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Monte Carlo studies of two-dimensional systems with & term
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A 6 term, which couples to topological charge, is added to the two-dimensional lattitenGéRel and 1)
gauge theory. Monte Carlo simulations are performed and compared to strong-coupling character expansions.
In certain instances, a flattening behavior occurs in the free energy at sufficientlydlaoge the effect is an
artifact of the simulation methodgS0556-282(197)02213-3
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. INTRODUCTION Oe=10"°[14,15. The strongC P problem in QCD can then
be phrased as the question of hay can naturally be so
Formally, the inclusion of & term in a theory does not small. The strondC P problem is thus a fine-tuning issue.
affect the equations of motion. For this reason, it was once In a pure Yang-Mills theory, the strongP problem in-
thought thatg terms were irrelevant. In fact, this appears toVolves vacuum dynamics. Vacuum physics is related to the
be the case for the four-dimensionallygauge theory. Add- !ong-distance behavior of a theory and hence non-
ing the 6 term [d*xF ,,F#”(x) to the action is believed to p_erturbgnve and _sstrong—cpupllng effect;. For  four-

. pvt AT . ._dimensional Yang-Mills theories, this regime is not well un-
npt affect physics. T_he situation for a non-Abelian theory 'Sqerstood. Thus it is useful to consider simpler systems, such
different.  The  importance  of the § term ;546 wo-dimensional CP L models. They have features
Sp=0%0fd*xF3 F4"(x)/(327%) was realized when instan- in common with four-dimensional Yang-Mills theories: They
tons were uncovered in four-dimensional Yang-Mills theo-are asymptotically free, possess instanton solutions, and have
ries [1]. Instantons represent barrier-penetration processegvacua.

between different classical vacua. Ann vacuum|n) is Insight into the CP~! models comes from strong-
obtained from the perturbative vacuum through a nontriviakoupling expansiongl6—19, Monte Carlo simulations20—
gauge transformation carrying a winding number 28] and the use of the largé limit [29,30. As N—x, the
Instanton-barrier-penetration effects imply that the truecpN-! model becomes a system Wf free particles and\
vacua are linear combinations ofvacua. These vacu®)  free antiparticles, and there is fodependences vacua are
are called ¢ vacua [2,3] and are given by degenerate in energy. However, the firdtl Dorrection lifts
|6)==7_ _.expind)|n). In a functional integralg vacua are  the degeneracy of th@ vacua, with the energy separation
incorporated by adding the ter), to the action. Sinc&s,  betweend vacua being of order . The first 1N correction
breaks parity, time-reversal invariance a@®P symmetry also leads to a quantum-mechanically generatél) gauge
when 6+ 0 or 8+ m, the strong interactions explicitly violate field. This gauge field produces a linear potential between
these symmetries for96< . In fact, not only do instan- particles and antiparticles. Hence the system confines, al-
tons contribute t&, but all topological quantum fluctuations though the string tension in this approximation is again of
also do so. Such topological fluctuations are known to exisbrder 1N. Actually, it is expected that the confining force
because they contribute significantly to the mass[4—-13].  becomes stronger and stronger as higher-ordsr cbrrec-

In QCD, phases in the quark mass mattik also contrib-  tions are included since the ®P* models exhibit supercon-
ute to CP violation. However, only the combination finement[17]. The dramatic changes in behavior in going
0= 0+ Arg DetM is relevant for strondgC P violation for  from leading order to next-to-leading order are indicative of
the following reason. Through redefinitions of quark fields,the singular nature of the N/expansion in the C¥ ! mod-
one can eliminate th€ P-violating phases in the quark mass els. The singular nature is also reflected in the fact that strong
matrix. However, to eliminate on€ P-violating phase, a coupling and IN expansions do not commuféd6,17,31.
U(1) axial rotation is used. Via the axial anomaly, For this reason, results from Monte Carlo methods should
Arg DetM reemerges as a coefficient 8. Hence, the probably be trusted over results fromNlmethods.
physical effectived parameter isf.;. The strongest con- In the presence of & term, Schierholz and co-workers in
straint onéy4 comes from the electric dipole moment of the pioneering work have performed Monte Carlo simulations on
neutron. Compatibility with experimental bounds requiresthe CP® model[28]. Results for the free energy were inter-

