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To one-loop order an®(agy), the electromagnetic mass splittings7afa,, K, K;(1400), andK* (892)
are calculated in the framework of U(3¥ U(3)r chiral field theory. The logarithmic divergences emerging in
the Feynman integrations of the mesonic loops are factorized by using an intrinsic pargrogthis theory.
No other additional parameters or counterterms are introduced to absorb the mesonic loop divergences. When
f., m,, andm, are taken as inputs, the paramegewill be determined and all the physical results are finite
and fixed. Dashen’s theorem is satisfied in the chira{33Uimit of this theory and a rather large violation of
the theorem is revealed at the ordemafor mﬁ. Mass ratios of light quarks have been determined. A relation
for electromagnetic corrections to masses of axial-vector mesons is obtained. It could be regarded as a gener-
alization of Dashen’s theorem. Comparing with data, it is found that the nonelectromagnetic mass difference of
K* is in agreement with the estimation of Schechter, Subbaraman, and W&@0856-282(197)06319-4

PACS numbgs): 12.39.Fe, 11.30.Rd, 12.40.Yx, 14.40

I. INTRODUCTION fixed in[10,11). The authors of Ref$15,16 have found that
the vector meson dominates the structure of the phenomeno-
Calculating the electromagnetic mass splittings of thdogical chiral Lagrangian. Two of the coefficients obtained in

low-lying mesons is an important issue in nonperturbativeRef.[10] are the same as the ones in H&b]. The relations
(NP) quantum chromodynamio®QCD). This topic has in-  2(L;+L,)+L3=0 andL)y=L¢=LY=0 found in Ref[14]
trigued particle physicists for many yedts-9]. Recently, @ have already been obtained in REE6]. A very smallLg
chiral field theory of pseudoscalar, axial-vector and VECtorpredicted in Ref[14] is not in contradiction with the.Y
mesongcalled the U(3) X U(3)r chiral field theory of me- =0 found in Ref.[16]. The expression ok presented in

song has been propos¢d0,11. This theory can be regarded Ref. [14] is similar to the one obtained in RgflL6]. When
as a realization of chiral symmetry, current algebra, and vec-

; v 2 2
tor meson dominanc@MD). In this paper, we try to present ta_lkmg g=1, the_"Z:GV/16MV Is the same as the expres-
systematical calculations of electromagnetic massesr,of SION Presented in Ref14]. o
a;, K, K;(1400), andK*(892) in the framework of this In Ref. [17], starting from the U(3)X U(3)g chwa} field .
theory. theory of mesons, the authors use the path integration
It is well known that chiral perturbation theokyPT) is ~ Method toderivey, Ly, L3, Lo, andLyo. The results are in

rigorous and phenomenologically successful in describingtgreement with the experimental values of theat u=m,
the physics of the pseudoscalar mesons at low enefgids in xPT. Therefore, the low-energy limit of this theory is
The effective Lagrangian ofPT depends on ten chiral co- indeed equivalent tgPT and the QCD constraints discussed
efficients that are determined by a comparison with the exin Ref.[16] are met by this theory.
perimental low-energy information. Models attempting to  U(3), X U(3)g chiral field theory of mesons provides a
extend theyPT to include more low-lying mesons should unified description of meson physics at low energies. VMD
predict these ten coefficients by fitting datax®T. U(3), in the meson physics is a natural consequence of this theory
X U(3)g chiral field theory has been studied at the tree leveinstead of an input. Therefore, the dynamics of the electro-
[11], and the theoretical results agree well with data. Thismagnetic interactions of mesons has been introduced and
theory has also been successfully applied to stuthesonic  established naturally. On the other hand, this theory starts
decays systematicallyl3]. In Ref.[14] the ten coefficients with a chiral Lagrangian of quantum quark fields within me-
of xPT have been predicted at abott~2 GeV in this  sonic background fields and the chiral dynamics for mesons
theory. The coefficients ofPT are expressed by a universal comes from the path integration over quark fields. A cutoff
coupling constanty and the ratiofi/m,f, which have been (or g in Ref.[10]) has to be introduced to absorb the loga-

rithmic divergences due to quark loops. Thayigor A) will

serve as an intrinsic parameter in this truncated fields theory.

*Mailing address. Therefore, it is legitimate to use theto factorize the loga-
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rithmic divergences of loop diagrams in calculating the elec-

tromagnetic mass splittings of the low-lying mes¢hs].
The basic Lagrangian of this chiral fields theoryliere-
after we use the notations in Ref40,11])

— 1
L=¢(X)[1y-d+y-v+y-ays—mu(x)](x)+ Emf(pi"pm

1
+ ok, Fafa,+ )+ S miKE KT KEK,)

1
+ §m§(¢”¢”+ f4fs,), (1)
with
u(x)=exdiys(mm+ N K+ 5+ 7")],
i a 1 1
aM=TiaM+)\aK1M+ §+‘/_§)\8 f,u,+ §_‘/_§)\8 fs,u,
i *xa 2 1 1
UM:TipM-F)\aK# + §+‘/_§)\8 w#+ §_‘/_§)\8 ¢,uv

wherei=1,2,3 anda=4,5,6,7. They in Eq. (1) areu,d,s

quark fields.m is a parameter related to the quark conden-

DAO-NENG GAO, BING-AN LI, AND MU-LIN YAN

fe fe
F2= , C'=—%, 7
_ 2 29 My "
g
2
m2—F— )
69"

Combining Eq.(4) with Eq. (6) and takingf,,m,,m, as
inputs, the parametey will be fixed.

VMD has been well established in studying electromag-
netic interactions of hadron49]. To the present theory, the
interactions between photon and the vector meson fields of
po, w, and ¢ can be found through the substitutioridl]:

s 3, 1
PPt €A, 9
1
w,—w,+ gegﬁﬁ, (10
bu— b ! (12)
—¢,— ——egA,.

The p3- (or p°-) photon,w-photon, andp-photon interaction
Lagrangians are

sate. Here the mesons are bound states in QCD and they are

not fundamental fields. Therefore, in E(l) there are no

kinetic terms for these fields and the kinetic terms will be

generated from quark loops.
According to Refs[10,11], the effective Lagrangiafg,

and £, can be evaluated by performing the path integrations
over quark fields. In order to absorb the logarithmic diver-
gences in the effective Lagrangian, as mentioned above, it i

necessary to introduce a universal coupling conggaas

8 N, D [u?\? D\ 1F?
92:_ — I'2——|=—
3(4mPR 4 \m? 2] 6m*

Also, following Refs[10,11], after defining the physical me-
son fields, we have

2 1 2 F?
ma: 1 mp+? ’ (4)
! 271'29z
1 F?
mﬁl= —l (mi*‘l‘gz, (5)
277_292
with
f2 f2
2_ a — o
F 2c' © 2gm;’ ©

1
L,,=— Eegﬂﬂpi( AV — 9V AM), (12
1
Loy=— 500,00, (A" = 9"A), (13
1
L4y=——€0d, ¢, (A’ = I"A). (14)

3v2

8sing Li(¢,7, .. ) p=mav, We can calculate thg matrix:

‘ > ‘ = '
[ ,a,v

S¢=<¢’T exp(if dx*Li(d,y,...)

On the other hands, can also be expressed in terms of the
effective Lagrangian oty as

s,=(d]i [ axcat )0
Noting £=34,,¢d*$— 3m3$?, then the electromagnetic in-
teraction correction to the mass éfreads

_2is,
(dle%l4)’

where (¢|p?|p)={(¢|[d*x ¢p?(x)|¢). We adopt dimen-
sional regularization to do loop calculations and use B§.
to factorize the divergences. Thus all of virtual-photon con-
tributions to the masses of the low-lying mesons can be com-
puted systematically and analytically.

