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Large rapidity gap events in deep inelastic scattering are discussed in terms of light cone wave functions for
quarks and gluons inside the photon. It is shown that this approach is consistent with earlier, conventional
Feynman diagram calculations. An updated parametrization for the cross section is given and a numerical
analysis presented.@S0556-2821~97!03119-6#
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I. INTRODUCTION

With the start of DESY HERA a new tool has become
available which allows a significant progress in sorting out
the longstanding puzzle about the nature of the Pomeron
@1,2#. Theoretically the Pomeron is difficult to tackle. It was
introduced phenomenologically as a simple moving pole in
the complex angular momentum plane~Pomeron trajectory!
analogous to meson exchanges; however, compared to me-
sons there is no clear evidence for associated bound states in
the s channel~candidates are glueballs!. The Pomeron inter-
cept is slightly above one which translates into a slowly
growing total and elastic cross section in hadron reactions@3#
~soft Pomeron!. Meson trajectories, on the other hand, are
below one and give subleading contributions at very high
energies. Within the framework of perturbative QCD the
Pomeron is associated with the resummation of leading loga-
rithms in s ~total energy! which results in a more compli-
cated branch point singularity instead of a simple pole@4#
~hard Pomeron!. The major shortcoming of this leading ln(s)
approach is the ignorance of nonperturbative contributions
and the neglect of unitarity corrections which are relevant for
the complete formation of the Pomeron@5,6#. Other ap-
proaches propose a combination of soft and hard Pomeron
~see, for example,@7,8#! where the Pomeron intercept is con-
trolled by the relevant scale of the process.

Due to its zero color charge the Pomeron is associated
with the occurrence of rapidity gaps at very high energies.
The simplest form of rapidity gap events beside elastic scat-
tering is single diffraction where only one of the incoming
particles dissociates~the virtual photon in deep inelastic scat-
tering! whereas the other~the proton! stays intact. In most
cases the proton escapes undetected, but it is surrounded by a
large rapidity gap, a fact which is used in experiment to
define diffraction. In the following we will assume the pro-
ton not to decay.

Deep inelastic scattering exhibits the nice feature of hav-
ing a small colorless particle, the virtual photon, in the initial
state. We will make use of this fact and shift the focus from
the less well defined Pomeron to the virtual photon which we
believe is perturbatively calculable, i.e., its content of quarks
and gluons can be determined. Going into the target rest
frame the following picture emerges: a fast traveling photon
dissociates far upstream the proton-target into a quark-
antiquark pair which evolves into a more complex partonic
system before the actual interaction takes place. The initial

separation of the quark-antiquark pair in impact parameter
space is of the order of 1/Q (Q2 is the photon virtuality!. The
final partonic system, however, which takes part in the inter-
action covers a much larger area roughly the size of a had-
ron. It appears to be rather natural to refer to the leading
order quark-antiquark pair as a color dipole, it is less trivial,
though, for a multiparticle state. Still, it may be shown that
for leading twist contributions the concept of a color dipole
can be extended to a more complicated final state. The argu-
ment goes as follows: hard QCD radiation generates a bunch
of partons strongly ordered in impact parameter space. The
large distance is marked by the last quark or gluon in the
chain of emissions, whereas the remaining partons are con-
fined in a small area~short distances!. The separated parton,
on the one hand, and the confined system of partons on the
other hand form a new effective dipole. Both types, the
quark dipole and the gluon dipole, can be described in terms
of light cone wave functions. The gluon dipole, although it is
of higher order in perturbation theory, is of particular rel-
evance when the invariant massM of the diffractive final
state becomes large. The dipole picture is certainly limited in
its applicability, but it works fine whenQ2 is the leading
scale in the process, i.e.,M2/Q2 is not extremely large.

For the interaction of the color dipole with the proton we
employ the two gluon model@9#. All possible couplings have
to be added up in order to retain gauge invariance. The two
gluon model itself may not account for the full structure of
the Pomeron, but it can be generalized to the exchange any
number of gluons, since all gluons hooked on to one leg of
the dipole can be merged into a single effective vertex. The
strategy in this paper is to factorize the Pomeron structure
from the dipole according to thekt-factorization theorem
@10#. The dipole part is calculated whereas the Pomeron part
acquires a phenomenological parametrization. A full QCD
treatment is not feasible at the present time. All free param-
eters will be determined from inclusive deep inelastic scat-
tering data (F2) and then used for diffraction.

