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The quantum cosmological version of the multidimensional Einstein-Yang-Mills model in anR3S33Sd

topology is studied in the framework of the Hartle-Hawking proposal. In contrast with previous work in the
literature, we consider Yang-Mills field configurations with nonvanishing time-dependent components in both
S3 and Sd spaces. We obtain stable compactifying solutions that do correspond to extrema of the Hartle-
Hawking wave function of the Universe. Subsequently, we also show that the regions where the 4-dimensional
metric behaves classically or quantum mechanically~i.e., regions where the metric is Lorentzian or Euclidean!
will depend on the numberd of compact space dimensions.@S0556-2821~97!08220-9#

PACS number~s!: 98.80.Cq, 04.40.Nr, 04.50.1h

I. INTRODUCTION

The issue of compactification is central in multidimen-
sional theories of unification, such as generalized Kaluza-
Klein, supergravity, and superstring theories. Consistency
with known phenomenology requires that the extra dimen-
sions in these theories be of Planck size and stable. A nec-
essary condition for the latter is the presence of matter with
repulsive stresses to counterbalance the collapsing thrust of
gravity. For this purpose, magnetic monopoles@1#, Casimir
forces@2#, and Yang-Mills fields@3,4# have been considered.
The situation with Yang-Mills fields is particularly interest-
ing as it illustrates well the importance of considering non-
vanishing external-space components of the gauge fields, a
point that has been disregarded in previous work in the lit-
erature. In fact, it was shown in Ref.@4# that it is precisely
this feature that renders compactifying solutions classically
as well as semiclassicaly stable.

The main motivation for considering our study of com-
pactification in the context of quantum cosmology lies in
ascertaining how this process takes place. Indeed, this is cru-
cial for extracting classical predictions from any multidimen-
sional unifying theories. In fact, no cosmological description
can be considered complete until specifying the set of initial
conditions for integration of the classical equations of mo-
tion. Furthermore, since the quantum cosmological approach
of Hartle and Hawking@5# allows for a well-defined program
for establishing this set of initial conditions, it is quite natural
to extend this approach to the study of the issue of compac-
tification in higher-dimensional theories. This program has
been already applied to many different quantum models of
interest such as massive scalar fields@6#, Yang-Mills fields

@7#, and massive vector fields@8# as well as in supersymmet-
ric models~see Ref.@9# for a review and a complete set of
references! and to the lowest-order gravity-dilaton theory
arising from string theory@10#. The generalization of the
Hartle-Hawking program to higher spacetime dimensions
has been considered previously for the 6-dimensional
Einstein-Maxwell theory@11#, for gravity coupled with a
(D24)th rank antisymmetric tensor field@12#, where the
stability of compactification was achieved thanks to the pres-
ence of a magnetic-monopole-type configuration, and also to
11-dimensional supergravity@13#.

In this work a rather general and realistic setting to study
the compactification process is considered in the context of
the Einstein-Yang-Mills multidimensional model of Ref.@4#
with an SO~N! gauge field inD541d dimensions and an
homogeneous and~partially! isotropic spacetime with a
R3S33Sd topology. We aim to study the quantum mechan-
ics of the coset compactification of theD-dimensional space-
timeMD:

MD5R3Gext/Hext3Gint/H int, ~1!

where Gext(int)5SO(4)@SO(d11)# and Hext(int)5
SO(3)@SO(d)# are, respectively, the homogeneity and isot-
ropy groups in 3(d) dimensions. For this purpose we will
seek compactifying solutions of the Wheeler-DeWitt equa-
tion for the Einstein-Yang-Mills cosmological model of Ref.
@4# in the framework of the Hartle-Hawking proposal.

In contrast with previous work in the literature@11,12# we
consider Yang-Mills field configurations withnonvanishing
time-dependent components inboth S3 and Sd spaces. We
then derive an effective model by restricting the fields to be
homogeneous and isotropic. This construction will allow us
to study in detail the issue of compactification, which as
discussed in Ref.@4#, depends crucially in the contribution of
the externalgauge field components. Our analysis of the re-
sulting Wheeler-DeWitt equation indicates that the regions
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where the metric is Lorentzian or Euclidean do depend on
the numberd of internal dimensionsandon the potentials for
the external and internal components of the gauge field. Fur-
thermore, we show that stable compactifying solutions do
indeed correspond to the extrema of the wave function of the
Universe, implying a correlation between compactification of
the extra dimensions and expansion of the macroscopic
spacetime. We should mention that an attractive feature of
our model is that it can be regarded as the bosonic sector of
some general unifying theories, implying that possibly most
of the conclusions of our quantum-mechanical analysis of
the compactification process and of its stability will remain
valid in those theories as well.

This paper is then organized as follows. In the next sec-
tion we present ourAnsätze for the metric and for the gauge
field ~see Refs.@4,14# for a general discussion! as well as the
resulting effective action which is the starting point of our
analysis. We also obtain in that section the Wheeler-DeWitt
equation of our effective model. In Sec. III we present and
discuss compactifying solutions of the Wheeler-DeWitt
equation and in Sec. IV we discuss their interpretation. In
Sec. V we present our conclusions. We also include an Ap-
pendix where the mathematical aspects of extending the
Hartle-Hawking proposal to higher-dimensional spacetimes
is described, with emphasis in our model where hypersur-
faces are ofSD21;S33Sd type.

II. EFFECTIVE MODEL
AND WHEELER-DE WITT EQUATION

We shall describe in this section our multidimensional
Einstein-Yang-Mills quantum cosmological model. Special
emphasis will be given to the differences between our model
and others present in the literature@11–13#. Namely, the
gauge field in our reduced model will have time-dependent
spatial components on the 3-dimensional physical space.
This contrasts with previous work on the subject where ei-
ther static magnetic-monopole-type configurations, whose
only nonvanishing components were the internal
d-dimensional ones@11,12#, or scalar fields@15# were con-
sidered. Our approach provides therefore a somewhat more
realistic model to study the influence of higher dimensions
on the evolution of the 4-dimensional physical spacetime. In
addition, we shall also see howdifferent values ford, the
number of internal space dimensions, may induce fairly dif-
ferent physical situations.

Our model is derived from the generalized Kaluza-Klein
action:

S@ ĝm̂n̂ ,Âm̂ ,x̂ #5Sgr@ ĝm̂n̂#1Sgf@ ĝm̂n̂ ,Âm̂#1Sinf@ ĝm̂n̂ ,x̂ #,
~2!

with

Sgr@ ĝm̂n̂#5
1

16p k̂
E
MD

dx̂A2ĝ~R̂22L̂ !, ~3!

Sgf@ ĝm̂n̂ ,Âm̂#5
1

8ê2EMD
dx̂A2ĝTrF̂ m̂n̂F̂ m̂n̂, ~4!

