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A u term, which couples to topological charge, is added to the two-dimensional lattice CP3 model and U~1!
gauge theory. Monte Carlo simulations are performed and compared to strong-coupling character expansions.
In certain instances, a flattening behavior occurs in the free energy at sufficiently largeu, but the effect is an
artifact of the simulation methods.@S0556-2821~97!02213-3#
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I. INTRODUCTION

Formally, the inclusion of au term in a theory does not
affect the equations of motion. For this reason, it was once
thought thatu terms were irrelevant. In fact, this appears to
be the case for the four-dimensional U~1! gauge theory. Add-

ing theu term *d4xFmnF̃
mn(x) to the action is believed to

not affect physics. The situation for a non-Abelian theory is
different. The importance of the u term
Su5g2u*d4xFmn

a F̃a
mn(x)/(32p2) was realized when instan-

tons were uncovered in four-dimensional Yang-Mills theo-
ries @1#. Instantons represent barrier-penetration processes
between different classicaln vacua. Ann vacuum un& is
obtained from the perturbative vacuum through a nontrivial
gauge transformation carrying a winding numbern.
Instanton-barrier-penetration effects imply that the true
vacua are linear combinations ofn vacua. These vacuauu&
are called u vacua @2,3# and are given by
uu&5(n52`

` exp(inu)un&. In a functional integral,u vacua are
incorporated by adding the termSu to the action. SinceSu
breaks parity, time-reversal invariance andCP symmetry
whenuÞ0 or uÞp, the strong interactions explicitly violate
these symmetries for 0,u,p. In fact, not only do instan-
tons contribute toSu but all topological quantum fluctuations
also do so. Such topological fluctuations are known to exist
because they contribute significantly to theh8 mass@4–13#.

In QCD, phases in the quark mass matrixM also contrib-
ute to CP violation. However, only the combination
ueff5u1Arg DetM is relevant for strongCP violation for
the following reason. Through redefinitions of quark fields,
one can eliminate theCP-violating phases in the quark mass
matrix. However, to eliminate oneCP-violating phase, a
U~1! axial rotation is used. Via the axial anomaly,
Arg DetM reemerges as a coefficient ofSu . Hence, the
physical effectiveu parameter isueff . The strongest con-
straint onueff comes from the electric dipole moment of the
neutron. Compatibility with experimental bounds requires

ueff&1029 @14,15#. The strongCP problem in QCD can then
be phrased as the question of howueff can naturally be so
small. The strongCP problem is thus a fine-tuning issue.

In a pure Yang-Mills theory, the strongCP problem in-
volves vacuum dynamics. Vacuum physics is related to the
long-distance behavior of a theory and hence non-
perturbative and strong-coupling effects. For four-
dimensional Yang-Mills theories, this regime is not well un-
derstood. Thus it is useful to consider simpler systems, such
as the two-dimensional CPN21 models. They have features
in common with four-dimensional Yang-Mills theories: They
are asymptotically free, possess instanton solutions, and have
u vacua.

Insight into the CPN21 models comes from strong-
coupling expansions@16–19#, Monte Carlo simulations@20–
28#, and the use of the largeN limit @29,30#. As N→`, the
CPN21 model becomes a system ofN free particles andN
free antiparticles, and there is nou dependence:u vacua are
degenerate in energy. However, the first 1/N correction lifts
the degeneracy of theu vacua, with the energy separation
betweenu vacua being of order 1/N. The first 1/N correction
also leads to a quantum-mechanically generated U~1! gauge
field. This gauge field produces a linear potential between
particles and antiparticles. Hence the system confines, al-
though the string tension in this approximation is again of
order 1/N. Actually, it is expected that the confining force
becomes stronger and stronger as higher-order 1/N correc-
tions are included since the CPN21 models exhibit supercon-
finement @17#. The dramatic changes in behavior in going
from leading order to next-to-leading order are indicative of
the singular nature of the 1/N expansion in the CPN21 mod-
els. The singular nature is also reflected in the fact that strong
coupling and 1/N expansions do not commute@16,17,31#.
For this reason, results from Monte Carlo methods should
probably be trusted over results from 1/N methods.

In the presence of au term, Schierholz and co-workers in
pioneering work have performed Monte Carlo simulations on
the CP3 model @28#. Results for the free energy were inter-
esting and unexpected. For fixed inverse couplingb, a dra-
matic change in the free energy behavior occurred at a criti-
cal valueuc of u. The free energyf per unit volume was
well represented by
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f5H a~b!u2, u,uc ,

c~b!, u.uc .
~1.1!

Hence, foru>uc , the free energy had no dependence on
u. In two dimensions, the string tensions(e,u) for external
particles of chargee in a u vacuum uu& can be computed
from the free energy usings(e,u)5 f (u12pe)2 f (u) @32#.
Hence, foru.uc , the string tension vanishes for particles of
sufficiently small charge. In other words, confinement for
small external charges is lost. Furthermore, the simulations
in @28# indicated thatuc went to zero in the continuum limit
in which the couplingg goes to zero.

In @19#, strong-coupling character expansions of the free
energy were obtained. Near infinite coupling, no flattening
behavior of the free energy like that of Eq.~1.1! was seen.
However, at smallerg, a peak in the free energy occurred.
Although higher corrections might change this behavior, the
strong-coupling series provided some support for the form of
the free energy given in Eq.~1.1!.

