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Recently several experimental groups analyzed data onp2p→hp2p andp2p→hp0n reactions with an
exotic 121 P wave and found conflicting evidence for an exotic mesonI 51121(1405). High statistics data
on these reactions are presently being analyzed by the BNL E852 Collaboration. All these analyses are based
on the crucial assumption that the production amplitudes do not depend on nucleon spin. This assumption is in
sharp conflict with the results of measurements ofp2p→p2p1n, p1n→p1p2p, andK1n→K1p2p on
polarized targets at CERN, which find a strong dependence of production amplitudes on the nucleon spin. To
ascertain the existence of an exotic meson 121(1405), it is necessary to perform a model-independent am-
plitude analysis of reactionsp2p→hp2p and p2p→hp0n. We demonstrate that measurements of these
reactions on transversely polarized targets enable the required model-independent amplitude analysis without
the assumption that production amplitudes are independent of nucleon spin. Two variants of the Monte Carlo
method are proposed for finding the amplitudes and their errors. We suggest that high statistics measurements
of the reactionsp2p→hp2p andp2p→hp0n be made on polarized targets at BNL and at Protvino IHEP
and that model-independent amplitude analyses of these polarized data be performed to advance hadron
spectroscopy on the level of spin-dependent production amplitudes.@S0556-2821~97!04219-7#

PACS number~s!: 13.88.1e, 13.75.Gx

I. INTRODUCTION

The search for meson states with non-qq̄ quantum num-
bers such asJPC5012,121,212, . . . has attracted much
attention in recent years. Of special importance are the reac-
tions p2p→hp2p, p2p→hp0n, and p2p→hh8n. In
these reactions the dimeson system is produced predomi-
nantly in spin statesJ50 ~S wave!, J51 ~P wave!, and
J52 ~D wave! for masses up 2.6 GeV. It is theP wave that
is of special interest as it carries exotic quantum numbers
I 51JPC5121 for reactions p2p→hp2p and
p2p→hp0n and I 50JPC5121 for p2p→hh8n.

Measurements ofp2p→hp0n at 100 GeV/c by the
GAMS Collaboration @1# found large forward-backward
asymmetry with pronounced features at around 1300 MeV.
Similar forward-backward asymmetry was found in measure-
ments of p2p→hp2p at 6.3 GeV/c by the KEK E-179
Collaboration @2,3#. The higher statistics measurement of
p2p →hp2p and p2p→hp0n reactions at 18 GeV/c by
the BNL E-852 Collaboration@4# confirmed significant
forward-backward asymmetry in the data beginning at an
invariant mass of about 1.2 GeV in both reactions. The be-
havior of the asymmetry suggests the presence of a large
exoticP wave interfering with the dominantD wave with its
a2(1320) resonance. The question arises whether there is a
resonant production of thehp2 or hp0 state in the exoticP
wave. The reliable determination of the existence of an ex-
otic resonance in a 121 P wave requires a model-
independent amplitude analysis of the data.

The reactions p2p→hp2p, p2p→hp0n, and

p2p→hh8n are described by 14 spin-dependent production
amplitudes: twoS-wave amplitudesSn , six P-wave ampli-
tudesPn

0 , Pn
2 , and Pn

1 , and sixD-wave amplitudesDn
0 ,

Dn
2 , and Dn

1 , where n50,1 is the nucleon helicity flip
n5ulp2lnu. The amplitudesSn , Pn

0 , andDn
0 describe the

production with dimeson helicityl50 and correspond to
unnatural exchange. The amplitudesPn

2 ,Dn
2 and Pn

1 ,Dn
1

describe production with a dimeson helicity61 and corre-
spond to unnatural and natural exchanges, respectively.

All previous amplitude analyses of reactions
p2p→hp2p, p2p→hp0n, andp2p→hh8n on unpolar-
ized targets are model dependent. They use a very strong
simplifying assumption that the production amplitudes do
not depend on nucleon spin@5–7#. The purpose of this as-
sumption is to reduce the number of amplitudes by half and
thus to enable the amplitude analysis of unpolarized mo-
ments measured in these reactions to proceed. These analy-
ses simply ignore the nucleon helicity flip indexn.

Using such an enabling assumption, the different collabo-
rations found the exoticI 51121 meson, but in different
amplitudes. The GAMS Collaboration reported a 121(1405)
state with a width of 180 MeV@1# observed only in the
amplitudeuP0u2. The KEK E-179 Collaboration@2,3# found
a uP2u2 nonresonating, but found a resonance 121(1323)
with a width of 143 MeV in the amplitudeuP1u2 and possi-
bly in uP0u2. The VES Collaboration @8# measured
p2p→hp2p andp2p→h8p2p at 37 GeV/c at IHEP Pro-
tvino and found a possible 121(1400) state only in the am-
plitude uP1u2. Amplitude analysis of the BNL E-852 Col-
laboration higher statistics data at 18 GeV/c is in progress,
but it also uses the simplifying assumption that production
amplitudes do not depend on nucleon spin. All these analy-
ses are subjected to an eightfold ambiguity and in Refs.*Electronic address: svec@hep.physics.mcgill.ca
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@2, 3, 8# all eight solutions are presented.
For completeness we note that the GAMS Collaboration

measured the reactionp2p→hh8n at 38 GeV/c @9# and
found evidence for a new stateX(1920). The unusual pro-
duction and decay properties could be understood ifX(1920)
had a non-qq̄ structure, being either a 011 or 211 glueball
or a I 50121 exotic meson. Unfortunately, the low statistics
does not allow even a model-dependent amplitude analysis.