The purposes of our investigations in this paper are three-
fold, which are stated as follows.

smj, (16)
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(i) We try to present a systematic method to derive thethe octet pseudoscalar mesons have been derived ifZ8¢f.
electromagnetic masses of the mesons by employing ,U(3)(Gell-Mann—Oakes—Renner formulasvhich read
X U(3)g chiral field theory. Nearly 300years ago, Deisal. )
[1] obtained a finite result of the ™ — 7% mass difference by 2 2 —
using current algebra techniques and especially relying on L f—z;(mu+md)<0|¢¢|0>,
Weinberg's second sum rule to cancel the divergences in it
(for further investigations on it, sd&,5]). However, Wein- 2 _
berg’s second sum rule is not satisfied experimen{@B~ mi+= - f—z(mu+ mg){0| 14| 0),
22]. Actually, many people have found the existence of the k
divergence in calculating the electromagnetic mass ofe- 2
sons in the effective chiral Lagrangian theoriés-9. In Mio=— =2 (My+Mg){(0|44|0),
particular, in Ref[6], when the corrections of perturbative fi
QCD to m_,+—m_o were investigated in a chiral model, a
dependence ofn_+—m_o on an ultraviolet cutoff has been 5 —
revealed. In Refg.8,9], in order to remove this divergence, m,=- W(mu+md+4ms)<0|¢l//|0>, 17)
the counterterms have been introduced. These facts mean K
that we could not expect such a cancellation between th%here(OlzpzﬁlO) is the quark condensate of the light flavors
divergent terms to work without any additional assumptlonz[lo 26,

in particular, when the strange-flavor mesons are involve (’iii) All of the low-lying mesons including pseudoscalar,

Qector, and axial-vector mesons are involved in this theory.
N§his makes it possible to evaluate the electromagnetic

asses of vector and axial-vector mesons in addition to the
E%eudoscalarr andK. The electromagnetic mass splittings
of a; andK;(1400) are calculated, and in the chiral @Y
Simit we obtain the relation

divergences from mesonic loops can be factorized by usi
the intrinsic parametefg or A) of the theory. There is no
need to introduce other parameters or counterterms to abso
the mesonic loop divergences. The spirit of this method will
be shown in Sec. Il by reexamining the calculations of th
electromagnetic mass difference of charge and newtrak-
sons in the present theory.

(ii) It is straightforward to extend our method to the stud-
ies of the electromagnetic masses of strange-flavor mesons. o
The smallness af,d quark masses allows the calculations in Which could be regarded as a generalization of Dashen’s
the chiral limit for nonstrange mesons. However, the largdheorem. The electromagnetic masseskéf(892) are also
strange quark mass will bring a significant contribution to thederived. Using the experimental value of. + —Mmgxo, the
electromagnetic self-energies of the strange-flavor mesongonelectromagnetic mass differencetdf * andK*° is es-
Dashen’s theorerf] states that the square electromagneticimated. The result is close to the one given in R27).
mass differences between the charged pseudoscalar mesonslhe contents of this paper are organized as follows. In
and their corresponding neutral partners are equal in the chec. Il we discuss the electromagnetic mass splittingr of

2 2 2 2
(ma+ - maO)EM: (mKI - ng)EM ’

ral SU3) limit, i.e., mesons and in Sec. Il the glectromagnetic mass splitting of
a; mesons. In Sec. IV we will extend this method to the case
(mi+_ mio)EM:(mi+_ miO)EM- of K mesons and give the violations of Dashen’s theorem at

leading order in the quark mass expansion. In Sec. V we

The subscript EM denoted the electromagnetic mass. Th@iscuss the electromagnetic mass splitting<g{1400) and
significant SW3) symmetry breaking will lead to the viola- in Sec. VI the electromagnetic mass splittingkdf(892). In
tions of this theorem. Furthermore, it has been known thaPec. VIl we discuss and give a summary of the results.
the 7" — #° mass difference is almost entirely electromag-
netic in origin; however, the contributions of thet —K° ll. =+ —«° ELECTROMAGNETIC MASS DIFFERENCE
mass difference are from both electromagnetic interactions . . . . .

In this section and in Sec. Il we will restrict our calcula-

and theu-d quark mass difference. Thus it is of interest to tions to the two-flavor case because the strange quark has no
calculate the electromagnetic mass difference betweén X ) 9e q
effect on the electromagnetic self-energies of pions and

andK© to leading order in the quark mass expansion both to

increase the understanding of the low-energy dynamics ang sons, anq the sma.llnesfs l.ﬂﬁ quark masses alloyvs 'the
to aid in the extraction of current mass ratios of light quarkscaICUIat'ons in the chiral limit. Note that the contributions
from L,,, are proportional tcmf,, which can be neglected in

The latter reflects the breaking effect of isospin symmetr)f Im <&'= 1 i
[5,23,24. Therefore, the quark mass term ¢My [M f[he chlr_al limit. Thu_s, fromCR,? [Eq. (131"] R:)ef. [10]], the
S X g interaction Lagrangians contributing 6" — 7 electromag-
=diag(m, my,my is the quark mass matdxwhich repre- etic mass difference for massless pions read

sents the explicit chiral symmetry breaking in the presen{| P

theory, should be added into E(L) when the electromag- 2
netic masses of the strange-flavor mesons are calculated. The £ppwﬂ:ﬁpriM(W25ij — ;)
nonzero quark masses will yield the mass terms of pseudo- g°fs

scalar mesons in addition 0, (explicit quark mass param- 1
eter do not occur_in the abnormal part effec_tive Lagrangian + —277 ﬂypi,ﬁvpj”(wzﬁj —mm), (18
To leading order in the quark mass expansion, the masses of Tg Ty



4118 DAO-NENG GAO, BING-AN LI, AND MU-LIN YAN 56

¥

7 U
5
6 3
v
P ¥ © p U /4 /4
L. Q2 L s ™ LS ” x x L st ™ k. fud ® ks

(1a) (1b) (L¢) (3a) (3b) (3¢)

FIG. 1. One-loop Feynman diagrams contributing to the electro-
magnetic mass difference betweent and#°. The curly line is
the photon line.

FIG. 3. Same as Fig. 1.

L,.(X3) "77>
2F2y v i . P
Lyma=— [ pueljkﬂka +fg—2ﬂ_2p#€ijk77k07 al®, 242
(19) =—<w i f d*x[ 75(x)
2 i 7 1 2 g 2 1 2 (vp)
,Cpﬂ.w:a P,Lfijkﬂ'k -0 7TJ'+ 277_2':2(9 J 7T] y (20) +772(X)] W 2F gMVAFIU?;F (X_y)|x=y

where y=(1-1/2m%g?) ~ 2. i HIGRG YA L)

Using VMD, i.e., the substitutiof9), and Eqs(18)—(20) + 299 TpAry (X= V)l y
we get all of the corresponding photen-interaction
LagrangiansC.,, ., L,pnms Lyra, @nd L. Combining (22)

them withZ,., [Eq. (12)], we can calculat&,, [Eq. (15)] and
obtain thew -7° mass difference due to electromagnetlc
interactions. The corresponding Feynman diagrams are
shown in Figs. 1-3. Denoting the correspond®ignatrices (ym(x y)_f

where

AF(W))(k)e ik(x— Y)

asS,(1), S,(2), andS,(3), respectively, we have (2m )4
Sr=S54(1)+S4(2) +Sx(3). o i mj) k.k,\ Kk,
yp (k) k2 (kz_ m2)2 g,u.v k2 a k2
We will compute them separately up ©@(e?) below. In P 23)

order to show the gauge independence of the final results

explicitly, we take the most general linear gauge conditio
for electromagnetic fields to all diagram calculations in tth\Ne call AF(W)(X y) the photon propagator withip (see

paper. Namely, thé\, propagator with an arbitrary gauge Appendix A'for details.

parameter is taken to be It is easy to check that Eq22) can be reobtained by the
following steps: First compute Fig(d by usingL,, ., and
d*k second substitut& g(»)(x—Yy) for Ap(»(Xx—y) in it and then
(X—y) A (7)(k)e ik(x— Y) . mr . wy N

FiY (2m)3°F arrive at Eq(22) again. It is constructive that the substitution

of AF<7)—>AF(7P> in the above is the consequence of VMD.