In the following section we will introduce the light cone
wave function formalism which includes an improved ex-
pression for the gluon dipole. In Sec. III the model for the
Pomeron is specified and a fit toF2 data which determines
all parameters is performed. The Pomeron model is then
combined with the light cone wave functions and the cross
section for diffraction in deep inelastic scattering is calcu-
lated. It is shown that these results are consistent with earlier
approaches based on more conventional calculations using
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Feynman diagrams~Sec. IV!. In Sec. V the cross section is
numerically evaluated and the main results are discussed.

II. LIGHT CONE WAVE FUNCTIONS

One should take the terminology ‘‘wave function’’ not
too literally, since the state it is meant to represent is not real
but virtual. Still, it provides an effective and intuitive de-
scription of quark dipoles and gluon dipoles inside the pho-
ton in close analogy to a quark-antiquark bound state
~quarkonium!. An unpleasant property which can be traced
back to the pointlike nature of the photon is the lack of
normalizability of the wave function unlike for real states. In
order to find the correct normalization one has to go back to
the corresponding Feynman diagrams@11,12#. The nice fea-
ture is that once having determined the light cone wave func-
tion one can easily study single gluon and multigluon ex-
change, although the wave function formalism for the gluon
dipole is restricted to color zero exchange, i.e., it works for
two or multigluon exchange.

The virtual photon can be transverse polarized~transverse
with respect to the light cone vectorsq85q1xBp andp, q is
the photon momentum andp the momentum of the incoming
proton! as well as longitudinally polarized. The two helicity
statesg561 follow from the projection on the transverse
vectors ~1,i ) and ~1,2 i ). For the left- and right-handed
quarks we introduce the quark helicityh561. The quark
momentum k may be parametrized ask5aq8
1bkp1kt ~Sudakov parametrization! which simultaneously
fixes the decomposition of the antiquark momentum:
q2k5(12a)q81(2xB2b)p2kt . Using complex nota-
tion for the two-dimensional vectorkt we may write the light
cone wave function for the quark-antiquark state as:

~1!

and

Ch
g~a,kt!52

a~12a!Q

uktu21a~12a!Q2
for g5 0 and h561,

~2!

whereQ252q2 is the virtuality of the photon. Equation~2!
shows the light cone wave function of the longitudinally po-
larized photon.

Before discussing the properties of the light cone wave
function it is necessary to have a closer look at the kinemat-
ics. We assume that either the quark is off-shell and the
antiquark on-shell or vice versa@here, (q2k)250 and

k2Þ0, Fig. 1#. In the frame that we choose the photon moves
fast and the two quarks roughly carry the momentaaq8 and
(12a)q8, whereas the other components are small. Any
subsequent high-energy scattering does not change thea
component. The off-shell quark with the momentumk be-
comes onshell after receiving a small fractionxP of momen-
tum alongp while being scattered. The momentum of the
quark changes fromk to k̃ with k̃250. Using the mass-shell
condition one finds

k̃5aq81
uktu2

aW2
p1kt ,

q2k5~12a!q81
uktu2

~12a!W2
p2kt . ~3!

W is the total hadronic mass (W252q8•p). The missing
massM is simply given as the total energy of the two out-
going quarks:

M25~ k̃1q2k!25S q81
uktu2

a~12a!W2
pD 2

5
uktu2

a~12a!
.

~4!

We now include the emission of a gluon in our discus-
sion. At largeM the gluon is well separated in rapidity from
the q q̄ pair and becomes the dominant configuration over
the exclusiveq q̄-pair production. The latter is suppressed by
a power inM2 ~spin-1/2 exchange!. Unfortunately, the three
particle Fock state is much more complicated, and a rigorous
construction of the wave function which is consistent with
Feynman rules and valid for all kinematics has not been
achieved, yet. A simplification occurs when only the leading
twist and leading ln(Q2) contribution is considered. In this
case the distance in the impact parameter space between the
quark and the antiquark is much smaller than the distance
between the quarks and the gluon. Theq q̄ pair on the one
side and the gluon on the other side form an effective color
dipole similar to the exclusiveq q̄ pair that we have consid-
ered before@Fig. 1~b!#.

For the gluon dipole we find the following wave function
@after introducing the vector notationkt5(kt

1 ,kt
2)#:

FIG. 1. Quark dipole~a! and gluon dipole~b!.
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Cmn~a,kt!5
1

Aa~12a!Q2

kt
2dmn22kt

mkt
n

kt
21a~12a!Q2

. ~5!

In view of the two-vector-particles state~an effective two
gluon state! it appears rather natural to find a tensor repre-
sentation for the wave function. In the triple Regge limit
~TRL! with M2 much larger thanQ2 the terma(12a)Q2 in
the denominator of Eq.~5! may be neglected and onlykt

2

remains:

CTRL
mn ~a,kt!5

1

Aa~12a!Q2

2kt
mkt

n

kt
2

. ~6!