esting and unexpected. For fixed inverse coupja dra-

matic change in the free energy behavior occurred at a criti-
*Electronic address: plefka@scisun.sci.ccny.cuny.edu cal value 6, of 6. The free energyf per unit volume was
"Electronic address: samuel@scisun.sci.ccny.cuny.edu well represented by
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a(B)#?, 0<6;, ciently large 6. As the volumeV increases . decreases.
= c(B) 9> g (1.)  This leads to a situation in which the free energy differs by
' ¢ large factors a¥ varies. For example, g8=2.7 andé near
7, the free energy on a 4646 lattice was three times the
Hence, ford=6., the free energy had no dependence onfree energy on a 7272 lattice. See Fig. 3 of28]. Since
0. In two dimensions, the string tensier(e, #) for external  quantities, like the free energy, should quickly converge in
particles of chargee in a  vacuum|#) can be computed the thermodynamic limit, there are only three possible expla-
from the free energy using(e, ) =f(0+2me)—f(6) [32]. nations:(i) For sufficiently largeg, there are light, perhaps
Hence, for6> 6., the string tension vanishes for particles of massless, modes in the system which cause finite-size ef-
sufficiently small charge. In other words, confinement forfects;(ii) a systematic effect occurs which leads to numerical
small external charges is lost. Furthermore, the simulationsesults that differ from true resultgiii) there is some un-
in [28] indicated thaty, went to zero in the continuum limit known explanation not covered k) or (ii).
in which the couplingy goes to zero. One purpose of the current work is to try to determine
In [19], strong-coupling character expansions of the freewhether(i) or (ii) occurs. We perform Monte Carlo simula-
energy were obtained. Near infinite coupling, no flatteningtions on an exactly solvable () lattice gauge theory. By
behavior of the free energy like that of E@..1) was seen. comparing numerical and analytic results, much insight into
However, at smalleg, a peak in the free energy occurred. simulating systems with & term is gained. Our results are
Although higher corrections might change this behavior, thepresented in Sec. 1ll. We will argue that systematic effects
strong-coupling series provided some support for the form ofan lead to anomalous flattening behavior in the free energy,
the free energy given in E¢1.1). as described by Eq1.1) for the U(1) lattice gauge theory. In
Many two-dimensional systems with a(1) gauge field, Sec. Il, a general analysis of simulating systems with a
such as the Schwinger model, possess a cusp in the fréerm is presented. Section Il provides a mechanism by which
energy atd= 1. The cusp signals the spontaneous breakingitnomalous flattening behavior can arise. In Sec. 1V, a lattice
of CP invariance [33]. At infinite coupling, the lattice CP® model is treated. By comparing Monte Carlo data with
CPN"1 models also undergo spontanedD® breaking at analytic strong-coupling series frof9], flattening behavior
6= [18]. Hence, a phase transition in the €P models at  can be shown to be anomalous for at least two simulations.
6.= is not unexpected. What is interesting about the nuSome additional results and remarks are presented in Sec. V.
merical studie$28] of the CP® model is that, for sufficiently In Sec. VI, a summary and final discussion is given.
weak coupling,d, moves away fromr and decreases with
decreasingg. This picture suggests that, to obtain a con- 1l. GENERAL ISSUES CONCERNING SIMULATIONS
tinuum confining theory from the lattice GPmodel, one WITH 6 TERMS

must tuneé to zero. This then also suggests that continuum In thi . di . . .
confining CPN~1 models must hav@=0! If the analogue n this section, we discuss some issues concerning simu-

of this statement were true for a four-dimensional Yang-Iatlons of an arbitrary lattice theory in the presence of a

Mills theory, then the stron@ P problem would be solved. term. In part_icular, a_general error analysis can be_c_arried
In fact, preliminary studie$34] of the free energy of the out. From this ana[ys_@, one goncludes that, fpr suff!C|entIy
four-dimensional S() Yang-Mills theory show a free en- large volumes, a limitingd exists, beyond which reliable
ergy behavior similar to the one in E¢l.1). However, in measurements of the free energy cannot_l:_)e made. :
four-dimensional Yang-Mills theories, the string tension is Fgr a f!xed\(, let P(Q). be the pro_bablllty of having a
not related to the free enerdy Hence, the analogue of the configuration with topologlca_l charg@ In some system. Let
argument for the CPmodel, namely, tha@ must be tuned to Puc(Q) be the corresponding quantity as measured in a

zero to obtain confinement, does not necessarily hold. Noné\—/lo.nte Carlo simulation. Assume t_hat the Monte Ca_rlo up-
theless, if§ must be less tham, for some other physical dating procedure generates configurations proportional to

reason, and i, goes to zero ag—0, then the stron@ P Boltzmar)n weights. Belovy, this assumption i.s rela>_<ed. If
problem would be solved in the Yang-Mills theories. This isNMC(Q) is the number of times that configurations with to-

interesting because it has been suggested that the stroRBlOg'Cal chargeQ arise in such a simulation, then

CP problem might be solved naturally within the pure Yang- Nyc(Q)
Mills theory [35]. In fact, such a result occurs in(@+1)- PMC(Q)EL,. (2.1
dimensional model: the Yang-Mills sector generates a relax- 2o 'Nmc(Q")

ation field, which acts like the axion in the Peccei-Quinn ; ; ; .
L o . Inat I lation, th (3eh ffer f th
mechanisn}36—-38. In [35], criteria were established to de- enxgcgllgzig) St;;ngrr?a{ﬁnerrofsgf?s;{r o(Q) differ from the

termine when such a natural relaxation mechanism arises for

theories in arbitrary dimensions. It has not yet been possible Puc(Q)=P(Q)+ P(Q). (2.2
to determine whether these criteria are satisfied for four-
dimensional Yang-Mills theories. With enough measurementsiP(Q)|<1. In most systems

One unusual feature of the Monte Carlo simulations ofand the ones considered in this wofk(Q) falls off? with
[28] is the volume dependence on the free energy for suffiQ, so thatP(Q)>P(Q’) for |Q|<|Q’|. A criterion for a
simulation to have good statistics is the2®(Q)<<P(0).

*One would still need to explain why confinement is necessary for
the continuum limit. 2Eventually the falloff is rapid.
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Let f(0) be the difference between the free enefyy)

possible. Clearly, it is more difficult to measurg 6)

of a system with & term and the free energy of a system throughout the entire fundamental region &f asV gets

with 6=0:

f(0)=F(6)— F0). (2.3

Typically, f(6) is an increasing function of for 0= <.
The free energy differenc&(6) is constructed fromP(Q)
using

exF{—Vf(a)]z%: P(Q)exp(i 6Q). (2.4

Normally P(— Q) =P(Q), so thatf(—8)=f(6).
In a Monte Carlo simulation, an approximatibgc(6) to
f(0) is obtained by using\,c(Q) in lieu of P(Q):

exq—vmcw)]:% Puc(Q)exp(i 6Q)

—exy —VI(0)]+2(6), (2.5

where
8Z( a)=% SP(Q)expi 6Q). (2.6)