Many two-dimensional systems with a U~1! gauge field,
such as the Schwinger model, possess a cusp in the free
energy atu5p. The cusp signals the spontaneous breaking
of CP invariance @33#. At infinite coupling, the lattice
CPN21 models also undergo spontaneousCP breaking at
u5p @18#. Hence, a phase transition in the CPN21 models at
uc5p is not unexpected. What is interesting about the nu-
merical studies@28# of the CP3 model is that, for sufficiently
weak coupling,uc moves away fromp and decreases with
decreasingg. This picture suggests that, to obtain a con-
tinuum confining theory from the lattice CP3 model, one
must tuneu to zero. This then also suggests that continuum
confiningCPN21 models must haveu50.1 If the analogue
of this statement were true for a four-dimensional Yang-
Mills theory, then the strongCP problem would be solved.
In fact, preliminary studies@34# of the free energy of the
four-dimensional SU~2! Yang-Mills theory show a free en-
ergy behavior similar to the one in Eq.~1.1!. However, in
four-dimensional Yang-Mills theories, the string tension is
not related to the free energyf . Hence, the analogue of the
argument for the CP3 model, namely, thatu must be tuned to
zero to obtain confinement, does not necessarily hold. None-
theless, ifu must be less thanuc for some other physical
reason, and ifuc goes to zero asg→0, then the strongCP
problem would be solved in the Yang-Mills theories. This is
interesting because it has been suggested that the strong
CP problem might be solved naturally within the pure Yang-
Mills theory @35#. In fact, such a result occurs in a~211!-
dimensional model: the Yang-Mills sector generates a relax-
ation field, which acts like the axion in the Peccei-Quinn
mechanism@36–38#. In @35#, criteria were established to de-
termine when such a natural relaxation mechanism arises for
theories in arbitrary dimensions. It has not yet been possible
to determine whether these criteria are satisfied for four-
dimensional Yang-Mills theories.

One unusual feature of the Monte Carlo simulations of
@28# is the volume dependence on the free energy for suffi-

ciently largeu. As the volumeV increases,uc decreases.
This leads to a situation in which the free energy differs by
large factors asV varies. For example, atb52.7 andu near
p, the free energy on a 46346 lattice was three times the
free energy on a 72372 lattice. See Fig. 3 of@28#. Since
quantities, like the free energy, should quickly converge in
the thermodynamic limit, there are only three possible expla-
nations:~i! For sufficiently largeu, there are light, perhaps
massless, modes in the system which cause finite-size ef-
fects;~ii ! a systematic effect occurs which leads to numerical
results that differ from true results;~iii ! there is some un-
known explanation not covered by~i! or ~ii !.

One purpose of the current work is to try to determine
whether~i! or ~ii ! occurs. We perform Monte Carlo simula-
tions on an exactly solvable U~1! lattice gauge theory. By
comparing numerical and analytic results, much insight into
simulating systems with au term is gained. Our results are
presented in Sec. III. We will argue that systematic effects
can lead to anomalous flattening behavior in the free energy,
as described by Eq.~1.1! for the U~1! lattice gauge theory. In
Sec. II, a general analysis of simulating systems with au
term is presented. Section II provides a mechanism by which
anomalous flattening behavior can arise. In Sec. IV, a lattice
CP3 model is treated. By comparing Monte Carlo data with
analytic strong-coupling series from@19#, flattening behavior
can be shown to be anomalous for at least two simulations.
Some additional results and remarks are presented in Sec. V.
In Sec. VI, a summary and final discussion is given.

II. GENERAL ISSUES CONCERNING SIMULATIONS
WITH u TERMS

In this section, we discuss some issues concerning simu-
lations of an arbitrary lattice theory in the presence of au
term. In particular, a general error analysis can be carried
out. From this analysis, one concludes that, for sufficiently
large volumes, a limitingu exists, beyond which reliable
measurements of the free energy cannot be made.

For a fixedV, let P(Q) be the probability of having a
configuration with topological chargeQ in some system. Let
PMC(Q) be the corresponding quantity as measured in a
Monte Carlo simulation. Assume that the Monte Carlo up-
dating procedure generates configurations proportional to
Boltzmann weights. Below, this assumption is relaxed. If
NMC(Q) is the number of times that configurations with to-
pological chargeQ arise in such a simulation, then

PMC~Q![
NMC~Q!

(Q8NMC~Q8!
. ~2.1!

In a typical simulation, the measuredPMC(Q) differ from the
exactP(Q) by small errorsdP(Q):

PMC~Q!5P~Q!1dP~Q!. ~2.2!

With enough measurements,udP(Q)u!1. In most systems
and the ones considered in this work,P(Q) falls off2 with
Q, so thatP(Q).P(Q8) for uQu,uQ8u. A criterion for a
simulation to have good statistics is thatdP(Q)!P(0).

1One would still need to explain why confinement is necessary for
the continuum limit. 2Eventually the falloff is rapid.
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Let f (u) be the difference between the free energyF(u)
of a system with au term and the free energy of a system
with u50:

f ~u!5F~u!2F~0!. ~2.3!

Typically, f (u) is an increasing function ofu for 0<u<p.
The free energy differencef (u) is constructed fromP(Q)
using

exp@2Vf~u!#5(
Q

P~Q!exp~ iuQ!. ~2.4!

Normally P(2Q)5P(Q), so thatf (2u)5 f (u).
In a Monte Carlo simulation, an approximationfMC(u) to

f (u) is obtained by usingPMC(Q) in lieu of P(Q):

exp@2VfMC~u!#5(
Q

PMC~Q!exp~ iuQ!

5exp@2Vf~u!#1dZ~u!, ~2.5!

where

dZ~u!5(
Q

dP~Q!exp~ iuQ!. ~2.6!

Hence,

2VfMC~u!5 ln$exp@2Vf~u!#1dZ~u!%. ~2.7!

Since f (u) is an increasing function ofu, an accurate mea-
surement off (u) for 0<u,u0 is obtained if

udZ~u!u!exp@2Vf~u0!#. ~2.8!

In particular, sincef (0)50 andudZ(u)u!1, there is always
a region nearu50 for which f (u) can be measured in a
Monte Carlo simulation. However, away fromu50, Eq.
~2.8! implies that accurate results are obtained only if the
error dZ(u) is exponentially small inV. If Eq. ~2.8! is sat-
isfied with u05p, then a reliable measurement off (u) can
be made throughout the entire fundamental region
0<u<p.