Sinf@ ĝm̂n̂ ,x̂ #52E
MD

dx̂A2ĝF1

2
~]m̂x̂ !21Û~ x̂ !G , ~5!

whereĝ is det(ĝm̂n̂), ĝm̂n̂ is theD541d dimensional met-
ric, R̂, ê, k̂, and L̂ are, respectively, the scalar curvature,
gauge coupling, gravitational, and cosmological constants in
D dimensions. In addition, the following field variables are
defined inMD: F̂ m̂n̂5]m̂Ân̂2]n̂Âm̂1@Âm̂ ,Ân̂# is the field
strength,Âm denotes the components of the gauge field, and
x̂ is the inflaton responsible for the inflationary expansion of
the external space withÛ(x̂) being the potential forx̂. We
assume that the potentialÛ(x̂) is bounded from below, that
it has a global minimum, and without loss of generality that
Ûmin50. As first suggested in Ref.@16#, the splitting of the
internal and external dimensions of space in the generalized
Kaluza-Klein theory~2! can have its origin in the spontane-
ous symmetry-breaking process, which is due to vacuum so-
lutions corresponding to a factorization of spacetime in a
product of spaces. Assuming that is indeed the case, then

MD5M43I d, ~6!

M4 being the 4-dimensional Minkowski spacetime andI d a
Planck-sized-dimensional compact space. For the cosmo-
logical setting we are interested in consider instead

M41d5R3Gext/Hext3Gint/H int, ~7!

admiting local coordinates x̂m̂5(t,xi ,jm), where
m̂50,1,. . . ,31d, i 51,2,3; m54, . . . ,d13, whereR de-
notes a timelike direction andGext/Hext(Gint/H int) the space
of external~internal! spatial dimensions realized as a coset
space of the external~internal! isometry groupGext (Gint).

We restrict ourselves to spatially homogeneous and~par-
tially! isotropic field configurations, which means that these
are symmetric under the action of the groupGext3Gint. Let
the gauge groupK̂ of the D-dimensional theory be a simple
Lie group. For definiteness, let us consider the case with the
gauge groupK̂5SO(N), N>31d and

M41d5R3S33Sd, ~8!

whereS3(Sd) is the 3- (d-! dimensional sphere. The group of
spatial homogeneity and isotropy is, in this case,

GHI5SO~4!3SO~d11!, ~9!

while the group of spatial isotropy is

H I5SO~3!3SO~d!, ~10!

which allows for the alternative realization ofM41d:

M41d5R3SO~4!/SO~3!3SO~d11!/SO~d!

5R3@SO~4!3SO~d11!#/@SO~3!3SO~d!#.

~11!

The field configurations associated with the above geom-
etry were described in Ref.@4#, using the theory of symmet-
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ric fields~see also Refs.@7,17,18#!. The most general form of
a SO~4!3SO(d11)-invariant metric inE41d as Eq. ~8!
reads

ĝ52Ñ2~ t !dt21 ã2~ t !S i 51
3 v iv i1b2~ t !Sm54

d13 vmvm,
~12!

where the scale factorsã(t), b(t) and the lapse function
Ñ(t) are arbitrary nonvanishing functions of time. Moreover,
va denote local moving coframes inS33Sd, andS i 51

3 v iv i

andSm54
d13 vmvm coincide with the standard metricsdV3

2 and
dVd

2 of 3- andd-dimensional spheres with local coordinates
(xi ,jm), respectively.

The SO~4!3SO(d11)-invariant Ansatzfor the inflaton
field x̂ reads

x̂~ t,xi ,jm!5x̂~ t !. ~13!

As for the SO~4!3SO(d11)-symmetricgauge field, the fol-
lowing Ansatzis considered:

Â5
1

2
Sp,q51

N232dBpq~ t !T31d1p 31d1q
~N! dt1

1

2
S1< i , j <3Ti j

~N!v i j

1
1

2
S4<m,n<3Tmn

~N!ṽm23 n23

1S i 51
3 F1

4
f 0~ t !S j ,k51

3 e j ikTjk
~N!

1
1

2
Sp51

N232df p~ t !Ti d131p
~N! Gv i

1Sm54
d13 F1

2
Sq51

N232dgq~ t !Tm d131q
~N! Gvm, ~14!

where f 0(t), f p(t),p51, . . . ,N232d;gq(t),q51, . . . ,N
232d;Bpq(t),1<p,q<N232d are arbitrary functions;
andTpq

(N) ,1<p,q<N are the generators of the gauge group
SO(N). We have used the decomposition

v5Sa51
d13vaTa1S1< i , j <3v i j

Ti j
~4!

2
1S1<m,n<dṽmn

T̃mn
~d11!

2
~15!

for the Cartan’s one-form inS33Sd. HereTi j
(4) and T̃mn

(d11)

form a basis of the Lie algebra ofGHI, Ta5Ta4
(4)/2, a51,2,3

andTa5Ta23 d51
(d11) /2, a54, . . . ,d13.

Substituting theAnsätze ~12!, ~13!, and ~14! into action
~2! and performing the conformal changes

Ñ2~ t !5F b0

b~ t !G
d

N2~ t !, ~16!

ã2~ t !5F b0

b~ t !G
d

a2~ t !, ~17!

where b0 denotes the equilibrium value ofb, we obtain a
1-dimensional effective reduced action for the functions of
time that parametrize thesymmetricfield configurations@4#:

Seff@a,c, f 0 ,f,g,x,N,B̂#

516p2E dtNa3H 2
3

8pk

1

a2F ȧ

N
G2

1
3

32pk

1

a2
1

1

2
F ċ

N
G2

1
1

2
F ẋ

N
G2

1edbc
3

4e2

1

a2S 1

2
F f 0̇

N
G2

1
1

2FDtf

N G2D
1e22bc

d

4e2

1

b0
2

1

2FDtg

N G2

2W~a,c, f 0 ,f,g,x!J , ~18!

with k5 k̂/vdb0
d ,e25ê2/vdb0

d ,b5A16pk/d(d12),vd is the
the volume of Sd for b51, and where we have used
c5b21ln(b/b0) andx5Avdb0

dx̂ as the dilaton1 and inflaton
fields, respectively. In Eq.~18!, the overdots denote time
derivatives andDt is the covariant derivative with respect to
the remnant SO(N232d) gauge fieldB̂(t) in R:

Dtf~ t !5
d

dt
f~ t !1B̂~ t !f~ t !, Dtg~ t !5

d

dt
g~ t !1B̂~ t !g~ t !.

~19!

Notice that f 0(t),f5$ f p% represent the gauge field compo-
nents in the 4-dimensional physical space-time, while
g5$gq% denotes the components in the spaceI d andB̂ is an
(N232d)3(N232d) antisymmetric matrix B̂5(Bpq).
The potentialW in Eq. ~18! is given by

W5e2dbcF2e22bc
1

16pk

d~d21!

4

1

b0
2

1e24bc
1

b0
4

d~d21!

8e2
V2~g!1

L

8pk
1U~x!G

1e22bc
1

~ab0!2

3d

32e2
~ f–g!21edbc

3

4e2a4
V1~ f 0 ,f!,

~20!

whereL5vdb0
dL̂, U(x)5vdb0

dÛ(x̂/Avdb0
d) and

V1~ f 0 ,f!5
1

8
@~ f 0

21f221!214 f 0
2f2#, ~21!