This ruIe is generally valid for all VMD processes in the
(21)  two-flavor case and it is useful for practical calculations.
Using Eq.(16) and substituting Eq23) into Eq.(22), we
First, we computeS,(1) (Fig. 1). From Eqs(15), (12), (18), get the total contributions of Figs.(d, 1(b), and Xc) to

Sep=—ja

gMV_(l—a)—lI:rV .

and(9) we have m -m’ 70
i2 2iS,(1)
S, (1) ={ «|T|i | d*.L 2 (M2, —mZo);=
71'( )_ ™ I X1 yyww(xl)+ E mt 70/1 <7T|fd4X(7Ti+’7T§)|7T>
o i3 et rodk [, K
X f d de Xzﬁypww(xl)ﬁpy(XZ)‘F y 3 =1 f_2 (27T)4 + ﬁ
4y 4y A4 m:)‘ a
X d de X2d XS‘Cppww(Xl)‘pr(XZ) X W(D_l)+ EZ ’ (24)
P

i whereD=4— €. According to the rule of dimensional regu-
7 larization, i.e., 't Hooft—Veltman conjecturg28], the last

. m . . /§7W i pmp . term in Eq. (24) will vanish. Therefore, mi+—mio)1 is
(2a) (2b) (2¢) gauge independent.

Second, from Eq919), (12), and(15) and using the sub-
FIG. 2. Same as Fig. 1. stitution (9), we have
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i2 2
Sw(z):< T T[ E j d4xld4x2‘£ﬂ'ay(xl)£way(x2) S,n.(3): < | T E f d4X1d4X2‘c7T7T)/(X1)‘C7TﬂT‘y(X2)
i3 i3
+ aGf d4X1d4X2d4X3£ﬂ'aP(Xl)ﬁﬂ'a)’(xz)ﬁp)’(X3) + §6J d4X1d4X2d4X3£ﬂ"rrp(Xl)Lﬂ'wy(XZ)EP)’(XS)
it i4
+4—|6f A%, d*%0* X304 L2, (X1) £ 7ap(X2) +EGJ d*x;d*%d*%30* %4 L 15 (X1) L7 (X2)
Xﬁpy(xs)ﬁpy(le)) 7T>- (29 Xﬁpy(xs)ﬁpy(x4)]‘77>
. . e?
Straightforward calculation shows :_F<W f d%x ma(X) 7a(X) 77>F3(p2=0),
2,2
Y
SW(Z)Z—W<7TJ' d*p ma(p)ma( —P) (3D
where
X(2m)*T5(p?) 7T> (26)
2 | d4k(F2+ "2) i
pr=0=1 552 52| 2
wherea=1,2, and * (2m)* 2m2)  k
L mj) ( kMk,,) K.,
A YT IV v~ | ta
w4p>=(2Wf_[d%<w4xm—m& 27 Eke—mp)2 | 9™ Tk <
_f dk 1 F2 k? 5
ke -] emrtelT ) 32
d4k k2 ZQMV_ mg . di . | larizati haVe( 2 0)=0
',(p2)= F2+ ) —_— Using dimensional regularization, we haVg(p“=0)=0;
2(P7) (2m* 27%)  —K2+m? thenS,(3)=0 and
m; ( 9.0,| 9,9 2 2
X |t ,— +aM—V}. (M +—m_0)3=0. (33
[qz(qz—mi)2 T q*
(28) The totalw* — 7° mass difference is the sum of E¢21),

(30), and(33), which is
Here g=p—k. On the mmass shell,p2=mfr=0 (chiral

limit), so we have - '—2' J )4(D 1)m
e2 2
SH(2)= 5 2f2< fd4x ma(X) ma(X) > I'y(p?=0), k2 k?
(29 2w 1+ 21
k2(k?—m;)? 9° k?—m;

where [d*pm,(p)ma(—p)(2m)*=[d*x ma(X)7a(X) [see
Eq. (27)] has been used. From E@8) the gauge-dependent (34)
term of I'y(p?=0) is , _ . .

The integration calculation for Eq34) is standard. We get

d*k ( , K )2 1 the result of
F —.
2m)* 2 k2
(zm T M 2 2 _Saeumy[ ( 2 e 2 4 )
me.— = + +| 24+ =5
This term is equal to zero according to 't Hooft—Veltman =~ ™  8xf2 | g?#°m? 27 g°m?
conjecture in dimensional regularization. Theref@g(2) is ) )
gauge independent. Thus, using Etp), we get F_ - _ 2y
X +53=2-8x, Y "
- A 3 ge(mz—my)
(2.~ 20), = — oy T (2= 0) = u—zfdk m\ 1 1 m
moE g # ) (@2m? x| F2+ 5| | S+ ———In—2||, @35
27%) \m? mi- m2 m/ |’
, K2 m4(D—1) roe :
x| F toa2 kz(kz—mﬁ)z(kz—mﬁ)' where agy=e%/4m=1/137 and
59 (“2)5/2 ! r(z D) 36
Xo=| 2| a-oorl|2-5]
The S,(3) corresponding to Fig. 3 reads ? mi (4m)P* 2
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FIG. 4. One-loop Feynman diagrams contributing to the electro-
magnetic mass difference betweafi andal. The curly line is

the photon line.

It is essential that the logarithmic divergence in E2p) [or

Eq. (36)] can be factorized by using the intrinsic parameter

in this theory. Comparing Eq3) with Eq. (36), we have

1 1 1 f2

_T.2
Xo=g9 " 3202 " 162 "o(gemi— 12y 37

where Eq.(6) has been used. Whenis determinedy, will
be fixed and the final result of EQR5) is finite.

The determination of can be done by taking,, m,,
and m, as inputs. Substitutingf,=0.186 GeV, m,
=0.768 GeV, andn,=1.20 GeV into Eqs(4) and(6), we
obtain

g=0.39. (38
Then

mZ.. —m2o=0.001 465 Ge¥=2m,x 5.3 MeV, (39
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a ks a a ks a a k4 a
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FIG. 6. Same as Fig. 4.

— i Kk k k v
Lpaw—aeijkp'ﬂ[clea M+C2((9V7Tj(9’u'a ”—a,,&“(? ’7TJ)]

+ g k(P = 9P )[Cod (@ )+ Cad @],

(42)
where

_ Y e [ L 2
Cl_fwg F<+ 52 2cg)ma}, (43
= 14 1 2 44
%2t g ) “

3y 2c\  2yc
Ca_Zfﬂ.’Jng(l E -‘rt, (45)

2ycC

ci=20" (46)

which is in reasonable agreement with the experimentalhe corresponding photca: interaction Lagrangians

value of 2n_ X 4.6 MeV [22].

ll. af —a ELECTROMAGNETIC MASS DIFFERENCE

The interaction Lagrangians contributing to tbé—a‘l’
electromagnetic mass difference read

27’21' K njpaky_ mpuvairak
—?Pﬂpv(a a’'—g*"alay)

2

77_294

Lppaa=

+

p M (Sa,ar—alak), (40)

_2 7’ jkvi,uz i ] apaky
Lpaa__ 1__2?2 Gijka,uavﬁ P _geijkp,u,av((g a

g g
—y?9akk), (41)
. it
Y
3 Ay
(52) (5b) (5¢)

FIG. 5. Same as Fig. 4.