Hence,
—Viyc(0)=In{exd —V(0)]+8Z(6)}. (2.7

larger.
It turns out that in most Monte Carlo simulations, there is
a tendency for
|6P(0)|>]6P(1)|>|8P(2)|>---. (2.9
The reason for E¢(2.9) is explained in the next paragraph.
For the sake of argument, suppose théP(0)| is much

larger than|sP(Q)| for |Q|=1. Then, from Eq(2.9), one
concludes that

f(85)~ g I 3P(O)|. 210
Since Monte Carlo results are reliable fo 6,,,
fuc(0)~f(0) for 0<6,. (2.1)
If, in addition, SP(0)>0, then one will find
fmc( 0)%—%In6P(O) for 6>4,, (2.12

so that a constant “flat” behavior iriy,c(6) will be ob-
served. Although one might expect the statistical error in
fuc(6) to be the order of yc(6) for 6=6,, we have ob-
served in some simulations that the error, as computed by the

Sincef(6) is an increasing function of, an accurate mea- jackknife method, remains anomalously small. This happens

surement off (#) for 0< #< 6, is obtained if
|6Z(0)|<exd —VT(6p)]. (2.9

In particular, sincef(0)=0 and|8Z(6)|<1, there is always

a region neard=0 for which f(#) can be measured in a

Monte Carlo simulation. However, away from=0, Eg.

in both the two-dimensional (1) gauge theorysee Sec. I
and the CP model (see Sec. IY. When 6P(0)>0,
fuc(6) will smoothly interpolate between the behaviors in
Egs.(2.11) and(2.12 in the region around~ 6,. The net
result is a form for the free energy which resembles Eq.
(1.9. If an error §P(Q) for |Q|>0 is almost as large as
6P(0), then the constant behavior in E@.12) is replaced

(2.8) implies that accurate results are obtained only if theby a “slightly wavy” almost flat curve. The above discus-

error 8Z(6) is exponentially small irV. If Eq. (2.8) is sat-
isfied with 8y= 7, then a reliable measurement fd) can
be made throughout the entire fundamental
O=f6=m.

If the inequality in Eq.(2.8) is not satisfied for somé,,

sion is applied to the cas&P(0)>0. If, on the other hand,
6P(0)<0, then it will be impossible to measuf¢#) for

regiong> g, .

There are various ways to measwPgc(Q). The naive
method[39] is to generate configurations proportional to

then one of several possibilities may arise. If, on the ongheir Boltzmann factor and simply count the number
hand, exp—Vf(#,)]+6Z(6,)<0 then the argument in the N,,-(Q) of configurations with topological charg®, and

log on the right-hand side of E€R.7) becomes negative and then use Eq. (2.1).

Since the statistical uncertainty

one will not be able to extradt(6,) from the measurements sNy,c(Q) in Nyc(Q) is proportional toyNyc(Q),

of the probabilitiesP,c(Q). In Monte Carlo simulations for

such a situation, a growth in the errors &Qjfic(8) will be
observed a® approache#,, andfc(6) will eventually not
be measurable. If, on the other

0= 6, but the results will not be accurate.

For sufficiently largeV, a value of6 exists beyond which
it is impossible to compute reliablfy( 6). If we call this value
0, , thend, is the maximum value of, for which Eq.(2.8

is satisfied. The value of, depends on the statistical accu-
racy of the simulation. AY gets larger g, decreases unless

|6Puc(Q)|~cVPuc(Q), (2.13

hand, for some constafitc. BecauseP(Q) is a monotonically de-
exd — V() ]+ 8Z(65)>0 thenfyc(8) will be measurable at

creasing function o@ for Q=0, the inequalities in Eq2.9)
tend to be satisfied. In any particular simulation, however,
statistical fluctuations may violate EQ.9), particularly if
P(Q) is only slightly larger thahP(Q+1).

3Note that sinceSP(0)<1, the right-hand side of Eq2.12 is

an enormously large number of measurements are undepositive.

taken to reduce statistical errors. For large obtaining

“There might be a weak dependencecasn Q.

enough measurements becomes, in any practical sense, im®This tends to happen when the volume is large andXamall.
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One commonly used Monte Carlo technidd®,41 isto  that all simulation methods must fail for sufficiently large
perform simulations inQ bins. The topological charge® 0, if V of the system is large. Cluster algorithms might help
are restricted to be in a bin of a certain bin size. The bins little in this regard 43].
must overlap—usually one takes the bins to overlap for only From the above discussions, the following general guide-
one Q value. For example, the bins can be taken to be Qines concerning Monte Carlo simulations of systems with a
<0Q<AQ, AQ=0Q=<2AQ, 2AQ=Q=3AQ, etc., where 60 term are obtained.

AQ is a small positive integer. Here, the bin size is (1) When the volume is sufficiently big, a limiting,
AQ+1. The relative probabilities within & bin are mea- arises. For6> 6, the free energy cannot be reliably mea-
sured by generating configurations which are proportional tsured.

their Boltzmann factors but with their topological charges (2) As long as finite-size effects are under control, that is
contained in aQ bin. Overall probabilities are determined ¢é¢<V®  small-volume results for the measurement of
from the relative probabilities by matching results at thef(#) are more reliable than large-volume results. Hérés
overlap endpoints of twd bins. Compared to the naive the correlation length and is the number of dimensions of
method, one generates more configurations with |1@en-  the system.

figurations. Hence, errors idP(Q) are relatively reduced (3) If a flattening behavior of the free enerdy ) for

for large Q. This tends to enhance the inequalities in Eg.large 6 is observed, one should be cautious that the result is
(2.9. spurious. In particular, one should try to see whether

A benefit of the binning technique is that it enables|sP(0)| is bigger than the othgP(Q)]|.

