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This paper presents a complete analysis of the effects of second order gravitational perturbations on cosmic
microwave background anisotropies, taking explicitly into account scalar, vector and tensor modes. We also
consider the second order perturbations of the metric itself obtaining them, for a universe dominated by a
collisionless fluid, in the Poisson gauge, by transforming the known results in the synchronous gauge. We
discuss the resulting second order anisotropies in the Poisson gauge, and analyze the possible relevance of the
different terms. We expect that, in the simplest scenarios for structure formation, the main effect comes from
the gravitational lensing by scalar perturbations that is known to give a few percent contribution to the
anisotropies at small angular scales.@S0556-2821~97!02918-4#

PACS number~s!: 98.70.Vc, 04.25.Nx, 98.80.Cq

I. INTRODUCTION

The increasing number of measurements of cosmic micro-
wave background~CMB! anisotropies in the last years and
the very ambitious observational programs for the future
generation of detectors makes us hope that the angular spec-
trum of the anisotropies will be known with great accuracy
within the next decade. This fact has stimulated theoretical
efforts to obtain more precise predictions for the anisotropies
produced in the different structure formation models, and it
is expected that future observations will be very helpful in
distinguishing among them and in putting constraints on the
cosmological parameters.

Most of these theoretical computations involve numerical
or semianalytic solutions of the linearized Boltzmann equa-
tion. Nonlinear gravitational effects on the anisotropies have
been computed for some particular processes, such as the
gravitational lensing from density perturbations@1–6# and
the Rees-Sciama effect@7–12# ~which is second order in a
flat matter-dominated universe, as the gravitational potential
is constant to first order!. It has been shown that the effect of
the gravitational lensing by density perturbations is to
smooth the so-called Doppler or acoustic peaks in the angu-
lar spectrum at highl , and it is thus relevant for the analysis
of the small angle observations@13#. On the other hand, the
nonlinear Rees-Sciama effect is in most cases expected to be
much smaller than the first order anisotropies@14,15# unless
early reionization substantially erases the first order anisotro-
pies.

In a recent paper, Pyne and Carroll@16# have presented a
nice framework for a complete computation of second and
higher order gravitational perturbations of the CMB. Their
algorithm essentially involves computing the redshift experi-
enced by the photons during their travel from the last scat-
tering to the observer in terms of their perturbed geodesics
and then obtaining the perturbed geodesics up to the required
order. The study of second order anisotropies is relevant be-
cause they can produce a non-negligible contribution com-
pared to the first order ones, due to the long distances in-

volved in the problem. The reason is that several second
order terms include integrals of the metric perturbations
along the photons path that can enhance small effects as the
photons travel from the last scattering surface. Moreover,
second order effects are also important because they give the
primary contribution to some statistical measures of the
anisotropies that are vanishing for the linear contribution, as,
for example, the three-point function of temperature
anisotropies@17–19#. In any case, it is important to know the
magnitude of the second order effects as they contribute to
the theoretical error of linear anisotropy calculations.

In this paper, we apply the formalism proposed by Pyne
and Carroll to the computation of the full second order
anisotropies in the Poisson gauge. We first present a compu-
tation of the second order anisotropies that generalizes the
results of Ref.@16#, in that we consider the motion of the
observer and the emitter, we explicitly include the second
order perturbations of the metric itself, and we take into ac-
count scalar, vector, and tensor modes. We then consider the
Poisson gauge, which, in the case of scalar first order pertur-
bations, reduces to the longitudinal gauge. We obtain the
second order perturbed metric for a dust-dominated universe
in the Poisson gauge explicitly, and then discuss the second
order anisotropies for this particular case.

Throughout this paper Greek indicesm,n, . . . take values
from 0 to 3, and Latin onesi , j , . . . from 1 to 3. We take, for
the metric, signature12; units are such thatc51.

II. TEMPERATURE ANISOTROPIES

The quantity of interest is the angular variation of the
temperature measured by an observer.

We consider a perturbed flat Robertson-Walker space-
time and use conformal timeh @dh[dt/a(t), wherea(t) is
the scale factor of the universe#. We can write the line ele-
ment as

ds2.a2~h!S gmn
~0!1gmn

~1!1
1

2
gmn

~2!1••• Ddxmdxn, ~2.1!
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where the term between parentheses is the conformally trans-
formed metric (gmn), gmn

(0) is the background Minkowski met-
ric, andgmn

(1) andgmn
(2) are the first and second order perturba-

tions, respectively.
Photons travel along null geodesicsxm(l), which we pa-

rametrize withl in the conformal metric, connecting the
observer, at coordinatesxO

m5(hO ,xO), to the emitting hyper-
surface, which we take at constant conformal timehE . This
hypersurface can be taken as the last scattering surface, at
redshiftzLS . At larger redshifts the hydrogen is ionized and
Compton scattering off electrons~linked to photons by elec-
tromagnetic interactions! couples photons to baryons. At
zLS , hydrogen recombines and photons can start their travel.
We assume that thermal radiation with temperatureTE(p,d̂)
is emitted by every point with coordinatespi in this hyper-
surface. This temperature depends also on the direction of
emission described by the vectord̂, normalized to unity in
the background. The different photon paths are specified by
the direction from which they arrive atO, specified by a
vector ê normalized to unity in the background. This direc-
tion fixes the pointp and the directiond̂ at emission.

