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Cosmic microwave background anisotropies from second order gravitational perturbations
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This paper presents a complete analysis of the effects of second order gravitational perturbations on cosmic
microwave background anisotropies, taking explicitly into account scalar, vector and tensor modes. We also
consider the second order perturbations of the metric itself obtaining them, for a universe dominated by a
collisionless fluid, in the Poisson gauge, by transforming the known results in the synchronous gauge. We
discuss the resulting second order anisotropies in the Poisson gauge, and analyze the possible relevance of the
different terms. We expect that, in the simplest scenarios for structure formation, the main effect comes from
the gravitational lensing by scalar perturbations that is known to give a few percent contribution to the
anisotropies at small angular scalgS0556-282(97)02918-4

PACS numbses): 98.70.Vc, 04.25.Nx, 98.80.Cq

I. INTRODUCTION volved in the problem. The reason is that several second
order terms include integrals of the metric perturbations
The increasing number of measurements of cosmic microcalong the photons path that can enhance small effects as the
wave backgroundCMB) anisotropies in the last years and photons travel from the last scattering surface. Moreover,
the very ambitious observational programs for the futuresecond order effects are also important because they give the
generation of detectors makes us hope that the angu|ar Spézrjmary contribution to some statistical measures of the
trum of the anisotropies will be known with great accuracyanisotropies that are vanishing for the linear contribution, as,
within the next decade. This fact has stimulated theoreticafor example, the three-point function of temperature
efforts to obtain more precise predictions for the anisotropiegnisotropie$17-19. In any case, it is important to know the
produced in the different structure formation models, and itnagnitude of the second order effects as they contribute to
is expected that future observations will be very helpful inthe theoretical error of linear anisotropy calculations.
distinguishing among them and in putting constraints on the In this paper, we apply the formalism proposed by Pyne
cosmological parameters. and Carroll to the computation of the full second order
Most of these theoretical computations involve numericaf@nisotropies in the Poisson gauge. We first present a compu-
or semianalytic solutions of the linearized Boltzmann equaiation of the second order anisotropies that generalizes the
tion. Nonlinear gravitational effects on the anisotropies havéesults of Ref[16], in that we consider the motion of the
been computed for some particular processes, such as tRgserver and the emitter, we explicitly include the second
gravitational lensing from density perturbatiofts—6] and order perturbations of the metric itself, and we take into ac-
the Rees-Sciama effeff—12] (which is second order in a count scalar, vector, and tensor modes. We then consider the
flat matter-dominated universe, as the gravitational potentidP0isson gauge, which, in the case of scalar first order pertur-
is constant to first ordgrlt has been shown that the effect of Pations, reduces to the longitudinal gauge. We obtain the
the gravitational lensing by density perturbations is tosecond order perturbed metric for a dust-dominated universe
smooth the so-called Doppler or acoustic peaks in the angdD the Poisson gauge explicitly, and then discuss the second
lar spectrum at hight, and it is thus relevant for the analysis order anisotropies for this particular case.
of the small angle observatiofi$3]. On the other hand, the ~ Throughout this paper Greek indicgsv, . .. take values
nonlinear Rees-Sciama effect is in most cases expected to §®m 0 to 3, and Latin onessj, ... from 1 to 3. We take, for
much smaller than the first order anisotropii¢4,15 unless the metric, signature-2; units are such that=1.
early reionization substantially erases the first order anisotro-
pies. Il. TEMPERATURE ANISOTROPIES
In a recent paper, Pyne and Caridlb] have presented a ) ] ] o
nice framework for a complete computation of second and The quantity of interest is the angular variation of the
higher order gravitational perturbations of the CMB. Theirtémperature measured by an observer.
algorithm essentially involves computing the redshift experi- We consider a perturbed flat Robertson-Walker space-
enced by the photons during their travel from the last scatlime and use conformal timg [d»=dt/a(t), wherea(t) is
tering to the observer in terms of their perturbed geodesicie scale factor of the universéVe can write the line ele-
and then obtaining the perturbed geodesics up to the requirdg€nt as
order. The study of second order anisotropies is relevant be- 1
cause they can produce a non-negligible contribution com- a2 0, A1) = (2 v
pared to the first order ones, due to the long distances in- ds’=a’(n) Gur T Gun T3 G o+ JAXAX,(2.0)
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where the term between parentheses is the conformally tranaddition to these effects, to second order, we also take into
formed metric §,,,), gﬁf’y) is the background Minkowski met- account cross terms involving the velocities and other

ric, andg(}) andg(?) are the first and second order perturba-SOurces of anisotropy. .
tions, respectively. We can expand the four-velocity as