If the inequality in Eq.~2.8! is not satisfied for someu0,
then one of several possibilities may arise. If, on the one
hand, exp@2Vf(u0)#1dZ(u0),0 then the argument in the
log on the right-hand side of Eq.~2.7! becomes negative and
one will not be able to extractf (u0) from the measurements
of the probabilitiesPMC(Q). In Monte Carlo simulations for
such a situation, a growth in the errors offMC(u) will be
observed asu approachesu0, andfMC(u) will eventually not
be measurable. If, on the other hand,
exp@2Vf(u0)#1dZ(u0).0 then fMC(u) will be measurable at
u5u0 but the results will not be accurate.

For sufficiently largeV, a value ofu exists beyond which
it is impossible to compute reliablyf (u). If we call this value
ub , thenub is the maximum value ofu0 for which Eq.~2.8!
is satisfied. The value ofub depends on the statistical accu-
racy of the simulation. AsV gets larger,ub decreases unless
an enormously large number of measurements are under-
taken to reduce statistical errors. For largeV, obtaining
enough measurements becomes, in any practical sense, im-

possible. Clearly, it is more difficult to measuref (u)
throughout the entire fundamental region ofu, as V gets
larger.

It turns out that in most Monte Carlo simulations, there is
a tendency for

udP~0!u.udP~1!u.udP~2!u.•••. ~2.9!

The reason for Eq.~2.9! is explained in the next paragraph.
For the sake of argument, suppose thatudP(0)u is much
larger thanudP(Q)u for uQu>1. Then, from Eq.~2.8!, one
concludes that

f ~ub!'
1

V
u lnudP~0!uu. ~2.10!

Since Monte Carlo results are reliable foru,ub ,

fMC~u!' f ~u! for u,ub . ~2.11!

If, in addition, dP(0).0, then one will find3

fMC~u!'2
1

V
lndP~0! for u.ub , ~2.12!

so that a constant ‘‘flat’’ behavior infMC(u) will be ob-
served. Although one might expect the statistical error in
fMC(u) to be the order offMC(u) for u*ub , we have ob-
served in some simulations that the error, as computed by the
jackknife method, remains anomalously small. This happens
in both the two-dimensional U~1! gauge theory~see Sec. III!
and the CP3 model ~see Sec. IV!. When dP(0).0,
fMC(u) will smoothly interpolate between the behaviors in
Eqs. ~2.11! and ~2.12! in the region aroundu;ub . The net
result is a form for the free energy which resembles Eq.
~1.1!. If an error dP(Q) for uQu.0 is almost as large as
dP(0), then the constant behavior in Eq.~2.12! is replaced
by a ‘‘slightly wavy’’ almost flat curve. The above discus-
sion is applied to the casedP(0).0. If, on the other hand,
dP(0),0, then it will be impossible to measuref (u) for
u.ub .

There are various ways to measurePMC(Q). The naive
method @39# is to generate configurations proportional to
their Boltzmann factor and simply count the number
NMC(Q) of configurations with topological chargeQ, and
then use Eq. ~2.1!. Since the statistical uncertainty
dNMC(Q) in NMC(Q) is proportional toANMC(Q),

udPMC~Q!u'cAPMC~Q!, ~2.13!

for some constant4 c. BecauseP(Q) is a monotonically de-
creasing function ofQ for Q>0, the inequalities in Eq.~2.9!
tend to be satisfied. In any particular simulation, however,
statistical fluctuations may violate Eq.~2.9!, particularly if
P(Q) is only slightly larger than5 P(Q11).

3Note that sincedP(0)!1, the right-hand side of Eq.~2.12! is
positive.
4There might be a weak dependence ofc onQ.
5This tends to happen when the volume is large and forQ small.
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One commonly used Monte Carlo technique@40,41# is to
perform simulations inQ bins. The topological chargesQ
are restricted to be in a bin of a certain bin size. The bins
must overlap—usually one takes the bins to overlap for only
oneQ value. For example, the bins can be taken to be 0
<Q<DQ, DQ<Q<2DQ, 2DQ<Q<3DQ, etc., where
DQ is a small positive integer. Here, the bin size is
DQ11. The relative probabilities within aQ bin are mea-
sured by generating configurations which are proportional to
their Boltzmann factors but with their topological charges
contained in aQ bin. Overall probabilities are determined
from the relative probabilities by matching results at the
overlap endpoints of twoQ bins. Compared to the naive
method, one generates more configurations with largeQ con-
figurations. Hence, errors indP(Q) are relatively reduced
for largeQ. This tends to enhance the inequalities in Eq.
~2.9!.

A benefit of the binning technique is that it enables
P(Q) to be accurately measured for largeQ, even where
P(Q) is extremely small. The effect can be spectacular: of-
tenP(Q) which are orders and orders of magnitude smaller
thatP(0) can be measured.

Another simulation method introduces a weight factor
w(Q). One then generates Monte Carlo configurations which
are proportional to(the Boltzmann factor)3w(Q). If
ÑMC(Q) is the number of configurations with topological
chargeQ which are generated by such a procedure, then Eq.
~2.1! is replaced by

PMC~Q![
ÑMC~Q!@w~Q!#21

(Q8ÑMC~Q8!@w~Q8!#21
. ~2.14!

Although any weight w(Q) may be used, the trial-
probability-distribution method tries to choosew(Q) so that
all Q sectors are ‘‘visited’’ roughly the same number of
times @42#. In other words, one guesses a trial probability
P0(Q), which might accurately approximate the true prob-
ability distributionP(Q). One then usesw(Q)51/P0(Q). If
one were to pickP0 so thatP0(Q)5P(Q), then a constant
distribution in Q for ÑMC(Q) would be generated~up to
statistical fluctuations! and Eq. ~2.14! would lead to
PMC(Q)5P0(Q)5P(Q). Like the binning method, the
trial-probability-distribution method generates more configu-
rations in the largeQ sectors, thereby enabling one to better
measureP(Q) for Q large. This method also enhances the
inequalities in Eq.~2.9!.