Lyyaar Lyaa, andL,,, can be constructed by the substitu-
tion (9) and Eqgs.(40)—(42). It is similar to the preceding
section that these Lagrangians afyd, [Eq. (12)] provide the
dynamics for the mass splitting af;, due to electromagnetic
interactions. The Feynman diagrams are shown in Figs. 4—6.
The corresponding matrices are denoted &(1), S,(2),

and S,(3) and

Sa=S4(1)+84(2) +S4(3). (47)

We calculateS,(1), S,(2), andS,(3) separately in the fol-
lowing.
For Fig. 4, from Eqgs(40), (9), and(12) we have

T ij d*x1L,,aa(X1)

Sa(1)=<a

i2 i3
+ 57 ZJ d*%;d%,L paa(X1) £,5(X2) + 3 3

il

(48)

X f d4xld4X2d4X3ﬁppaa(Xl) ‘Cp'y(xz) ‘Cp'y( X3)

Using Eq.(15), we get
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2 2
(mZ+—mo)q

_,7%@lfd* a*al’|a)— (a| fd*x a’a}|a)g"”
B (a|fd*x a,al*|a)

kukv)

4
d*k m;

(2m)* KA(k?—m?)?

gMV_ k2 (49)

wherei =1,2.
For Fig. 5, from Eqs(41), (9), and(12) we have

i d*k

4121

i2
T j J d4X1d4X2£aay(Xl)Laay(X2)

Sa(2)=<a

i3
576 QRN L (50) Ly 02 £ )
4

i
+ GJ d*x;d*X0*X30*% 4 Laap(X1) Lagy(X2)

X Epy(x3)£p7(x4)) a>. (50

Using Eq.(15), we obtain

1 m*

2
(Mg —

X

a> k*k”

4y Al i
+<adeaMaV

2y4p-k
Tt

whereb=1-y?/7?g? andp is the external momentum of

a, fields. The Fourier transformation for mass-staglifields
is

1 . )
a,(P)= 572 f d*x al,(x)e P,

with

2_ 2

p>=mj, p“a,(p)=0. (52

For Fig. 6, from Eqs(42), (9), and(12), we have

i2
Si(3)= < a T[ o1 j d*X; 0% La7(X1) Lamy(X2)

i3
+ 30 GJ d4X1d4X2d4X3£awp(X1)Eam(xz)ﬁpy(xs)
i4
a0 Gf d*x;d*%,0%30* %4 Lo p(X1) Lamp(X2) £,y

X (X3)£py(x4)] a> (53)

and

mZo),= e j £ <a
27 (a|fd*x a*alja) J (2m)* k*=2p-k K2(K?—m?)?

4am2+(b%+2by?)k?+2y*p-k—

4 ipal
fdxa a,

)

4(pk)2 1
= —W[ka—(b—ﬂp-kJZ}

—(3b%*—4b+4)+D(b+ y?)?>+4y*—6by>—2y*

1
mzkz[bkz—Z(l—yz)p-k]ZH, (51)

e —ie? d'k 1
0’8 (alfd*xala#la) J (2m)* (p—k)?

(] e

X (C1—3C,p-k+c3k?)?
+<a j d*x aa,,

, (C1—2c,p-k+cgk?)?
sza_ k2 .

2
(ma+

4
m,

" Kee—ma)?

4 Laip
fdxaﬁa

a> k#k”

X

(54

It needs to be checked than§+_m§0)1’2’3 are gauge inde-

pendent. The gauge-dependent terms om;(— mio)l,
which come from Fig. &), will vanish according to the rule
of dimensional regularization.

The gauge-dependent terms $3(2) [to be denoted as
S.(2)g] come from Fig. &). Using VMD, the correspon-
dent photon-meson interaction Lagrangian is

‘Cyaa: eb€3jkaLaI;(9VAM_ ee3jkAMajV((9"ak"— 'yzﬁ”ak"(). )
55

Then
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e? . d*k 1 2pk (m2, —m%y);= —0.000 648 GeY,
— Al 4 L aip - _ at a0/1 . )
S.(2)c=a 2<afdxaﬂa a> 2’ K2 1 W
k2 ,y4 (1_,y2)2
) —F—W(kz—Zpk) ] (56) (m2, —mZp),=—0.002 688 Ge¥,
a

wherea’ is gauge parameter. 't Hooft—Veltman conjecture
will make sure thatS,(2) is gauge independent.

The photon-meson interaction Lagrangian contributing to
the gauge-dependent ter®(3)s [Fig. 6(@)] is

(m2, —mZ,)3=0.001 896 Ge¥. (59)

Totally,

Eyaﬂzee3jkA,u[Clﬂ'jak“+Cz(ﬁ”wj&"al,(/—ak”&“&ywj)]. ’ 5
(57 (Mm% —mZ)ew=—0.001 440 Ge¥= —2m,x 0.57 MeV.

. (60)
We will have

IV. K*—K® ELECTROMAGNETIC MASS DIFFERENCE

4
a & i AND THE VIOLATION OF DASHEN’'S THEOREM
(2m)* k?

2
Sa(3)G=—a’%<a f d’x a,a'*
In this section and Secs. V and VI our method is extended
(ci—c,md)?  cy(ci—c,m?)  ci(p—k)? to the studies of the electromagnetic self-energies of the
k2(p—k)2 + k2 + k2 ' strange-flavor mesons. As mentioned above, the large
strange quark mass will result in the &Y symmetry break-
(58) ing playing an important role in these calculations. Dashen’s
_theorem, which states that the electromagnetic contributions
to the difference between the mass square of kaons and pions
are equal, is valid only in the chiral $8) limit. Corrections
to the electromagnetic self-energies to the leading order in
quark mass expansion are sure to lead to the violation of

mic divergences in the above Feynman integratiffags. , L
. ; Dashen’s theorem. Therefore, it is necessary to evaluate the
(49), (51), and(54)] can also be factorized by using HJ), electromagnetic self-energies of the strange-flavor mesons

S.o there arze no fzurther unknown parameters.m the €XPre3nd the corrections to Dashen’s theorem to the ordenadr
sions of m_+—m),,3. After a long but straightforward

The third term will vanish because of dimensional regular
ization. By Eq.(5) and the definition o€, andc,, we obtain
that c; — c,m2=0. ThusS,(3)s=0.

The g has been determined in E(B8) and the logarith-

2
. . M -
calcglatmn, we can get the final results fon’ni@ From Eg. (3) in Ref. [11] (Lg), the interaction
—MZo)12,3 Whose form is very tedious. The numerical re- Lagrangians that can contribute to the electromagnetic mass
sults for them are difference betweeik " andK° are
20/ 2
1 _ o 1+ 1_F
EKK””:W 2F2p3“vi(K+K’—K°KO)+?&,,pm‘(ﬁvi(K*K’—KoKo)Jr ——
2c’
—8c’? ps“vi(&vK+(9”K_—a,,KO&”KO)—Tpfvi(K+a””K_—K°&“”Ko+ H.c.
+4c2p308( 0K 'K~ — K"K+ H.c) [ , (61)

[ — — —
LKK,,zéal[pi(KWMK* —KO9#K®) + 08 (K* 9K~ + Ko%K ]~ aaz[pi(szaﬂK* —K%29#K®) +v8 (K" g?orK ™

S i _ , —
+K%929*KO) ]+ aag[pi(WKmyK* —3*"K%9, K%+ 08 (* K9, K™+ a#'K% KO ]+ H.c., (62
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i — — i
LKK1U=gﬁl[pi<K+K;“—K°K2M>+vi<K+K;“+K°KE*‘>]+aﬂz[piaW*Klﬂ—aM”K" ) TS K Ky,
+"'KOKY )1+ - ,83[pM(K 32K~ — K#52KO )+ v5 (KT #92K ™ +K 52K 0)]— —,84[pM(K ToPK M