The d term which at first sight should be kept was also
removed, since it does not depend onkt and drops out in any
application due to subtractions@see Eq.~19! of Sec. IV#. The
simple structure of Eq.~6! was found earlier in Refs.@11,13#.
Expression~5!, on the other hand, is valid for all masses and
provides the natural extension of the triple Regge result.

We have to point out that the wave function introduced in
Eq. ~5! does not reproduce the amplitude for the single gluon
t-channel exchange. Especially those contributions which are
singular in the limitM→0 are absent. The reason for that
lies in the fact that in the color singlet configuration all sin-
gular, soft terms cancel out. This cancellation can be illus-
trated by considering final state radiation off theq q̄ pair.
The soft terms add up when theq q̄ pair is colored, they
cancel each other, however, when the state is colorless.

We have written Eq.~5! in a symmetric way with respect
to a and 12a in order to stress the similarity with theq q̄
dipole. The gluon dipole considered here is actually very
asymmetric which is a consequence of the leading twist ap-
proximation where the internal virtualities are much smaller
than Q2. From Eq.~3! we conclude thata has to be much
smaller than 1 in order to fulfill the conditionk2!Q2. So,
one could have set 12a in Eq. ~5! equal to 1 without reduc-
ing the accuracy of the formula.

At very large massesM or small b the dipole picture
becomes insufficient. Instead of logarithms inQ2 we have to
sum up logs in 1/b or M2/Q2. This leads to a new four-gluon

t-channel state@5,14# and a new singularity 11v4 in the
complex angular momentum plane@(1/b)v4#. But in contrast
to conventional QCD-scaling violation the strong rise with
1/b does not imply a rise withQ2.

III. MODELING THE STRUCTURE FUNCTION F 2

We compute the structure functionF2 at very low xB
when single gluon exchange gives the leading contribution.
In contrast to the usual approach~gluon-boson fusion! the
gluon is not on-shell and needs to be described by a distri-
bution over both longitudinal and transverse phase space
components (kt factorization!. Such a factorized distribution
(F) contains perturbative as well as nonperturbative contri-
butions, and the aim is to find a suitable parametrization
which gives a reasonable description of all lowxB and low
Q2 data.

The kt-factorization theorem is the high energy or small
xB counterpart of the conventional~collinear! factorization
theorem. The latter, when calculating the structure function
F2, requires a convolution of the gluon structure function
and the quark box with respect to the longitudinal momen-
tum fraction whereas in the smallxB regime the convolution
with respect to the transverse momentum (kt) is more appro-
priate. At zero momentum transfer the Pomeron~in deep
inelastic scattering! is essentially the same as the uninte-
grated gluon structure function, and by fitting theF2 data
one determines the Pomeron interceptaP . In deep inelastic
scattering, however, the Pomeron intercept varies~depending
on Q2) rather than being a fixed number as in soft processes
(aP51.085).

As we already mentioned one of the virtues of the wave
function formalism is that we can use it for single gluon
exchange~transverse momentuml t) as well~see, Fig. 2!. We
find for F2 the expression

F2~xB ,Q2!5(
f

Qf
2 Q2

4pE d2l t

p l t
2
F~xB ,l t

2 ,Q0
2!

3E
0

1

daE d2kt

4p (
g50,1,2

(
h51,2

uCh
g~a,kt!

2Ch
g~a,kt1 l t!u2. ~7!

In the limit of largeQ2 ~at fixed but smallxB) and taking

FIG. 2. Inclusive deep inelastic scattering (F2).

FIG. 3. Wave functions with shifted argument.
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only the leading ln(Q2) contribution the gluon distribution
factorizes and thel t integral can be taken:

xBg~xB ,Q2!5E
0

Q2

dlt
2 1

as
F~xB ,l t

2 ,Q0
2!. ~8!

g(xB ,Q2) represents the conventional gluon distribution and
F/as is usually referred to as unintegrated gluon structure
function. Introducing the Feynman parameterx Eq. ~7! re-
duces to

F2~xB ,Q2!5(
f

Qf
2 Q2

4pE dlt
2F~xB ,l t

2 ,Q0
2!E

0

1

dxE
0

1

da
@122x~12x!#@122a~12a!#18x~12x!a~12a!

x~12x!l t
21a~12a!Q2

. ~9!

This representation~see also,@16,17#! serves as starting point
for further numerical evaluation.