Finally, one can combine the above two methods by using
a trial probability distributionP0(Q) with aQ binning. This
trial-probability-binning method is excellent for measuring
P(Q) for largeQ. However, of the four methods mentioned
here, it enhances the inequalities in Eq.~2.9! the most.

In summary, current methods of simulating systems with
u terms tend to generate errors forP(Q) which are ordered
as in Eq.~2.9!.

None of the methods solve theub barrier problem dis-
cussed above between Eqs.~2.8! and ~2.13!: Assuming that
dP(0) dominates in the errordZ(u), one sees that increasing
the statistics hardly changesub because of the logarithm and
the volume factor in Eq.~2.10!. The same statement holds
even whendP(0) is not the dominant error. One concludes

that all simulation methods must fail for sufficiently large
u, if V of the system is large. Cluster algorithms might help
a little in this regard@43#.

From the above discussions, the following general guide-
lines concerning Monte Carlo simulations of systems with a
u term are obtained.

~1! When the volume is sufficiently big, a limitingub
arises. Foru.ub , the free energy cannot be reliably mea-
sured.

~2! As long as finite-size effects are under control, that is
j,V(1/d), small-volume results for the measurement of
f (u) are more reliable than large-volume results. Here,j is
the correlation length andd is the number of dimensions of
the system.

~3! If a flattening behavior of the free energyf (u) for
largeu is observed, one should be cautious that the result is
spurious. In particular, one should try to see whether
udP(0)u is bigger than the otherudP(Q)u.

~4! WhenPMC(Q) is less thanudP(0)u, the contribution
to PMC(Q) in Eq. ~2.5! need not be included. The reason for
this statement is that the contribution ofPMC(Q) is lost in
the ‘‘noise’’ of the error termdZ in Eq. ~2.5!.

~5! Although theub barrier cannot be overcome, Monte
Carlo procedures should emphasize accurate measurements
of P(Q) for Q near 0. In particular, the optimal procedure is
one for which all udP(Q)u are approximately equal. This
minimizes the chances for anomalous flat behavior inf (u).

Combining~2! and ~3!, one obtains another guideline.
~6! If a large-volume simulation shows a flattening effect

for f (u) for u sufficiently large, but a smaller-volume simu-
lation does not, one should probably trust the smaller-volume
result.

Surprisingly, many previous Monte Carlo studies of sys-
tems withu terms measureP(Q) over many orders of mag-
nitude. Point~4! above says that, although this is not harm-
ful, it is an inefficient use of computer time if one is
interested in measuring the free energy. Likewise, point~5!
implies that the standard binning and trial-probability meth-
ods are not optimal because they enhance the inequalities in
Eq. ~2.9!. The binning method can be improved by doing
more measurements in theQ bin containingQ50 and less
measurements in largeQ Q bins. Another improvement is
as follows. One can adjustw(Q) in Eq. ~2.14! so that the
errors udP(Q)u are equal~up to statistical effects!. It is not
hard to show that the optimalw(Q) is P(Q). This corre-
sponds to using a trial-probability function which is the in-
verse of the true probability. In other words, the optimal
weighting method is the antithesis of the trial-probability
method and the antithesis of what is commonly employed in
Monte Carlo experiments.

III. THE LATTICE U „1… GAUGE THEORY

The two-dimensional lattice U~1! gauge theory serves as
an important test case because computer simulations can be
compared to the exact analytic results below. For related
Monte Carlo investigations, see@41,44#.

In the lattice formulation of a gauge theory, one assigns
an element of the group to each link of the lattice. For the
U~1! case, such an element is a phase. The lattice U~1! gauge
theory action is
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SU~1!5b(
p

~Up1Up* !, ~3.1!

whereUp is the product of the U~1! link phases around the
plaquettep and whereb is the inverse coupling.

Define a local topological density np via

np[
1
i ln(Up)/2p, where2p, 1

i ln(Up)<p. The total topo-
logical chargeQ is given byQ5(pnp . Theu termSu term is
iuQ, that is@45#

Su term5
u

2p(
p
ln~Up!. ~3.2!

Equation~3.2! is the lattice analog of the continuumu-term
action i (u/2p)*d2xF.

In d52 dimensions, gauge theories are exactly solvable
even in the presence of au term. For periodic boundary
conditions, in which caseQ is quantized to an integer, the
result is@41#

Z~u,b,V!5 (
m52`

`

@z~u12pm,b!#V, ~3.3!

where

z~u,b!5
*2p

p ~d fp/2p!exp~ i f pu/2p!exp@2bcos~ f p!#

*2p
p ~d fp/2p!exp@2bcos~ f p!#

.

~3.4!

Here, f p can be thought of as the field strength for a single
plaquette:Up5exp(if p). In the infinite volume limit, the free
energy difference per unit volumef (u) is given by

f ~u,b!52 ln@z~u,b!#. ~3.5!

In particular, atb50, one obtains@18#

f ~u,0!52 lnF2usinS u

2D G , ~3.6!

when2p,u<p.

We have performed Monte Carlo studies of the U~1!
gauge theory to gain insight into computer simulations for a
system with au term. The action consisted of the sum of the
actions in Eqs.~3.1! and ~3.2!. Two values ofb were con-
sidered:b50.0 andb51.0. Three simulation methods were
employed: naive, binning, and binning with a trial-
probability function. Heat-bath updating was used with the
naive and binning methods. The Metropolis algorithm was
used with the trial-probability-binning method. The trial-
probability distributionP0(Q) was chosen to be a Gaussian:
P0(Q)}exp(2kQ2), where the constantk was appropriately
selected. After thermalizing the system, the number of
sweeps ranged from tens of million to several hundred mil-
lion. One sweep corresponded to updating once all the link
variables of the lattice. The number crunching was done on
IBM and Sun desktop workstations.