The simplifying assumption that the production ampli-
tudes do not depend on nucleon spin is not necessary in
measurements on polarized targets. In 1978, Lutz and Ry-
bicki showed @10# that measurements of the reactions
pN→p1p2N and KN→KpN on a polarized target yield
enough observables that model-independent amplitude
analysis is possible, determining the spin-dependent produc-
tion amplitudes. The measurement of these reactions is of
special interest to hadron spectroscopy because they permit
one to study the spin dependence of resonance production
directly on the level of spin-dependent production ampli-
tudes. Several such measurements were done at the CERN
Proton Synchrotron.

The high statistics measurement ofp2p→p2p1n at
17.2 GeV/c on an unpolarized target@11# was later repeated
with a transversely polarized target at the same energy@12–
17#. Model-independent amplitude analyses were performed
for various intervals of dimeson mass at small momentum
transfers 2t50.00520.2 (GeV/c)2 @12–15# and over a
large interval of momentum transfer2t50.221.0 (GeV/c)2

@16,17#.
Additional information was provided by the measurement

of p1n→p1p2p andK1n→K1p2p reactions on a polar-
ized deuteron target at 5.98 and 11.85 GeV/c @18,19#. The
data allowed one to study thet evolution of mass depen-
dence of moduli of amplitudes@20#. Detailed amplitude
analyses@21,22# determined the mass dependence of ampli-
tudes at larger momentum transfers2t50.220.4 (GeV/c)2.

The crucial finding of all these measurements was the
evidence for a strong dependence of production amplitudes
on nucleon spin. The process of resonance production is very
closely related to nucleon transversity or the nucleon spin
component in the direction perpendicular to the production
plane. For instance, inp2p→p2p1n at smallt and dipion
masses below 1000 MeV, all amplitudes with recoil nucleon
transversity ‘‘down’’ are smaller than transversity ‘‘up’’ am-
plitudes, irrespective of dimeson spin and helicity. In par-
ticular, theS-wave amplitude with recoil nucleon transver-
sity up is found to resonate at 750 MeV in both solutions
@23–25# irrespective of the method of amplitude analysis
@25#, while theS-wave amplitude with recoil nucleon trans-
versity down is nonresonating and large in both solutions. It
is important to stress that the discovery of the narrow scalar
states~750! in p2p→p2p1n andp1n→p1p2p @24,25#
was possible only because these reactions were measured on
polarized targets that allowed the model-independent deter-
mination of the spin-dependent production amplitudes.

The assumption that production amplitudes in
p2p→hp2p and p2p→hp0n do not depend on nucleon
spin contradicts all that we have learned from the measure-
ments ofpN→p1p2N on polarized targets at CERN. Ap-
plied to the reactionsp2p→p2p1n and p1n→p1p2p,
the assumption has observable consequences that can be

tested directly in measurements on polarized targets. In a
previous paper@26# we have shown how all these conse-
quences are in contradiction with the CERN polarized data
on pN↑→p1p2N andK1n↑→K1p2p ~see Figs. 1 and 2
of Ref. @26#!. We must conclude that the CERN polarized
data invalidate the assumption that production amplitudes do
not depend on nucleon spin. Consequently, some of the re-
sults of analyses ofp2p→hp2p andp2p→hp0n may not
be reliable.

The question of reliability of amplitude analyses based on
the assumption of the independence of production ampli-
tudes on nucleon spin is of special importance to searches for
exotic resonances such as 121(1405) inp2p→hp2p and
p2p→hp0n reactions or confirmation of the narrows~750!
state inp2p→p0p0n reaction. Only a model independent
analysis will resolve questions concerning the existence of
such resonances that are not seen in the integrated mass spec-
trum but only on the level of spin dependent production am-
plitudes.

In a previous paper@26# we have shown how measure-
ments of p2p→p0p0n on a polarized targets allow a
model-independent amplitude analysis of this reaction~and
p2p→hhn!. Using the results of Lutz and Rybicki@10#, we
show in this work that measurements ofp2p→hp2p and
p2p→hp0n on a polarized target again allow a model-
independent determination of moduli of all production am-
plitudes and cosines of certain independent relative phases.
We find an eightfold ambiguity, which is the same situation
as in model-dependent analyses of unpolarized data. We pro-
pose that high statistics measurements ofp2p→hp2p and
p2p→hp0n be made at Brookhaven Multiparticle Spec-
trometer and at IHEP Protvino in conjunction with measure-
ments ofp2p→p0p0n reaction on polarized target.