— _ i _ —
—KOPPK ) +v8 (KT 9?K  #+KO9?K )]~ 5,83[p3(K+z9“"K1_ﬂ— KOo#K?,) +o (KT 9K, +K9#7K3 )]

i - -
3 BslpS(9,KT,0"K™—a,K2,0"KO) +v8(d,KT,0"K™+a,K?,9"KO) ]+ H.c., (63
|
with 3 2 1 1
'CK*KU: —_E’u O(BK (9BK Vpa‘f‘ J W o
e g 2 2
- |E?
9 +Qa¢ S 2 W’ﬁKaKO—Ea
a1= fE ’ 2 v¥a 20 g B 2 Vpa
1 \/i
2¢ 2¢’\2 +2& w,+—=3d,¢,|+H.c. (66)
-5 3(“?) 4c72
doy— ’
? *fe ’fe fi Here we adopt the following definitions for the strange-
flavor mesons:
2C, 2
5] e 6 1 1
az= 72 2 K *=—(K*+iK®), KO(K%=—(K®+iK7"),
2f2 2 \fz( ( 1/2( )
and
; F? oy ( 20,) Klﬂ——(K“ +iK3,), K2, (KO )——(K6 +iK])),
Yogh T2 2agh g/
3'}/ 2c’ 2'}/C, Y i: (K4+|K ) K (_O)Zi(K6+IK7) (67)
Fs= 22t ( g )* fi ' P 2a7gty K vt
3y _20' 4vc’ 65 The interaction Lagrangians between the photon and
55_2772gfk g + fi (65 K-mesonL,,kk, Lykk s Lykk» @ndLkxk can be obtained

by the substitution49)—(11) and Eqs.(61)—(63) and (66).
Here v denotes the vector mesons includipgw, and ¢.  The Feynman diagrams contributing to the electromagnetic
v9=w,~V2¢, and ¢*’=g*g". Distinguishing from the mass difference betweek™ and KO are shown in Figs.
case of massless pions system, the nonzero strange quatk10. The corresponding matrices are denoted & (1),
mass, |e ,m2+0, will bring about the contributions to Sk(2), Sk(3), andS(4), respectively.
m .+ —mZ, from the abnormal part of the effective Lagrang- N Sec. Il we obtained,, by SUbSt'tUt'ngAFﬁ”)(x y) for
ian. These vertices have been found by the evaluation od&p(v)(x y) after computing Figs. (&), 2(a), and 3a). Here
(LQ)KZ (N ay*) in Ref. [11]: the mvolved vector mesons are not oplynesons but als@
and ¢ mesons. So it is not as simple as in the case of pions.
Practical calculations will show that we can @tby chang-

7 o ing the form of this substitutioisee Appendix B Specifi-
o] oy AR cally, for Sc(1), Sk(2), andSk(3) coming from thelge,
X oY & % K p word, the corresponding propagator of the substitution should be
(7a) (7b) ) AF<1w) instead ofA g (»):
v mv

FIG. 7. One-loop Feynman diagrams contributing to the electro- 4
magnetic mass difference betwekn andK®. The curly line is (w)(x_y):f d"k A (w)(k)e—ik(x—y)
the photon line and denotes neutral vector mesopsw, and ¢. F (2m)*~F '
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T 5
YRR AV
m v Y P w or ¢ Q% P w or ¢
K K K K K K K K K K Ky K K K K K

(8a) (8b) (8c) (9a)

(9b) (9c)

FIG. 8. Same as Fig. 7. FIG. 9. Same as Fig. 7.

i ([1 mam? iSk(2)
N i d 2 K
AFJL”V(k) k2| 3(k2—m2)(k2—mf,) (Amﬁ)ZZ(mKJr mKO)Z <K|fd4XK+K |K>
2 m?2 m¢ K.k, e k,.k,
I mie ) 9T e L[ d% 9ur™ T2
. ) et K-
L ] (68) 2
k? » } m,m,
. - . 3 (K—mp)(k*—m3)
Obviously, under the S@) limit m,=m,=m,,, AF(lw) will
g 2..2
go back Ar(w) . However, forS¢(4), which receives the +E m,Mg (71
mv )
contributions from the abnormal part Lagrangiéy,, the 3 (kz—mi)(kz—mfb)
substituting propagator should Bg- () :
g with
d*k ik ) )
AF(YU)(X_y):f —4AF(W)(k)e The(x y), XM:al(qM+pM)+a2(q qp,+p p,u)_a3(pQ)(qM+pﬂ)!
2uv (2’]T) 2uv
i ([1 m?m? o
) ___ Iz p o q=p k.
AF(ZLV)(k) k2[[3 (kz—mﬁ)(kz—mf))
_ The contribution of Fig. 9 is
2 momy K.K,
Y Ouv— 2
3 (K2=my)(k2—my) |\ 7k s 2 iSk(3)
k ‘ (AmK)S_(mK+ K0)3 <K|fd4XK+K |K>
+a—kz—+ (69) . q,uqv
[
) d*k Mk,
Note thatAF(w) is different fromAFm) (see Appendix B =ie? (277)4YM reap—,
Ty _
Thus itis easy to obtain the contributions of Figs. 7—10 to K1
mi+ mio, respectively. The contribution of Fig. 7 is 1 m m
X3 K= md) (K= m?
(Am2) = (M2 —mZo), 'Sk(1) e m0e=m,)
KT KT KTKTTK) L2 i (73
e2 d*k (F N )(D N 3 K(KZ—m?)(K2—m3) |’
(2m)* 2m where
x[l i,
3 k*(k?*—m 5)(k2 mZ) Y,”=(,81+,83p2+,84q2—,85p-q)z(gw— —2(6;
2 m? m¢ 2
(p-k)
T3k md) (K -m) | (70 +B4q2)ﬁzp#py+ﬁéqﬂqy< p*= =z |+ 2B

with +B49°— Bsp- ) B3P, 4, — 2(B1+ Ba9*— Bsp-q)

7
1 v
FZ=F2+ > —-3c'2|p?, Q(mg ; v , word
2 K K* K K K* K K K* K

(10a) (10b) (10¢)
wherep is the external momentum of kaons aqm%i:mﬁ on
the K-mass shell. The contribution of Fig. 8 is

FIG. 10. Same as Fig. 7.
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p-k p-Kk
BZ?Z_pvqy+ﬁ3_k2_k,qu (74)
andgq=p—k.
The contribution of Fig. 10 is
2\ 2 1Sk (4)
(AmK)4_(mK+ K0)4 <K|fd4XK+K |K>
_ 9ie? d*k p%k®—(p- k)2
279’y | (2m)* (p—k)2—m,
1 m m2
3 k2(k*—m )(k2 m2)
2 m2m?
_c ¢
3 K2(K2—m3) (k?—m3) |’ (79

The gauge independence cuﬁf(+—mio)1,23'4should be ex-
amined. The gauge-dependent terms rinﬁ(—mio)l will

vanish according to 't Hooft—Veltman conjecture, which is

similar to the cases db,(1) andS,(1).

The gauge-independent termsSp(2) [to be denoted as

S«(2)g] come from Fig. 8). Using VMD, L «x can be
constructed fromCyk, . Thus we have

fd“x K*K‘K>

SK(2)G=—ae2<K

d% X, X kK" 76
et (e-mpyaer 0
From Eq.(72) we have
X, k== a;(9?—p?) — ax(p?—p-k+k?)(q’—~p?)

+as(p?—p-k)(g2—p?).

The mass shell condition leads p§=m2, so the termg?
—mﬁ in the denominator o5(2) will be reduced. This
means that the contribution & (2)g is zero in the frame-
work of the dimensional regularization.

Likewise, we will obtainS(3)g [Fig. 9a)], which is

d*k
_ by wHK—
sK(3)G—ae2<Kf d* KK ’K>f 2"
" k*k”
grr—
1 mK1
XE W(Wlpﬂ WK, ) (W1p,—W5kK,)
Ky
d*k 1
_ 4y W+ — " =
- ez<deXK < KH @' q
2
2_(|o-;<)
) Mk, p-k k?
X W1k2—2—+2W1W2—2— WzaKQ_ ,
l 1
(77)

4125

where
W, = B1+(Ba— B2~ Be) K2+ BoMg
Wo,= 1+ Bak?— Bsp-K,

[35=2"yc’fk.

The contributions of the second and third terms in &)

are zero because of 't Hooft—Veltman conjecture. Since our
calculations are only to the order of% , the denominator of
the first term in Eq(77), k?— mﬁl, can also be reduced. Here
the relationB;+ (B,— B>~ Be) mﬁlzo, which can be easily

obtained by Eq.(7), has been used. Thus(3) is gauge
independent.