As an ansatz forF we choose

F~xB ,l t
2 ,Q0

2!5
G~xB ,Q2/Q0

2!

l t
21Q0

2
,

G~xB ,Q2/Q0
2!5AS xB

x0
D 12aP~Q2!F lnS Q2

Q0
2D 11G2C

.

~10!

Q0 is set to 1 GeV~proton mass!, and since only smallxB are
considered we introducedx050.05 as normalization point.
The Pomeron intercept has the parametrization

aP~Q2!51.0851H Bln@ ln~Q2/Q0
2!11# if Q2.Q0

2,

0 if Q2<Q0
2.
~11!

A soft Pomeron (aP51.085) intercept is assumed when the
scale Q2 falls below Q0

2. This behavior has experimental
support form the BPC data@18#.

The ansatz in Eq.~10! has the following two basic ingre-
dients: first,F scales such as 1/Q0

2 for l t50, i.e., an effective
cutoff at the scale ofQ0

2 is introduced which eliminates the
singularity related to the gluon propagator 1/l t

2 . The scaleQ0

roughly represents the inverse size of the hadron and because
hadrons are colorless all gluons with a wave length larger
than the size of the hadron decouple. One important conse-
quence is the vanishing of the structure function whenQ2

approaches zero. The second ingredient is a scale (Q2-! de-
pendent Pomeron intercept. It takes care of the experimental
fact that the small-xB rise becomes weaker when the scale
decreases and finally turns into the soft behavior belowQ0.
The parameterB in Eq. ~11! has to be determined from data.
Two more parameters come along withB @see Eq.~10!#, A
fixes the absolute normalization andC corrects the strong
scaling violation which results from the scale dependent pa-
rametrization of the Pomeron intercept.

The data for the fit are taken from HERA@18,19# below
Q2550 GeV2 and from E665@20# including the smallest
Q2 values. The fit gives the following values for the three
parametersA,B, andC:

A50.877,

B50.133, ~12!

C50.596.

These parameters will be used in the following to predict the
diffractive structure functionF2

D .

IV. DIFFRACTION

For the diffractive cross section we use the same conven-
tions as for the inclusive cross section in deep inelastic scat-
tering, i.e., we decompose it into a transverse and a longitu-
dinal part according to the different polarizations of the
virtual photon:

ds

dbdQ2dxPdt
U

t50

5
aem

2xPQ4
$2@11~12y!2#xBWt

14~12y!xBWl%, ~13!

whereWt andWl are the transverse and longitudinal projec-
tion of the hadronic tensorWmn:

Wt5gt
mnWmn ,

Wl5
4Q2

s2
pmpnWmn , ~14!

with s52q8•p andq85q1xBp. The transverse tensorgt
mn

is defined as

gt
mn5gmn2

q8mpn1pmq8n

q8•p
. ~15!

The momentum transfer is set to zero, a restriction, which is
justified by the fact that the cross section peaks att50.

At leading order we have to consider the coupling of two
t-channel gluons to a quark-antiquark pair. The four possible
couplings are represented by four terms involving the wave
function with shifted transverse momenta@see Fig. 3~a!#.
These shifts correspond to the transverse momenta carried by
the gluons (l t and2 l t) when the total momentum transfer is
zero:
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~16!

The last expression results after integration over the azimuthal angle.
For the total contribution toWt andWl one has to take the square of the amplitude, i.e., basically the square of the previous

expression with summation over the corresponding helicities:

xBWt
q q̄52(

f
Qf

2 p

24

Q2

b~12b!
E

0

1

da@a21~12a!2#H E dlt
2

l t
2
F~xP ,l t

2 ,Q0
2!

3F122b1
b l t

2/Q22~122b!a~12a!

A@b l t
2/Q21a~12a!#224a~12a!b~12b!l t

2/Q2G J 2

~17!

and

xBWl
q q̄5(

f
Qf

2 p

3
Q2E

0

1

daa~12a!H E dlt
2

l t
2
F~xP ,l t

2 ,Q0
2!F12

a~12a!

A@b l t
2/Q21a~12a!#224a~12a!b~12b!l t

2/Q2G J 2

.

~18!

We have here substitutedkt
2 using Eq.~4! in combination

with b5Q2/(M21Q2). Similar expressions can be found in
@5,11,12#. As in the previous section we have absorbed the
strong coupling constant intoF. This way the remaining ex-
pressions become free of parameters.