V2~g!5
1

8
~g221!2 ~22!

are related to the external and internal components of the
gauge field, respectively. The variablesN and B̂ are
Lagrange multipliers associated with the symmetries of the
effective action~18!. The lapse functionN is associated with

1The scale factorb(t) of the internal space induces a behavior
similar to the case of a minimally coupled scalar field. In fact, by
introducing the fieldc by b;expc, this quantity corresponds to the
scalar field which appears in the harmonic expansion of the Kaluza-
Klein theory.
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the invariance ofSeff under arbitrary time reparametrizations,
while B̂ is connected with the local remnant SO(N2d23)
gauge invariance. The equations of motion for the physical
variablesa, c, x, f 0 , f, andg can be found in Ref.@4#.

The canonical conjugate momenta associated with the ca-
nonical variables in model~18! are given by

pa52
12p

k

a

N
ȧ, pc516p2

a3

N
ċ, px516p2

a3

N
ẋ,

~23!

p f 0
5

12p2

e2
edbc

a

N
ḟ 0 , p f5

12p2

e2
edbc

a

N
Dtf,

pg5
4p2

e2b0
2

e22bc
a3

N
Dtg. ~24!

For simplicity we replace2 the variables (a,c,x) by the new
variables (m,f,j):

a5emS k

6p D 1/2

, c5fS 3

4pkD 1/2

, x5jS 3

4pkD 1/2

.

~25!

The corresponding new conjugate momenta then read

pm52S 2k

3p D 1/2e3m

N
ṁ, pf5S 2k

3p D 1/2e3m

N
ḟ,

pj5S 2k

3p D
1
2 e3m

N
j̇. ~26!

The Hamiltonian and SO(N232d) gauge constraints are
then obtained by varying Eq.~18! with respect toN and B̂,
and in terms of the momenta~26! are given by

2pm
2 2e4m1pf

2 1pj
21e2m2daf

e2

6p2
@p f 0

2 1p f
2#

1e2af
3e2b0

2

dpk
pg

21e6mS 4k

3 D 2

W50, ~27!

p f p
f q1pgp

gq2p f q
f p2pgq

gp50, ~28!

wherea5A12/d(d12).
The canonical quantization follows by promoting the con-

jugate momenta into operators as

pm°2 i
]

]m
, pf°2 i

]

]f
, pj°2 i

]

]j
,

p f 0
°2 i

]

] f 0
, p f°2 i

]

]f
, pg°2 i

]

]g
. ~29!

The Hamiltonian constraint~27! is then quantized to yield
the Wheeler-DeWitt equation:

H ]2

]m2
2e4m2

]2

]f2
2

]2

]j2
2e2m2daf

e2

6p2F ]2

] f 0
2

1
]2

]f2G
2e2af

3e2b0
2

dpk

]2

]g2
1e6mS 4k

3 D 2

WJ C50, ~30!

where in the usual parametrization of the factor ordering am-
biguity, pm

2 °2m2p(]/]m)„mp(]/]m)…, we have setp50.
The richness of the effective model~18! and the corre-

sponding Wheeler-DeWitt equation~30! is quite evident. In
this reduced model the gauge field has nonvanishing time-
dependent components inboth the external and internal
spaces. Moreover, we have also two time-dependent scalar
fields, the dilaton and the inflaton. This contrasts with previ-
ous work in the literature, where either static magnetic
monopole configurations with nonzero components only in
I d or scalar fields were present. Our model allows thus to
consider several possibilities.

Aiming to study the compactification process we shall
focus our analysis on the variablesm andf and the contri-
butions to the potentialW from the gauge field. This choice
is justifiable as it can be seen from Eq.~30! that the kinetic
term for the external components of the gauge field is sup-
pressed in an expanding Universe, while for the internal
components the kinetic term is not relevant as compactifying
solutions requireg to seat at the extremum of the potential
V2(g) @4#. In doing that, we shall keep the inflaton field
frozen as it has been shown that this field does not affect the
compactification process@4#. Of course, we could instead
consider takingm andx as the physically relevant variables
and freeze the remaining ones and actually models of this
type have been studied in Ref.@15#.

Hence, in what follows we shall restrict ourselves to the
study of compactification and hence concentrate our study on
the subsystem where the relevant variables arem and f.
Hence, it requires solving the Wheeler-DeWitt equation~30!
for the static vacuum configuration of the gauge and inflaton
fields:

j5jv, f 05 f 0
v , f5fv, g5gv50; ~31!

we also assume thatU(jv)50 and thatf andg are orthogo-

nal. The notationv1[V1( f 0
v ,fv) andv2[V2(gv)5 1

8 will be
used throughout this paper. The Wheeler-DeWitt equation
suitable for the study of compactification is the following:

F ]2

]m2
2

]2

]f2
1U~m,f!GC~m,f!50, ~32!

where

2The replacementc→f and x→j is a mere rescaling, while
introducingm→ lna for the scale factor can bring some advantages.
In fact, the minisuperaspace metric becomes then proportional to
diag(1,21) with useful consequences as far as the Wheeler-DeWitt
equation is concerned@19#.

56 4533QUANTUM COSMOLOGICAL MULTIDIMENSIONAL . . .



U~m,f!5e6mS 4k

3 D 2

V~m,f!2e4m ~33!

and

V~m,f!5e2dafF2e22af
1

16pk

d~d21!

4

1

b0
2

1e24af
1

b0
4

d~d21!

8e2
v21

L

8pkG
1edaf24mS 6p

k D 2 3

4e2
v1 . ~34!

The scenario associated with this choice is analogous to
the ones of Refs.@11–13,20#, with the novel feature of taking
into account the external components of the gauge field. As it
will be seen, the last term in Eq.~34! is central in our model
and constitutes one of themajor differenceswith respect to,
for instance, Ref.@11#. Indeed, it is precisely this term sets
the dependence of early Universe scenarios (m!0, i.e.,
a→0) on different values ofd andv1, brought about by the
gauge field components in the 4-dimensional spacetime.

Moreover, as it will be discussed in the next section, it is
the termedaf24m(6p/k)23/4e2v1 in Eq. ~34! that establishes
that the external spatial dimensions and the internald dimen-
sions are at thesame footingin the early Universe prior to
compactification, i.e., whenm!0. It is only through the ex-
pansion of the external dimensions~increase ofm) that com-
pactification (b→b0) is achieved. Thus, it is the dynamics of
the 3-dimensional physical space which induces the evolu-
tion of I d towards compactification. Furthermore, we shall
see how different values forv1 and d do lead to different
quantum scenarios, i.e., solutions of the Wheeler-DeWitt
equation, whose physical features can be compared with
those of Refs.@11,12#.

III. SOLUTIONS WITH DYNAMICAL
COMPACTIFICATION

In this section we shall establish the boundary conditions
for the Wheeler-DeWitt equations~32!–~34! and obtain so-
lutions with dynamical compactification for certain regions

of themf plane. Let us first address the latter issue, i.e., the
scenario for dynamical compactification in our model.