The paper is organized as follows. In Sec. II we review
our basic notation and definitions of observables and ampli-
tudes. In Sec. III we present the expressions for unpolarized
and polarized moments in terms of amplitudes. In Sec. IV we
discuss the method of the model-independent amplitude
analysis of data onp2p→hp2p andp2p→hp0n on po-
larized target. In Secs. V and VI we describe two variants of
the Monte Carlo method for finding the amplitudes and their
errors. The paper closes in Sec. VII, where we present a
summary and our proposals.

II. BASIC FORMALISM

The kinematical variables that describe the reactions
p2p→hp2p andp2p→hp0n on a polarized proton target
at rest ares,t,m,u,f,c,d, where s is the center-of-mass
system~c.m.s.! energy squared,t is four-momentum transfer
to the nucleon squared, andm is the invariant mass of thehp
system. The anglesu,f describe the direction ofh in the
hp2 or hp0 rest frame. The anglec is the angle between
the direction of target transverse polarization and the normal
nW to the scattering plane~Fig. 1!. The direction of normalnW
is defined according to Basel convention bypW p3pW hp, where
pW p and pW hp are the incident and dimeson momenta in the
target proton rest frame. The angled is the angle between the
direction of target polarization vector and its transverse com-
ponent ~Fig. 1!. The analysis is usually carried out in the
t-channel helicity frame for thehp dimeson system. The
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helicities of initial and final nucleons are always defined in
the s-channel helicity frame.

When the polarization of the recoil nucleon is not mea-
sured, the unnormalized angular distribution ofhp2 or hp0

production on polarized protons at rest at fixeds, m, and t
can be written@10# as

I ~V,c,d!5I U~V!1PTcoscI C~V!1PTsincI S~V!

1PLI L~V!, ~2.1!

wherePT5Pcosd andPL5Psind are the transverse and lon-
gitudinal components of target polarizationPW with respect to
the incident momentum~Fig. 1!. In the data analysis of an-
gular distribution of the dimeson system, it is convenient to
use expansions of the angular distributions in terms of
spherical harmonics. In the notation of Lutz and Rybicki@10#
we have

I U~V!5(
L,M

tM
L ReYM

L ~V!,

I C~V!5(
L,M

pM
L ReYM

L ~V!,

~2.2!

I S~V!5(
L,M

r M
L ImYM

L ~V!,

I L~V!5(
L,M

qM
L ImYM

L ~V!.

The momentstM
L are unpolarized and are measured in experi-

ments on unpolarized targets. Experiments with transversely
polarized targets measure transverse polarized momentspM

L

and r M
L , but not the longitudinal polarized momentsqM

L .
More details on these observables are given in Refs.@10, 26#.

The reaction p2p→hp2p ~or p2p→hp0n! is de-
scribed by production amplitudeHln,0lp

(s,t,m,u,f), where

lp and ln are the helicities of the proton and neutron, re-
spectively. The production amplitudes can be expressed in
terms of production amplitudes corresponding to definite
dimeson spinJ and helicityl using an angular expansion

Hln ,0lp
5 (

J50

`

(
l52J

1J

~2J11!1/2Hlln ,0lp

J ~s,t,m!dl0
J ~u!eilf.

~2.3!

In the following we will consider onlyS-wave (J50),
P-wave (J51), andD-wave (J52) amplitudes. Since the
experimental moments withM.2 vanish, we will restrict
the dimeson helicityl only to valuesl50 andl561.

The amplitudesHlln,0lp

J (s,t,m) can be expressed in

terms of nucleon helicity amplitudes with definitet-channel
exchange naturality. The nucleons-channel helicity ampli-
tudes describing the production ofhp2 ~or hp0! system in
the S-, P-, andD-wave states are

H01,01
0 5S0 , H01,02

0 5S1 for 02
1

2
1→01

11

2
,

H01,01
1 5P0

0 , H01,02
1 5P1

0 for 02
11

2
→12

11

2
,

H611,01
1 5

P0
16P0

2

&
, H611,02

1 5
P1

16P1
2

&
, ~2.4!

H01,01
2 5D0

0 , H01,02
2 5D1

0 for 02
11

2
→21

11

2
,

H611,01
2 5

D0
16D0

2

&
, H611,02

2 5
D1

16D1
1

&
.

At large s, the amplitudesSn ,Pn
0 ,Pn

2 ,Dn
0 ,Dn

2 , n50,1, are
dominated by the unnatural exchanges. The amplitudes
Pn

1 ,Dn
1 , n50,1, are dominated by natural exchanges. The

index n5ulp2lnu is the nucleon helicity flip.
The observables measured in experiments on transversely

polarized targets are most simply related to nucleon transver-
sity amplitudes of definite naturality@10,19,27#. With
k51/&, they are defined as

S5k~S01 iS1!, S̄5k~S02 iS1!;

P05k~P0
01 iP1

0!, P̄05k~P0
02 iP1

0!;

P25k~P0
21 iP1

2!, P̄25k~P0
22 iP1

2!;

P15k~P0
12 iP1

1!, P̄15k~P0
11 iP1

1!; ~2.5!