By taking the limitsb→1 andb→0 one can study the
main properties of Eqs.~17! and ~18!. For b→1 Eq. ~17!
vanishes proportional to (12b), whereas Eq.~18! gives a
finite contribution. Hence, at small masses the longitudinal
contribution is larger than the transverse contribution. A
similar observation is made for vector meson production in
deep inelastic scattering. One, however, has to be aware that

the longitudinal part is of higher twist, so that the ratio of the
transverse part to longitudinal does not vanish asM2/Q2 at
largeQ2, but is roughly of the order ofM2/Q0

2 with a loga-
rithmic enhancement~see also Ref.@21#!. Taking the second
limit, b→0, one observes that the transverse contribution is
finite, i.e., in terms of the massM , the cross section vanishes
as 1/M4 as expected for a spin-1/2 exchange. The longitudi-
nal part~18! has an asymptotic behavior proportional tob2,
i.e., is negligible at large masses.

For the configuration with a gluon in the final state we go
back to Eq.~5!. As in Eq.~16! we encounter four terms@see
Fig. 3~b!#:
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E d2l t

p l t
2
F~xP ,l t

2 ,Q0
2!@2Cmn~a,kt!2Cmn~a,kt1 l t!

2Cmn~a,kt2 l t!#

5E dlt
2

l t
2
F~xP ,l t

2 ,Q0
2!

1

Aa~12a!Q2

3F12
2kt

2

kt
21a~12a!Q2

2
l t
2

kt
2

2
a~12a!Q2

kt
2

1
@ l t

22kt
21a~12a!Q2#212kt

2a~12a!Q2

kt
2A@ l t

21kt
21a~12a!Q2#224l t

2kt
2 G

3H 2kt
mkt

n

kt
2

2dmnJ . ~19!

To get the complete contribution forWt one has to, first, take
the square of the previous expression and, second, add the
contribution for the perturbative splitting of a gluon into two
quarks:

xBWt
g52(

f
Qf

2 p

2E0

Q2

dk2
as

8p
lnS Q2

k2 D Eb

1dz

z2F S 12
b

z D 2

1S b

z D 2G94 1

~12z!2H E dlt
2

l t
2
F~xP ,l t

2 ,Q0
2!F z21~1

2z!21
l t
2

k2
2

@~122z!k22 l t
2#212z~12z!k4

k2A~k21 l t
2!224~12z!l t

2k2 G J 2

.

~20!

Two new variables were introduced in this equation, the lon-
gitudinal momentum fractionz ~relative to the Pomeron mo-
mentum! and the virtualityk2 of the t-channel gluon which
is connected to the quark box.k2 is related to the transverse
momentum byk25kt

2/(12z). The previously used variable
a was substituted by means of the equationa(12a)Q2

5zk2 where we assume thata!1 according to the leading
ln(Q2) approach adopted here. A factor of two arises in the
integration from the opposite and symmetric limit
(12a)!1. A contribution toWl is negligible in this case.
We, again, take the two limitsb→0 andb→1 in order to
understand the basic behavior. For smallb the region of
smallz dominates, so that the second line in Eq.~20! can be
approximated by settingz to zero. Integrating overz then
results in 1/b, i.e., the cross section is divergent whenb
approaches zero. The smallb or triple Regge limit has al-
ready been considered before in Refs.@6,11–13,15#, and the
results are found to be consistent with our calculations. One
can also start withCTRL

mn @Eq. ~6!# which directly yields the
triple Regge limit of Eq.~20!. Taking the opposite limit
b→1 which was not covered by previous calculations one
finds that Eq.~20! vanishes as (12b)3. This result emerges
by taking the limitz→1 resulting in (12z)2 and integrating
overz. A derivation of Eq.~20! based on Feynman diagrams
is given in Ref.@22#.

It is important to note that the functionF is assumed to be
universal and should be the same for all three Eqs.~17!, ~18!,
and ~20!. The only parameter that enters in Eq.~20! is the
strong coupling constantas . It depends on the scale some-
where betweenQ0 andQ.

One may introduce a simplification by taking the limit
l t→0 in the wave functions of Eqs.~16! and~19!. This limit
gives the leading contribution provided thatkt

2/(12b) is
much larger thanQ0

2 :

~21!
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One may call this result leading ln(k2/Q0
2) approach for the

remaining integration overl t
2 @Eq. ~8!# is logarithmic ~one

propagator 1/l t
2 is hidden inF). It also indicates the limita-

tion to largek2.
We again convert the previous results into contributions

to Wt andWl . Substitutinga by means of Eq.~4! and intro-
ducing the virtualityk25kt

2/(12b) we find

xBWt
q q̄52(

f
Qf

2 p

3
4b2~12b!