As discussed in Ref.@4#, from the classical point of view,
different values for the cosmological constantL lead to dif-
ferent compactifying scenarios. Indeed, forL.c2/16pk
„c25@(d12)2(d21)/(d14)#e2/16v2… there are no com-
pactifying solutions and for

c1

16pk
,L,

c2

16pk
~35!

@c15d(d21)e2/16v2# a compactifying solution exists
which is classicaly stable, but semiclassically unstable. Fi-
nally, a value ofL,c1/16pk implies that the value of the
effective 4-dimensional cosmological constant,L (4)

58pkV(`,f), is negative ~see Fig. 1!. Since the
4-dimensional cosmological constantL (4) must satisfy the
bound

uL~4!u,102120
1

16pk
, ~36!

we are led to chooseL5c1/16pk. On the other hand, since
we are interested in compactifying solutions, for which
f'0, we shall takeL such thatf50 corresponds to the
absolute minimum of Eq.~33!. This corresponds to
b0

2516pkv2 /e2, and the fine-tuning@4#

L5
d~d21!

16b0
2

. ~37!

The potential~33! simplifies then to

U~m,f!5e6m2daf
2kL

9p
~e22af21!22e4m

1e2m1daf
3p

k

v1

v2
b0

2 , ~38!

and its form is shown in Fig. 2. Moreover, as can be seen
from the plot ofV(m5const,f) in Fig. 3 @cf. Eq. ~33!#, for
m greater than a critical valuemc , the potentialU(m,f) has
a local maximum fmax given approximately by
e22afmax5d/(d14). This critical value arises from the last
term in Eq.~38! and in a first order approximation is given
by

ac
4;e4mc5

2B2AB224AC

2A
, ~39!

where

A52aA1A2S 2kL

9p D 2

, ~40!

FIG. 1. PotentialU(m5const,f) for some values ofL and
d56 @~a! L.c2/16pk, ~b! c1/16pk,L,c2/16pk, ~c!
L,c1/16pk#.
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B5d
2L

3

v1

v2
b0

2FdA1e2daf0S 1

fmax2f0
1adD

1A2e2dafmaxS 1

fmax2f0
2adD G ,

C5ad5e2daf0S 3p

k

v1

v2
b0

2D 2

,

with A1528e22afmax528d/d14, A25@(d14)2e24af0

2d2]/2, and e22af05@(d12)22A(d12)42d2(d14)2#/
(d14)2.

We now turn to the discussion of the boundary conditions
for the Wheeler-DeWitt equation.3 We shall use the path
integral representation for the ground state of the Universe,

C@m,f#5E
C
DmDfexp~2SE!, ~41!

which does allow us to evaluateC(m,f) close tom52`.
In here,SE52 iSeff is the Euclidean action, obtained through
the effective action~18! and takingdt5 iNdt:

SE5E dt
6p

k F2aȧ21a3ḟ22
a

4
1a3e2daf~e22af21!2

L

3

1
1

a
edaf

2pk

e2
v1G . ~42!

To ensure that the sumC does corresponds to compact
(d14)-metrics we must impose conditions onã(t) andb(t)
at t50 ~wheret is the Euclidean timedt5 iNdt), such that
the Euclidean metric

ĝ5dt21 ã2~t!S i 51
3 v iv i1b2~t!Sm54

d13 vmvm ~43!

is compact. In Ref.@11# the following conditions were sug-
gested: ã50, b.0, d ã/dt51, and db/dt50 at t50,
which can also be inferred from the regularity of the Euclid-
ean equations of motion@12#. Notice that physical reasons,
such as the vanishing of the internal gauge field components
and of the gravitational coupling in 4 dimensions, prevent
the interchange of these conditions. Clearly, this approach to
select the boundary conditions to the Hartle-Hawking wave
function is not quite correct from the quantum point of view
as it implies a simultaneous fixing of both canonical and
corresponding conjugated momentum variables.

As far as our reduced model@see Eq.~18!# is concerned,
consistent boundary conditions can be implemented as fol-
lows. Let us first point out that our reduced model is similar
to a closed Friedmann-Robertson-Walker model with a sca-
lar field c ~or f) @11#. Hence, our boundary conditions
which are consistent with a 4-geometry closing off in a regu-
lar way and with regular field configurations:a(0)50 and
(dc/dt)(0)50. The next step is to note that the correspond-
ing constraint~Friedmann! equation in our model imples that
(da/dt)(0)51 @21,22#; i.e., the condition a(0)50 is
equivalent to (da/dt)(0)51. In addition @6,19# (dc/
dt)(0)50 leads, usingc; lnb, to (db/dt)(0)50 and
b(0).0. It is important to realize that the geometries
summed over in the path integral will be closed att50 for
the 4-dimensional physical spacetime, but generally not
regular, and also that the geometries will be regular att50
for the extrad-dimensional space. From the constraint equa-
tion, the other condition (da/dt)(0)51 ~regularity! will
hold at saddle points and, similarly, forb(0).0 which will
follow from the corresponding regularity of the equations of
motion @12#.

Thus, integrating Eq.~42! from an initial pointt50 to
Dt, a very close point tot50, we get

SE5E
0

Dt

dt
6p

k F2t2
t

4
1t3e2daf~e22af21!2

L

3

1
1

t
edaf

2pk

e2
v1G , ~44!

3A discussion on the mathematical aspects of generalizing the
Hartle-Hawking no-boundary proposal to higher dimensions can be
found in the Appendix.

FIG. 2. PotentialU(m,f) for d56 and largem (m.mc ; see
Fig. 3!.

FIG. 3. PotentialV(m5const,f) for d56 and some values of
m.
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where we useda't close to t50. Finally, by setting
a5emAk/6p, the integration yields

SE5H 2
5

8
e2m1e4m2daf~e22af21!2

kL

72p
for v150,

1` for v1Þ0.
~45!

Since, with a suitable choice of the metric, we can have
C5e2SE near the past null infinity~see Ref.@11#!, I2, we
can easily obtain the boundary conditions. This analysis is
simplified by introducing the following new variables:

x5emsinhf,

y5emcoshf, ~46!

such that the past null infinityI2 now corresponds to the
lines x5y and x52y. The boundary conditions onI2,
which are shown in Table I, can be easily obtained from Eq.
~45!. For all over I2, the normal derivative vanishes,
]C/]n50.

Let us now further proceed with our search for solutions
to the Wheeler-DeWitt equation. In this situation, one must
generally begin by determining the regions where the solu-
tion is oscillatory and where it is exponential. This can be
heuristically done by examining the regions where for sur-
faces of constant U, the minisuperspace metric
ds25dm22df2 is either spacelike (ds2.0) or timelike
(ds2,0):

In spacelike regions we can locally perform a Lorentz-
type transformation to new coordinates (m̃,f̃):

m̃5mcoshu2fsinhu,
~47!

f̃52msinhu1fcoshu,

whereu is a constant, such that the surfaces of constantU

are parallel to thef̃ axis. The potential will then depend, at
least locally, only onm̃ and the Wheeler-DeWitt equation
can be rewritten as

F ]2

]m̃2
2

]2

]f̃2
1U~m̃ !GC~m̃,f̃ !50, ~48!

and C will be oscillatory if U.0 and exponential type if
U,0, assuming that its dependence onf̃ is small.

