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To one-loop order andO(aEM), the electromagnetic mass splittings ofp, a1 , K, K1(1400), andK* (892)
are calculated in the framework of U(3)L3U(3)R chiral field theory. The logarithmic divergences emerging in
the Feynman integrations of the mesonic loops are factorized by using an intrinsic parameterg of this theory.
No other additional parameters or counterterms are introduced to absorb the mesonic loop divergences. When
f p , mr , andma are taken as inputs, the parameterg will be determined and all the physical results are finite
and fixed. Dashen’s theorem is satisfied in the chiral SU~3! limit of this theory and a rather large violation of
the theorem is revealed at the order ofms or mK

2 . Mass ratios of light quarks have been determined. A relation
for electromagnetic corrections to masses of axial-vector mesons is obtained. It could be regarded as a gener-
alization of Dashen’s theorem. Comparing with data, it is found that the nonelectromagnetic mass difference of
K* is in agreement with the estimation of Schechter, Subbaraman, and Weigel.@S0556-2821~97!06319-4#

PACS number~s!: 12.39.Fe, 11.30.Rd, 12.40.Yx, 14.40.2n

I. INTRODUCTION

Calculating the electromagnetic mass splittings of the
low-lying mesons is an important issue in nonperturbative
~NP! quantum chromodynamics~QCD!. This topic has in-
trigued particle physicists for many years@1–9#. Recently, a
chiral field theory of pseudoscalar, axial-vector and vector
mesons@called the U(3)L3U(3)R chiral field theory of me-
sons# has been proposed@10,11#. This theory can be regarded
as a realization of chiral symmetry, current algebra, and vec-
tor meson dominance~VMD !. In this paper, we try to present
systematical calculations of electromagnetic masses ofp,
a1 , K, K1(1400), andK* (892) in the framework of this
theory.

It is well known that chiral perturbation theory~xPT! is
rigorous and phenomenologically successful in describing
the physics of the pseudoscalar mesons at low energies@12#.
The effective Lagrangian ofxPT depends on ten chiral co-
efficients that are determined by a comparison with the ex-
perimental low-energy information. Models attempting to
extend thexPT to include more low-lying mesons should
predict these ten coefficients by fitting data inxPT. U(3)L
3U(3)R chiral field theory has been studied at the tree level
@11#, and the theoretical results agree well with data. This
theory has also been successfully applied to studyt mesonic
decays systematically@13#. In Ref. @14# the ten coefficients
of xPT have been predicted at aboutL;2 GeV in this
theory. The coefficients ofxPT are expressed by a universal
coupling constantg and the ratiof p

2 /mr
2, which have been

fixed in @10,11#. The authors of Refs.@15,16# have found that
the vector meson dominates the structure of the phenomeno-
logical chiral Lagrangian. Two of the coefficients obtained in
Ref. @10# are the same as the ones in Ref.@15#. The relations
2(L11L2)1L350 andL4

V5L6
V5L7

V50 found in Ref.@14#
have already been obtained in Ref.@16#. A very small L8

predicted in Ref.@14# is not in contradiction with theL8
V

50 found in Ref.@16#. The expression ofL9 presented in
Ref. @14# is similar to the one obtained in Ref.@16#. When
taking g51, the L2

V5GV
2/16MV

2 is the same as the expres-
sion presented in Ref.@14#.

In Ref. @17#, starting from the U(3)L3U(3)R chiral field
theory of mesons, the authors use the path integration
method to deriveL1 , L2 , L3 , L9 , andL10. The results are in
agreement with the experimental values of theLi at m5mr

in xPT. Therefore, the low-energy limit of this theory is
indeed equivalent toxPT and the QCD constraints discussed
in Ref. @16# are met by this theory.

U(3)L3U(3)R chiral field theory of mesons provides a
unified description of meson physics at low energies. VMD
in the meson physics is a natural consequence of this theory
instead of an input. Therefore, the dynamics of the electro-
magnetic interactions of mesons has been introduced and
established naturally. On the other hand, this theory starts
with a chiral Lagrangian of quantum quark fields within me-
sonic background fields and the chiral dynamics for mesons
comes from the path integration over quark fields. A cutoffL
~or g in Ref. @10#! has to be introduced to absorb the loga-
rithmic divergences due to quark loops. Thusg ~or L! will
serve as an intrinsic parameter in this truncated fields theory.
Therefore, it is legitimate to use theg to factorize the loga-*Mailing address.
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rithmic divergences of loop diagrams in calculating the elec-
tromagnetic mass splittings of the low-lying mesons@18#.

The basic Lagrangian of this chiral fields theory is~here-
after we use the notations in Refs.@10,11#!

L5c̄~x!@ ig•]1g•v1g•ag52mu~x!#c~x!1
1

2
m1

2~r i
mrm i

1vmvm1ai
mam i1 f m f m!1

1

2
m2

2~Km*
aK* am1K1

mK1m!