The gauge-dependent terr®z(4)g [Fig. 10@@)], which
receive contributions from the abnormal part of the effective
LagrangianCxgs+ ,, are

3e? a e
amedXKK K

2
mK* 4.9./d.9.
(P—a)?—Migs q'

Sc(4)o="

mp'

(78)

It is obvious thatS¢(4)s will vanish because of the totally
antisymmetric tensoe,,, .z -

From Egs.(70), (71), (73), and(75), it is not difficult to
conclude that the contributions & (2) andSk(4) are pro-
portional to p2. So in the chiral limitp?=mZ=0, only
Sk(1) andSk(3) contribute tani+—mio. Then we have

Amg —'eJ O|4kD1|:2 <
Mmg=0=1 £2 2 “D|FH 5

2

NE mom2

X3 k2(k2—m2) (k*—m3)
N 2 m? m¢

3 k2(k2—m5) (k?— m¢)

(79

Taking f,=f,, m,=m,=m,, and My, =M, the above
equation reduces to Eq34). This indicates that Dashen’s
theorem is automatically obeyed in the chiral SUimit of

the present theory. However, 8) symmetry-breaking ef-
fects will lead to the violation of Dashen’s theorem. The total
AmZ [the sum of fni+_mi0)1,2,3,zﬂv which is evaluated to

the order ofm,2<, can be read off from Eq$70), (71, (73),
and(75). It is straightforward to perform these Feynman in-
tegrations, although the calculating processes and the results
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) v v
5
5 d
o Y
v v W or ¢ v u P w or ¢
K Q K Ky K, K K, K K K, K| K K K K K,

(11a) (11b) (11c) (132) (13b) (13¢)

FIG. 11. One-loop Feynman diagrams contributing to the elec- FIG. 13. Same as Fig. 11.
tromagnetic mass difference betweii andKS. The curly line
is the photon line and denotes neutral vector mesonsw, and ¢. (mi+ _ miO)QM: —0.006 346 Ge¥=— 2mg X 6.4 MeV.

are not as simple as that in the case of pions. We do not (83

present the final expressions mﬁf( Ko)l 2.34here. Note )

that only the logarithmic divergences are involved in theThe use of the result ofnf; . —mio) o together with Eq.

above Feynman integrations, which can be factorized by ug17) will yield mass ratios of light quarks

ing Eq.(37). fy is determined from Eg$7) and(8), not as an

input, andg=0.39 still holds. Numerically, the results of 2

Eqs.(70), (71), (73), and(75) are Myt Mg FoMe oo
mg+m  fZmg ’

(M& . —Mko),=0.002 193 Ge¥,

2 2
(M2 —mZo),= —0.000 430 Ge¥, mg—m,  filMo—mi)om
K KM 5028,
ms—m fimg—fom?

(MZ.—mZo)3=0.000 571 Ge¥,

(mi+—mio)4=0.000 139 Ge¥ where m=(m,+my)/2. These above results can be trans-

lated into
Totally, we have
m myg—m m
(Am2)gy=(ME + —Mio)gy=0.002 473 Ge¥ H":o.oso, 4 M _0.027, —U=0.44.
s s d

=2mg X 2.5 MeV. (80

a‘[he results are in agreement with the data of light quark

Then the correction to Dashen’s theorem beyond the chir
mass ratio$19]. Similar results have been given recently by

limit is
Bijnens et al. [30], Leutwyler[31], and Duncaret al. [32].
(M2, —m2y) The value ofm,/my=0.44 reflects the breaking of isospin
K+ KO/EM .
PEM=—7——>—=1.68, symmetry in the present theory.
(M7 —MZ0)em Finally, using the value of,= 175+ 16 MeV, which is

) ) . obtained with QCD sum rulef83] in the modified minimal
(AmQ)ew— (Am7)ey=1.08<10"° GeV. (81  gyptraction MS) scheme at scale=1 GeV, we can calcu-

late m, andmy with th ve m ratios. The result r
The results show a rather large violation of Dashen’s theo- atem, andmg with the above mass ratios e result reads

rem, which is in correspondence with the one by Donoghue

et al. [5] and Bijnenset al.[6,29). m,(1 GeV?)=3.8+0.3 MeV,
It has been known that the mass difference betw€én

andK?° receives the contributions from both electromagnetic

self-energy and mass differencerf andmg, i.e., my(1 GeV’)=8.7+0.8 MeV.

2 2 2 2 2 2
(mK+ - mKO)expt: (mK+ - mKO)EM+ (mK+ - mKO)QM .

(82 V. K —K{ ELECTROMAGNETIC MASS DIFFERENCE
Employing the value of iz, —m2o)gy and experimental The LagrangiansCy i ,u» Lk,Kk,0: and L k,, Which
data of the mass difference betwekd and K° [22], we  contribute to the electromagnetic self-energies ofkheme-
obtain son, are

7 2 —
_ 3 8,u, 0 Ov
5 ‘cKlKlvv_ (Kvil KlVKl )
m v Y I3 w or ¢ g
Ko K d K K K K K, K K 2

(12a) (12b) (12¢) _ ‘y?plu V(KI—,uK v__ KO/LKOV+ H. C)

FIG. 12. Same as Fig. 11. (84)
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i 2
| Y B -
£K1K1U: 5( 1- ﬂ.ZgZ) [&Vpi(KIMKlv_ KE#K(l)V)
— [
+ aVvi(KIMKIV-i- KEILK?V)] _ api[KIM(avKiu
~70,K; ) K"K, ~ ¥%0,K)
i ) N _
- avg[Kf“(&”Klﬂ— ¥?9,K1 ") +K¥#(a"KY,
-?9,K")]+H.c., (85)
i _
Lk o= §B1[pi(K+K1_M_KOK?'U')"‘U/%(KH(IM

_ i B —
FROKYI+ 5 Bl oK Ky, = 0 KOKT,)

+08(IHK KL, + KoK S )]

4127
i _
+ aﬂs[pfl(KI"&zK‘ —K9?KO) + 08 (K #a?K ™

_ i —
TR )= o Bal (KT 7K = KOPKY)
+08(K+ K #+K9PK )]

i J—
~ g PP a.KE, KT = 3,K3,07K)

+05(0,K{,0"K™+9,K3,0"K%) ] +H.c. (86)

The photon-meson interaction Lagrangians can be obtained
by combining the above Lagrangians with the substitutions
(99-(11) and the corresponding Feynman diagrams have
been shown in Figs. 11-13. The examination of gauge inde-
pendence can be done in the same way as in the previous
sections.

From Fig. 11 we have

(2. —mPe);—ie , YKl Fd*% KETKTTIK ) —(Ky| fd*% KE 7K, [Ky)gH”
K RYLT (Kql Fd*% K KET[Ky)
f d*k ( kK, ) mom? 2 mom2 o
X .
(2m)?*| 9w % 3 k*(k?— m)(k2 mZ) " 3 k(K= m?) (K2—m3) ®7
From Fig. 12 we obtain
2 2. ie? Jd4k <J4M+>
(mKIr ng)z— <Kl|fd4xK,LlL+KLL|Kl> (277)4 k2—2p-k K, d XKl Klﬂ K1
4(p-k)?2 1
X 4m§l+(b2+2b'y2)k2+274p-k— —Z —m—z[bkz_(b_Yz)p‘k]z
Ky
2%*p-k
+{ Kyq| | d*xKj,K7, /Ky )k#k?| = (3b?—4b+4)+D(b+y*)?+4y*~6by*—2y"~ 2
b= 2(1— y)p-k]? M, L2 My 88
mﬁlkZ[ ( Y )p ] 3 k2(k2_m§)(k2_m ) 3 k2(k2 m )(k2 m ) ( )
From Fig. 13 we get
2 “ie? f d'k <K fd“ K{ KE™|K >
(M =)o~ o KK TRy | (2" (k7 i ] K
1 —2B2p- k+ B3k?)?
X(Bl 3ﬁ2p k+ﬁ3k2 < ‘f d4X Kl,uKlv K1>kukv :8 2l (Bl IBZT(Z B3 ) ”
1 m m 2 mpm¢ 89
>< J—
3 K*(K?—m: )(k2 m2) " 3 K= md) (K2—m2) | ®9)
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s Y
0 0 a 3
v g S i
K* K* K* K* K* wnrﬂ;(* m y ! ! oo
K K* K* K K* K*  K* K* K*
(14a) (1) (14<) (152) (15h) (15¢)
FIG. 14. One-loop Feynman diagrams contributing to the elec- FIG. 15. Same as Fig. 14