If the CMB has a blackbody distribution and the photons
suffer a redshiftz during their travel from the emitterE to the
observerO, the emitted frequencyvE and the observed one
vO are related byvO5vE /(11z). Since the occupation
number per frequency mode is conserved, the corresponding
photon temperatures are related byTO5TE /(11z). The
anisotropies detected by an observer are due to inhomogene-
ities in the temperature at emission and to the different red-
shift suffered by photons coming from different directions.
We will compute this quantity up to second order in gravi-
tational perturbations.

The temperature measured by an observer atO can be
written as

TO~xO ,ê!5
vO
vE

TE~p,d̂!, ~2.2!

with v52gmnUmkn, whereUm is the four-velocity of the
observer or emitter andkn5dxn/dl is the wave vector of the
photon in the conformal metric, tangent to the null geodesic
xn(l), followed by the photon from the emission to the ob-
servation point. In fact, we will propagate photons back from
the observation point to the emission surface. We thus need
to obtainvE , p, andd̂ for a given initial set of valuesxO , ê,
andvO . The resulting quantities are functions of the photon
path and wave vector, which we expand in series of the
metric perturbationsgmn

(r ) and their derivatives as

xm~l!5x~0!m~l!1x~1!m~l!1x~2!m~l!1•••,

km~l!5k~0!m~l!1k~1!m~l!1k~2!m~l!1•••. ~2.3!

Contrary to the assumptions of Ref.@16#, we are not tak-
ing the observer and emitter comoving with the total fluid of
the universe. In this way we keep track, to first order, of the
dipole due to the observer’s motion and of the Doppler effect
due to the emitter’s motion, which are otherwise lost. In

addition to these effects, to second order, we also take into
account cross terms involving the velocities and other
sources of anisotropy.

We can expand the four-velocity as

Um5
1

aS d0
m1v ~1!m1

1

2
v ~2!m1••• D . ~2.4!

This is subject to the normalization conditionUmUm521.
It is also useful to write the perturbed spatially flat con-

formal metric as

g0052~112c~1!1c~2!1••• !, ~2.5!

g0i5zi
~1!1

1

2
zi

~2!1•••, ~2.6!

gi j 5~122f~1!2f~2!!d i j 1x i j
~1!1

1

2
x i j

~2!1•••, ~2.7!

where1 x i
(r ) i50 and the functionsc (r ), zi

(r ) , f (r ), and x i j
(r )

represent ther th order perturbation of the metric.
The normalization condition for the velocity fixes the time

componentv (r )0 in terms of the lapse perturbationc (r ). For
the first and second order perturbations we obtain

v ~1!052c~1!, ~2.8!

v ~2!052c~2!13~c~1!!212zi
~1!v ~1!i1v i

~1!v ~1!i . ~2.9!

In order to obtain the variation in the sky of the observed
temperature up to second order, according to Eq.~2.2!, we
need to expandvO and vE up to second order in gravita-
tional perturbations,

v5v~0!~11ṽ~1!1ṽ~2!1••• !, ~2.10!

and also to expand the temperature at emission:

TE~p,d̂!5TE
~0!

„11t~p,d̂!…. ~2.11!

We will not perform a full expansion oft(p,d̂), as a calcu-
lation of this quantity would be beyond the aim of this paper.
We will instead assume that it is known for a given model
and compute the additional effect of gravity along the pho-
tons path. We also have to take into account that the pointp
and directiond̂ at emission need to be expanded in the ex-
pression of t(p,d̂) as p5p(0)1p(1)1•••, and d̂5d(0)

1d(1)1•••. Performing these expansions in Eq.~2.2! we
obtain @16#

1Indices are raised and lowered usingd i j andd i j , respectively.
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TO~xO ,ê!5
vO

~0!

vE
~0!

TE
~0!F11~ṽO

~1!2ṽE
~1!1t!

1S ṽO
~2!2ṽE

~2!1~ṽE
~1!!22ṽO

~1!ṽE
~1!