3E
k0

2

Q2dk2

k4
$asxPg~xP ,k2,Q0

2!%2 ~22!

and

xBWl
q q̄5(

f
Qf

2 p

3Q2
b2~122b!2

3E
k0

2

Q2dk2

k2
$asxPg~xP ,k2,Q0

2!%2. ~23!

Equation~22! was derived earlier in Refs.@23–26# and
Eq. ~23! in Ref. @26#. The virtue of this approach is the fact
that we do not need the unintegrated structure function, in-
stead we can use the conventional structure function. The
shortcomings, however, are first of all the need of a cutoffk0

2

which can only be realized by requiring jets in the final state.
Second, one recognizes that in Eq.~22! the smallb region is
strongly suppressed and not constant as anticipated earlier. In
this regime next-to-leading ln(k2/Q0

2) corrections become
important. Corrections of this type have been explicitly
calculated in @27#. We face a similar situation for the
longitudinal contribution Eq.~23! which is zero atb51/2.
Again next-to-leading log contributions become relevant
here.

To complete the discussion on the leading ln(k2/Q0
2) ap-

proach we give the corresponding formula for gluon produc-
tion

E d2l t

p l t
2
F~xP ,l t

2 ,Q0
2!@2Cmn~a,kt!2Cmn~a,kt1 l t!

2Cmn~a,kt2 l t!#

.F2d i j
]2Cmn~a,kt!

]kt
i]kt

j G
3Euktu

21a~12a!Q2

dlt
2F~xP ,l t

2 ,Q0
2!

5
2kt

2

Aa~12a!Q2

3a~12a!Q21kt
2

@kt
21a~12a!Q2#3H dmn2

2kt
mkt

n

kt
2 J

3asxPg@xP ,uktu21a~12a!Q2,Q0
2#. ~24!

As before we take the square of the previous expression and
rewrite the result in terms ofWt

g . The procedure is similar to

the derivation of Eq.~20!, wherea(12a)Q2 is substituted
by zk2 and the splitting function for gluons into quarks is
added:

xBWt
g52(

f
Qf

2 p

2Ek0
2

Q2dk2

k4

as

8p
lnS Q2

k2 D Eb

1dz

z2F S 12
b

z D 2

1S b

z D 2G9~112z!2~12z!2$asxPg~xP ,k2,Q0
2!%2.

~25!

This result has been derived earlier in Refs.@22,24,25# by
direct calculation of Feynman diagrams.

V. NUMERICAL RESULTS

With the formulas for diffraction at hand andF deter-
mined by the inclusiveF2 ~see Sec. II! we can numerically
evaluateF2

D . To this end we note thatF2
D andFl

D are related
to Wt andWl by

F2
D5

b

xP
S 2

xbWt

4p
1

xbWl

2p D ,

Fl
D5

b

xP

Wl

4p
, ~26!

which follows from

dsD

dbdQ2dxp

5
2paem

2

bQ4
$@11~12y!2#F2

D~b,Q2,xP!

22xby2Fl
D~b,Q2,xP!%. ~27!

The longitudinal structure functionFl is usually negligible
due to the accompanying factory2 which is experimentally
small in most cases (y is the energy loss of the electron!. But
the longitudinal contribution is not completely lost, since it
still appears inF2

D @see Eq.~26!#.
We insert the form factor 1/(l t

21Q0
2) which belongs toF

into Eqs. ~17!, ~18!, and ~20! and perform the integration
over l t

2 analytically. For convenience we introduce the vari-
able v which is defined asv5Q0

2/@kt
21a(12a)Q2]

5Q0
2(12b)/kt

2 for the quark dipole and v5Q0
2/k2

5Q0
2(12z)/kt

2 for the gluon dipole.F2
D is then presented in

three separate contributions (F2
D5Fa1Fb1Fc) according to

Eqs.~17!(Fa), ~18!(Fb), and~20!(Fc)
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Fa~b,Q2,xp!5
1

12BDQ0
2E4bQ0

2/Q2

` dv

v2A124~Q0
2b/Q2v !

G2~xp,1/v !
b

xp
S 122

Q0
2b

Q2v
D 1

6

1

12bH ~122b!lnS 1

b D
1S 122b1v

Av212~122b!v11
2112b D ln~v !

1
122b1v

Av212~122b!v11
lnS Av212~122b!v112~122b1v !

Av212~122b!v111~122b!v11
D J 2

, ~28!

Fb~b,Q2,xp!5
1

6BDQ2E4bQ0
2/Q2

` dv

v3A124~Q0
2b/Q2v !

G2~xp,1/v !
b3

xp

4

3H lnS 1

b D1S 1

Av212~122b!v11
21D ln~v !