Figure 1 plots the free energy versusu for b51.0, for a
periodic 16316 lattice. For the naive method, the data points
correspond to short horizontal line segments. A total of 75
million updating sweeps were performed. The error bars
were computed using a jackknife method@46# by dividing
the run into 15 data sets, each of which involved 5 million
sweeps. The solid line is the exact analytic result. Analytic
and Monte Carlo results agree foru less than 2.1. The agree-
ment, which is excellent, cannot be seen on the scale of Fig.
1. For example, atu50.5, fMC50.002 420 04(53) versus
f exact50.002 419 6, atu51.0, fMC50.009 668 5(46) ver-
susf exact50.009 668 2, atu51.5, fMC50.021 699(61) ver-
sus f exact50.021714, and atu52.0, fMC50.0386(37) ver-
susf exact50.0385, where the statistical uncertainty in the last
two digits is displayed in parentheses.6 For u beyond 2.1,
error bars grew and the partition function became negative.
One sees that the ‘‘barrieru ’’ ub is about 2.1. The statistical
error inPMC(0) was 331025. Using this error in Eq.~2.10!
to estimateub , one findsub'2.05. The agreement of the
theoreticalub with the Monte Carlo value confirms the data-
analysis discussion of Sec. II. One can also check Eq.~2.13!

6For example, theu52.0 result isfMC50.038660.0037.

FIG. 1. U~1! free energy vsu at b51.0 for
the naive and binning methods.
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by seeing whether the ratio of the statistical error ofP(Q) to
APMC(Q) remains constant. Even thoughPMC(Q) varied by
8 orders of magnitude, it turned out that the ratio stayed
constant to within a factor of 3.

Figure 1 also plots the free energy versusu and for the
binning method, again forb51.0 on a 16316 lattice. The
data points correspond to diamonds. Five bins of bin size 4
were used. For each bin, 16 million sweeps were performed.
Since 5 bins were used, the statistics for this case are com-
parable to the statistics of the naive method of the previous
paragraph. The 16 million sweeps were divided into 20 sets
for the jackknife analysis of errors. Foru>2.0, the Monte
Carlo data for the free energy dropped below the exact result
and became constant. Foru<1.7, the agreement between
Monte Carlo data and the analytic result was comparable to
the naive-method case, discussed in the previous paragraph.
As one can see in Fig. 1, the flat behavior in the free energy
is anomalous foru.2.1 even though the error bars are siz-
able. Atu5p, the discrepancy with the exact analytic result
for f is at the 4s level.

We also performed a simulation with a trial-probability-
binning method, again withb51.0 on a 16316 lattice. The
results were similar quantitatively to the naive case above,
except that the Monte Carlo data dropped below the exact
result at about 2.1 and then the error bars became enormous
for u>2.2.

In all three of the above runs, the statistical errors in
P(Q) were ordered as in Eq.~2.9!.

For the binning-method case, one can address the ques-
tion of whether the flattening behavior is attributable to a
value of PMC(0) which is larger thanP(0). For a 16316
lattice, the exactP(0) is 0.179 259. The value ofPMC(0) for
the binning run was 0.179 295~72!. Thus,PMC(0) was in-
deed greater than P(0). For the naive run,
PMC(0)50.179 242(30), while for the trial-probability-
binning run,PMC(0)50.179 192(55), and since these two
values are below the exactP(0), the anomalous flattening
behavior is not expected to arise, in agreement with the
Monte Carlo results.

According to Eq.~2.10!, one can increaseub by decreas-
ing the size of the system. We therefore estimated that if the
lattice size was 8, then a reliable measurement of the free
energy could be made throughout the entire fundamentalu
region. Using a trial-probability-binning method on an
838 lattice, reasonable agreement between Monte Carlo
data and analytic results was obtained in a 30-million sweep
run. For example, atu51.0, fMC50.00980(5) versus
f exact50.009 67, at u52.0, fMC50.0382(1) versus

f exact50.0385 and at u53.0, fMC50.089(3) versus
f exact50.0814.
Consider now the infinite-strong-coupling caseb50.0.

Results for this case were qualitatively similar to the
b51.0 case: When the lattice size was sufficiently small, the
free energy was measurable over the entire fundamentalu
region and the data agreed well with exact analytic calcula-
tions. When the lattice size was bigger, the free energy was
accurately measurable only for 0<u,ub . For example, a
run, which used the naive method on a 30330 lattice and
which involved 22 million sweeps, produced good results
only for 0<u,0.49. The barrier value was in agreement
with ub of 0.5, as computed from Eq.~2.8!.7 When a binning
method was used, the free energy data points began to slip
below the analytic results nearu'0.45. A slightly wavy but
basically flat behavior for the free energy was observed for
0.45,u,0.80. In this range, the Monte Carlo data were be-
low the exact analytic result at the 2s level. Foru.0.81, the
error bars become large and the free energy was not measur-
able. When the lattice size was reduced, the free energy was
measurable over a largeru region. On a 737 lattice, we
performed a run with the trial-probability-binning method.
For the first 180 million sweeps, a graph qualitatively similar
to the binning case of Fig. 1 was obtained. The free energy
was measurable up toub'2.1. Foru.2.1, the data points
fell below the exact result and a flat free energy curve was
produced. From the error inP(0) of ;1025, the theoreti-
cally predicted value ofub from Eq. ~2.10! was 2.3. When
the run was continued, the flat behavior went away: After a
billion sweeps, the data agreed with analytic results for
0<u,2.2. Beyond 2.2, the data fell slightly below the exact
results and the error bars became large atu52.7. For
u.2.7, the free energy was no longer numerically measur-
able. Based on Eq.~2.10!, the limiting ub should be 2.65 for
this case, in agreement with the Monte Carlo results. Table I
displays the kind of accuracy with whichP(Q) was mea-
sured. Finally, we reduced the lattice size to 4. In a run using
the binning with a probability distribution, the free energy
was accurately obtained throughout the fundamentalu re-
gion. A run with 525 million sweeps was performed with 2
bins of bin size 4. Table II provides the comparison of Monte
Carlo and exact results for the free energy.