Similarly, when the surfaces of constantU correpond to
timelike regions of the minisuperspace metric, a Lorentz-
type transformation can rotate coordinates (m,f) such that
they become parallel to them̃ axis. The potentialU will then
depend only onf̃, andC will be exponential type forU,0
and oscillatory type forU.0, assuming now that the wave
function dependence onm̃ is small. The surfacesU50 de-
pend on the relationv1 /v2 and are given by the expression

e2m5
9p

4kL

edaf

~e22af21!2S 16F12
d~d21!

6

v1

v2

3~e22af21!2G1/2D . ~49!

These surfaces~see Fig. 4! provide all points for which a
Euclidean solution can be smoothly matched into a Lorentz-
ian one, that is,ṁ5ḟ ~the extrinsic curvature being continu-
ous!. For v1 /v250 we recover the result found in Ref.@11#.
In order to further characterize the regions where solutions
are oscillatory or exponential, we further summarize the
asymptotic branches of the surfaceU50 as follows:~i! For
v1 /v250 and f→1`, b→1`, we have
e2m→(9p/2kL)edaf, ã→A3/4L; ~ii ! whenf→2`, b→0,
we havee2m→(9p/2kL)ea(d14)f, ã→0; ~iii ! finally, when
f→0, b→b0, we obtaine2m}f21, ã→0; ~iv! for v1 /v2
Þ0 only the asymptotic branchf→0 survives.

However, besides the surfaces of constantU that corre-
spond to timelike or spacelike regions, we have also to look
for the curves of constantU surfaces for which the minisu-
perspace metric is null,dm/df561. The expression for
these curves is given by]U/]m56]U/]f, that is,

e2m5
9p

kL
edaf

1‘‘ 6 ’ ’ ~12@d~d21!/96#~v1 /v2!~e22af21!~27da!$e22af@66a~d14!#2~66da!%!1/2

~e22af21!$e22af@66a~d14!#2~66da!%
, ~50!

TABLE I. Boundary conditions onI2 for C.

v150 v1Þ0

on I2 andf,0 C50~1! for d,19 (d>19) C50
on I2 andf.0 C51 C50

FIG. 4. U50 curves in themf plane ford56 and different

values of the ratiov1 /v2 @~a! v1 /v250, ~b! v1 /v25
1
3, and ~c!

v1 /v251#.
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where the sign ‘‘6 ’’ is independent of the remaining ones
appearing in Eq.~50!. It is quite important to point out that
the sign of one of the terms in Eq.~50! dependson the
number of extra dimensions,d:

62a~d14!.0 for d>4,

62a~d14!,0 for d,4. ~51!

This implies that there will be different solutions for differ-
ent values ofd. As far as the asymptotic branches of Eq.~50!
are concerned, we have the following.

~i! For f→1`, b→`, we have the asymptotic branch

e2m→
9p

kL
edafS 11AC1

62ad D ,

ã}L21/2, where

C6512
d~d21!

96

v1

v2
~27da!~66da!.

~ii ! If v1 /v2 verifies the conditionv1 /v2,96/@d(d
21)(21da)(62da)], then there are two other asymptotic
branches

e2m→
9p

kL
edafS 16AC2

62da D ,

ã}L21/2.
~iii ! For f→2`, b→0, andv1 /v250 we have

e2m→
9p

kL
e~d14!af

2

66a~d14!
,

ã→0. The lower sign branch exists only ford>4.
~iv! Whenf→2` andv1 /v2Þ0, we have

e2m→
9p

kL
e~d12!afAd~d21!

96

~226da!

66a~d14!

v1

v2
,

ã→0, and the lower sign branch exists only ford,4.
~v! Finally, whenf→0, b→b0, thene2m}f21.
~vi! There is an additional asympototic branch for

f→f6 , where exp(22af6)5(66da)/@66a(d14)#, with
e2m'uf2f6u21. The lower branchf2 exists only for
d>4.

In Figs. 5, 6 and Figs. 7, 8 we plot the curvesU50
~dashed lines! together with the ones for whichdm/df561
~bold lines! for casesd53 andd56. Notice thedifference
between thed,4 and thed>4 cases. For each region we
further indicate whetherC is expected to be oscillatory~osc!
or exponential~exp.!.

In the following subsections we shall analyze in some
detail different physical situations and derive the correspond-

FIG. 5. U50 ~dashed line! and null curves~bold line! in themf
plane ford53 andv1 /v250.

FIG. 6. U50 ~dashed line! and null curves~bold line! in themf
plane ford53 andv1 /v251.

FIG. 8. U50 ~dashed line! and null curves~bold line! in themf
plane ford56 andv1 /v251.

FIG. 7. U50 ~dashed line! and null curves~bold line! in themf
plane ford56 andv1 /v250.
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ing Hartle-Hawking~no-boundary! wave function. We shall
employ the transformation~47!, after which the Wheeler-
DeWitt equation takes the general form

F ]2

]m̃2
2

]2

]f̃2
1U~m̃,f̃ !GC~m̃,f̃ !50. ~52!

We can anticipate that Secs. III D and III E contain the most
interesting physical results as far as the process of compac-
tification is concerned.

A. Wave function for µ>0 and f!0

This case represents the physical situation prior to the
compactification process. Form.0 ~i.e., a.0) and f!0
~i.e., b→0 with U@1) the potential~38! becomes

U~m,f!'
2kL

9p
e6m2~d14!af, ~53!

and we can distinguish two situations:~a! d,4, for which
we can choose sinhu56/v and hence U'U(f̃)
5(2kL/9p)e2vf̃; ~b! d>4, for which we can choose
coshu56/v and henceU'U(m̃)5(2kL/9p)evm̃, where
v25u24(2d21d18)/d(d12)u, with v.0.

We can now solve Eq.~52! with Eq. ~53! by separation of
variables to find that ford,4, the solution is a combination
of the Bessel functions of the first kind,I n(z), and of the
second kind,Kn(z). For d>4, we have a combination of the
modified Bessel functions of the first kind,Jn(z), and of the
second kind,Yn(z). The study of the boundary conditions
carried out above allows us to pick the appropriate Bessel
function:

C~m̃,f̃ !'e6Aem̃K ~2/v!AeF 2

vS 2kL

9p D 1/2

e2 ~v/2!f̃G for d,4,

~54!

C~m̃,f̃ !'eAef̃J~2/v!AeF 2

vS 2kL

9p D 1/2

e~v/2!m̃G for d>4,

~55!

C~m̃,f̃ !'J0F 2

vS 2kL

9p D 1/2

e~v/2!m̃G for d>19 and v150,

~56!

wheree6Aem̃ means a combination ofeAem̃ ande2Aem̃, ande
is the separation constant, which is determined by matching
this solution onto the solution in the adjacent region~one can
also see thate'0). In Eqs.~54!–~56! we have assumed that
e>0. The casee,0 is not consistent with the Hartle-
Hawking boundary conditions for a wave function of the
type I const3Ae(z). Notice that, as expected,d,4 implies an
exponential behavior, whiled>4 corresponds to an oscilla-
tory one.