1ṽO
~1!t2ṽE

~1!t1p~1!i
]t

]xi
1d~1!i

]t

]di D 1•••G ,

~2.12!

wheret and its spatial derivatives have to be evaluated at
(p(0),d(0)). The first factor gives the mean temperature at the
observation pointTO

(0)[TE
(0)vO

(0)/vE
(0) , and the round brack-

ets inside the term in square brackets define the first and
second order perturbationsdT(1) anddT(2) that we are look-
ing for.

To compute them, we will use the same background geo-
desics as in Ref.@16#,

x~0!m5„l,~lO2l!ei
…,

k~0!m5~1,2ei !, ~2.13!

and boundary conditions at the origin:

x~1!m~lO!5x~2!m~lO!50,

k~1!i~lO!5k~2!i~lO!50. ~2.14!

The condition that the wave vector be null fixes the value of
k(1)0(lO) and k(2)0(lO). We will only needk(1)0(lO) ex-
plicitly:

k~1!0~lO!52cO
~1!2zO

~1!iei2fO
~1!1

1

2
xO

~1!i j eiej .

~2.15!

Using the metric, four-velocity, and wave vector expan-
sions we can obtain the quantities in the expansion ofv:

v~0!5a21,

ṽ~1!5k~1!01c~1!1v i
~1!ei1zi

~1!ei , ~2.16!

ṽ~2!5k~2!01
1

2
c~2!1

1

2
zi

~2!ei1
1

2
v i

~2!ei2
1

2
~c~1!!21

1

2
v i

~1!v ~1!i1k~1!0c~1!2v i
~1!k~1!i2zi

~1!k~1!i2c~1!zi
~1!ei22f~1!v i

~1!ei

1x i j
~1!eiv ~1! j1

dk~1!0

dl
Dl1~c , j

~1!1zi , j
~1!ei1v i , j

~1!ei !p~1! j ,

whereDl is the difference in affine parameter between the points where the background and first order geodesics intersect the
h5hE hypersurface, and is given byDl52x(1)01•••. It can also be seen@16# that p(1)i5x(1)i1x(1)0ei and

d~1!i5ei2
ei2k~1!i

uei2k~1!i u
. ~2.17!

Finally, we obtain, for the first order temperature anisotropy,

dT~1!5ṽO
~1!2ṽE

~1!1t

52fO
~1!1

1

2
xO

~1!i j eiej1vO
~1!iei2kE

~1!02vE
~1!iei2zE

~1!iei2cE
~1!1t ~2.18!

and, for the second order one,

dT~2!5S k~2!01
1

2
c~2!1

1

2
v i

~2!ei1
1

2
zi

~2!ei2
1

2
~c~1!!21

1

2
v i

~1!v ~1!i1k~1!0c~1!2c~1!zi
~1!ei22f~1!v i

~1!ei1x i j
~1!eiv ~1! j DUO

E

1~vEi
~1!1zEi

~1!!kE
~1!i1

dk~1!0

dl U
E

xE
~1!02~c , j

~1!1zi , j
~1!ei1v i , j

~1!ei1t , j !E~x~1! j1x~1!0ej !E1
]t

]di U
E

d~1!i

2~k~1!01v i
~1!ei1zi

~1!ei1c~1!2t!E~k~1!01v i
~1!ei1zi

~1!ei1c~1!!uE
O . ~2.19!

The next step is to obtain the null geodesics up to second order; in particular, we need to compute the quantitiesk(2)0, k(1)m,
andx(1)m to substitute in Eqs.~2.18! and~2.19!. This problem has been solved for a general perturbed spacetime in Ref.@16#
using the geodesic expansion introduced by Pyne and Birkinshaw@20#. Following their method, we obtain, for perturbations
around a flat Robertson-Walker background in any gauge, that the first order wave vector is given by
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k~1!0~lE!5cO
~1!2fO

~1!1
1

2
xO

~1!i j eiej22cE
~1!2zE

~1!iei1I 1~lE!, ~2.20!

with

I 1~lE!5E
lO

lE
dl A~1!8, ~2.21!

whereA(1)[c (1)1f (1)1zi
(1)ei2 1

2 x i j
(1)eiej , and

k~1!i~lE!52fO
~1!ei1zO

~1!i2xO
~1!i j ej22fE

~1!ei2zE
~1!i1xE

~1!i j ej2I 1
i ~lE!, ~2.22!

with

I 1
i ~lE!5E

lO

lE
dlA~1!,i . ~2.23!

For the first order geodesics, we obtain

x~1!0~lE!5~lE2lO!FcO~1!2fO
~1!1

1

2
xO

~1!i j eiej G1E
lO

lE
dl@22c~1!2zi

~1!ei1~lE2l!A~1!8#,

x~1!i~lE!5~lE2lO!@2fO
~1!ei1zO

~1!i2xO
~1!i j ej #2E

lO

lE
dl@2f~1!ei1z~1!i2x~1!i j ej1~lE2l!A~1!,i #. ~2.24!