1
1

Av212~122b!v11
lnS Av212~122b!v112~122b1v !

Av212~122b!v111~122b!v11
D J 2

, ~29!

and

Fc~b,Q2,xp!5
1

12BDQ0
2EQ0

2/Q2

` dv

v2
G2~xp,1/v !

b

xp

as

8p
lnS vQ2

Q0
2 D E

b

1dz

z2F S 12
b

z D 2

1S b

z D 2G94 1

~12z!2

3H @11v22z~12z!# lnS 1

zD1 ln~v !Fv2112z~12z!1Av212~122z!v112
2z~12z!

Av212~122z!v11
G

1FAv212~122z!v112
2z~12z!

Av212~122z!v11
G lnS Av212~122z!v112~122z1v !

Av212~122z!v111~122z!v11
D J 2

. ~30!

Since the measurement is not performed att50 we have
assumed a simple exponential behavior int, exp(BDt), with
the slope parameterBD taken from experiment@28#
(BD55.9/GeV2). The integration overt leads to the extra
factor 1/BD . For as we estimate a value of 0.25 which is a
reasonable estimation for scales around 2–3 GeV. The func-
tion G is defined in Eq.~10! and enters the equations above
without changing the parameters. In Fig. 4~first plot! we
show the b distribution for fixed xP55.031024 and
Q2510 GeV2 with separate curves for each of the three
contributionsFa ,Fb , and Fc . As was already argued ana-
lytically we find three distinct regimes in theb spectrum:~i!
small b where the configuration with a gluon in the final
state dominates (Fc), ~ii ! medium b where the exclusive

quark-antiquark production with transverse polarization is
dominant (Fa), and~iii ! largeb where the longitudinal pro-
duction of quark-antiquark pairs takes over (Fb). The second
plot displays the change in the shape of theb distribution
with increasingQ2. It is rather flat aroundQ2510 GeV2

before it starts tilting whenQ2 is further increased~higher
twist suppression at the large end and logarithmic enhance-
ment at the low end ofb).

The next figure~Fig. 5! shows thexP distribution for fixed
b andQ2 ~values as indicated in each graph!. The first row
of plots starts at lowb with rather flat distributions inxP ~the
slope is 0.17 due to soft contributions,aP51.085). The dis-
tributions become slightly more curved and steeper when we
move to largerb. The change of the shape withb results

FIG. 4. b spectrum.
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from the nonfactorizing ansatz where the Pomeron intercept
depends on an intermediated~variable! scale related to the
size of the dipole@Q0

2/v in Eqs.~28!, ~29!, and~30!#. At low
b this scale is small~large dipole! and the Pomeron is domi-
nantly soft. At highb and in particular when the higher twist
~longitudinal! part takes over the intermediate scale is, in
average, rather hard~approximatelyQ2/4) which leads to
steeper distributions. This effect can roughly be interpreted
as large mass states having a larger radius than small mass
states. The curvature in the double log plots is due to smear-
ing when the scale is integrated. In the second row we see a
similar behavior by changingQ2. At small Q2 the intercept
is frozen at a low~soft! value close to 1.085. There is only a
little, barely visible effect due to smearing. WhenQ2 is in-
creased the intermediate scale is pulled up and one finds
again a steeper and slightly curved distribution. In total we
note that Regge-type factorization is violated, i.e., the
Pomeron intercept depends onb andQ2.

The scaling properties in diffraction are of special interest
because they provide direct information about the Pomeron
structure. Figure 6 shows the dependence ofF2

D on Q2 for
three different values ofb ~0.01, 0.5, and 0.9! which as we
know from Fig. 4 also distinguish between the three contri-
butionsFc ,Fa , andFb . @For very lowQ2 ~close to 1 GeV2)
our formula forFc has to be taken with care, since it is only
computed to leading ln(Q2) accuracy.# The value forxP is
again fixed at 5.031024.

The prediction for the slope inQ2 is according to usual
Q2 evolution negative at largeb. Figure 6, however, shows a
rise at lowQ2 for any value ofb, even for the longitudinal
contribution (b50.9). The latter develops a maximum
around Q2510 GeV2 before the asymptotic regime is
reached and the 1/Q2 ~higher twist! suppression sets in. For
b50.5 we also see an increase withQ2 which then flattens
out towards a constant~leading twist scaling! behavior. A
rise over a certain range in theQ2 distribution is not com-
pletely surprising, sinceF2

D vanishes whenQ2 approaches
zero. What is surprising is the delay with which the

asymptotic~scaling! regime sets in. This effect seems to be
model dependent. Taking the hard Pomeron approach from
Ref. @29# as example~plots can be found in Ref.@30#! the
delay is even more pronounced. A precise measurement of
theQ2-scaling behavior seems to be a promising tool to dis-
criminate various Pomeron models.