B. Wave function for µ@1 and f@1

This case corresponds to the situation where the radii of
theS3 andSd sections are large. Form@1 andf@1 one has
to deal with two regions separated bym5(da/2)f, on

which different behaviors are expected. On the lower region
~1! in Fig. 7 @m,(da/2)f# the potential is approximately
given by

U~m,f!'H 2e4m for v1 /v250,

e2m1daf
3p

k

v1

v2
b0

2 for v1 /v2Þ0.
~57!

For v1 /v2Þ0 we can choose sinhu 52A(d12)/2(d21), so
that

U'U~f̃ !5ev̄f̃
3p

k

v1

v2
b0

2 ,

wherev̄5A8(d21)/(d12). The solution is then

C~m̃,f̃ !'eA ē m̃K ~2/v̄ !A ē F 2

v̄
S 3p

k

v1

v2
b0

2D 1/2

e~v̄/2!f̃G ,

~58!

where ē is the separation constant.
For v1 /v250 the wave function is a combination of

K0(z) and I 0(z), with z5 1
2e

2m. These solutions are, as ex-
pected, exponential type and are also valid in the region
f@1 andm,0.

For the other case@region ~2! in Fig. 7#, we have
U'e6m2daf2kL/9p. Choosing sinhu 5Ad/2(d13) we get
U'U(m̃)5eṽm̃2kL/9p, with ṽ5A24(d13)/(d12), and

C is a combination ofJn(z) and Yn(z), with n5(2/ṽ)A ẽ
and

z5
2

ṽ
S 2kL

9p D 1/2

e~ṽ/2!m̃,

ẽ being a separation constant. This solution is, as expected,
oscillatory.

C. Wave function for µ!0

This case corresponds to a 4-dimensional physical uni-
verse at a very early stage and with a genericSd section. In
the regionm!0 @i.e., a(t)→0# and f.0 the potential is
also given by Eq.~57!. For v1 /v2Þ0 we obtain

C'e6Aêm̃I ~2/v̂ !AêF 2

v̂
S 3p

k

v1

v2
b0

2D 1/2

e~v̂/2!f̃G , ~59!

while for v1 /v250 we haveC(m,f)'I 0@ 1
2e

2m#. In both
cases the behavior is exponential. These solutions also apply
for f,0 andm,@a(d14)/2#f.

For the particular situation wherem!0 together with
f!0, we further distinguish two different situations:~a! For
m.@(d12)a/2#f we expect a behavior similar to the one
found for m.0 and f!0 ~see Sec. III A!; ~b! As for the
region @(d12)a/2#f,m,@(d14)a/2#f, this is a transi-
tion region and one should expect a mixture of the previous
wave functions.
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D. Wave function in the neighborhood off5fmax

We shall now obtain approximate solutions in the neigh-
borhood off5fmax using the semiclassical approximation
to the path integral~41!,

C~m,f!'A~m,f!e2SE~m,f!, ~60!

wherefmax is the local maximum ofU(m5const,f) and is
given approximately bye22afmax5d/d14. This corre-
sponds to the physical state of our universe where the extra
d-dimensional space is at an equilibrium point, correspond-
ing to its maximum value.

Using then the classical field equations of motion ob-
tained fromSeff to integrate the Euclidean action we get, for
v1 /v250,

SE5
3

16k2V
H F12S 4k

3 D 2

e2mVG3/2

21J , ~61!

where the potentialV(m,f), given by

V~m,f!5e2daf
L

8pk
~e22af21!21edaf24mS 27pb0

2

16k3

v1

v2
D ,

~62!

was assumed to be approximately constant nearf5fmax.
Hence, in the regionU,0,

C'A~m,f!expF 3

16k2V
G

3expH 2
3

16k2V
F12S 4k

3 D 2

e2mVG3/2J , ~63!

where the prefactorA is such that it verifies the condition
A(2`,f)51.

In the regionU.0 the wave function becomes oscilla-
tory, and the WKB procedure shows that

C'B~m,f!expF 3

16k2V
G

3cosH 3

16k2V
F S 4k

3 D 2

e2mV21G3/2

2
p

4 J . ~64!

Replacing Eq.~64! in the Wheeler-DeWitt equation one ob-
tains the prefactor

B~m,f!'e2mF S 4k

3 D 2

e2mV21G21/4

. ~65!

For v1 /v2Þ0 these results are still valid form.0. For
m,0 we expect the behavior described in Sec. III C.

E. Wave function in the neighborhood off50 and large µ

FInally, we consider the case where the 4-dimensional
physical universe is in a stage of largeS3 radius and with

b;b0. In the neighborhood off50, at the minimum of
U(m5const,f), we consider the dominant term of the po-
tential for largem:

U~m,f!'e6m2daf
2kL

9p
~e22af21!2'e6mf2

8a2kL

9p
.

~66!

Notice that the potential vanishes forf50 and that in Eq.
~66! we exhibit the dominant term for values off around the
minimum. Quadratic potentials of this kind are found in mas-
sive scalar field models@6#.

We now perform a simple change of variables,

x5e3m,

y5e22af, ~67!

from which yields the Wheeler-DeWitt equation

F9x2
]2

]x2
24a2y2

]2

]y2
19x

]

]x
24a2y

]

]y

1x2yd/2~y21!2
2kL

9p GC~x,y!50. ~68!

As we are interested in the limitx!1 andy'1, we ac-
tually have to solve

Fx2
]2

]x2
1x

]

]x
1

1

9
x2yd/2~y21!2

2kL

9p GC~x,y!50.

~69!

Thus, choosing

z5
1

3
A2kL

9p
xyd/4uy21u,

one easily sees thatC is a combination of Bessel functions
J0(z) andY0(z), where

z5A2kL

9p

2a

3
e3mufu.

If C}J0(z), then, asz→0, the wave function behaves as
C'12z2/4. If, on the other hand,C also depends onY0(z),
then, as z→0, C behaves asymptotically asC
'(2/p)ln(z/2). This behavior is depicted in Fig. 9.

According to the standard interpretational rules of quan-
tum cosmology~see, for instance, Ref.@23#!, the probabilis-
tic interpretation of the wave function does make sense in the
classical and the semiclassical regions. Therefore, as the
large-m region corresponds to a classical region, the fact that
the wave function is highly peaked aroundf50 means that
the most probable configuration does indeed correspond to
solutions with compactification for expanding external
spacetime. In the next section we shall draw additional
physical information concerning some of the solutions in this
section.
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IV. INTERPRETATION OF THE WAVE FUNCTION

In order to interpret the wave function we shall use the
trace of the square of the extrinsic curvature,K25KÎ ĴK

Î Ĵ, to
see whether the wave function in the semiclassical limit cor-
responds to a Lorentzian or to a Euclidean geometry. This is
justified as the Wheeler-DeWitt equation is the same from
whatever metric~Lorentzian or Euclidean! one derives it.
The extrinsic curvature is a measure of the variation of the
normal to the hypersurfaces of constant time, and is given by

KÎ Ĵ5N21S 2
1

2

]hÎ Ĵ

]t
1¹ ĴNÎ D , ~70!

wherehÎ Ĵ is the (d13)-metrics andNÎ are the components
of the shift vector. From Eq.~12! and using Eq.~26! we
obtain

K252e26m1daf
3p

2k F9
]2

]m2
1S da

2 D 2 ]2

]f2
13da

]2

]m]fG .