P(Q) to be accurately measured for lar@ even where (4) WhenPy,c(Q) is less thar| §P(0)|, the contribution
P(Q) is extremely small. The effect can be spectacular: ofto Pyc(Q) in Eg. (2.5 need not be included. The reason for
ten P(Q) which are orders and orders of magnitude smalleithis statement is that the contribution Bf,c(Q) is lost in
that P(0) can be measured. the “noise” of the error terméZ in Eq. (2.5).

Another simulation method introduces a weight factor (5) Although the g, barrier cannot be overcome, Monte
w(Q). One then generates Monte Carlo configurations whictCarlo procedures should emphasize accurate measurements
are proportional to(the Boltzmann factolw(Q). If of P(Q) for Q near 0. In particular, the optimal procedure is
Nwc(Q) is the number of configurations with topological one for which all|5P(Q)| are approximately equal. This
chargeQ which are generated by such a procedure, then Egninimizes the chances for anomalous flat behaviof(i).

(2.1) is replaced by Combining(2) and(3), one obtains another guideline.
(6) If a large-volume simulation shows a flattening effect
Nyc(Q)[w(Q)] 2 for f(6) for @ sufficiently large, but a smaller-volume simu-
Puc(Q)= — —. (2.19 lation does not, one should probably trust the smaller-volume
EQ’NM(:(Q’)[W(Q')] ! result.

Surprisingly, many previous Monte Carlo studies of sys-

Although any weightw(Q) may be used, the trial- (omg withg terms measur®(Q) over many orders of mag-
probability-distribution method tries to chooegQ) so that iy de. Point(4) above says that, although this is not harm-

all Q sectors are “visited” roughly the same number of t,| it is an inefficient use of computer time if one is
times [42]._In other words, one guesses a trial probability;ierested in measuring the free energy. Likewise, pBint
Po(Q), which might accurately approximate the true prob-impjies that the standard binning and trial-probability meth-
ability distributionP(Q). One then uses(Q)=1/Po(Q). If  ods are not optimal because they enhance the inequalities in
one were to pickP, so thatPo(Q) =P(Q), then a constant gq_(2.9). The binning method can be improved by doing
distribution in Q for Nyc(Q) would be generatedup to  more measurements in ti@ bin containingQ=0 and less
statistical fluctuations and Eq. (2.14 would lead to measurements in larg® Q bins. Another improvement is
Puc(Q)=Po(Q)=P(Q). Like the binning method, the as follows. One can adjust(Q) in Eq. (2.14 so that the
trial-probability-distribution method generates more configu-errors|5P(Q)| are equakup to statistical effecjs It is not
rations in the larg& sectors, thereby enabling one to betterhard to show that the optimal(Q) is P(Q). This corre-
measureP(Q) for Q large. This method also enhances thesponds to using a trial-probability function which is the in-
inequalities in Eq(2.9). verse of the true probability. In other words, the optimal
Finally, one can combine the above two methods by usingveighting method is the antithesis of the trial-probability
a trial probability distributiorPy(Q) with a Q binning. This  method and the antithesis of what is commonly employed in
trial-probability-binning method is excellent for measuring Monte Carlo experiments.
P(Q) for large Q. However, of the four methods mentioned
here, it enhances the inequalities in E2.9) the most.
In summary, current methods of simulating systems with
0 terms tend to generate errors 8¢Q) which are ordered The two-dimensional lattice (1) gauge theory serves as
as in Eq.(2.9). an important test case because computer simulations can be
None of the methods solve th@, barrier problem dis- compared to the exact analytic results below. For related
cussed above between E@2.8) and(2.13: Assuming that Monte Carlo investigations, s¢é1,44.
6P(0) dominates in the erra¥Z( ), one sees that increasing  In the lattice formulation of a gauge theory, one assigns
the statistics hardly chang@g because of the logarithm and an element of the group to each link of the lattice. For the
the volume factor in Eq(2.10. The same statement holds U(1) case, such an element is a phase. The lattide ghuge
even whensP(0) is not the dominant error. One concludestheory action is

Ill. THE LATTICE U (1) GAUGE THEORY
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7 FIG. 1. U1) free energy v at 3=1.0 for
the naive and binning methods.

YW= (Up+Up),
p

whereU, is the product of the (1) link phases around the

0.5

(3.2

plaquettep and whereg is the inverse coupling.

density v, via
vpz%ln(up)/27-r, where — 77<%In(Up)<7r. The total topo-
logical chargeQ is given byQ=2,v,. The 6 termS; (¢, is

Define a

i 0Q, that is[45]

local

(%
Sp term= Ezp In(U p)-

(3.2

Equation(3.2) is the lattice analog of the continuusiterm

actioni (6/27) f d?xF.