D05k~D0
01 iD 1

0!, D̄05k~D0
02 iD 1

0!;

D25k~D0
21 iD 1

2!, D̄25k~D0
22 iD 1

2!;

FIG. 1. Definition of the coordinate system

used to describe the target polarizationPW and the
decay of the dimesonhp2 system.
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D15k~D0
12 iD 1

1!, D̄15k~D0
11 iD 1

1!.

The nucleon helicity and nucleon transversity amplitudes dif-
fer in the quantization axis for the nucleon spin. The trans-
versity amplitudes S,P0,P2,P1,D0,D2,D1

(S̄,P̄0,P̄2,P̄1,D̄0,D̄2,D̄1) describe the production ofhp
state with the recoil nucleon spin antiparallel or down~par-
allel or up! relative to the normalnW to the production plane.
The amplitudes are normalized such that the reaction cross
sectionS5d2s/dmdt,

S5uSu21uS̄u21uP0u21uP̄0u21uP2u21uP̄2u21uP1u2

1uP̄1u21uD0u21uD̄0u21uD2u21uD̄2u21uD1u2

1uD̄1u2. ~2.6!

Amplitude analysis is usually carried out with normalized
amplitudes for which the sum~2.6! is equal to 1. Then for
each amplitudeA5S, . . . ,D1 we have

0,uAu2,1, 0,uĀu2,1. ~2.7!

The unnormalized amplitudes are simplyuAu2S and uĀu2S,
A5S, . . . ,D1. It is these unnormalized moduli squared that
reveal the existence of resonances that cannot be seen in the
spin-averaged cross sectiond2s/dmdt.

III. OBSERVABLES IN TERMS OF AMPLITUDES

It is useful to express the momentstM
L andpM

L in terms of
quantities that do not depend explicitly on whether we use
nucleon helicity or nucleon transversity amplitudes. The re-
quired quantities are spin-averaged partial-wave intensity

I A5uAu21uĀu25uA0u21uA1u2 ~3.1!

and partial-wave polarization

PA5uAu22uĀu252eAIm~A0A1* !, ~3.2!

where eA511 for A5S,P0,P2,D0,D2 and eA521 for
A5P1,D1. We also need spin-averaged interference terms

R~AB!5Re~AB* 1ĀB̄* !5Re~A0B01eAeBA1B1!,
~3.3!

Q~AB!5Re~AB* 2ĀB̄* !5Re~eBA0B1* 2eAA1B0* !.
~3.4!

Then momentstM
L are expressed in terms of intensitiesI A

and interference termsR(AB). The momentspM
L are ex-

pressed in terms of polarizationsPA and interference terms
Q(AB). The momentsr M

L are interferences between the
natural and unnatural exchange amplitudes. To describe mo-
mentsr M

L , it is useful to introduce notation

N~AP1!5Re~AP1* 2ĀP̄1* !, ~3.5!

N~AD1!5Re~AD1* 2ĀD̄1* !,

whereA5S,P0,P2,D0,D2.

Using the results of the Lutz and Rybicki@10#, we obtain
the following expressions for moments with
c5A4p: unpolarized momentstM

L

ct0
05I S1I P01I P21I P11I D01I D21I D1,

ct0
152R~SP0!1

4

A5
R~P0D0!

12A3

5
@R~P2D2!1R~P1D1!#,

ct1
152&R~SP2!12A6

5
R~P0D2!22A2

5
R~P2D0!,

ct0
25

2

A5
I P02

1

A5
~ I P21I P1!12R~SD0!1

2

7
A5I D0

1
A5

7
~ I D21I D1!,

ct1
252A6

5
R~P0P2!12&R~SD2!1

2A10

7
R~D0D2!,

ct2
25A6

5
~ I P22I P1!1

A30

7
~ I D22I D1!,

~3.6!

ct0
356A 3

35
R~P0D0!2

6

A35
@R~P2D2!1R~P1D1!#,

ct1
358A 3

35
R~P0D2!1

12

A35
R~P2D0!,

ct2
352A6

7
@R~P2D2!2R~P1D1!#,

ct0
45

6

7
I D02

4

7
~ I D21I D1!,

ct1
45

4

7
A15R~D0D2!,

ct2
45

2A10

7
~ I D22I D1!;

polarized momentspM
L :

cp0
05PS1PP01PP22PP11PD01PD22PD1,

cp0
152Q~SP0!1

4

A5
Q~P0D0!