tromagnetic mass difference betwekfi® and K*°. The curly
line is the photon line and denotes neutral vector mesopsw,

and ¢. VI. K*+*—K*9 ELECTROMAGNETIC MASS DIFFERENCE
ith The Lagrangians contributing tayx + — mMgxo come from
Wi both the normal part of the effective Lagrangifg, and the
,31=,31+(133+ﬂ4—,35)m§ _ ((albr;ormal pariC,,. Lxkx, deriving from L, is exactly Eq.
1 66):
Comparing Eqs(87)—(89) and Egs.(49), (51), and (54)
and taking f,=f,, mg=m2=0, m,=m,=m,, and m, 5 o
=m,, we can conclude that Licr kg =— ?pivs'u’(K:K_y— KoK )
2 2 2 2 . +i 3 B(K‘F,U,K*V_KOIU,FV_’_HC)
(ma+—mao)i=(mKl+—mK(l))i, i=1,2,3. gzP,LUV -C.),
This means that the square mass difference coming from the (93

electromagnetic interaction between the charged axial-vector
mesons and their corresponding neural partners are equal in

. o i _
the chiral SUW3) limit, i.e., Lrxgry= a[avpi(KwKﬂ_KOMKOV)JF&VU?L(KwKﬂ
(m2 —m2) =(m2 _I"n2 ) (90) O,LL_OV i rw (v — M LK~V
a+ — Ma0)EM K} KYEM: +K*#*K )]—apy[K#(o" KTE—=gtK™?")
which is similar to Dashen’s theorem for the pseudoscalar o =5 — i
andK mesons. Certainly, the $8) symmetry breaking will — KO (0K — 1K) ]~ avy[KM(WKW
bring about the violation of the above equation. o o
After carrying out the Feynman integrations of E(7)— — KTV + K’E’L(O‘;VKO,U«_ KO+ H.c. (94

(89), the numerical results fani+—mio are
1 1
Substitutiong9)—(11) together with Eqs(66), (93), and(94)
2 2\ will produce the photonk* -meson interaction Lagrangians
—m:o),=—0.000 781 Ge¥, :
kg Mo Lick vy Licxcx o, andLyx . The one-loop Feynman dia-
‘y’y . .y ’y . - .
grams contributing to electromagnetic mass splittind<6f
) , and K*© are shown in Figs. 14-16. The gauge-dependent
(M +—mMmyo),=—0.003 474 GeY, terms from Figs. 1) and 1%a) will vanish in the frame-
! ! work of dimensional regularization and one from Fig. 16 will
also vanish due to the totally antisymmetric tenstt*? in
(mi+ B miO)az 0.001 252 Ge¥ Eg. (66). IE is stralgh'Fforward to evaluate the contributions to
1 My« + — Micxo0 from Figs. 14—16 one by one.
The contribution of Fig. 14 is

(m

Thus the correction of the electromagnetic mas {61400)

mesons is
( 2 2 ) igez f d4q
Myesx+—Myexo)1=— —— A~ 4
(my -+ —Myo)gy=—0.003 003 Ge¥=—2m X1.1 MeV. “ “ 4 ) (2m)
1 1
(91 x[l mom?
Q2 2 2N 2 2
This result gives a very large violation of E(O): 39°(q°—mp)(q°—my)
2 2m’my

. (995

+ -

2 2 3 g%(g°—m3)(g*—m3)
(mKI_ ng)EM

————=2.08. (92) . . .
(M+ —Mo)Em The contribution of Fig. 15 is
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A2 4 2\2 2
2 2 e d q < j 4 + _ > 2 (k ) 2 2 4(pq)
x+ Mygxo)2= - K*| | d*x KTK*T|K* )| ke— +4p°+4q°+ ——
(Migx+ = Migxo)2 (K*[fd* KIK™H[K*) (277)4{ X By m2, praq M.
49%p-q 4(p-q)? 4p-q 4(p-q)? K2
_4apa_ (pzq) +<KUd4X KK K*>qﬂqv L (zp g) K
M q M  Q°My, 0
(k?)? 1 1 mom2 2 mom, o6
+ = + =
9’mis || K2—me, [3 g*(g®—m3)(g*~m;) 3 g*(g”—m))(g®—m3) |’ 9

wherep is the external momentum &f* mesons an#=p—q. For mass-sheK* mesonspzzmﬁ* andp“K ,(p)=0. Here
K,(p) is the Fourier transformation of tH€* -mesons field

1 .
K,(p)= 2 f d*x K, (x)e"Px,

The contribution of Fig. 16 is

(M2 102 0) e ie? 9 f d*q [<K*
K* + K*0/3 <K*|fd4X K;K_M|K*> 4774921:5 (277)4

_<K*

f d'x KK K*>[p2q2—(p~q)2]

1

1 m’m? 2 m?m?
v w [
K*>q“q pz] e ; :

3 9X(?-m)(q?-m2) 3 gA(qP—m?)(g2—m3)|’
97

4, KK~
fdeMK,,

The Feynman integrations omf(* = mi* 0)1,3 are finite; (M + = Mix0) gypr™= (M x + — My x0) g
only the logarithmic divergence emerges irrnz*+
—mi*o)z, which can be factorized by using E7). Per-
forming these Feynman integrations is standard. The numerising the experimental value ofmx+— My« 0) expt—=—6.7

+ (Mg + =M% 0) nonEM- (99

cal results are +1.2 MeV[22], we obtain
(M- + —Miy0); = —0.000 938 Ge¥, (Myx + — M 0) onev= — 4.94+1.2 MeV. (100
(mi* - mi* 0),=—0.001 547 Ge¥, The nonelectromagnetic mass difference afyf+

—Mk+0) nonem» Which comes from isospin breaking effects,
has been evaluatel®7,34. In Ref. [27], Schechteret al.
predicted that tfics+—Mkx0)ponem Would be from
) _ —2.04 MeV to—6.78 MeV. By choosing the best-fit param-
The electromagnetic mass correction to a totakof(892)  eter, they concluded that M+ — Mk o) nonev=

mesons is —4.47 MeV, which is close to our result of EGLOO).

(M2, +—mZ,0)3=—0.000 662 Ge¥.