For the second order, we need only the difference between the wave vector at emission and observation:

kE
~2!02kO

~2!05cO
~2!2cE

~2!2
1

2
zE

~2!iei1
1

2
zO

~2!iei12cO
~1!kO

~1!022cE
~1!kE

~1!0

2~2x~1!ic ,i
~1!12x~1!0c~1!82z~1!iki

~1!1x~1!0zi
~1!8ei1x~1!izj ,i

~1!ej !E1I 2~lE!, ~2.25!

with

I 2~lE!5E
lO

lE
dlF1

2
A~2!82~zi

~1!82x i j
~1!8ej !~k~1!i1eik~1!0!12k~1!0A~1!812f~1!8A~1!1x~1!0A~1!91x~1!iA,i

~1!8G , ~2.26!

whereA(2)[c (2)1f (2)1zi
(2)ei2 1

2 x i j
(2)eiej .

We can now write the temperature anisotropy in terms of the metric perturbations. Replacing Eq.~2.20! into Eq.~2.18! we
obtain, for first order,

dT~1!5cE
~1!2cO

~1!1vO
~1!iei2vE

~1!iei1t2I 1~lE!. ~2.27!

This is a general expression, valid in any gauge, that takes into account scalar, vector, and tensor perturbations. It includes the
effect of intrinsic anisotropies in the last scattering surface, dipole due to the observer’s motion, Doppler effect from the
emitter’s motion, and gravitational redshift of the photons. It is equivalent to the well-known result originally obtained by
Sachs and Wolfe@21#. It can be seen that the full expression is gauge invariant up to a monopole term; the relative contribu-
tions from the intrinsic, Doppler, and gravitational redshift contributions are, however, gauge dependent.

Analogously, for second order, we obtain

dT~2!5
1

2
cE

~2!2
1

2
cO

~2!1
3

2
~cO

~1!!22
1

2
~cE

~1!!22I 2~lE!2vE
~1!ieicE

~1!

1@ I 1~lE!1vE
~1!iei #S 2cO

~1!2fO
~1!1

1

2
xO

~1!i j eiej2vO
~1!iei2cE

~1!2t1vE
~1!iei1I 1~lE! D

1xE
~1!0AE

~1!81~xE
~1! j1xE

~1!0ej !~c , j
~1!2v i , j

~1!ei1t , j !E1vO
~1!i S 1

2
vOi

~1!22fO
~1!ei1xOi j

~1! ej D
2

1

2
vEi

~1!vE
~1!i1cE

~1!t1
]t

]di
d~1!i2cO

~1!~cE
~1!1t!2vO

~1!iei S cO
~1!2fO

~1!1
1

2
xO

~1!k jekej2t2cE
~1!D

1vEi
~1!@2zE

~1!i1zO
~1!i12fO

~1!ei2xO
~1!i j ej2I 1

i ~lE!#. ~2.28!
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This is also a general expression that is valid in any gauge
and takes into account scalar, vector, and tensor perturba-
tions. It also includes the effects of the motion of the ob-
server and the emitter. In the previous expression we have
dropped the terms proportional tov (2)i as this computation is
not aimed at obtainingv i at the emission or observation
points, but assumes that they are known quantities.

To proceed further with the computation, we need to
know the initial values and the evolution of the perturba-
tions. To solve this it is necessary to fix a gauge. There are
different possibilities: The synchronous gauge (c (r )5z(r )

50) turns out to be convenient for many calculations and
has been widely used for linear anisotropy computations.
Another choice is the Poisson gauge (zi

(r ),i5x i j
(r ), j50), re-

cently discussed by Bertschinger@22#, which in the case of
scalar perturbations reduces to the longitudinal gauge. The
latter gauge, in whichzi

(r )5x i j
(r )50, has become very popu-

lar, because the evolution equations are most similar to the
Newtonian ones, and thus closest to our classical intuition.
All second order temperature anisotropy calculations have
been performed in this gauge. Since the vector and tensor
modes are set to zero by hand, the longitudinal gauge should
not be used to study perturbations beyond the linear regime:
This is because in the nonlinear case the scalar, vector, and
tensor modes are dynamically coupled and vector and tensor
modes cannot be set to zero arbitrarily. This could be a prob-
lem when studying the Rees-Sciama effect that explicitly
involves nonlinearities in the metric perturbations; we will
come to this point in Sec. IV. We will use the Poisson gauge,
which overcomes the above limitation of the longitudinal
gauge, while keeping all its advantages in terms of physical
interpretation of the results.