12A3

5
@Q~P2D2!2Q~P1D1!#,
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cp1
152&Q~SP2!12A6

5
Q~P0D2!22A2

5
Q~P2D0!,

cp0
25

2

A5
PP02

1

A5
~PP22PP1!12Q~SD0!1

2A5

7
PD0

1
A5

7
~PD22PD1!,

cp1
252A6

5
Q~P0P2!12&Q~SD2!1

2A10

7
Q~D0D2!,

cp2
25A6

5
~PP21PP1!1

A30

7
~PD21PD1!,

~3.7!

cp0
356A 3

35
Q~P0D0!2

6

A35
@Q~P2D2!2Q~P1D1!#,

cp1
358A 3

35
Q~P0D2!1

12

A35
Q~P2D0!,

cp2
352A6

7
@Q~P2D2!1Q~P1D1!#,

cp0
45

6

7
PD02

4

7
~PD22PD1!,

cp0
45

4

7
A15Q~D0D2!,

cp2
45

2A10

7
~PD21PD1!;

and polarized momentsr M
L :

cr1
1522&N~SP1!22A2

5
N~D0P1!22A6

5
N~P0D1!,

cr1
2522A6

5
N~P0P1!22&N~SD1!2

2A10

7
N~D0D1!,

cr2
2522A6

5
N~P2P1!2

2A30

7
N~D2D1!,

cr1
351

12

A35
N~D0P1!28A 3

35
N~P0D1!, ~3.8!

cr2
3522A6

7
N~D2P1!22A6

7
N~P2D1!,

cr1
452

4

7
A15N~D0D1!,

cr2
452

4

7
A10N~D2D1!.

IV. MODEL-INDEPENDENT AMPLITUDE ANALYSIS

Our starting point is the observation of symmetry in the
relations for momentstM

L and pM
L . We find that we getpM

L

from tM
L by replacing intensitiesI A by polarizationseAPA ,

e511 for A5S,P0,P2,D0,D2 and eA521 for
A5P1,D1, and by replacing the interference terms
R(AB)→Q(AB) for unnatural exchange amplitudes and
R(P1D1)→2Q(P1D1) for natural exchange amplitudes.
To solve the system of equationstM

L andpM
L it will be useful

to work with transversity amplitudes. Then the definitions
~3.1!–~3.4! suggest the construction of two sets of equations
corresponding to the sum and difference of the momentstM

L

and pM
L . In this way we get two independent sets of equa-

tions for amplitudes of opposite transversity.
The first set of new observables reads

a15
c

2
~ t0

01p0
0!

5uSu21uP0u21uP2u21uP̄1u21uD0u21uD2u21uD̄1u2,

a25
c

2
~ t0

11p0
1!52Re~SP0* !1

4

A5
Re~P0D0* !

12A3

5
@Re~P2D2* !1Re~ P̄1D̄1* !#,

a35
c

2
~ t1

11p1
1!

52&Re~SP2* !12A6

5
Re~P0D2* !

22A2

5
Re~P2D0* !,

a45
c

2
~ t0

21p0
2!

5
2

A5
uP0u22

1

A5
~ uP2u21uP̄1u2!12Re~SD0* !

1
2A5

7
uD0u21

A5

7
~ uD2u21uD̄1u2!,

a55
c

2
~ t1

21p1
2!

52A6

5
Re~P0P2* !12&Re~SD2* !

1
2A10

7
Re~D0D2* !,
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a65
c

2
~ t2

21p2
2!

5A6

5
~ uP2u22uP̄1u2!

1
A30

7
~ uD2u22uD̄1u2!,

~4.1!

a75
c

2
~ t0

31p0
3!

56A 3

35
Re~P0D0* !

2
6

A35
@Re~P2D2* !1Re~ P̄1D̄1* !#,

a85
c

2
~ t1

31p1
3!

58A 3

35
Re~P0D2* !1

12

A35
Re~P2D0* !,

a95
c

2
~ t2

31p2
3!

52A6

7
@Re~P2D2* !2Re~ P̄1D̄1* !#,

a105
c

2
~ t0

41p0
4!

5
6

7
uD0u22

4

7
~ uD2u21uD̄1u2!,

a115
c

2
~ t1

41p1
4!5

4

7
A15Re~D0D2* !,

a125
c

2
~ t2

41p2
4!5

2A10

7
~ uD2u22uD̄1u2!.

The first set of equations~4.1! involves seven moduli

uSu,uP0u,uP2u,uP̄1u,uD0u,uD2u,uD̄1u, ~4.2!

and ten cosines of relative phases between unnatural ex-
change amplitudes

cos~gSP0!,cos~gSP2!,cos~gSD0!,cos~gSD2!, ~4.3!

cos~gP0P2!,cos~gP0D0!,cos~gP0D2!, ~4.4!

cos~gP2D0!,cos~gP2D2!,cos~gD0D2!, ~4.5!

and one cosine of relative phase between natural exchange
amplitudes

cos~ ḡP1D1!. ~4.6!

The second set of observablesāi , i 51,2, . . .,12, corre-
sponding to the differences of momentstM

L andpM
L involves

the same moduli and cosines as the first set but for ampli-
tudes of opposite transversity: seven moduli

uS̄u,uP̄0u,uP̄2u,uP1u,uD̄0u,uD̄2u,uD1u, ~4.7!

ten cosines of relative phases between unnatural exchange
amplitudes

cos~ ḡSP0!,cos~ ḡSP2!,cos~ ḡSD0!,cos~ ḡSD2!, ~4.8!

cos~ ḡP0P2!,cos~ ḡP0D0!,cos~ ḡP0D2!,

cos~ ḡP2D0!,cos~ ḡP2D2!,cos~ ḡD0D2!, ~4.9!

and one cosine of relative phase between natural exchange
amplitudes

cos~gP1D1!. ~4.10!