1
1

2
m3

2~fmfm1 f s
m f sm!, ~1!

with

u~x!5exp@ ig5~t ip i1laKa1h1h8!#,

am5t iam
i 1laK1m

a 1S 2

3
1

1

)
l8D f m1S 1

3
2

1

)
l8D f sm ,

vm5t irm
i 1laKm*

a1S 2

3
1

1

)
l8D vm1S 1

3
2

1

)
l8D fm ,

~2!

where i 51,2,3 anda54,5,6,7. Thec in Eq. ~1! are u,d,s
quark fields.m is a parameter related to the quark conden-
sate. Here the mesons are bound states in QCD and they are
not fundamental fields. Therefore, in Eq.~1! there are no
kinetic terms for these fields and the kinetic terms will be
generated from quark loops.

According to Refs.@10,11#, the effective LagrangianLRe
andLIm can be evaluated by performing the path integrations
over quark fields. In order to absorb the logarithmic diver-
gences in the effective Lagrangian, as mentioned above, it is
necessary to introduce a universal coupling constantg as

g25
8

3

Nc

~4p!D/2

D

4 S m2

m2D e/2

GS 22
D

2 D5
1

6

F2

m2 . ~3!

Also, following Refs.@10,11#, after defining the physical me-
son fields, we have

ma
25S 1

12
1

2p2g2
D S mr

21
F2

g2 D , ~4!

mK1

2 5S 1

12
1

2p2g2
D S mK*

2
1

F2

g2 D , ~5!

with

F25
f p

2

12
2c

g

, c5
f p

2

2gmr
2 , ~6!

F25
f k

2

12
2c8

g

, c85
f k

2

2gmK*
2 , ~7!

m25
F2

6g2 . ~8!

Combining Eq.~4! with Eq. ~6! and taking f p ,mr ,ma as
inputs, the parameterg will be fixed.

VMD has been well established in studying electromag-
netic interactions of hadrons@19#. To the present theory, the
interactions between photon and the vector meson fields of
r0 , v, andf can be found through the substitutions@11#:

rm
3→rm

3 1
1

2
egAm , ~9!

vm→vm1
1

6
egAm , ~10!

fm→fm2
1

3&
egAm . ~11!

Ther3- ~or r0-! photon,v-photon, andf-photon interaction
Lagrangians are

Lrg52
1

2
eg]mrn

3~]mAn2]nAm!, ~12!

Lvg52
1

6
eg]mvn~]mAn2]nAm!, ~13!

Lfg5
1

3&
eg]mfn~]mAn2]nAm!. ~14!

UsingLi(f,g, . . . )uf5p,a,v , we can calculate theS matrix:

Sf5 K fUT expS i E dx4Li~f,g, . . . ! D21Uf L U
f5p,a,v

.

~15!

On the other hand,Sf can also be expressed in terms of the
effective Lagrangian off as

Sf5 K fU i E d4xLeff~f!Uf L .

NotingL5 1
2 ]mf]mf2 1

2 mf
2 f2, then the electromagnetic in-

teraction correction to the mass off reads

dmf
2 5

2iSf

^fuf2uf&
, ~16!

where ^fuf2uf&5^fu*d4x f2(x)uf&. We adopt dimen-
sional regularization to do loop calculations and use Eq.~3!
to factorize the divergences. Thus all of virtual-photon con-
tributions to the masses of the low-lying mesons can be com-
puted systematically and analytically.

The purposes of our investigations in this paper are three-
fold, which are stated as follows.
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~i! We try to present a systematic method to derive the
electromagnetic masses of the mesons by employing U(3)L
3U(3)R chiral field theory. Nearly 30 years ago, Daset al.
@1# obtained a finite result of thep12p0 mass difference by
using current algebra techniques and especially relying on
Weinberg’s second sum rule to cancel the divergences in it
~for further investigations on it, see@4,5#!. However, Wein-
berg’s second sum rule is not satisfied experimentally@20–
22#. Actually, many people have found the existence of the
divergence in calculating the electromagnetic mass ofp me-
sons in the effective chiral Lagrangian theories@6–9#. In
particular, in Ref.@6#, when the corrections of perturbative
QCD to mp12mp0 were investigated in a chiral model, a
dependence ofmp12mp0 on an ultraviolet cutoff has been
revealed. In Refs.@8,9#, in order to remove this divergence,
the counterterms have been introduced. These facts mean
that we could not expect such a cancellation between the
divergent terms to work without any additional assumptions,
in particular, when the strange-flavor mesons are involved.
The method in this paper is systematic and the logarithmic
divergences from mesonic loops can be factorized by using
the intrinsic parameter~g or L! of the theory. There is no
need to introduce other parameters or counterterms to absorb
the mesonic loop divergences. The spirit of this method will
be shown in Sec. II by reexamining the calculations of the
electromagnetic mass difference of charge and neutralp me-
sons in the present theory.