III. SECOND ORDER PERTURBATIONS
IN GENERAL RELATIVITY

We consider the gravitational instability of irrotational
collisionless matter in a flat Robertson-Walker background
up to second order. Different approaches to this problem
have been proposed. The first solution of the second order
relativistic equations has been obtained, in the synchronous
gauge, in a pioneering work by Tomita@23#. Matarrese, Pan-
tano, and Saez@24,25# obtained the leading order terms of
the expansion, using a different method, based on the so-
called fluid-flow approach. Salopek, Stewart, and Croudace
@26# used a gradient expansion technique to obtain second
order metric perturbations; an intrinsic limitation of their
method is, however, that nonlocal terms, such as the nonlin-
ear tensor modes, are lost. Russet al. @27# recently rederived
the metric perturbations to second order in the synchronous
gauge, using a tetrad formalism. We are interested here in
obtaining the solution in the Poisson gauge. Instead of per-
turbing the Einstein equations in this gauge and then solving
them, we will transform the solution known in the synchro-
nous gauge to the Poisson one, using the second order gauge
transformation recently developed in Ref.@28# ~for more de-
tails see Ref.@29#!.

Up to this point we have been completely general in the
inclusion of scalar, vector, and tensor modes. Now, in order
to give a more quantitative insight on the relevance of the
different contributions, we will make some restrictions. First,

we will neglect vector modes at the linear order. The fact that
they have decreasing amplitude and that they are not gener-
ated in inflationary theories makes us expect that their role
will not be relevant, at least if inflation was the mechanism
for primordial fluctuation generation. We will, however,
keep track of the second order vector modes generated by the
coupling with scalar modes. Second, we will neglect the ef-
fect of linear tensor modes as sources for second order metric
perturbations: Because of the graviton free streaming inside
the horizon, this is a very reasonable approximation. We will
then only consider the second order perturbations generated
by linear scalar perturbations. These are expected to give the
dominant contribution, as vector and tensor modes have de-
caying amplitude. The solutions given in Refs.@23,27# and
hence those obtained in this section apply to this restricted
case. For the computation of the CMB anisotropies we will,
however, keep the contribution of the linear tensor modes in
dT(1) anddT(2) everywhere, except as source forgmn

(2) . The
contribution of tensor modes can in fact be comparable to the
scalar contribution todT(1) at large scales in many inflation-
ary models@30#.

The first order solution to the perturbed Einstein equations
in the synchronous gauge is given by~see, e.g., Ref.@31#!

cS
~1!5zS

~1!50,

fS
~1!5

5

3
w1

h2

18
¹2w, ~3.1!

xSi j
~1!52

h2

3 S w ,i j 2
1

3
d i j ¹

2w D1x i j
Á~1! ,

wherew5w(x) is the initial peculiar gravitational potential.
x i j

Á(1) is the tensor~transverse and traceless! contribution,
which can be written as

x i j
Á~1!~x,h!5

1

~2p!3E d3k exp~ ik•x!xs
~1!~k,h!e i j

s~ k̂!,

~3.2!

wheree i j
s ( k̂) is the polarization tensor, withs ranging over

the polarization components1,3, andxs
(1)(k,h) is the am-

plitude. Its time evolution during the matter-dominated era
can be represented as

xs
~1!~k,h!'A~k!as~k!S 3 j 1~kh!

kh D , ~3.3!

where as(k) is a zero mean random variable with
autocorrelation function ^as(k)as8(k8)&5(2p)3k23d3(k
1k8)dss8. The spectrum of the gravitational wave back-
ground depends on the processes by which it was generated,
and, for example, in most inflationary models,A(k) is nearly
scale invariant and proportional to the Hubble constant dur-
ing inflation.

The second order perturbations are given by@23,27,29#
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cS
~2!5zS

~2!50,

fS
~2!5

h4

252S 2
10

3
w ,kiw ,ki1~¹2w!2D

1
5

18
h2S w ,kw ,k1

4

3
w¹2w D , ~3.4!

xSi j
~2!5

h4

126S 19w ,i
,kw ,k j212w ,i j ¹

2w14~¹2w!2d i j

2
19

3
w ,klw ,kld i j D1

5

9
h2S 26w ,iw , j24ww ,i j

12w ,kw ,kd i j 1
4

3
w¹2wd i j D1pSi j ,

where the traceless and transverse contributionpSi j satisfies
the inhomogeneous wave equation

pSi j9 1
4

h
pSi j8 2¹2pSi j52

h4

21
¹2Si j , ~3.5!

with

Si j 5¹2C0d i j 1C0,i j 12~w ,i j ¹
2w2w ,ikw , j

,k!, ~3.6!

where

¹2C052
1

2
„~¹2w!22w ,ikw ,ik

…. ~3.7!