We will now show that the cosines~4.4! and~4.5! can be
expressed in terms of the cosines~4.3!. For instance, we can
write

gP0P25fP02fP2

5~fS2fP2!2~fS2fP0!5

gSP22gSP0. ~4.11!

Then

cos~gP0P2!5cos~gSP0!cos~gSP2!1sin~gSP0!sin~gSP2!.
~4.12!

Since the signs of the sines sin(gSP0) and sin(gSP2) are not
known, we write

sin~gSP0!5eSP0usin~gSP0!u,
~4.13!

sin~gSP2!5eSP2usin~gSP2!u.

Hence

cos~gP0P2!5cos~gSP0!cos~gSP2!

1eP0P2A~12cos2gSP0!~12cos2gSP0!,

~4.14!

whereeP0P2561 is the sign ambiguity. The remaining co-
sines in Eqs.~4.4! and~4.5! can be written in the form simi-
lar to Eq. ~4.14! with their own sign ambiguities. The sign
ambiguities of cosines~4.4! and ~4.5! can be expressed in
terms of sign ambiguities corresponding to the sines
sin(gSP0), sin(gSP2), sin(gSD0), and sin(gSD2). We can write

eP0P25eSP0eSP2,

eP0D05eSP0eSD0, ~4.15!

eP0D25eSP0eSD2,

eP2D05eSP2eSD0, ~4.16!

eP2D25eSP2eSD2,

eD0D25eSD0eSD2.
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The reversal of all signseSP0, eSP2, eSD0, andeSD2 yields
the same signs in Eqs.~4.15! and ~4.16!. The sign ambigu-
ities ~4.16! are not independent. They are uniquely deter-
mined by the sign ambiguities~4.15!. Only sign ambiguities
~4.15! are independent and there are eight, sign combinations
in Eq. ~4.15!. The following table lists all eight allowed sets
of sign ambiguities of cosines~4.4! and ~4.5!:

1 2 3 4 5 5 7 8

eP0P2 1 2 1 1 2 2 1 2

eP0D0 1 1 2 1 2 1 2 2

eP0D2 1 1 1 2 1 2 2 2

eP2D0 1 2 2 1 1 2 2 1

eP2D2 1 2 1 2 2 1 2 1

eD0D2 1 1 2 2 2 2 1 1

Using expressions like~4.14! for cosines~4.4! and ~4.5!,
the number of unknowns is reduced to 12. With each choice
of sign ambiguity from the above table we have a set of 12
equations for 12 unknown that can be solved numerically by
the x2 method or by Monte Carlo methods described in the
Secs. V and VI below. Of course, there is an eightfold am-
biguity and we obtain eight solutions for moduli~4.2! and
cosines~4.3! and~4.6! in each (m,t) bin. Since each solution
is uniquely labeled by the choice of sign ambiguities, there is
no problem linking solutions in neighboring (m,t) bins.
Similarly, we obtain eight solutions for moduli~4.7! and
cosines~4.8! and~4.11! from the second set of equationsāi ,
i 51,2, . . .,12.

The eight solutions from the first set of equationsai ,
i 51,2, . . .,12, are independent of the eight solutions ob-
tained from the second set of equationsāi , i 51,2, . . .,12.
Consequently, there will be a 64-fold ambiguity in the partial
wave intensities, which we can write

I A~ i , j !5uA~ i !u21uĀ~ j !u2, i , j 51,2, . . . .8, ~4.17!

whereA5S,P0,P2,P1,D0,D2,D1. As in the case of am-
plitude analysis ofp2p↑→p2p1n at 17.2 GeV/c @12–17#,
the unpolarized momentstM

L should come from measure-
ments on unpolarized targets.

V. INVERSE MONTE CARLO METHOD

In the usual~direct! Monte Carlo method@24# the normal-
ized amplitudes are analytically expressed in terms of nor-
malized moments. The moments are then randomly varied
within their errors, and for each such selection new ampli-
tudes are calculated. If physical values are obtained for the
amplitudes, they are retained. Amplitudes with unphysical
values are rejected. The distributions of physical values of
amplitudes define their range~error! and average values. The
method has the advantage that it retains the identity of dif-
ferent analytical solutions where ambiguities exist. Unfortu-
nately, Eqs.~4.1! cannot be solved analytically.

In the inverse Monte Carlo method we make use of the
fact that the normalized moments are expressed in terms of
normalized amplitudes with moduliuAu,1 and cosines of
relative phases21<cosg<11. We can randomly vary the
values of moduli and cosines within these ranges and see if

the right-hand sides of Eqs.~4.1! fall into the error range of
all observablesa1 ,a2 , . . . ,a12. If they do, the values of
moduli and cosines are retained and collected. Otherwise the
selection is rejected. In each (m,t) bin we thus obtain a
distribution of values for each modulus and cosine from
which we calculate the average value and from its range the
asymmetric error bars for each amplitude. The same proce-
dure is applied to the second set of equations for amplitudes
of opposite transversity and for each selection of sign ambi-
guities. The solutions of the two sets are not entirely inde-
pendent because the normalized moduli must satisfy the con-
dition ~2.6! with S[1. This means that we can use Monte
Carlo to select randomly 13 moduli and use Eq.~2.6! with
S[1 to calculate the 14th modulus~say uD̄1u2!. However,
this calculated modulus must still satisfy the condition
0,uAu2,1.