2 _ 2 - _
(Mg~ ~ Mvo)em= —0.003 147 Ge¥ VII. SUMMARY AND DISCUSSION

=—2mgx X1.76 MeV. (98) In the framework of the present theory, the dynamics of

. + «0 meson fields comes from the quark-loop integrations within
However, the mass difference betweli™ and K*" re-  a5onic hackground fields. The logarithmic divergence due
ceives contributions not only from the virtual ph‘?to,“ €X- {0 the guark-loop integrations is absorbed into the parameter
change, but also from the other nonelectromagnetic interags g (3)]in this truncated field theory. Thus both meson's
tions, such as isospin symmetry breaking, which is similar tQue tive | agrangians with VMD and criteria to factorize the
the case of pseudoscalérmesons. So we have logarithmic divergences in the loop calculations are well es-
tablished. In this paper, by using this theory, we have com-

y puted all one-loop diagrams contributing to the electromag-
y netic mass splitting of the low-lying mesons including
Qﬁﬁ /337 ’ w or § pseudoscalar mesonsand K, axial-vector mesona, and
K (ﬁ) L LS (’ieb) LA & (I;c) K K,(1400), and vector mesd&* (892). Fortunately, no other

higher-order divergences but the logarithmic divergences
emerge in the Feynman integrations of the above loop dia-
FIG. 16. Same as Fig. 14. grams. Therefore, it is reasonable to factorize these logarith-
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mic divergences by using the intrinsic paramegemn this —i kK,
theory, which is determined by the experimental values of A, (k)= Py syl e B (A2)
\% \Y

fr, m,, and My, - Then it is unnecessary to introduce other
additional parameters or counterterms into this theory to ab- i i i
sorb the mesonic loop divergences. The dimensional regulaghe;evﬂ(x)_aﬂ(x)’ Pu(¥), ©,(X), ,(X), Ky,(x), and
ization h I h i el -
Lﬁitlggmu?:tigigr;seer?(gr?i/r?gdand the gauge independence For the photon propagator withip, from Egs.(22) and
The electromagnetic mass splittings ®fanda; are cal- (12) we have
culated in the chiral limit because of the smallness @nd
d quark masses, and the resultrof+—m_o is close to the vy — _ f 4 3
experimental data. However, the electromagnetic mass split—AFyvp)(X y) <OT[A"(X)A”(y) 21 | dHaAL00pL(Y)
tings of the strange-flavor mesoks K;, andK* have been
evaluated to the order ahs or m2 because of the large
strange quark mass. Thus a rather large violation of Dashen’s

X{ 9y p2(x)[PA(x1) — 3ANx1) ]}

1
theoremwhich holds in the chiral S(3) limit of the present -3 J’ d*x;d*%2p s (X) pA(Y){rp(X1)
theory] has been revealed at leading order in the quark mass
expansion. The mass ratios of light quarks have been calcu- X[ﬁhA”(Xl)—5”AA(X1)]}{0QP?;(X2)

lated and masses ofd quarks have been estimated by em-

ploying the value ofng obtained with QCD sum rules. It has apf anB

been found that there exists a different relation for axial- X[9“AP(xg) = 3*AP(X9) ]} 110 (A3)
: 2 2 2 2 :

vector mesons, i.e., rma*'_maO)EM:(mKI’_mK[l))EM is

obeyed in the chiral S@) limit. Moreover, the nonelectro- Using Egs.(22) and (A2), we get
magnetic mass difference betwe&rf * and K*? is esti-
mated by using the experimental valuengf« + — My« o with Ar()(X—Y)
(mg=+—mgx0)gy Calculated in this paper. .

The electromagnetic self-energies of the other low-lying 4
mesons, such as vector mesane,$»(1020 and pseudosca- — d'k (_i)ie—n«x—y) aku v+<g _ ﬂ)
lar mesonsy, ' (960), also need to be evaluated. However, (2m* k? -
the quadratic or higher-order divergences will emerge in the k2 i
Feynman integrations of the loop calculationgppfy, and ¢. x|1— + H _
It is unsuitable to factorize these higher-order divergences by k2—m>  (k*—m?)?
the parameteg in which only the logarithmic divergence is
involved. As forz and ', the U1) anomaly problem and Then
the mixing of » and %’ should be taken into account. The
investigation on these problems is beyond the scope of the

d*k
t k. )= | —— (—i
present wor AFLVV’J)(X y) J (277)4( i)

4
1[ m?
p
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X +a e koY),

This is Eq.(23).
APPENDIX A: FEYNMAN RULES AND THE PHOTON

PROPAGATOR WITHIN
P APPENDIX B: A,:gyu) AND A,:(Zyv)
Hr Hr

The propagators taken in this paper are as follows: the - .
pseudoscalar-meson fields The photon propagator withip can be generalized to the

photon propagator within including p, w, and¢ to simplify
d%k ' the corresponding calculations of the strange-flavor mesons.
(O|T¢(x)q§(y)|0>=f ——— Ap(k)e KOy, In this appendix, as an example, we display the whole cal-
(2m) culating process of Fig. 7 to deduﬂ&gwy).

Lxky, has been shown in Ec{61).#The corresponding

Ap(K)= e (A1) photon-meson couplingSCxk,y, Lkkpy,» Lkkwy, and
ke—m°+ie Lyk gy, Which contribute to electromagnetic mass differ-
ences betweeK * andK®, can be obtained by the substitu-
and the vector-meson fields tions (9)—(11). All the one-loop Feynman diagrams contrib-

uting to (mi+— mio)l are shown in Figs. (8-7(c) and the

. A d*k 4 i i =
| ] _ . —ik(x—y) correspondings matrices are denoted &(1);, i=a,b,c.
(O[T(V,,(x)Vi(y)|0) J 2m)? Gilrmloe ' Thus we have
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i2
(121 KT [ dtx £y 00]K 81572 KT [ % oy L0000 K
ie? d% k2 1ie? d* k2
_ 4 +K— _ 2, _ 4 +K— - 2
<KUd x K*K K> T (ZW)4<FK+2W2> —<KUd x KK K>3?E(2W)4(FK+ZZ)
k, k k, k i k K
Y a4 pv uly
k29 (g,u.v k2 +a k2 (Bl) ( k2+m )( k2) (guv K2 ), (83)
and i2
Sk(1) =—2<KTJ d*x d*Y Ly (X)L (y)K>
Sk(1)p=S«(1),+ Sc(1) o +Sk(1) 5, e Koy
a2 4 2
with B o | 2067 dK [, K
) _<KdeK K K>3 5 | Fict 2
|
SK(l)pZZ 2< KTJ d*x dty ‘CKKP)’(X)‘CP)/(y)K> y i " ,uV( - k,uky) -
ie? d 2 CrRErmy k)9S e
_ 4 fle— 2
<KU‘” KK K>TE<2w>4(FK+ﬁ> and
i K, Sk(1)c=Sk(1) o+ Sk(1) 4
X 2 2 2 kzg’uv(g,uv_ #2 )1 (BZ) ¢ 8 re
(=K=+mp) (=K% with

i3
SK(l)pa)Za 6< K‘TJ' d4X d4y d4Z EKpr(X)Ep'y(y)ﬁwy(z)

K)= KUd"’ K"K~ |K Lie? dlk Fet <
- X 372 (2mt | TKT 247

i k2 2 v _ kMkV B
X(—k2+m§)(—k2+m2)(—k2)( ) g g,u.v k2 ’ ( 5)
i° 2ie? dk K2
SK(l)p¢=§6<K‘Tf d*x dy d*z Lk pa(X) Ly (Y) Ly (2) K>=<KU d*x K*KK>§f—E(ZT)4<Fﬁ+ﬁ>
X 2 2 | 2 2 2 (kz)zgﬂv( Quv™ k_MZK_V) (B6)
(— K2+ m2)(— K2+ m3) (—k?) k

Thus the total contribution of Fig. 7 is

H . 272

Se(1)= jd4x KK ‘ e dk (KT mm,

K 2 ) @m* K 242 K2 3 (K2—m2)(k*—m3)
2 momy, k,k, kK,
+§(k2—m2§(k2—m2)(g‘“’_ I|:2 ):|+a II:Z }

[ ol [ et 2

, Kk
FK+ 5| g~” A,:(yv)(k) (B7)
HereA<Fylu) (k) is exactly Eq.(68).
yral

A similar procedure can be easily applied to Figs. 8—10. We can conclude that Figs. 7—9, which receive contributions from
the normal part of the effective Lagrangidh,, yield the same expression Af:(lw)(k); however, Fig. 10, which is from the
y7a

abnormal part of the effective Lagrangidl,,, gives the form ofAqu)(k) [Eq. (69)]. The difference betweeﬁp(w)(k) and
F(yu)(k) comes fromw and ¢ mesons fields always appearing as the combinabipr v2¢,, in Lge and as the comblnatlon
1) +W¢M in £, [see Eq(69)].
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