A Q2-scaling violation for rather largeb which persists
far into the asymptotic region can presumably not be recon-
ciled with the dipole approach. An alternative scenario based
on the hard component of the soft Pomeron would predict a
ln(Q2)-type behavior@31#.

We have not presented a comparison with data here. This
can, however, be found in@32#. The theoretical curve in@32#
is based on the same model as presented in this paper, only
the values for the parameters have changed slightly with
little impact on thexP spectra.

VI. SUMMARY

We have derived the cross section for diffraction in deep
inelastic scattering starting from two types of light cone
wave functions, one for a quark dipole@Eq. ~1!# and the
second for a gluon dipole@Eq. ~5!#. The latter is of higher

FIG. 6. Q2 distribution.

FIG. 5. xP distribution.
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order in perturbation theory, since a direct coupling of pho-
tons to gluons is lacking. We have shown how the color
dipole approach works for a multiparton state provided one
stays within the realm of leading twist and leading ln(Q2)
accuracy~strong ordering in impact parameter space!. Only
the leading order quark-antiquark pair forms a dipole for any
kinematics. The light cone wave function formalism was
proven to be consistent with Feynman diagram calculations,
but it should not be confused with the general dipole ap-
proach of Ref.@33#. As soon as the strong ordering in impact
parameter is lost multiple dipoles may occur. The wave func-
tion formalism presented here is not able to cope with this
configuration.

The expression for the quark dipole~1! is rather well
known, the second expression~5! for the two gluon dipole is
new. It is valid over the complete range of invariant mass of
the two gluons and therefore an extension of an earlier de-
rived version which was limited to large masses@triple
Regge limit, Eq.~6!#.

As model for the Pomeron we have considered color zero
two gluon exchange which is easily generalized to multi-
gluon exchange. All gluons at each leg of the dipole merge
into a single vertex, i.e., there is only a single interaction
point in impact parameter space. We can factorize the dipole
from the target (kt-factorization scheme! and parametrize all
unknown contribution in terms of an unintegrated gluon
structure function. This factorization works for two simple
perturbative gluons, for shadowing corrections@34#, and
even for scattering in a nonperturbative classical field. It
should be possible to reformulate the results in Ref.@35#
along the line of our dipole approach. In the semiclassical
approach of Ref.@36# the gluon density is directly related to
the unintegrated structure function, and the Landshoff-
Nachtmann model@37# can as well be identified with an
appropriate unintegrated gluon structure function.

In this paper, however, a more phenomenological ansatz
was chosen. A parametrization for the unintegrated structure
function was established with parameters determined from
inclusive deep inelastic scattering (F2) and then inserted into
the corresponding expression for diffraction. An important
feature of our parametrization is the scale dependence of the

Pomeron intercept which results in a variation of thexP
slope. The scale is roughly the inverse size of the dipole~not
Q2) which has to be integrated over. Its average is close to
the soft scale of 1 GeV, but increases slightly withb andQ2

which then causes thexP distribution to become steeper. The
lower limit for the slope is given by the soft Pomeron inter-
cept. Theb spectrum is subdivided into three regions each
being dominated by the following contributions:~i! the gluon
dipole at smallb, ~ii ! the quark dipole with transverse polar-
ized photons at mediumb, and ~iii ! the quark dipole with
longitudinal polarized photons~higher twist! at large b.
AroundQ2510 GeV2 the total spectrum is rather flat, but it
starts tilting whenQ2 is increased~falling from b50 to
b51).

The Q2 distribution is of special interest because it helps
revealing the structure of the Pomeron. We find that for
b.0.5 the slope inQ2 is positive up toQ2;10 GeV2 and
then flattens out~leading twist! or turns down~higher twist at
largeb) ~see Fig. 6!. A comparison with data from H1 was
performed in Ref.@32# where the agreement is found to be
reasonable. The main deviation between theory and data is
due to secondary exchanges which have not been included in
this paper. The LPS data from ZEUS@28# also seem to agree
quite well.

So far only leading order and most important next-to-
leading order contributions have been taken into account. To
obtain more precise prediction forb and Q2 distributions
one needs to perform a completeQ2 evolution which will be
subject of another publication. Also of interest is a next-to-
leading order diffractive jet analysis. This requires, however,
a full and consistent next-to-leading order calculation which
goes beyond the light cone wave function approach of this
paper.
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