Photons travel along null geodesic$(\), which we pa-
rametrize with\ in the conformal metric, connecting the 1 1
observer, at coordinates;= (70 ,Xo), to the emitting hyper- =2 Sh+vMH+ 50(2)“+ P 2.9
surface, which we take at constant conformal time This
hypersurface can be taken as the last scattering surface, at. ) o N
redshiftz, s. At larger redshifts the hydrogen is ionized and This is subject to the normalization condititfU,=—1.
Compton scattering off electroriinked to photons by elec- It is also.useful to write the perturbed spatially flat con-
tromagnetic interactionscouples photons to baryons. At formal metric as
7, 5, hydrogen recombines and photons can start their travel.

We assume that thermal radiation with temperafiugp, d) Joo=—(1+ 2V + @+ ...y, (2.5
is emitted by every point with coordinatgs in this hyper-

surface. This temperature depends also on the direction of 1

emission described by the vectdr normalized to unity in goi=2V+-2%+..., (2.6
the background. The different photon paths are specified by 2

the direction from which they arrive ab, specified by a

vectore normalized to unity in the background. This direc-

tion fixes the poinp and the directiord at emission.

If the CMB has a blackbody distribution and the photons
suffer a redshifz during their travel from the emittef to the
observerO, the emitted frequency, and the observed one
wp are related bywo=we/(1+2). Since the occupation

number per frequency mode is conserved, the correspondin&mponenb(r)o in terms of the lapse perturbatiaf™. For

photon temperatures are related By=Ts/(1+2). The ) ; .
anisotropies detected by an observer are due to inhomogentg—e first and second order perturbations we obtain

ities in the temperature at emission and to the different red-
shift suffered by photons coming from different directions. vWO=— ), (2.9
We will compute this quantity up to second order in gravi-
tational perturbations.

The temperature measured by an observe®atan be
written as

1
9ij=(1=2¢M =5 +xif + 0]+, 27

wheré x'=0 and the functiong, z{", ¢, and x{/’
represent theth order perturbation of the metric.
The normalization condition for the velocity fixes the time

v@0= — @4 3(y V)24 22Dy Wi 4Ly DI (2.9)

In order to obtain the variation in the sky of the observed
o Yo ” temperature up to second order, according to B, we
To(Xp,8)=—Tg(p,d), 2.2 ' o
o(X0.8) wg P 22 need to expandy,» and wg up to second order in gravita-
tional perturbations,

with o= —g,,,U*k", whereU* is the four-velocity of the

observe_r or emitter arid"zdx”_/d)\ is the wave vector of the _ w=0@1+aV+o@+...), (2.10
photon in the conformal metric, tangent to the null geodesic

x”(\), followed by the photon from the emission to the ob- o
servation point. In fact, we will propagate photons back fromand also to expand the temperature at emission:

the observation point to the emission surface. We thus need

to obtainwg, p, ano!a for a giygn initial set .Of values,, &, Te(p,d) =T+ 7(p,d)). (2.11)
andwy . The resulting quantities are functions of the photon

path and wave vector, which we expand in series of the

metric perturbationg]) and their derivatives as We will not perform a full expansion of(p,d), as a calcu-
lation of this quantity would be beyond the aim of this paper.

We will instead assume that it is known for a given model
and compute the additional effect of gravity along the pho-
tons path. We also have to take into account that the goint

XM()\):X(O)M()\)+X(1)#()\)+X(2)#()\)+ -

k(N =k @O#(N) +KDEN) +KP#(N)+- . (2.3 and directiond at emission need to be expanded in the ex-
pression of 7(p,d) as p=p@Q+p®+..., and d=d©@
Contrary to the assumptions of R€L6], we are not tak- +d®+. ... Performing these expansions in E&.2) we

ing the observer and emitter comoving with the total fluid of obtain[16]

the universe. In this way we keep track, to first order, of the

dipole due to the observer’'s motion and of the Doppler effect—

due to the emitter's motion, which are otherwise lost. In ‘lindices are raised and lowered usii$j and &;j , respectively.