This equation can be solved using the Green method; we
obtain forpSi j that

pSi j5
h4

21
Si j 1

4

3
h2Ti j ~x!1p̃ i j ~x,h!, ~3.8!

where ¹2Ti j 5Si j and the remaining piecep̃ i j (x,h), ac-
counting for a term that is constant in time and another one
that oscillates with decreasing amplitude, can be written as

p̃ i j ~x,h!5
1

~2p!3E d3k exp~ ik•x!
40

k4
Si j ~k!

3S 1

3
1

cos~kh!

~kh!2
2

sin~kh!

~kh!3 D , ~3.9!

with Si j (k)5*d3x exp(2ik•x)Si j (x).
The gauge transformation is determined to each order by

a four-vector j (r )m that we split asj (r )05a (r ) and j (r ) i

5] ib (r )1d(r ) i , with ] id
(r ) i50. In Ref.@28# the vectorsj (1)m

andj (2)m, describing the gauge transformation from the syn-
chronous to the Poisson gauge, have been explicitly obtained
in terms of the synchronous metric perturbationsgSmn

(1) and
gSmn

(2) . Using the metric perturbations in the synchronous
gauge presented above, we can write the first order gauge
transformation as

a~1!5
h

3
w,

b~1!5
h2

6
w, ~3.10!

and d(1)i50, in the absence of vector modes in the initial
conditions. For second order, we obtain

a~2!52
2

21
h3C01hS 10

9
w214Q0D ,

b~2!5h4S 1

72
w ,iw ,i2

1

42
C0D1

h2

3 S 7

2
w216Q0D ,

~3.11!

where¹2Q05C02 1
3 w ,iw ,i and

¹2dj
~2!5h2S 2

4

3
w , j¹

2w1
4

3
w ,iw ,i j 2

8

3
C0,j D .

~3.12!

We can now compute the metric perturbations in the Pois-
son gauge using the transformation rules of Ref.@28#. For the
first order, we obtain

cP
~1!5fP

~1!5w,

xPi j
~1! 5x i j

Á~1! . ~3.13!

These equations show the well-known result for scalar per-
turbations in the longitudinal gauge and the gauge invariance
for tensor modes at the linear level. For the second order, we
obtain

cP
~2!5h2S 1

6
w ,iw ,i2

10

21
C0D1

16

3
w2112Q0 ,

fP
~2!5h2S 1

6
w ,iw ,i2

10

21
C0D1

4

3
w228Q0 ,

~3.14!

¹2zP
~2!i52

8

3
h~w ,i¹2w2w ,i j w , j12C0

,i !,

xPi j
~2! 5p̃ i j .

Note that the resulting expressions forcP andfP can be
recovered, except for the subleading time-independent terms
by taking the weak-field limit of Einstein’s theory~e.g., Ref.
@32#! and then expanding in powers of the perturbation am-
plitude; this is basically the method employed in previous
second order computations of the Rees-Sciama effect. Also
interesting is the way in which the tensor modes appear in
this gauge: The transformation from the synchronous to the
Poisson gauge has in fact dropped the Newtonian and post-
Newtonian contributions, whose physical interpretation in
terms of gravitational waves is highly nontrivial~see the dis-
cussion in Ref.@33#!; what remains is a wavelike piece plus
a constant term which has no effects ondT(2).
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IV. POISSON GAUGE ANISOTROPIES

Let us start by discussing the first order anisotropies that
are described by Eq.~2.27!. The first termcE

(1) represents the
contribution from the gravitational redshift of the photons
due to the difference in gravitational potential between the
emission and observation points.cO

(1) only contributes to the
monopole and can be neglected. The termvO

(1)iei is the di-
pole due to the motion of the observer. The termvE

(1)iei

accounts for the Doppler effect due to the velocity of the
photon-baryon fluid at recombination and contributes to the
acoustic peaks. The termt describes the intrinsic anisotro-
pies in the photon temperature and is highly model depen-
dent. For example, for adiabatic perturbations, in which all
the components~baryons, photons, dark matter! have a con-
stant number density ratio, the photon energy density, and
thus the temperature, varies proportionally to the potential
fluctuations~at scales larger than the Jeans length!. It can be
seen that in this case

t5
1

4

drg

rg
U
E
5

1

3

drT

rT
E52

2

3
fE

~1! .