~71!

Performing the Lorentz-type transformation~47! with
sinhu5Ad/2(d13), and usingṽ5A24(d13)/(d12), K2

simplifies to

K252e2ṽm̃
9p

k S d13

d12D ]2

]m̃2
, ~72!

and we see that, in regions where the wave function behaves
as an exponential, the quantityK2C/C is negative. There-
fore, in the classical limit,K is imaginary and we have a
Euclidean (d14)-geometry. When the wave function is os-
cillatory, the corresponding K is real, and the
(d14)-geometry is Lorentzian. Note that a Lorentz geom-
etry corresponds to a classical state of the Universe, while a
Euclidean one is normally associated with a quantum or tun-
neling state. As shown in Figs. 7 and 8 there exist, ford>4,
well defined Lorentzian regions fordifferent values of the
ratio v1 /v2. These regions are, however, inexistent when
d,4 as depicted in Figs. 5 and 6.

In the oscillatory region, the wave function can be further
interpreted using the WKB approximationC5Re(CeiS),

whereS is a rapidly varying phase andC a slowly varying
prefactor. One choosesS to satisfy the classical Hamilton-
Jacobi equation

2S ]S

]m D 2

1S ]S

]f D 2

1U~m,f!50. ~73!

The significance ofS becomes evident when operatingpm
on C ~for pf the procedure is analogous!:

pmC5F ]S

]m
2 i

]

]m
lnCGC. ~74!

Since in the WKB approximation we assume

U ]S

]mU@U ]

]m
lnCU,

we have

pm5
]S

]m
, pf5

]S

]f
. ~75!

The wave function corresponds then to a two-parameter
subset of solutions which obey Eqs.~75! and that can be
regarded as providing the boundary conditions for the clas-
sical solutions. We shall now try to obtain an approximate
solution for the Hamilton-Jacobi equation~73! in the region
close to the space segmentU50 andf5fmax as it is there
that classical trajectories start. Assuming thatS is separable
and thatu]S/]mu@u]S/]fu we can use a series expansion
aroundf5fmax to obtain

S'6
e3m

3 S 2kL

9p D 1/2S d

d14D d/4F 4

d14
2ES e22af2

d

d14D 2G ,
~76!

where

E5
3

16

~d12!~d14!

d H F11
4

3S d14

d12D G1/2

21J .

The upper~lower! sign on Eq.~76! corresponds to a collaps-
ing ~expanding! universe. This result agrees with Eq.~64!.
Using Eqs.~75! and ~26! we have, for the gaugeN51,

ṁ'7S L

3 D 1/2S d

d14D d/4F 4

d14
2ES e22af2

d

d14D 2G ,
~77!

ḟ'6S L

3 D 1/24a

3
Ee22afS e22af2

d

d14D . ~78!

If f0, the initial value off, is close tofmax, thenḟ will
be very small and the scale factora(t) will grow exponen-
tially like

expF S L

3 D 1/2S d

d14D d/4 4

d14
t G

for an expanding universe. Given the fine-tuning~37! this
last expression becomes

FIG. 9. Wave function in the neighborhood off50.
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a~ t !'expF 1

b0
S d

d14D ~d12!/4S d21

3~d14! D
1/2

tG , ~79!

which gives

a~ t !'expS 1

b0

1

A3e
t D

for d→1`.
Thus, we confirm the expectation thatf configurations to

which the main contribution to the potential after compacti-
fication is an effective cosmological constant do correspond,
in the semiclassical regime, to inflationary solutions for ex-
panding universes.

A. Wave function for the vacuum configuration v25V2„gv
…

Throughout the previous sections we have assumed that
v2.0. This corresponds to the choiceg50 for the potential
~22!, which is obviously associated to a classically unstable
situation. Nevertheless, since the wave function can be inter-
preted, at least in a semiclassical situation, as giving the
probability of a certain configuration, one expects, for con-
sistency, to have the wave function peaked aroundg50
when unfreezingv2 and varyingg. This means that the most
probable configuration should correspond to the choiceg50.

The dependence ofC on v2 can be seen fixing the value
of the gauge coupling constante and rewriting the term
2kL/9p in potential~38! as

S e

12p D 2 d~d21!

2v2

@where Eq.~37! was used#. Furthermore, using the value of
the radius of compactification,b0

2516pkv2 /e2, we can see
that the term

b0
2 v1

v2
5

v1

16pk
e2

in Eq. ~38! does not depend onv2. We hence conclude that
solutions depending onL will depend onv2

21.
We are only interested in regions wherem.0 (a.0),

i.e., in regions where the probabilistic interpretation can be
unambiguously used, from which implies that we have the
following cases.

~a! For m.0 and f!0 @i.e., b(t)→0#, C}Kn(L1/2)
~Fig. 10! or C}Jn(L1/2) ~Fig. 11! according to the value of
d @cf. wave functions~53! and ~54!#.

~b! For m@1, f@1 andm.(da/2)f, C is a combina-
tion of Jn(L1/2) andYn(L1/2). If g is not too large, the be-
havior of Yn is similar to the one ofJn ~Fig. 11!.

~c! For f'fmax andm.0 the wave function is given by
either Eq.~63! or ~64! ~Fig. 12!.

~d! Finally, for f'0 , the wave functionC is a combi-
nation of J0(L1/2) and Y0(L1/2), whose behavior is similar
to the one depicted in Fig. 11.

Notice that whenC is oscillatory, the peak forg50 will
disappear for certain values ofm. Nevertheless, we have al-
ways C(ugu561)50. We can therefore conclude that we
do observe the expected maximum of the wave function for
g50.

V. CONCLUSIONS

In this paper we have obtained solutions of the Wheeler-
DeWitt equation derived from the effective model that arises
from dimensionally reducing to 1 dimension the Einstein-
Yang-Mills generalized Kaluza-Klein theory inD541d di-
mensions. We considered anR3S33Sd topology and the
corresponding Hartle-Hawking boundary conditions. The di-
mensional reduction was achieved by restricting the field
configurations to be homogeneous and isotropic through
coset space compactification as indicated in Secs. I and II.

FIG. 10. Module of the wave function form.0 andf!0.

FIG. 11. Module of the wave function in the region~2! of Fig. 7.

FIG. 12. Module of the wave function in the neighborhood of
f5fmax andm.0.
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This model of compactification has been proposed in Refs.
@3,4#. In particular, the crucial role played by the external
space components of the gauge field in order to achieve clas-
sically as well as semiclassically stable compactifications
was shown in Ref.@4#.