4496 SILVIA MOLLERACH AND SABINO MATARRESE 56

(0)

@u=(\,(Np—N)€)
~ o —_ —_ X ( !( (@] 1
To(%0,8)=—5 T& | 1+ (0’ — v +7) .

@e kOr=(1,~¢"), (2.13

+ Z}g)_;g@@g»z_gg);g) and boundary conditions at the origin:

X(l)M()\O) =X(2)”()\0) =0,
~ ~ - dT . oT

tog T rp sk d KDi(Ao) =k (X ) =0, (2.14

(2.12  The condition that the wave vector be null fixes the value of

_ _ o kMO(\ ) and k(X ,)). We will only needk™°(\ ) ex-
where 7 and its spatial derivatives have to be evaluated apjicitly:

(p©,d®). The firs(t gact?r)gi\(/e)s ttu)a mean temperature at the
observation poinT =T w9/w®  and the round brack- . 1.
ets inside the term in équzfre brackets define the first and k(l)o()\o):_‘ﬁg)_zg)'ei—¢(ol)+§X(01)”eiei-
second order perturbatiosd ) and 6T(? that we are look- (2.15
ing for.
To compute them, we will use the same background geo- Using the metric, four-velocity, and wave vector expan-
desics as in Ref.16], sions we can obtain the quantities in the expansiow:of

0w ®=a"1
M=kt g4y Ml 4 2 Vel (2.1
~(2) 2)0 1 2 1(2)' 1(2)' 1 1)\2 1(1) 1)i 1)0,,(1 (D ()i (), (1)i 1)5(1) A4l 1), (1) Al
w( :k( ) +§¢/( )+§Z| e|+§vi el_z(l//( >) +§Ui U( )I+k( ) l//( )_Ui k( )I_Zi k( )I_'J/( )Zi el_2¢( )Ui el
+xMelo i+ Y AN+ (P +Z Vel +o e p,
whereANX is the difference in affine parameter between the points where the background and first order geodesics intersect the
n=n¢ hypersurface, and is given hyx = —xM%+ ... It can also be seg 6] that p)'=xMi+x(10%' and
R
Wi — =
d e |ei—k(1>‘| . 2.1

Finally, we obtain, for the first order temperature anisotropy,

ST =Gl —ad+

1 - . . ,
—— g+ pxee+ode — KO-l e~ i+ .18

and, for the second order one,

0
ST@ = k@04 %¢<2>+%vi<2>ei n %zi“)ei _ %(¢<1))2+ %Uiu)v(l)i KO 117Vl — 2Dy Vi + y(Veip (D
£
- dko . . . . ar .
+ (P + 2Dk + T x¢0— (P +z Ve +viVel+ 7)) (x4 x(P0l) o+ p d@
. £
— (kW04 pVel+zVel+ g — 1) o(kO+ v (Ve + Z Vel + )¢ (2.19

The next step is to obtain the null geodesics up to second order; in particular, we need to compute the d&ffiki€e~,
andxM* to substitute in Eq¥2.18 and(2.19. This problem has been solved for a general perturbed spacetime iflRef.

using the geodesic expansion introduced by Pyne and Birkingk@wFollowing their method, we obtain, for perturbations
around a flat Robertson-Walker background in any gauge, that the first order wave vector is given by
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1 .A .
KON = v’ = b5+ 5 x0 " eigy =29 =2 e+ 11 (0o, (220

with
}\5 ’
|1(>\5):J dy AL (2.21
Ao

whereAM =y + ¢+ zMel— 5y (Delel, and
KD\ =2¢pe +25" — xy e~ 2¢e — 2 + x(P e — 13N, (222

with
) A .
|'1(>\g):f dAAD, (2.23
Ao
For the first order geodesics, we obtain

1
XV =(\e=No)| ' = b5+ 5 X0 ey

A i ’
+ J N[ — 20— 2 Vel + (= N)ADT,
Ao

Vi =(\eg=Np)[2¢5'e' +25)" - x 31— J dr[2¢ Ve + 2V — yDilg + (A g— )AL, (2.24
For the second order, we need only the difference between the wave vector at emission and observation:

1 .. 1
(P03 g3~ P~ S 2Pe + 528 e + 2p KO- 2y

— (2x D1y (D 4 2xDOYL — 2D 4 (D07 &l 4 xDizDel) 4 1,(N ), (2.29
with

1 R _
2)! 1’ 1)’ 0 0p(D) ! 0A(1)" 1)’
§A< V= (Y = XD e (kW4 kM) 4+ 2kMOAM 125D AL 4 x(WOAD 4 x(WIALT] (2,26

Ae
[,(Ng)= L dx
o

whereA®@= g2+ 4@+ 72l — 1y (Delel.
We can now write the temperature anisotropy in terms of the metric perturbations. Replaci@g?Banto Eq.(2.18 we
obtain, for first order,

STH=y — g +vi e~ v e+ 7-11(Ne). (2.27

This is a general expression, valid in any gauge, that takes into account scalar, vector, and tensor perturbations. It includes the
effect of intrinsic anisotropies in the last scattering surface, dipole due to the observer's motion, Doppler effect from the
emitter’s motion, and gravitational redshift of the photons. It is equivalent to the well-known result originally obtained by
Sachs and Wolf¢21]. It can be seen that the full expression is gauge invariant up to a monopole term; the relative contribu-
tions from the intrinsic, Doppler, and gravitational redshift contributions are, however, gauge dependent.

Analogously, for second order, we obtain

3 1 .
STO=3 P~ S0+ S W) 3N 10 v e
(L (1) _ 4D ! (D)ij (1)I (1) (i
+[|1()\5)+Ug ei] Zlﬁo —¢0 +§X(9 eiej lﬂ —T+U e|+|l()\5)

1
EOAD + (T + X0 (g vl e 4 7)o G| Sul) - 200 e+ xGle

1 aT . 1
- 5v<.1>v<”'+</f§“r+5d<“'— v (W' + 1) —vi"e| v~ ¢+ 5 x0 " ee — 7 wﬁ:”)

+od [z +20) + 240 — x5 e — 1 (N )] (2.28
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This is also a general expression that is valid in any gaugeve will neglect vector modes at the linear order. The fact that
and takes into account scalar, vector, and tensor perturb#hey have decreasing amplitude and that they are not gener-
tions. It also includes the effects of the motion of the ob-ated in inflationary theories makes us expect that their role
server and the emitter. In the previous expression we hawill not be relevant, at least if inflation was the mechanism
dropped the terms proportional #6?)' as this computation is for primordial fluctuation generation. We will, however,
not aimed at obtaining' at the emission or observation keep track of the second order vector modes generated by the
points, but assumes that they are known quantities. coupling with scalar modes. Second, we will neglect the ef-
To proceed further with the computation, we need tofect of linear tensor modes as sources for second order metric
know the initial values and the evolution of the perturba-perturbations: Because of the graviton free streaming inside
tions. To solve this it is necessary to fix a gauge. There aréhe horizon, this is a very reasonable approximation. We will
different possibilities: The synchronous gaugg!(=z("  then only consider the second order perturbations generated
=0) turns out to be convenient for many calculations anddy linear scalar perturbations. These are expected to give the
has been widely used for linear anisotropy computationsdominant contribution, as vector and tensor modes have de-
Another choice is the Poisson gau@r)('i:Xij(r)'jZO), re- Caying amplitude. The solutions given in REEQS,ZH and
cently discussed by Bertsching®?], which in the case of hence those obtained in this section apply to this restricted
scalar perturbations reduces to the longitudinal gauge. Thease. For the computation of the CMB anisotropies we will,
latter gauge, in WhinZi(r)=Xi(jr)=0, has become very popu- however, keep the contribution of the linear tensor modes in
lar, because the evolution equations are most similar to thdT'" and 5T everywhere, except as source fiif). The
Newtonian ones, and thus closest to our classical intuitioncontribution of tensor modes can in fact be comparable to the
All second order temperature anisotropy calculations havécalar contribution téT™) at large scales in many inflation-
been performed in this gauge. Since the vector and tens@’y modelg 30].
modes are set to zero by hand, the longitudinal gauge should The first order solution to the perturbed Einstein equations
not be used to study perturbations beyond the linear regiméd the synchronous gauge is given (see, e.g., Re{31])
This is because in the nonlinear case the scalar, vector, and
tensor modes are dynamically coupled and vector and tensor yP=21=0,
modes cannot be set to zero arbitrarily. This could be a prob-
lem when studying the Rees-Sciama effect that explicitly