7On this large latticeP(Q) decreased slowly forQ near zero, so
that the largest statistical error actually occurred forP(24). This
error was 1.431025.

TABLE I. P(Q) for U~1! model atb51.0 on a 737 lattice.

Q PMC(Q) Pexact(Q) Q PMC(Q) Pexact(Q)

0 1.968226(42)31021 1.96819931021 7 4.51534(28)31024 4.5149531024

1 1.743842(23)31021 1.74386631021 8 6.58573(46)31025 6.5853331025

2 1.212054(16)31021 1.21208631021 9 7.13760(58)31026 7.1377431026

3 6.59478(17)31022 6.5945431022 10 5.64442(51)31027 5.6446331027

4 2.79818(09)31022 2.7980631022 11 3.18299(30)31028 3.1834431028

5 9.20984(42)31023 9.2093131023 12 1.24331(15)31029 1.2403431029

6 2.33452(13)31023 2.3343731023
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The b50.0 results of this section are relevant for the
CPN21 models atb50: When b50, the CPN21 models
coincide with U~1! gauge theory. A numerical investigation
of the CP3 model at nonzerob is the subject of Sec. IV.

IV. THE LATTICE CP 3 MODEL

Monte Carlo studies of the ‘‘adjoint’’ form of the lattice
CP3 model in the presence of au term have been performed
in @28#. For our Monte Carlo investigations, we have selected
the ‘‘auxiliary U~1! field’’ formulation for two reasons:~1! it
allows us to investigate the CP3 model from a different but
equally good form of the lattice action, and more impor-
tantly, ~2! strong-coupling expansions@19# have been ob-
tained for this form of the action, thereby allowing compari-
sons of Monte Carlo data with analytic results, at least for
small inverse couplingb. The CPN21 models without au
term have been studied by computer simulations in several
works. See@20–27#.

The lattice CPN21 action, which we employ, is

S5bN(
x,D

@zx* •zx1DU~x,x1D!1c.c.#, ~4.1!

where the complex scalar fieldszx
i satisfy( i51

Nzxi* zx
i 51 and

where c.c. is the complex conjugate of the first term in Eq.
~4.1!. Here, the sum overD involves thed positively di-
rected nearest neighbors tox, so thatD takes on the values
e1 , e2 , . . . , ed , whereei is a unit vector in thei th direc-
tion. Since we consider the two-dimensional case,d52. The
field U(x,x1D) is a phase associated with link betweenx
andx1D—it is the same link variable which appears in the
U~1! gauge theory of Sec. III. To Eq.~4.1!, we addSu of Eq.
~3.2! to obtain the full action. Finally, we treat theN54
case, i.e., the CP3 model.

We used the Metropolis algorithm for all degrees of free-
dom. Thezx

i fields were separated into four real and four
imaginary components. They were updated by performing
rotations in each of the 28 planes of the eight-dimensional
real vector space. For the U~1! fields, a binning method was
used. After each time-consuming update of thezx

i fields, 10
U~1! updates, as well asQ measurements, were carried out
in the fixedzx

i background. The total number of U~1! sweeps
ranged from 3 to 150 million. Simulations were done for
b50.2,0.6,0.7,1.0, and 1.1. The intermediate-coupling

crossover region is around 0.8, so that the latter twob values
are in the weak-coupling region where continuum scaling
should set in.

In some simulations with large volumes, the free energy
was not measurable beyond a certain value ofu: error bars
became very large or the partition function went negative.
The value ofu at which this occurred was in approximate
agreement withub obtained using Eq.~2.10!. Below, we
show results for cases in which the free energy was measur-
able throughout the entire fundamentalu region or for cases
in which a flat behavior was observed.

Figure 2 shows the free energy atb50.2 for 434 and
636 lattices. The solid line represents the tenth-order
strong-coupling character expansion of@19#. At this small
value of b, the strong-coupling expansion should be quite
close to the exact result. On the 636 lattice, an anomalous
flattening behavior was observed. The discrepancy between
Monte Carlo data and the strong-coupling series was more
than 10s for u nearp. For some reason, the jackknife error
analysis produced error bars which did not come close to
overlapping with the true results. Furthermore, Eq.~2.10!
predicts thatub should be 2.1, so that measurements of the
free energy should not be reliable foru.2.1. This theoretical
estimate forub is close to the point where constant free-
energy behavior set in. When the lattice size was reduced to
4, agreement between Monte Carlo data and the strong-
coupling series occurred throughout the entire fundamental
u region.

At b50.6, roughly similar behaviors in the Monte Carlo
results were obtained except, that on the 838 lattice, a flat
behavior in the free energy began atu51.7, which turned up
at u52.5. The free energy was not measurable beyond
u52.6. See Fig. 3. Equation~2.10! predicts that free energy
Monte Carlo results should not be trusted foru.1.75. For a
636 lattice, agreement with the strong-coupling series was
obtained up to aboutu52.5. Beyond that point, the strong-
coupling series was slightly below Monte Carlo data~at
roughly the 1s level!. At u52.8, the strong-coupling expan-
sion of the free energy peaks and for largeru it decreases,
while Monte Carlo data continued to increase.