It is the combination of this term and the first one that gives
the standard result for adiabatic perturbations at large angular
scales,dT5 1

3 w. At small scales,t gives the main contribu-
tion to the acoustic peaks. We have not intended here to
include a computation oft andvE

(1)i that would involve solv-
ing the linearized transport equation for the photons that is
coupled to the fluid evolution equations for the cold dark
matter component and the baryons, the Boltzmann equation
for the neutrino distribution, and the Einstein equations for
the metric perturbations. This problem has been treated and
solved numerically by several authors~see, e.g.,@34–40#!.
We assume thatt andvE

(1)i are known for a given model, and
compute the additional anisotropy generated by the metric
perturbations along the photon path up to second order.

Finally, the contribution todT(1) from the last term,
I 1(lE) @called the integrated Sachs-Wolfe effect and given
by Eq.~2.21!#, represents the additional gravitational redshift
due to the time variation of the metric during the photon
travel. As in the linear regime the scalar potentialsf andc
are constant in time for a flat matter-dominated universe,
their contribution vanishes~they will however give a nonva-
nishing contribution in the nonlinear regime!. The contribu-
tion of tensor perturbations to the temperature anisotropies
arises exclusively fromI 1(lE) at linear order. In many infla-
tionary models, in which besides the usual scalar perturba-
tions also a background of gravitational waves is produced,
their contribution to the CMB anisotropies can be compa-
rable to that of scalar perturbations at large scales. The con-
tribution from the observer’s motion term is of order 1023,
while the remaining part contributes for an order 1025.

We can now discuss the second order anisotropies that are
given by Eq.~2.28!. The first term, given bycE

(2) , represents
the gravitational redshift of the photons due to the second
order metric perturbations, and is much smaller than its first
order equivalent. Then, there are several terms involving
products of two of the terms contributing todT(1); these are
all very small compared todT(1) ~at least three orders of

magnitude smaller! and can safely be neglected. Also the
term (]t/]di)d(1)i is the product of two small quantities and
can be neglected.

Then, there is the term (xE
(1) j1xE

(1)0ej )(c , j
(1)2v i , j

(1)ei

1t , j
(1))E , which can be split into a piece proportional to

x'
~1! j~lE![~d i j 2eiej !xi

~1!~lE!

5~lE2lO!~2xO
Á~1! jkek1xO

Á~1!ikekeie
j !

1E
lO

lE
dl~xÁ~1! jkek2xÁ~1!ikekeie

j !

2E
lO

lE
dl~lE2l!S 2w , j22w ,ie

iej

2
1

2
xkl

Á~1!, jekel1
1

2
xkl,i

Á~1!ekeleiej D , ~4.1!

and another piece proportional to

~xi
~1! j1x0

~1!ej !E[ej~xi
~1!ei1x0

~1!!E

52ejE
lO

lE
dlS 2w2

1

2
xkl

Á~1!ekel D .

~4.2!

The first piece describes the effect of the gravitational lens-
ing on the photons as they travel from the last scattering
surface to the observer. The transverse displacementx'

(1) j

includes the usual contribution from scalar perturbations
(w), which has been considered in some previous studies
@13,6# and has an observable effect on small angular scales,
and a new contribution due to the gravitational wave back-
ground (x i j

Á(1)) acting as a source of lensing. The second
piece is due to the time delay effect of the lenses that
changes the spacelike distance to the intersection of the pho-
ton path with the last scattering surface. The scalar part of
this term is expected to be suppressed with respect to the
gravitational lensing term due to the spatial derivative ofw
that appears in Eq.~4.1!. The gravitational wave part is prob-
ably of the same order of magnitude as its gravitational lens-

ing counterpart. The termxE
(1)0AE

(1)8 is similar in form to the
gravitational lensing and time delay terms: It arises due to
the difference in affine parameter along the perturbed and
background geodesics. As it involves time derivatives of the
metric perturbations, the contribution from scalar terms will
be small, but the tensor contribution is expected to be larger.

The next term to consider couples the velocity of the
photon-baryon fluid with the perturbation to the photon wave
vector at emission and is given byvEi

(1)I 1
i (lE). Comparing it

with the gravitational lensing contribution, we expect some
reduction because the Doppler contribution to the first order
anisotropies is smaller than the other first order terms~al-
though of the same order of magnitude! and some enlarge-
ment because of the factor (lE2l) of difference between
the I 1

i (lE) andx'
(1) j expressions. A more careful quantitative

estimate, which would require a choice of the particular
structure formation model of interest, is beyond the aim of
this paper.
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Finally, we have the termI 2(lE), which is given by Eq.
~2.26! and is an integral of several terms. The first one ac-
counts for the Rees-Sciama effect, given by

dTRS5
1

2ElO

lE
dlS c~2!81f~2!81zi

~2!8ei2
1

2
x i j

~2!8eiej D .

~4.3!