involves nonlinearities in the metric perturbations; we will (1)_E n 77_V2 3.0
come to this point in Sec. IV. We will use the Poisson gauge, s 397187 ¥ '
which overcomes the above limitation of the longitudinal

gauge, while keeping all its advantages in terms of physical 2 1

interpretation of the results. X(sli}: — ?( @i §5ijV2<P +XJ(1) ,

Ill. SECOND ORDER PERTURBATIONS ] o ) o ]
IN GENERAL RELATIVITY where ¢ = ¢(X) is the initial peculiar gravitational potential.

_ o _ N _ _ ;) is the tensor(transverse and tracelgssontribution,
V_V_e consider the_grawtatlonal instability of irrotational \yhich can be written as

collisionless matter in a flat Robertson-Walker background

up to second order. Different approaches to this problem

have been proposed. The first solution of the second order | ; . 1 oo

relativistic equations has been obtained, in the synchronous Xip V0% m) = (277)3f dkexplik-x)x; (k. € (K),

gauge, in a pioneering work by Tomita3]. Matarrese, Pan- (3.2

tano, and Saef24,25 obtained the leading order terms of

the expansion, using a different method, based on the so- . o . )

called fluid-flow approach. Salopek, Stewart, and Croudac@hereeij(k) is the polarization tensor, withr ranging over

[26] used a gradient expansion technique to obtain secorifhe polarization components, X, andx{"(k, ) is the am-

order metric perturbations; an intrinsic limitation of their plitude. Its time evolution during the matter-dominated era

method is, however, that nonlocal terms, such as the nonlirsan be represented as

ear tensor modes, are lost. Ressal. [27] recently rederived

the metric perturbations to second order in the synchronous

gauge, using a tetrad formalism. We are interested here in Xf})(k,n)mA(k)ag(k)(

obtaining the solution in the Poisson gauge. Instead of per-

turbing the Einstein equations in this gauge and then solving

them, we will transform the solution known in the synchro-where a (k) is a zero mean random variable with

nous gauge to the Poisson one, using the second order gaugetocorrelation function(a,(k)a, (k'))=(2)3k 353k

transformation recently developed in RE28] (for more de-  +k’)é,,.. The spectrum of the gravitational wave back-

tails see Ref[29]). ground depends on the processes by which it was generated,
Up to this point we have been completely general in theand, for example, in most inflationary modefgk) is nearly

inclusion of scalar, vector, and tensor modes. Now, in ordescale invariant and proportional to the Hubble constant dur-

to give a more quantitative insight on the relevance of theng inflation.

different contributions, we will make some restrictions. First, The second order perturbations are given 2§,27,29

3]1('“7))

k7 (3.3
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Vo=~

n
=2,
39
4
7 10 .
(sz)Zgz( - §<P'k'¢,ki+(V2<p)2> -
B(l)zg% (3.10
+ Enz ek k+f(PV2§D (3.9 o . o
18 k'3 ’ anddM =0, in the absence of vector modes in the initial

conditions. For second order, we obtain

4
Y
(2)—_*_ Ky y2 2,258
XSij 126( 1990,|‘P,kj 12QD,|]V (P+4(V ‘P) 5” a(z)z_%—ﬂs\PO'f‘ 7](%()(,02+40),

19 5,
rd @ k16ij +tg7 —60i0 =400 o a1 1\1, 7?7 )
. Bo=7" 75970~ 15Vo| T 5|50 1600,
+2¢%p 8+ §<PV2<P5ij + Tsij» (313
whereV20,=V,—3¢'¢; and
where the traceless and transverse contributigp satisfies 4 4 8
the inhomogeneous wave equation i
g g Vzd}2)=nz(—§w,jvzw+ §@"<P,ij—§*1’o,j)-
v LA 7’ (312
7TSij+_7TSij_V27TSij:_ﬁVZSijv (3.5
K We can now compute the metric perturbations in the Pois-
. son gauge using the transformation rules of IR28]. For the
with . )
first order, we obtain
—_v2 2 Kk
Sj=V U6+ Wi+ 20, Ve—eiej), (3.6 yP =D =0,
where xen=xi . (3.13
1 ) Th i - -
2 — T u2.N2_ ik ese equations show the well-known result for scalar per
Vo 2((V )7 i) .7 turbations in the longitudinal gauge and the gauge invariance

