtained Bssumingit possesses dis-
parts3{" |, then one finds that the path integral for this connected parts. S _
disconnected configuration involves terms of two types. The _However, the above considerations for disconnected

first type consists of disconnect@dmanifolds, each discon-
nected part of which closes off " ; surfaces separately.
These will exist only if each of th&{” ; are cobordant to

pieces and generi&_; surfaces would spoil the Hartle-

Hawking prescription since the manifold would have more
than one boundary. In other words, the general extension
above discussed would imply a description in terms of

zero, but this may not always be the case. There will indeeg@ropagation between such genelig_, surfaces. The wave
be a second type of term which consists of connectedunction would then depend on every piece and not on a

D-manifolds which just plainly joins some of t@(D”),l to-
gether. This second type of manifold wallwaysexist inany
number of dimensions, providing tR&!" ; are similar topo-
logically, i.e., have the sameharacteristic number$24].

The wave function of ang §” ; surface which is not cobor-

single one as advocated [ii1]. Nevertheless, if we restrict
ourselves, as we do in the present paper, to the case of a
truncated model with a global topology given by a product of
a 3-dimensional manifold to d-dimensional one, then the
spacelike sections always form a boundary of a
D-dimensional manifold with no other boundari¢20].

dant to zero would be different from zero and obtained bySince hypersur‘fac£3><Sd are always cobordant to zero, it
assuming the existence of other surfaces of suitable topologynplies that for spacetimes with topologgx S*x S? the

and then summing over all compdatmanifolds which join
these surfaces together. Thus, given a compé&ct {)-

Hartle-Hawking proposal can be always implemented, and
thus we can consider the original no-boundary proposal in

hypersurfac& _; which is not cobordant to zero, a nonzero our study.
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