We will refer to this method of finding a solution and its
errors for amplitudes as the inverse Monte Carlo method. We
note that this method can be applied also to find a solution
for amplitudes in the reactionp2p→p0p0n when theG
wave is included†see Eq.~6.1! of Ref. @26#‡.

VI. MULTISTAGE INVERSE MONTE CARLO METHOD

Instead of selecting random values of the moduli and in-
dependent cosines all at the same time, we can proceed in
stages, taking into account the structure of Eqs.~4.1!. How-
ever, the aim will be the same: to find in each (m,t) bin a
distribution of values for each modulus and independent co-
sine and to calculate from this distribution the average value
and asymmetric error bars of the amplitudes.

In the first stage we select moduli consistent with the four
equations in~4.1! that contain only moduli. We start with

b125
7

2A10
a125uD2u22uD̄1u2. ~6.1!

The values ofb12 lie in the range fromb12(min)5b122Db12
to b12(max)5b121Db12. Obviously

b12~min!1uD̄1u2<uD2u2<b12~max!1uD̄1u2. ~6.2!

We selectuD̄1u2 such that

0,uD̄1u2,1, ~6.3!

b12~min!1uD̄1u2,1,

b12~max!1uD̄1u2.0.

Then we selectuD2u2 by the Monte Carlo method such that
two conditions are satisfied. The first condition is

uD2u21uD̄1u2,1. ~6.4!

The second condition are the inequalities~6.2!. If these con-
ditions on uD2u2 and uD̄1u2 are satisfied, we go toa10 to
selectuD0u2. Define

b105
7

2
a1053uD0u222~ uD2u21uD̄1u2!. ~6.5!
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We selectuD0u2 by the Monte Carlo method and verify the
conditions

uD0u2,12uD2u22uD̄1u2, ~6.6!

b10~min!12~ uD2u21uD̄1u2!

<uD0u2

<b10~max!12~ uD2u21uD̄1u2!. ~6.7!

Notice that Eq.~6.7! provides an additional condition on
uD2u2 and uD̄1u2:

b10~min!12~ uD2u21uD̄1u2!,1,
~6.8!

b10~max!12~ uD2u21uD̄1u2!.0.

With uD0u and uD2u now fixed we obtain additional con-
straint froma11. Define

b115
7

4A15
a115uD0uuD2ucos~fD0D2!. ~6.9!

Hence

2uD0uuD2u<b11<1uD0uuD2u. ~6.10!

But b11 is in the range

b11~min!<b11<b11~max!. ~6.11!

To obtain a physical value of cos(fD0D2) the inequalities
~6.10! and~6.11! must overlap. If no overlap exists, we have
to go back and select newuD0u and uD2u until we get a
nonempty overlap.

Next we go toa6 . We first select by Monte Carlo calcu-
lation uP̄1u2 and uP2u2 such that

uP̄1u2,12uD0u22uD2u22uD̄1u2, ~6.12!

uP2u2,12uP̄1u22uD0u22uD2u22uD̄1u2, ~6.13!

and then verify the consistency conditions

a6~min!2
A30

7
~ uD2u22uD̄1u2!

<A6

5
~ uP2u22uP̄1u2!<a6~max!2

A30

7
~ uD2u2

2uD̄1u2!. ~6.14!

If the bounds~6.14! are not satisfied we use Monte Carlo
calculation to select newuP̄1u2 and uP2u2. If these bounds
are satisfied we selectuP0u2 and uSu2 by Monte Carlo calcu-
lation such that

0,uP0u2,12uP2u22uP̄1u22uD0u22uD2u22uD̄1u2,

0,uSu2,12uP0u22uP2u22uP̄1u22uD0u22uD2u22uD̄1u2.
~6.15!

The sum

uSu21uP0u21uP2u21uP̄1u21uD0u21uD2u21uD̄1u2

~6.16!

must be within the error range ofa1 . If this bound is vio-
lated, we select anotheruSu2 and uP0u2 or even uP2u2 and
uP̄1u2, and if necessary alsouD0u2, uD2u2, anduD̄1u2.

In the next stage we determine the five independent co-
sines in Eqs.~4.1! defined as

c15cos~gSP0!, c25cos~gSP2!, ~6.17!

c35cos~gSD0!, c45cos~gSD2!,

c55cos~g P̄1D̄1!.