for tensor modes at the linear level. For the second order, we
This equation can be solved using the Green method; webtain

obtain for 7rg;; that
@_ o1 ; 10
AN - ye'=n" e'ei= 57 Vo
Wsn:2—1$j+ §7IZT11(X)+7T”-(X, 7)), (3.9

16
+ g(pz‘l' 12@0,

1 10

: 4
- P=n?Ze'oi— 52V |+ 59?— 80y,
where V2T;;=S;; and the remaining piecer;;(x,7), ac- Pe= (G(P T2 O) 3% 0
counting for a term that is constant in time and another one (3.19
that oscillates with decreasing amplitude, can be written as

' 8 ) - .
_ 3 20 Viz' == 3 (e Vie— el +2Wy),
;i (X, 17) (27)3J d k expik- x) k4SJ(k) .
XPij = Tij -
1 codkn) sin(kzy)
(§+ o 3 ) , (3.9 Note that the resulting expressions g and ¢p can be
(kn) (k) recovered, except for the subleading time-independent terms
, 3 ) by taking the weak-field limit of Einstein’s theofe.g., Ref.
with §;;(k)=/d*xexp(-ik-x)S;(x). [32]) and then expanding in powers of the perturbation am-
The gauge transformation |s_determ|g1ed to each order byjityde: this is basically the method employed in previous
a four-vector {* that we split as¢°=a® and &' gecond order computations of the Rees-Sciama effect. Also

=' B +d', with 3,d'=0. In Ref.[28] the vector™*  interesting is the way in which the tensor modes appear in
and&®)#, describing the gauge transformation from the syn+his gauge: The transformation from the synchronous to the
chronous to the Poisson gauge, have been explicitly obtaing@bisson gauge has in fact dropped the Newtonian and post-
in terms of the synchronous metric perturbati(gﬁv and  Newtonian contributions, whose physical interpretation in
g(si)v. Using the metric perturbations in the synchronousterms of gravitational waves is highly nontrivigee the dis-
gauge presented above, we can write the first order gauggission in Ref[33]); what remains is a wavelike piece plus
transformation as a constant term which has no effects &f?).
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IV. POISSON GAUGE ANISOTROPIES magnitude smallgrand can safely be neglected. Also the

Jerm (@719d")dM) s the product of two small quantities and

Let us start by discussing the first order anisotropies th
can be neglected.

i d (1) . ) .
are d_esc_rlbed by E¢2.27). The_flrst termy ~ represents the Then, there is the term x(Mi+xH%l)(y®— Mgl
contribution from the gravitational redshift of the photons+ (1) hich b lit int . 'Jt' th
due to the difference in gravitational potential between the® 7.i )¢+ Which can be split into a piece proportional to

emission and observation point;s(@l) only contributes to the (1)] s aiaie(D)
monopole and can be neglected. The terffi'e; is the di- X7 (hg)=(1 =€l (he)
pole due to the motion of the observer. The tesfi)'e, = (e o) (— xo Ve + x o Vike,erel)

accounts for the Doppler effect due to the velocity of the
photon-baryon fluid at recombination and contributes to the
acoustic peaks. The term describes the intrinsic anisotro-
pies in the photon temperature and is highly model depen-
dent. For example, for adiabatic perturbations, in which all
the componentgbaryons, photons, dark mattdrave a con-
stant number density ratio, the photon energy density, and L .
thus the temperature, varies proportionally to the potential T))] T1 i
ﬂuctuations(a?scales larger thgn tFr)1e Jeansyleblgllhcalz be B EX"'( ) ]ekel+§Xk"(i )ekelele])’ .
seen that in this case

Ae ) ) .
+ . dn(x T Wikg — yTDike eel)
(@)