We can use the second order perturbations of the metric ob-
tained in Sec. III to compute it. The contribution from the
scalar perturbationsc (2) andf (2) is given by

dTRS5E
hO

hE
dh hS 1

3
w ,iw ,i2

20

21
C0D , ~4.4!

where the terms inside the brackets have to be evaluated
along the background geodesic parametrized byl5h. This
piece coincides with that considered in some previous stud-
ies of the Rees-Sciama effect@8–10#. The resulting anisotro-
pies turn out to be between one and two orders of magnitude
smaller that the first order ones. The contribution from the
vector and tensor modes can be obtained by substitutingzi

(2)

andx i j
(2) from Eq. ~3.14! into Eq. ~4.3!. Let us estimate their

magnitudes compared to that of the scalar piece. The inte-

grand for the vector piece iszi
(2)8ei;kw2, while the scalar

one is c (2)8;hk2w2. Thus, zi
(2)8ei;c (2)8/(hk)

;c (2)8(aH/k) and the vector contribution is suppressed
with respect to the scalar one, as the wavelengths of interest
are smaller than the Hubble radius. This estimate is similar to
the one obtained in Ref.@14#. In the same way, the integrand

for the tensor piece isx i j
(2)8eiej;kw2/(kh)2;c (2)8/(kh)3

;c (2)8(aH/k)3. Hence, also the tensor contribution is much
suppressed with respect to the scalar one.

The integrand of the second term contributing toI 2(lE) is

x i j
Á(1)8ej (k(1)i1eik(1)0); it represents a correction to the

anisotropies generated by linear gravitational waves, due to
the perturbation of the photon wave vector. The piece con-
tainingk(1)0 is expected to be smaller than the other one; the
largest contribution can arise from the term

2E
lO

lE
dl x i j

Á~1!8ejE
lO

l

dl8A~1!,i .

The last four terms inI 2(lE) will have a small contribu-
tion coming from scalar perturbations as they involve time
derivatives of the potentialsc and f that are constant at
linear order. The contribution coming from gravitational
waves is expected to be larger, in particular the last two ones

E
lO

lE
dl~x~1!0x i j

Á~1!9eiej1x~1!kx i j ,k
Á~1!8eiej !.

These can be interpreted as the gravitational lensing and time
delay effects acting on the anisotropies generated by the lin-
ear gravitational wave background.

V. CONCLUSIONS

We have computed the anisotropies in the CMB radiation
up to second order perturbations in the metric around a flat

Robertson-Walker spacetime. This calculation generalizes
the results of Ref.@16# in that we have taken into account the
velocity of the emitter and the observer, we have considered
scalar, vector, and tensor perturbations, and we have explic-
itly included the second order perturbations of the metric.
We have obtained these second order metric perturbations
for a universe filled with a collisionless fluid in the Poisson
gauge, by performing a second order gauge transformation of
the synchronous gauge solutions, which have already been
studied in some detail in the literature.

Using these results, we have discussed the relevance of
the second order contributions to the anisotropies in the Pois-
son gauge. The most relevant expected contribution is due to
the gravitational lensing of photons due to density perturba-
tions, which has already been the subject of several studies.
We have shown that also a gravitational wave background
acts as a source of lensing for the CMB photons. This effect
is much smaller than the scalar one for a gravitational wave
background with spectral indexnT50 as generated during
an inflationary period. Other sources of gravitational waves
with more power than the inflationary ones at small scales
may give a larger contribution through this effect. Other con-
tributions include the time delay effect of scalar and tensor
lensing, a coupling of the velocity at emission with the per-
turbed photon wave vector, and a second order perturbation
to the integrated Sachs-Wolfe piece. This term includes the
well-known Rees-Sciama effect, which has been widely
studied for the time variation of the scalar gravitational po-
tential. Using the second order perturbed metric in the Pois-
son gauge obtained in Sec. III, we have shown that the ad-
ditional contributions to the anisotropies arising from the
vector and tensor modes induced by linear scalar perturba-
tions are expected to be suppressed with respect to the scalar
one. We have also pointed out the existence of two more
terms that are corrections to the anisotropies generated by the
linear gravitational wave background, due to the perturbation
of the photon wave vector and to the lensing and time delay
effects on gravitational wave anisotropies; these can give a
relevant contribution to the integrated term. These contribu-
tions deserve a more detailed quantitative analysis.

Although in the light of the present analysis we do not
expect that the second order gravitational effects will give a
major contribution to the anisotropies at any scale, it is in-
teresting to know if they could be detected by the planned
high accuracy satellite observations. The gravitational lens-
ing by scalar perturbations is known to give a few percent
effect in some structure formation models and thus will be
relevant if the expected 1% sensitivity is achieved. The am-
plitude of the second order terms is also important because
they contribute to the theoretical error of the anisotropy com-
putations that will be used to determine the cosmological
parameters from the measured multipoles.
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