We have performed Monte Carlo studies of thélU
gauge theory to gain insight into computer simulations for a
system with ag term. The action consisted of the sum of the
actions in Eqgs(3.1) and(3.2). Two values of3 were con-
sidered:8=0.0 andB=1.0. Three simulation methods were
employed: naive, binning, and binning with a trial-
probability function. Heat-bath updating was used with the
naive and binning methods. The Metropolis algorithm was
used with the trial-probability-binning method. The trial-
probability distributionPy(Q) was chosen to be a Gaussian:
Po(Q) xexp(—k@?), where the constark was appropriately
selected. After thermalizing the system, the number of
sweeps ranged from tens of million to several hundred mil-
lion. One sweep corresponded to updating once all the link
variables of the lattice. The number crunching was done on

In d=2 dimensions, gauge theories are exactly solvabléBM and Sun desktop workstations.

even in the presence of & term. For periodic boundary

Figure 1 plots the free energy versador 8=1.0, for a

conditions, in which cas€) is quantized to an integer, the periodic 16< 16 lattice. For the naive method, the data points

result is[41]

2(0.8V)= 2 [z(6+27m,pB)]",

where

ST (df2m)expif ,6/2m)exd 2B8cog )]

2(60,8)=

ST (df l2m)exg 2Bcog f,) ]

(3.3

(3.9

correspond to short horizontal line segments. A total of 75
million updating sweeps were performed. The error bars
were computed using a jackknife methptb] by dividing

the run into 15 data sets, each of which involved 5 million
sweeps. The solid line is the exact analytic result. Analytic
and Monte Carlo results agree féiless than 2.1. The agree-
ment, which is excellent, cannot be seen on the scale of Fig.
1. For example, a¥=0.5, fyc=0.002 420 04(53) versus
fexace=0.002 419 6, atd=1.0, fyc=0.009 668 5(46) ver-
Susfeyac=0.009 668 2, abh=1.5, f),c=0.021 699(61) ver-
SUS f gyae= 0.021714, and ab=2.0, f,,c=0.0386(37) ver-

Here, f, can be thought of as the field strength for a singlesysf, . =0.0385, where the statistical uncertainty in the last

plaquette U ,=exp(fy). In the infinite volume limit, the free  two digits is displayed in parentheseor 6 beyond 2.1,
energy difference per unit volunig 6) is given by

f(6,0)=—1In

when—w<6<.

f(6,8)=—In[z(6,8)].

In particular, at3=0, one obtain$18]

()

3.5

(3.6

error bars grew and the partition function became negative.
One sees that the “barrigd” 6, is about 2.1. The statistical
error in Pyc(0) was 3x 10" °. Using this error in Eq(2.10

to estimate#,,, one findsfd,~2.05. The agreement of the
theoreticald,, with the Monte Carlo value confirms the data-
analysis discussion of Sec. Il. One can also check(E43

SFor example, th@)= 2.0 result isfy,c=0.0386+ 0.0037.
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TABLE I. P(Q) for U(1) model at3=1.0 on a X7 lattice.

Q PMC(Q) Pexac(Q) Q PMC(Q) Pexac(Q)

0 1.968226(42x10° 1  1.96819% 10! 7 451534(28X10 %  4.51495¢10 4
1 1.743842(23x10° 1  1.743866<10° ! 8 6.58573(46X 105  6.58533<10°°
2 1.212054(16x10° 1  1.212086<10° ! 9 7.13760(58x 1078  7.13774<10°°
3 6.59478(17x 1072 6.59454x 102 10  5.64442(51x 107  5.64463< 1077
4 2.79818(09X 102 2.79806< 10?2 11  3.18299(30x 1078  3.18344<10°8
5 9.20984(42x 1072 9.20931x 102 12 1.24331(15x10°°  1.24034<10°°
6 2.33452(13x 1072 2.33437% 102

by seeing whether the ratio of the statistical erroP¢Q) to fexace=0.0385 and at 6=3.0, fyc=0.089(3) versus
VPmc(Q) remains constant. Even thou@tyc(Q) varied by  f_.,.=0.0814.
8 orders of magnitude, it turned out that the ratio stayed Consider now the infinite-strong-coupling cage=0.0.
constant to within a factor of 3. Results for this case were qualitatively similar to the
_Figure 1 also plots the free energy versuand for the  5—1 0 case: When the lattice size was sufficiently small, the
binning method, again fog=1.0 on a 16<16 lattice. The  free energy was measurable over the entire fundamental
data points correspond to diamonds. Five bins of bin size 44in and the data agreed well with exact analytic calcula-
were used. For each bin, 16 million sweeps were performed;, g \when the lattice size was bigger, the free energy was
Since 5 bins Were_u§ed, the statistics for this case are (_:On&'ccurately measurable only for<9< 6,. For example, a
parable to the statistics of the naive method of the previous .\ hich used the naive method on ax3&D lattice and
paragraph. The 16 million sweeps were divided into 20 sets’, .’ . -
for the jackknife analysis of errors. F@&=2.0, the Monte which involved 22 million Sweeps, produced_ good results
Carlo data for the free energy dropped below the exact resuﬂnly for 0<¢<0.49. The barrier vaIue7was n agregment
and became constant. Fér<1.7, the agreement between With 6 of 0.5, as computed from E(2.8).” When a binning
Monte Carlo data and the analytic result was comparable tg€thod was used, the free energy data points began to slip
the naive-method case, discussed in the previous paragraghglow the analytic results near=0.45. A slightly wavy but
As one can see in Fig. 1, the flat behavior in the free energpasically flat behavior for the free energy was observed for
is anomalous fo¥>2.1 even though the error bars are siz-0.45<6<0.80. In this range, the Monte Carlo data were be-
able. At9= 1, the discrepancy with the exact analytic result!ow the exact analytic result at thesr2evel. For¢>0.81, the
for f is at the 4 level. error bars become large and the free energy was not measur-
We also performed a simulation with a trial-probability- able. When the lattice size was reduced, the free energy was
binning method, again witl8=1.0 on a 1616 lattice. The measurable over a larget region. On a K7 lattice, we
results were similar quantitatively to the naive case aboveperformed a run with the trial-probability-binning method.
except that the Monte Carlo data dropped below the exadtor the first 180 million sweeps, a graph qualitatively similar
result at about 2.1 and then the error bars became enormots the binning case of Fig. 1 was obtained. The free energy

for 6=2.2. was measurable up t8,~2.1. For >2.1, the data points
In all three of the above runs, the statistical errors infell below the exact result and a flat free energy curve was
P(Q) were ordered as in E¢2.9). produced. From the error iR(0) of ~107°, the theoreti-