At b50.7, the strong-coupling series peaks atu52.4 and
then decreases significantly. Since the free energy should be
a nondecreasing function ofu, higher-order inb corrections
are probably important in this region, as@19# suggested
might be the case. The Monte Carlo data began to rise above
the strong-coupling results at aroundu51.2 ~see Fig. 4!. At

TABLE II. Measured and exact free energy forb50.0 on a 434 lattice.

u FMC Fexact u FMC Fexact

0.2 1.667250(80)31023 1.66722031023 1.8 1.38842(14)31021 1.3884531021

0.4 6.67569(29)31023 6.6755831023 2.0 1.72596(23)31021 1.7260331021

0.6 1.504550(71)31022 1.50453031022 2.2 2.10467(38)31021 2.1048531021

0.8 2.68107(14)31022 2.6810431022 2.4 2.52636(72)31021 2.5267431021

1.0 4.20200(25)31022 4.2019531022 2.6 2.9917(15)31021 2.992531021

1.2 6.07374(40)31022 6.0736931022 2.8 3.4907(35)31021 3.492631021

1.4 8.30438(62)31022 8.3043631022 3.0 3.9436(75)31021 3.947231021

1.6 1.090390(94)31021 1.09039031021
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FIG. 2. CP3 free energy vsu at b50.2 on
434 and 636 lattices.

FIG. 3. CP3 free energy vsu at b50.6 on
636 and 838 lattices.

FIG. 4. CP3 free energy vsu atb50.7 on an
838 lattice.
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this value ofb, which is in the intermediate coupling region,
the Monte Carlo data is to be trusted over the strong-
coupling expansion.

At b51.0, which is on the weak-coupling side of the
intermediate-coupling region, a simulation on a 20320 lat-
tice gave good results throughout the fundamentalu region.
Figure 5 displays the free energy versusu. The solid curve is
the fit f (u)50.00393@12cos(u)#. It reproduces the data
within error bars. Atb51.1, a simulation on a 40340 lattice
also gave good results. The free energy function
f (u)50.001253@12cos(u)# reproduces theb51.1 data well
throughout the fundamentalu region. It is interesting that a
‘‘cosine’’ form fits the data forb>1.0. Such a functional
form arises from a topological gas picture@2#. Forb,0.8, a
cosine form did not fit the free energy data.

V. REMARKS

The cosine behavior of the free energy does not agree
with the largeN limit result, which givesf largeN5c/Nu2, for
someN-independent constantc. The discrepancy might be
due to the smallness ofN, which is 4 in our case. In other
words, higher-order 1/N corrections in the largeN expansion
are important. We believe that this explanation is likely: In
the leading zeroth-order largeN expansion, nou dependence
arises in the free energy. The first 1/N correction provides
the quadraticu dependence. Hence, the first-order result dif-
fers significantly from the zeroth-order result for largeu and
especially nearu5p. It is thus quite possible that higher-
order 1/N corrections contribute to the largeu region and
cause the free energy to ‘‘curve over’’ like a cosine function.
This would not be the first time that a largeN result is
anomalous in the CPN21 models@31,16,17#. In the zeroth-
order approximation, the CPN21 models do not confine.
However, the first 1/N correction does lead to confinement
@29,30#. Nonetheless for finiteN, the CPN21 models have a
property called superconfinement@17# in which charges are
so strongly bound that they cannot be separated by any non-

zero distance.8 Superconfinement corresponds to an infinite
string tension. It has been conjectured that summing the
1/N series would strengthen the confinement and lead to su-
perconfinement@17#. Probably, quantities in the CPN21

models, which differ greatly in going from the zeroth order
to the first order, such as the free energy foru away from
u50 and the string tension, are not reliably computable in
the largeN expansion.

An interesting open question is whether there is a phase
transition atu5p. At infinitely strong coupling, this is the
case@18#. In the strong-coupling region, finite volume effects
round off the cusp in the free energy when sufficiently small
volumes are used to give reliable results nearu5p. Hence
definitive conclusions cannot be drawn. In the weak-
coupling region, the cosine function fits are suggestive that
the phase transition is absent.

If f (u)5c8u2, then, as the volumeV goes to infinity,

P~Q!

P~0!
5expS 2

Q2

4c8VD . ~5.1!

This follows from inverting Eq.~2.4!:

P~Q!

P~0!
5

*2p
p ~du/2p!exp~ iuQ!exp@2Vf~u!#

*2p
p ~du/2p!exp@2Vf~u!#

. ~5.2!

As V→`, a saddle point expansion of Eq.~5.2! becomes
quite accurate. If the minimum off (u) is atu50, one finds

P~Q!

P~0!
5expS 2a2

Q2

2!
2a4

Q4

4!
2••• D , ~5.3!

where

8An interesting side remark is that Ref.@19# has shown that su-
perconfinement is lost in the presence of au term.

FIG. 5. CP3 free energy vsu at b51.0 on a
20320 lattice and its cosine fit.
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a25
1

Vf ~2!~0!
2

f ~4!~0!

2V2@ f ~2!~0!#3
1

@ f ~4!~0!#2

4V3@ f ~2!~0!#5

2
f ~6!~0!

V3@ f ~2!~0!#4
1OS 1V4D ,

a45
f ~4!~0!

2V3@ f ~2!~0!#4
1OS 1V4D , ~5.4!

where f (n)(0) is the nth derivative of f (u) at the origin.
Equation~5.3! reduces to Eq.~5.1! if f (n)(0)50 for n.2.

There has been some previous discussion as to whether
the Q dependence inP(Q) is Gaussian@47,48#. On one
hand, Eq.~5.3! shows that this is the case asV→`. On the
other hand, if theQ dependence inP(Q) is exactly Gaussian
then f (u)5c8u2 for u in the fundamentalu region, as
V→`. Since nonquadratic behavior forf (u) is usually ob-
served, theQ4 and higher powers ofQ in Eq. ~5.3! are im-
portant for determiningf (u). Since the coefficienta4 of
Q4 falls off as 1/V3, large volume systems make it difficult
for Monte Carlo simulations to determine correctly theu
dependence off (u) for large u. One again arrives at the
conclusion of guideline~2! of Sec. II: Small volume results
are to be trusted over large volume results for the computa-
tion of the free energy. Forb.0.9, the ‘‘cosine’’ behavior of
f (u) observed in the Monte Carlo investigations of the
CP3 model imply a non-Gaussian behavior ofP(Q). In fact,
in our simulations of both the U~1! gauge model and of the
CP3 model, small derivations from Gaussian behavior of
P(Q) were observed for allb values.