A X .
—f gd)\()\g—)\)(Zgo'J—Zgo’ie'eJ
Ao

and another piece proportional to

1 6p, 1 Spt 2 ) _ _ _
a3t 3% (V4 xiPel) =€l Vel + X
Y 1 )kl
It is the combination of this term and the first one that gives -—¢€ L dA| 2¢- Xk €€
the standard result for adiabatic perturbations at large angular ©
scales, 6T = ¢. At small scalesy gives the main contribu- (4.2

tion to the acoustic peaks. We have not intended here to _ _ ) o
include a computation of andv(gl)i that would involve solv- T he first piece describes the effect of the gravitational lens-

ing the linearized transport equation for the photons that id"9 On the photons as they travel from the last scattering
coupled to the fluid evolution equations for the cold darkSurface to the observer. The transverse dlsplacemjéﬁtl
matter component and the baryons, the Boltzmann equatiofcludes the usual contribution from scalar perturbations
for the neutrino distribution, and the Einstein equations for{¢). Which has been considered in some previous studies
the metric perturbations. This problem has been treated arld-3.6] and has an observable effect on small angular scales,
solved numerically by several authofsee, e.g.[34—4().  and a new contribution due to the gravitational wave back-
We assume that ando!)' are known for a given model, and ground (v;; ) acting as a source of lensing. The second
compute the additional anisotropy generated by the metrigiece is due to the time delay effect of the lenses that
perturbations along the photon path up to second order. changes thg spacelike d|stanc_:e to the intersection of the pho-

Finally, the contribution tosT from the last term, tqn path Wlth the last scattering surface. T'he scalar part of
1,(\,) [called the integrated Sachs-Wolfe effect and giventhis term is expected to be suppressed with respect to the
by Eq.(2.21)], represents the additional gravitational redshiftgravitational lensing term due to the spatial derivativepof
due to the time variation of the metric during the photonthat appears in Ed4.1). The gravitational wave part is prob-
travel. As in the linear regime the scalar potentidland i ably of the same order of magnlt,ude as its gravitational lens-
are constant in time for a flat matter-dominated universeing counterpart. The termV°A)" is similar in form to the
their contribution vanisheghey will however give a nonva- gravitational lensing and time delay terms: It arises due to
nishing contribution in the nonlinear regiméhe contribu- the difference in affine parameter along the perturbed and
tion of tensor perturbations to the temperature anisotropiebackground geodesics. As it involves time derivatives of the
arises exclusively fronh;(\¢) at linear order. In many infla- metric perturbations, the contribution from scalar terms will
tionary models, in which besides the usual scalar perturbabe small, but the tensor contribution is expected to be larger.
tions also a background of gravitational waves is produced, The next term to consider couples the velocity of the
their contribution to the CMB anisotropies can be compa-photon-baryon fluid with the perturbation to the photon wave
rable to that of scalar perturbations at large scales. The comector at emission and is given b)g,l)l'l()\g). Comparing it
tribution from the observer's motion term is of order 0 with the gravitational lensing contribution, we expect some
while the remaining part contributes for an order 0 reduction because the Doppler contribution to the first order

We can now discuss the second order anisotropies that aemisotropies is smaller than the other first order tefais
given by Eq.(2.28. The first term, given by,/;(gz), represents though of the same order of magnitydind some enlarge-
the gravitational redshift of the photons due to the secondnent because of the factok {—\) of difference between
order metric perturbations, and is much smaller than its firsthe | () andx{*" expressions. A more careful quantitative
order equivalent. Then, there are several terms involvingstimate, which would require a choice of the particular
products of two of the terms contributing &7(%); these are  structure formation model of interest, is beyond the aim of
all very small compared t&@T() (at least three orders of this paper.
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Finally, we have the ternh,(\ (), which is given by Eq. Robertson-Walker spacetime. This calculation generalizes
(2.26) and is an integral of several terms. The first one acthe results of Ref.16] in that we have taken into account the
counts for the Rees-Sciama effect, given by velocity of the emitter and the observer, we have considered

scalar, vector, and tensor perturbations, and we have explic-

¢(2)’+¢(2)’_,’_Zi(Z)’ei_EXi(jZ)'eiej)_ itly included the second order perturbations of the metric.
2 We have obtained these second order metric perturbations