For the binning-method case, one can address the quesally predicted value of), from Eq. (2.10 was 2.3. When
tion of whether the flattening behavior is attributable to athe run was continued, the flat behavior went away: After a
value of Pyc(0) which is larger tharP(0). For a 16<16  billion sweeps, the data agreed with analytic results for
lattice, the exacP(0) is 0.179 259. The value &fy,c(0) for  0=<6@<2.2. Beyond 2.2, the data fell slightly below the exact
the binning run was 0.179 2952). Thus, Pyc(0) was in-  results and the error bars became largefat2.7. For
deed greater than P(0). For the naive run, ¢>2.7, the free energy was no longer numerically measur-
Pmc(0)=0.179 242(30), while for the trial-probability- able. Based on Edq2.10), the limiting 6, should be 2.65 for
binning run, Pyc(0)=0.179 192(55), and since these two this case, in agreement with the Monte Carlo results. Table |
values are below the exa€t(0), theanomalous flattening displays the kind of accuracy with whicR(Q) was mea-
behavior is not expected to arise, in agreement with theured. Finally, we reduced the lattice size to 4. In a run using
Monte Carlo results. the binning with a probability distribution, the free energy

According to Eg.(2.10, one can increasé, by decreas- was accurately obtained throughout the fundameataé-
ing the size of the system. We therefore estimated that if thgion. A run with 525 million sweeps was performed with 2
lattice size was 8, then a reliable measurement of the frebins of bin size 4. Table Il provides the comparison of Monte
energy could be made throughout the entire fundamehtal Carlo and exact results for the free energy.
region. Using a trial-probability-binning method on an
8X 8 lattice, reasonable agreement between Monte Carlo——
data and analytic results was obtained in a 30-million sweep "On this large lattice®(Q) decreased slowly fo® near zero, so
run. For example, atf=1.0, f,c=0.00980(5) versus that the largest statistical error actually occurred Rgr4). This
fexace=0.009 67, at #=2.0, f,c=0.0382(1) versus error was 1.410 5.
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TABLE Il. Measured and exact free energy 8= 0.0 on a 4x4 lattice.

0 F MC F exact 0 F MC F exact

0.2 1.667250(80x10 % 1.667220x10 3 1.8 1.38842(14x10°!  1.38845¢10°?
0.4  6.67569(29x10 3 6.67558 10 3 2.0 1.72596(23x10° !  1.7260% 10!
0.6  1.504550(71%10°2  1.504530x10 2 2.2  2.10467(38x10°!  2.10485¢10°!
0.8  2.68107(14x10? 2.68104< 102 2.4  252636(72x10° ! 2526741071
1.0 4.20200(25% 102 4.20195< 102 2.6 2.9917(15x10°* 2.9925< 107!
1.2 6.07374(40x 10 2 6.07369% 102 2.8  3.4907(35x10°! 3.4926<10°1
1.4  8.30438(62x 10 2 8.30436<10 2 3.0  3.9436(75x10°! 3.9472<10°!

1.6 1.090390(94¥x 101  1.090390x< 10!

The 8=0.0 results of this section are relevant for thecrossover region is around 0.8, so that the latter Smn@lues
CP'"! models at3=0: When =0, the CP'~! models are in the weak-coupling region where continuum scaling
coincide with U1) gauge theory. A numerical investigation should set in.
of the CP* model at nonzergs is the subject of Sec. IV. In some simulations with large volumes, the free energy
was not measurable beyond a certain valu@:oérror bars
became very large or the partition function went negative.
The value ofé at which this occurred was in approximate

Monte Carlo studies of the “adjoint” form of the lattice agreement withd, obtained using Eq(2.10. Below, we
CP? model in the presence oféterm have been performed show results for cases in which the free energy was measur-
in [28]. For our Monte Carlo investigations, we have selectedable throughout the entire fundamengategion or for cases
the “auxiliary U(1) field” formulation for two reasons(1) it in which a flat behavior was observed.
allows us to investigate the GRmodel from a different but Figure 2 shows the free energy At=0.2 for 4x4 and
equally good form of the lattice action, and more impor-6x 6 lattices. The solid line represents the tenth-order
tantly, (2) strong-coupling expansionid9] have been ob- strong-coupling character expansion [aB]. At this small
tained for this form of the action, thereby allowing compari- ya1ye of g, the strong-coupling expansion should be quite
sons of Monte Carlo data with analytic results, at least foryose to the exact result. On the<® lattice, an anomalous
small inverse couplings. The CP'"! models without af flattening behavior was observed. The discrepancy between
term have been studied by computer simulations in severglionte Carlo data and the strong-coupling series was more
works. Seq[ZO—élﬂ_.l . . . than 1@ for 6 nears. For some reason, the jackknife error

The lattice C action, which we employ, is analysis produced error bars which did not come close to
overlapping with the true results. Furthermore, E2.10
predicts thatd, should be 2.1, so that measurements of the
free energy should not be reliable fér-2.1. This theoretical
estimate foréy, is close to the point where constant free-

_ A energy behavior set in. When the lattice size was reduced to
where the complex scalar fields satisfy=;_,"z5z,=1 and 4, agreement between Monte Carlo data and the strong-
where c.c. is the complex conjugate of the first term in Ed.coupling series occurred throughout the entire fundamental