VI. DISCUSSION

By comparing Monte Carlo simulations of thed52 U~1!
gauge theory, we have verified the guidelines given in Sec.
II: For sufficiently large volumes, a barrierub arises, beyond
which numerical results for the free energy are unreliable.
The limiting ub can be computed theoretically using Eq.
~2.10! with udP(0)u estimated to be the statistical error in
PMC(0). When the size of the system is reduced, reliable
results are obtained throughout the entire fundamental region
for u. Hence, when small-volume results differ from large-
volume results, one should trust the smaller-volume results.
In some simulations, a flat free energy behavior is observed
for u.ub . Comparison to exact analytic results demon-
strates that the flat behavior is incorrect—the true free energy
continues to rise foru.ub . The flattening effect can be
attributed to the error inPMC(0) dominating over the errors
in otherPMC(Q). The domination of the error inPMC(0) is
enhanced by Monte Carlo techniques such as the binning
method and the use of a trial-probability distribution.

The above conclusions also hold for the ‘‘auxiliary U~1!
field’’ formulation of the CP3 model: When the volume is
large, anomalous flat behavior of the free energy is some-
times seen. Atb50.2 for the 636 lattice run, the flat energy
behavior is definitely incorrect since a comparison can be
made with a reliable analytic strong-coupling expansion.
When a smaller lattice size is used, results for the free energy
are more accurate and flat behavior is absent. When the in-

verse couplingb is greater than 0.6, the strong-coupling cal-
culation of the free energy has a peak, but the Monte Carlo
data do not. See Figs. 3 and 4. At these intermediate values
of the coupling, we believe that the peak is an artifact of
truncating the series to order 10—higher-order contributions
are probably important.

There is a simple physical picture of why a limitingub
arises. Current methods for simulating a system withuÞ0
are done using theu50 system. There should be a ‘‘barrier’’
separating the two systems. The barrier grows exponentially
with the volumeV. WhenV is small or whenu is small, the
barrier does not prevent theu50 system from sensing the
physics of theuÞ0 system. However, asV gets large, the
barrier becomes more impenetrable, and for sufficiently large
u, the Monte Carlo simulations do not explore the phase
space of theu system sufficiently well to give reliable re-
sults.

If one applies the guidelines in Sec. II to the work of@28#,
one would conclude the following. The simulations of the
adjoint form of the lattice CP3 model in @28# found the ab-
sence of a flattening behavior in the free energy for suffi-
ciently small volumes. This is typified in Fig. 3 of the first of
@28#. Guidelines~2! and ~6! say that smaller-volume results
are to be trusted over larger-volume results. Hence, one
would conclude that the flattening behavior is anomalous. If
this is true, it is a result of the probability method which
tends to emphasize the error inPMC(0). If the flattening
behavior is anomalous,uc of @28# should be identified with
the barrieru ub . One test of this idea is as follows. Assum-
ing that the statistical errors are approximately the same for
all the runs in@28# and that Eq.~1.1! holds, it follows from
Eq. ~2.10! thatVuc

2 should be approximately constant for a
fixed value of b. At b52.5, for the 28328, 32332,
38338, and 48348 lattices, V1/2uc /p is, respectively,
;20, ;21, ;21, and ;22. At b52.7, for the
56356, 64364, and 72372 lattices,V1/2uc /p is, respec-
tively, ;35, ;33, and;32. Hence,Vuc

2 is approximately
constant. If the dominance of the error inPMC(0) is the
source of the free energy flattening behavior of@28,34#, one
puzzling question arises: why did all the runs display flatten-
ing behavior—one would have expected that, in some runs,
the errors in the free energy to become large atuc and/or for
the partition function to become negative. It is possible that
some other subtle systematic effect is playing a role. The
discussion here supports explanation~ii ! of the Introduction,
but one cannot definitively rule out explanation~i!, namely,
that a massless or light mode arises foru sufficiently large.

ACKNOWLEDGMENTS

We thank Gerrit Schierholz and Peter Weisz for useful
discussions. We acknowledge the Max-Planck Institute in
Munich, Germany for its considerable support—much of the
computer work for this project was carried out on worksta-
tions at the Max-Planck Institute. We also thank the ITP of
the University of Hanover for use of its computers. This
work was supported in part by the PSC Board of Higher
Education at CUNY, by the National Science Foundation
under Grant No. PHY-9420615, and by two Humboldt Foun-
dation grants.

56 53MONTE CARLO STUDIES OF TWO-DIMENSIONAL . . .



@1# A. Belavin, A. Polyakov, A. Schwartz, and Y. Tyupkin, Phys.
Lett. 59B, 85 ~1975!.

@2# C. Callan, R. Dashen, and D. Gross, Phys. Lett.63B, 334
~1976!.

@3# R. Jackiw and C. Rebbi, Phys. Rev. Lett.37, 172 ~1976!.
@4# H. Fritzsch, M. Gell-Mann, and H. Leutwyler, Phys. Lett.47B,

365 ~1973!.
@5# S. Weinberg, Phys. Rev. D11, 3583~1975!.
@6# G. ’t Hooft, Phys. Rev. Lett.37, 8 ~1976!.
@7# E. Witten, Nucl. Phys.B156, 269 ~1979!.
@8# G. Veneziano, Nucl. Phys.B59, 213 ~1979!.
@9# P. Woit, Phys. Rev. Lett.51, 638 ~1983!.

@10# J. Hoek, M. Teper, and J. Waterhouse, Phys. Lett. B180, 112
~1986!.
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