(4.3 for a universe filled with a collisionless fluid in the Poisson

We can use the second order perturbations of the metric o Jauge, by performing a second order gauge transformation of

tained in Sec. Il to compute it. The contribution from the he synchronous gauge solutions, which have already been

. o tudied in some detail in the literature.
scalar perturbationg(® and ¢ is given b studie )
P ¥ ¢ g y Using these results, we have discussed the relevance of

g 1. 20 the second order contributions to the anisotropies in the Pois-
6Trs= | dnn|z¢ @i~ 57Vl (4.4 son gauge. The most relevant expected contribution is due to
o the gravitational lensing of photons due to density perturba-

where the terms inside the brackets have to be evaluatdiPns, which has already been the subject of several studies.
along the background geodesic parametrized byy. This ~ We have shown that also a gravitational wave background
piece coincides with that considered in some previous studacts as a source of lensing for the CMB photons. This effect
ies of the Rees-Sciama effd&-10]. The resulting anisotro- is much smaller than the scalar one for a gravitational wave
pies turn out to be between one and two orders of magnitudeackground with spectral index;=0 as generated during
smaller that the first order ones. The contribution from thean inflationary period. Other sources of gravitational waves
vector and tensor modes can be obtained by substitatfdg  with more power than the inflationary ones at small scales
and,\/i(jz) from Eq.(3.14 into Eq.(4.3). Let us estimate their may give a larger contribution through this effect. Other con-
magnitudes compared to that of the scalar piece. The inteributions include the time delay effect of scalar and tensor

grand for the vector piece iza(z)'ei~k<p2, while the scalar lensing, a coupling of the velocity at emission with the per-
one is @'~ k2  Thus, Zi(z)/ei’“lﬂ(z)//(ﬂk) turbed photon wave vector, and a second order perturbation

) o to the integrated Sachs-Wolfe piece. This term includes the
~ 7 (aH/k) and the vector contribution is suppressed,, | known Rees-Sciama effect, which has been widely

with respect to the scalar one, as the wavelengths of INterest \died for the time variation of the scalar gravitational po-

are smaller than the Hubble radius. This estimate is similar t : : . .
the one obtained in Ref14]. In the same way, the integrand ential. Using thg sec.ond order perturbed metric in the Pois-
son gauge obtained in Sec. Ill, we have shown that the ad-

for the tensor piece ig(f e'e~ke?/(k7)?~ ¥ I(kn)®  ditional contributions to the anisotropies arising from the
~z//(2)’(aH/k)3. Hence, also the tensor contribution is muchvector and tensor modes induced by linear scalar perturba-
suppressed with respect to the scalar one. tions are expected to be suppressed with respect to the scalar
The integrand of the second term contributing10\¢) is  one. We have also pointed out the existence of two more
Xi () el (kWi + ek it represents a correction to the terms that are corrections to the anisotropies generated by the
anisotropies generated by linear gravitational waves, due tt€ar gravitational wave background, due to the perturbation
the perturbation of the photon wave vector. The piece con®f the photon wave vector and to the lensing and time delay
tainingkM° is expected to be smaller than the other one; theff€Cts on gravitational wave anisotropies; these can give a
largest contribution can arise from the term relevant contribution to the integrated term. These contribu-

tions deserve a more detailed quantitative analysis.
Ag R . Although in the light of the present analysis we do not
—J dx XJ(D e[ dvAL expect that the second order gravitational effects will give a
N N
© © major contribution to the anisotropies at any scale, it is in-
The last four terms in,(\.) will have a small contribu-  teresting to know if they could be detected by the planned
tion Coming from scalar perturbations as they involve t|meh|gh accuracy satellite observations. The gravitational lens-
derivatives of the potentialgy and ¢ that are constant at ing by scalar perturbations is known to give a few percent
linear order. The contribution Coming from gravitationa| effect in some structure formation models and thus will be
waves is expected to be larger, in particular the last two onekelevant if the expected 1% sensitivity is achieved. The am-
plitude of the second order terms is also important because
they contribute to the theoretical error of the anisotropy com-
putations that will be used to determine the cosmological
parameters from the measured multipoles.
These can be interpreted as the gravitational lensing and time
delay effects acting on the anisotropies generated by the lin-
ear gravitational wave background. ACKNOWLEDGMENTS
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