IV. THE LATTICE CP 3 MODEL

szﬁNEA [Z5 -z AU(XX+A) +c.cl, 4.1

(4.1. Here, the sum oved involves thed positively di- ¢ region.
rected nearest neighbors x¢ so thatA takes on the values At 3=0.6, roughly similar behaviors in the Monte Carlo
€1, €, ..., €q, Wheree; is a unit vector in theth direc-  results were obtained except, that on the & lattice, a flat

tion. Since we consider the two-dimensional cake2. The behavior in the free energy began&ﬁ 1.7, which turned up
field U(x,x+A) is a phase associated with link between at 9=2.5. The free energy was not measurable beyond
andx+A—it is the same link variable which appears in the 9=2 6. See Fig. 3. Equatiof2.10 predicts that free energy
U(1) gauge theory of Sec. Ill. To E¢4.1), we addS, of EQ.  Monte Carlo results should not be trusted ¢ 1.75. For a
(3.2 to obtain the full action. Finally, we treat tld=4  6x6 lattice, agreement with the strong-coupling series was
case, i.e., the CPmodel. obtained up to abou#=2.5. Beyond that point, the strong-
We used the Metropolis algorithm for all degrees of free-coupling series was slightly below Monte Carlo da&t
dom. Thez, fields were separated into four real and four roughly the Ir level). At §=2.8, the strong-coupling expan-
imaginary components. They were updated by performingion of the free energy peaks and for largeit decreases,
rotations in each of the 28 planes of the eight-dimensionalyhile Monte Carlo data continued to increase.
real vector space. For the(l fields, a binning method was At 8=0.7, the strong-coupling series peak9at2.4 and
used. After each time-consuming update of fhdields, 10  then decreases significantly. Since the free energy should be
U(1) updates, as well a@ measurements, were carried out a nondecreasing function @ higher-order in3 corrections
in the fixedz, background. The total number of J sweeps are probably important in this region, 449] suggested
ranged from 3 to 150 million. Simulations were done for might be the case. The Monte Carlo data began to rise above
£=0.2,0.6,0.7,1.0, and 1.1. The intermediate-couplingthe strong-coupling results at aroufie- 1.2 (see Fig. 4 At
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FIG. 2. CP free energy vsf at 8=0.2 on
4X 4 and 6x6 lattices.

FIG. 3. CP free energy vsf at 8=0.6 on
6X6 and 8<8 lattices.

FIG. 4. CP free energy v#) at 3=0.7 on an
8X 8 lattice.
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this value ofB, which is in the intermediate coupling region, zero distancé.Superconfinement corresponds to an infinite
the Monte Carlo data is to be trusted over the strongstring tension. It has been conjectured that summing the
coupling expansion. 1/N series would strengthen the confinement and lead to su-

At B=1.0, which is on the weak-coupling side of the perconfinemenf17]. Probably, quantities in the CP*
intermediate-coupling region, a simulation on ax2 lat-  models, which differ greatly in going from the zeroth order
tice gave good results throughout the fundamesitedgion.  tO the first order, such as the free energy éoaway from
Figure 5 displays the free energy versusThe solid curve s ?=0 and the string tension, are not reliably computable in
the fit f(9)=0.0039<[1—cos@)]. It reproduces the data the largeN expansion.

within error bars. Ai3=1.1, a simulation on a 4040 lattice An interesting open question is whether there is a phase

also gave good results. The free energy functioriransition at6= . At infinitely strong coupling, this is the

£(6)=0.00125¢[ 1—cos()] reproduces th@=1.1 data well casg18]. In the stro_ng-coupling region, finite voI_u_me effects
throughout the fundamental region. It is interesting that a round off the cusp in the free energy when sufficiently small

. . . volumes are used to give reliable results néarw. Hence
“cosine” form fits the data for=1.0. Such a functional g 7

f . f logical . definitive conclusions cannot be drawn. In the weak-
orm arises from a topological gas pict®. For <0.8,a 4 jing region, the cosine function fits are suggestive that

cosine form did not fit the free energy data. the phase transition is absent.
If f(#)=c'#?, then, as the volum¥ goes to infinity,

V. REMARKS
. . P(Q) Q?

The cosine behavior of the free energy does not agree TO):eX ayravik (5.0
with the largeN limit result, which gives |a,geN=c/N02, for
someN-independent constammt The discrepancy might be Thjs follows from inverting Eq(2.4):
due to the smallness &, which is 4 in our case. In other
words, higher-order N corrections in the larghl expansion
are important. We believe that this explanation is likely: In P(Q) [T _.(do/i2m)expidQ)exd —VF(6)]
the leading zeroth-order larg¢ expansion, n@ dependence P(0) = 7 (d6l2m)exd —Vi(0)] . (5.2

arises in the free energy. The firstNLEorrection provides

the quadratia®? dependence. Hence, the first-order result dif-As V—«, a saddle point expansion of E¢5.2) becomes
fers significantly from the zeroth-order result for largend quite accurate. If the minimum df( ) is at =0, one finds
especially nea®w= . It is thus quite possible that higher-

order 1N corrections contribute to the large region and

cause the free energy to “curve over” like a cosine function. P(Q) Q? Q*
=exp —axor —aagy s (5.3

This would not be the first time that a largé result is P(0)
anomalous in the C ! models[31,16,17. In the zeroth-

order approximation, the CP! models do not confine. where
However, the first M correction does lead to confinement

[29,30. Nonetheless for finit&, the CP'~! models have a

property called superconfinemdit7] in which charges are  8an interesting side remark is that R¢L9] has shown that su-
so strongly bound that they cannot be separated by any noperconfinement is lost in the presence of germ.
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1 £(4(0) [f*(0)]? verse coupling3 is greater than 0.6, the strong-coupling cal-
aZ:Vf<2>(O) _sz[f(z)(o)]s +4V3[f<2)(0)]5 culation of the free.energy has a peak, bl_Jt the qute Carlo
data do not. See Figs. 3 and 4. At these intermediate values