In Sec. II we have presented the most salient features of
the model and set up the Hamiltonian constraint which al-
lows us to obtain the Wheeler-DeWitt equation to study the
compactification process from the quantum-mechanical point
of view. Notice that in our model the gauge-field-associated
angular momentum is also constrained to vanish. The rich-
ness of our effective model~18! is quite evident. In this
reduced model the gauge field hasnon-vanishing time-
dependent components inboth the external and internal
spaces. Moreover, we have also two time-dependent scalar
fields, the dilaton and the inflaton. This contrasts with previ-
ous work in the literature, where either static magnetic
monopole configurations with nonzero components only in
I d or scalar fields were present.

In Sec. III we have obtained no-boundary solutions of the
Wheeler-DeWitt equation which exhibit very interesting fea-
tures. The term

edaf24mS 6p

k D 2 3

4e2
v1

in Eq. ~34! establishes that the external spatial dimensions
and the internald dimensions are at thesame footingin the
early Universe prior to compactification, i.e., whenm!0. It
is only through the expansion of the external dimensions
~increase ofm) that compactification (b→b0) is achieved.
Thus, it is the dynamics of the 3-dimensional physical space
which induces the evolution ofI d towards compactification.

We also find that stable compactifying solutions do cor-
respond to extrema of the wave function of the Universe,
showing that the process of compactification does indeed
takes place for expanding universes. Furthermore, our analy-
sis indicates that the main properties of the Hartle-Hawking
wave function do depend on the following two features. On
the one hand, on a nonvanishing contribution to the potential
~38! of the external physical space dimensions of the gauge
field, a feature already found in the classical analysis of Ref.
@4#, on the other hand, also on the numberd of internal space
dimensions. In the case we set the contribution of the exter-
nal space dimensions of the gauge field to the potential~38!
to vanish, we find that we recover the main aspects of the
discussion of Ref.@11#, where compactification was dis-
cussed in the framework of an Einstein-Maxwell model with
a magnetic monopole configuration whose gauge~Maxwell!
field contribution was nonvanishing only for the internal
space. The same can be said about Ref.@12#, where a stable
compactification was achieved through the nonvanishing
contribution of the internal components of a (D24)th rank
antisymmetric tensor field. Finally, we also find that for ex-
panding models, inflationary solutions can be predicted, as
shown in Sec. IV, if in the semiclassical regime the potential
is essentially given by an effective cosmological constant.

ACKNOWLEDGMENTS

One of us~P.V.M.! gratefully acknowledges the support
of the JNICT/PRAXIS XXI Grant No. BPD/6095/95. The

authors are grateful to A. Zhuk, V. Ivashchuck, V. Melnikov,
M. Rainer, and K. Bronnikov for conversations and discus-
sions which have motivated this work and to Yu.A. Kuby-
shin for valuable discussions and suggestions.

APPENDIX A: HARTLE-HAWKING PROPOSAL
AND ITS GENERALIZATION

TO HIGHER SPACETIME DIMENSIONS

For clarification purposes, let us briefly outline here the
main features of the Hartle-Hawking proposal@5# and its
generalization to higher spacetime dimensions@11# ~see also
Refs. @12,13,20,24#!. In quantum cosmology it is assumed
that the quantum state of aD54 universe is described by a
wave functionC@hi j ,F#, which is a functional of the spatial
3-metric,hi j , and matter fields generically denoted byF on
a compact 3-dimensional hypersurfaceS. The hypersurface
S is then regarded as the boundary of a compact 4-manifold
M4 on which the 4-metricgmn and the matter fieldsF are
regular. The metricgmn and the fieldsF coincide withhi j
andF0 on S and the wave function is then defined through
the path integral over 4-metrics,4g, and matter fields:

C@hi j ,F0#5E
C
D@4g#D@F#exp~2SE@4g,F#!, ~A1!

where SE is the Euclidean action andC is the class of
4-metrics gmn and regular fieldsF defined on Euclidean
compact manifoldsM4 and withno otherboundary thanS.
An extension of the Hartle-Hawking proposal for universes
with D.4 dimensions was first discussed in Ref.@11#. Let
us summarize it, mentioning some of its difficulties and com-
paring it with theD54 case.

In D54 the theory of cobordism@24# guarantees that for
all compact 3-surfaces therealways exists a compact
4-dimensional manifold such thatS3 is theonly boundary, or
equivalently, all 3-dimensionalcompacthypersurfaces are
cobordant to zero@24#. Let us now consider the case for
D.4. In theseD-dimensional models, the wave function
would be a functional of the (D21) spatial metrichIJ and
matter fieldsF on a (D21)-hypersurfaceSD21 and is de-
fined as the result of performing a path integral over all com-
pact D-metrics and regular matter fields onMD that match
hIJ and the matter fields onSD21.

Let us then start by assuming that the (D21)-surface
SD21 does not possess any disconnected parts@11#. Would
there always be aD-dimensional manifoldMD such that
SD21 is the only boundary? In higher-dimensional manifolds
however, this is not guaranteed. There exist compact
(D21)-hypersurfacesSD21 for which there is no compact
D-dimensional manifold such thatSD21 is the only bound-
ary. This seems to indicate that inD.4 dimensions there are
configurations which cannot be attained by the sum over
histories in the path integral. The wave function for such
configurations would therefore be zero. In Ref.@11# this situ-
ation was be circumvented so as to obtain nonzero wave
functions for such configurations, namely, by dropping the
assumption that the (D21)-surfaceSD21 does not possess
any disconnected parts.

As described in@11#, if one assumes that the hypersur-
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faces SD21 consist of any numbern.1 of disconnected
parts SD21

(n) , then one finds that the path integral for this
disconnected configuration involves terms of two types. The
first type consists of disconnectedD-manifolds, each discon-
nected part of which closes off theSD21

(n) surfaces separately.
These will exist only if each of theSD21

(n) are cobordant to
zero, but this may not always be the case. There will indeed
be a second type of term which consists of connected
D-manifolds which just plainly joins some of theSD21

(n) to-
gether. This second type of manifold willalwaysexist inany
number of dimensions, providing theSD21

(n) are similar topo-
logically, i.e., have the samecharacteristic numbers@24#.
The wave function of anySD21

(1) surface which is not cobor-
dant to zero would be different from zero and obtained by
assuming the existence of other surfaces of suitable topology
and then summing over all compactD-manifolds which join
these surfaces together. Thus, given a compact (D21)-
hypersurfaceSD21 which is not cobordant to zero, a nonzero

amplitude could be obtained byassumingit possesses dis-
connected parts.

However, the above considerations for disconnected
pieces and genericSD21 surfaces would spoil the Hartle-
Hawking prescription since the manifold would have more
than one boundary. In other words, the general extension
above discussed would imply a description in terms of
propagation between such genericSD21 surfaces. The wave
function would then depend on every piece and not on a
single one as advocated in@11#. Nevertheless, if we restrict
ourselves, as we do in the present paper, to the case of a
truncated model with a global topology given by a product of
a 3-dimensional manifold to ad-dimensional one, then the
spacelike sections always form a boundary of a
D-dimensional manifold with no other boundaries@20#.
Since hypersurfacesS33Sd are always cobordant to zero, it
implies that for spacetimes with topologyR3S33Sd the
Hartle-Hawking proposal can be always implemented, and
thus we can consider the original no-boundary proposal in
our study.
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