We also define, fori , j 51,2,3,4,

ci j ~«!5cicj1« i jA~12ci
2!~12cj

2!, ~6.18!

where« i j is the sign ambiguity. In the following a selection
of one of the eight sign ambiguities~see the table of Sec. IV!
will be understood and we will writeci j instead ofci j («). It
is convenient to organize the relevant equations in the fol-
lowing way:

a452uSuuD0uc31D, ~6.19!

a115
4

7
A15uD0uuD2uc34, ~6.20!

a352&uSuuP2uc212A6

5
uP0uuD2uc14

2A2

5
uP2uuD0uc23, ~6.21!

a552&uSuuD2uc412A6

5
uP0uuP2uc12

1
2A10

7
uD0uuD2uc34, ~6.22!

a858A 3

35
uP0uuD2uc141

12

A35
uP2uuD0uc23, ~6.23!

a952A6

7
$uP2uuD2uc242uP̄1uuD̄1uc5%, ~6.24!

a252uSuuP0uc11
4

A5
uP0uuD0uc13

12A3

5
$uP2uuD2uc241uP̄1uuD̄1uc5%, ~6.25!

a75
6

A35
$)uP0uuD0uc132uP2uuD2uc242uP̄1uuD̄1uc5%.

~6.26!
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In Eq. ~6.18! D is the fixed term of moduli ina4 .
To proceed, we first selectc3 such that the right-hand side

~rhs! of Eq. ~6.19! is in the error range of a4 ,
a4(min)<a4<a4(max). Then we selectc4 such that the rhs of
Eq. ~6.20! is in the error range ofa11. Next we make a
Monte Carlo selection ofc1 andc2 such that the rhs of Eqs.
~6.21!, ~6.22!, and ~6.23! are within the error range ofa3 ,
a5 , anda8 , respectively. Withc1 , c2 , c3 , andc4 thus fixed
we seek by Monte Carlo calculation the value ofc5 with the
rhs of Eq.~6.24! within error range ofa9 . Finally, we verify
the consistency ofc1 , . . . ,c5 with Eqs.~6.25! and ~6.26!. If
an inconsistency is found, first we try new selections ofc5 .
If this does not work, we go back to new selections ofc1 and
c2 in Eqs. ~6.21!–~6.23!. If inconsistencies persist, we try
new selections ofc3 andc4 in Eqs.~6.19! and ~6.20!.

A similar procedure is applied to the second set of equa-
tions for amplitudes of opposite transversity. In this approach
the normalization condition~2.6! with S[1 may not be sat-
isfied exactly by the average values of the moduli squared.

Multistage inverse Monte Carlo method involves obvi-
ously more programming than the simple inverse Monte
Carlo method. Only practical experience can tell which
method is preferable.

VII. SUMMARY

Measurements ofp2p→p2p1n, p1n→p1p2p, and
K1n→K1p2p on polarized targets at CERN found evi-
dence for a strong dependence of pion production amplitudes
on nucleon spin. This evidence invalidates the assumption
@5,6# that production amplitudes inp2p→hp2p and
p2p→hp0n reactions do not depend on nucleon spin. The
amplitude analyses of these reactions based on the assump-
tion of the independence of production amplitudes on
nucleon spin are thus insufficient and are likely to be unre-
liable. To ascertain the existence of exotic resonance
121(1405) and study its properties, a reliable, model-
independent amplitude analysis is required. Nucleon spin is
not only relevant to the dynamics of production processes. It
also allows the model-independent determination of spin-
dependent production amplitudes from measurements of
p2p→hp2p andp2p→hp0n on polarized targets, as we
have shown. Our major assumption was that moments with
M.2 do not contribute to the angular distributions. This

may not be true at large momentum transfers. In this case
one has to use the formalism developed by Sakrejda@16#,
which takes into account the helicitiesl562 of the D
wave.

The importance of the nucleon-spin dependence of ampli-
tudes is not just a mathematical possibility; it is an experi-
mental fact that has been firmly established by the CERN
measurements on polarized targets@12–22#. Once the am-
plitudes have been reconstructed from the data on a polarized
target, their dependence on nucleon spin should be examined
by checking their dependence not only on the invariant mass
m but also on the variablest and s. We point out that in
formation experiments at low energies, if a three-body isobar
decay of the resonance could be studied, then it is possible to
incorporate the nucleon spin dependence of amplitudes with-
out a polarized target. Of course, this is not possible in pro-
duction experiments at higher energies.

Instruments shape research and determine which discov-
eries are made. Polarized targets have proven themselves to
be valuable and important tools of discovery. We propose
that high statistics measurements of the reactions
p2p→hp2p and p2p→hp0n be made on polarized tar-
gets at the BNL Multiparticle Spectrometer and at the IHEP
in Protvino, in conjunction with high statistics measurements
of p2p→p0p0n on polarized targets. Such experiments
will also be feasible for the recently proposed Japanese Had-
ron Project~JHP!. When built, JHP will be a high-intensity
50-GeV proton accelerator complex with high-quality pion,
kaon and antiproton secondary beams@28#. The availability
of such secondary beams will make JHP an ideal facility for
hadron spectroscopy using polarized targets in a search for
new resonant states at the level of spin-dependent production
amplitudes.
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