) of the coupling, we believe that the peak is an artifact of
_ F(0) +O(i) truncating the series to order 10—higher-order contributions
Ve[ £2(0)]* V4 are probably important.
There is a simple physical picture of why a limitiry,
f4(0) 1 arises. Current methods for simulating a system vithO
:WJFO(W) , (5.4 are done using the=0 system. There should be a “barrier”
separating the two systems. The barrier grows exponentially
with the volumeV. WhenV is small or whend is small, the
where f("(0) is thenth derivative of f(6) at the origin.  parrier does not prevent thé=0 system from sensing the
Equation(5.3) reduces to Eq(5.1) if f("(0)=0 for n>2. physics of thed+#0 system. However, a¥ gets large, the
There has been some previous discussion as to whethggrrier becomes more impenetrable, and for sufficiently large
the Q dependence irP(Q) is Gaussian[47,48. On one ¢ the Monte Carlo simulations do not explore the phase
hand, Eq.(5.3) shows that this is the case ¥s-». On the  gpace of thed system sufficiently well to give reliable re-
other hand, if the&) dependence iR(Q) is exactly Gaussian gy|ts.
then f(#)=c’6* for ¢ in the fundamentald region, as If one applies the guidelines in Sec. Il to the work 28],
V—w. Since nonquadratic behavior f6(¢) is usually ob-  one would conclude the following. The simulations of the
served, theQ* and higher powers o in Eq. (5.3 are im-  adjoint form of the lattice CP model in[28] found the ab-
portant for determiningf(#). Since the coefficient, of  sence of a flattening behavior in the free energy for suffi-
Q* falls off as 1/, large volume systems make it difficult ciently small volumes. This is typified in Fig. 3 of the first of
for Monte Carlo simulations to determine correctly the [28]. Guidelines(2) and (6) say that smaller-volume results
dependence of (6) for large §. One again arrives at the are to be trusted over larger-volume results. Hence, one
conclusion of guideling2) of Sec. II: Small volume results would conclude that the flattening behavior is anomalous. If
are to be trusted over large volume results for the computahis is true, it is a result of the probability method which
tion of the free energy. Fg8>0.9, the “cosine” behavior of tends to emphasize the error Ry,c(0). If the flattening
f(#) observed in the Monte Carlo investigations of thebehavior is anomalous). of [28] should be identified with
CP® model imply a non-Gaussian behaviorRfQ). In fact,  the barrieré ;. One test of this idea is as follows. Assum-
in our simulations of both the (1) gauge model and of the ing that the statistical errors are approximately the same for
CP® model, small derivations from Gaussian behavior ofall the runs in[28] and that Eq(1.1) holds, it follows from

ay

P(Q) were observed for alp values. Eq. (2.10 that V6?2 should be approximately constant for a
fixed value of B. At B=2.5, for the 2& 28, 32<32,
VI. DISCUSSION 38x38, and 4% 48 lattices, VY?20./7 is, respectively,

. . . ~20, ~21, ~21, and ~22. At pB=2.7, for the
By comparing Monte Carlo simulations of the=2 U(1)  56x56, 64x64, and 7 72 lattices, VY20, / is, respec-
gauge theory, we have verified the guidelines given in Sectively, ~35, ~33, and~32. Hence,Vag is approximately
II: For sufficiently large volumes, a barrigk, arises, beyond  qnstant. If the dominance of the error Ryc(0) is the
which numerical results for the free energy are unreliablegq rce of the free energy flattening behaviof 28,34}, one
The limiting 0, can be computed theoretically using EQ. ,77]ing question arises: why did all the runs display flatten-
(2.10 with |5P(0)] estimated to be the statistical error in jng pehavior—one would have expected that, in some runs,
Puc(0). When the size of the system is reduced, reliableye errors in the free energy to become largéaand/or for
results are obtained throughout the entire fu.ndamental regiofhe partition function to become negative. It is possible that
for 6. Hence, when small-volume results differ from large-some other subtle systematic effect is playing a role. The
volume results, one should trust the smaller-volume resultsyiscussion here supports explanati@i of the Introduction,
In some simulations, a flat free energy behavior is observe@t one cannot definitively rule out explanatitin, namely,

for 6>6,. Comparison to exact analytic results demon-ihai a massless or light mode arises éosufficiently large.
strates that the flat behavior is incorrect—the true free energy

continues to rise ford>46,. The flattening effect can be
attributed to the error ifP,c(0) dominating over the errors
in other Pyc(Q). The domination of the error iRyc(0) is
enhanced by Monte Carlo techniques such as the binning We thank Gerrit Schierholz and Peter Weisz for useful
method and the use of a trial-probability distribution. discussions. We acknowledge the Max-Planck Institute in

The above conclusions also hold for the “auxiliarylly ~ Munich, Germany for its considerable support—much of the
field” formulation of the CP® model: When the volume is computer work for this project was carried out on worksta-
large, anomalous flat behavior of the free energy is sometions at the Max-Planck Institute. We also thank the ITP of
times seen. AB=0.2 for the 6x 6 lattice run, the flat energy the University of Hanover for use of its computers. This
behavior is definitely incorrect since a comparison can bavork was supported in part by the PSC Board of Higher
made with a reliable analytic strong-coupling expansionEducation at CUNY, by the National Science Foundation
When a smaller lattice size is used, results for the free energynder Grant No. PHY-9420615, and by two Humboldt Foun-
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