~ii ! It is straightforward to extend our method to the stud-
ies of the electromagnetic masses of strange-flavor mesons.
The smallness ofu,d quark masses allows the calculations in
the chiral limit for nonstrange mesons. However, the large
strange quark mass will bring a significant contribution to the
electromagnetic self-energies of the strange-flavor mesons.
Dashen’s theorem@3# states that the square electromagnetic
mass differences between the charged pseudoscalar mesons
and their corresponding neutral partners are equal in the chi-
ral SU~3! limit, i.e.,

~mK1
2

2mK0
2

!EM5~mp1
2

2mp0
2

!EM .

The subscript EM denoted the electromagnetic mass. The
significant SU~3! symmetry breaking will lead to the viola-
tions of this theorem. Furthermore, it has been known that
the p12p0 mass difference is almost entirely electromag-
netic in origin; however, the contributions of theK12K0

mass difference are from both electromagnetic interactions
and theu-d quark mass difference. Thus it is of interest to
calculate the electromagnetic mass difference betweenK1

andK0 to leading order in the quark mass expansion both to
increase the understanding of the low-energy dynamics and
to aid in the extraction of current mass ratios of light quarks.
The latter reflects the breaking effect of isospin symmetry
@5,23,24#. Therefore, the quark mass term2c̄Mc @M
5diag(mu ,md ,ms) is the quark mass matrix#, which repre-
sents the explicit chiral symmetry breaking in the present
theory, should be added into Eq.~1! when the electromag-
netic masses of the strange-flavor mesons are calculated. The
nonzero quark masses will yield the mass terms of pseudo-
scalar mesons in addition toLRe ~explicit quark mass param-
eter do not occur in the abnormal part effective Lagrangian!.
To leading order in the quark mass expansion, the masses of

the octet pseudoscalar mesons have been derived in Ref.@25#
~Gell-Mann–Oakes–Renner formulas!, which read

mp1
2

5mp0
2

52
2

f p
2 ~mu1md!^0uc̄cu0&,

mK1
2

52
2

f k
2 ~mu1ms!^0uc̄cu0&,

mK0
2

52
2

f k
2 ~md1ms!^0uc̄cu0&,

mh
252

2

3 f h
2 ~mu1md14ms!^0uc̄cu0&, ~17!

where^0uc̄cu0& is the quark condensate of the light flavors
@10,26#.

~iii ! All of the low-lying mesons including pseudoscalar,
vector, and axial-vector mesons are involved in this theory.
This makes it possible to evaluate the electromagnetic
masses of vector and axial-vector mesons in addition to the
pseudoscalarp and K. The electromagnetic mass splittings
of a1 and K1(1400) are calculated, and in the chiral SU~3!
limit we obtain the relation

~ma1
2

2ma0
2

!EM5~mK
1
1

2
2mK

1
0

2
!EM ,

which could be regarded as a generalization of Dashen’s
theorem. The electromagnetic masses ofK* (892) are also
derived. Using the experimental value ofmK* 12mK* 0, the
nonelectromagnetic mass difference ofK* 1 andK* 0 is es-
timated. The result is close to the one given in Ref.@27#.

The contents of this paper are organized as follows. In
Sec. II we discuss the electromagnetic mass splitting ofp
mesons and in Sec. III the electromagnetic mass splitting of
a1 mesons. In Sec. IV we will extend this method to the case
of K mesons and give the violations of Dashen’s theorem at
leading order in the quark mass expansion. In Sec. V we
discuss the electromagnetic mass splitting ofK1(1400) and
in Sec. VI the electromagnetic mass splitting ofK* (892). In
Sec. VII we discuss and give a summary of the results.

II. p12p0 ELECTROMAGNETIC MASS DIFFERENCE

In this section and in Sec. III we will restrict our calcula-
tions to the two-flavor case because the strange quark has no
effect on the electromagnetic self-energies of pions anda1
mesons, and the smallness ofu,d quark masses allows the
calculations in the chiral limit. Note that the contributions
from LIm are proportional tomp

2 , which can be neglected in
the chiral limit. Thus, fromLRe @Eq. ~13! in Ref. @10##, the
interaction Lagrangians contributing top12p0 electromag-
netic mass difference for massless pions read

Lrrpp5
2F2

g2f p
2 rm

i r j m~p2d i j 2p ip j !

1
1

p2g2f p
2 ]nrm

i ]nr j m~p2d i j 2p ip j !, ~18!
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Lrpa52
2F2g

f pg2 rm
i e i jkpka

j m1
g

f pg2p2 rm
i e i jkpk]

2aj m,

~19!

Lrpp5
2

g
rm

i e i jkpkS 2]mp j1
1

2p2F2 ]2]mp j D , ~20!

whereg5(121/2p2g2)21/2.
Using VMD, i.e., the substitution~9!, and Eqs.~18!–~20!

we get all of the corresponding photon-p interaction
LagrangiansLggpp , Lgrpp , Lgpa , andLgpp . Combining
them withLrg @Eq. ~12!#, we can calculateSp @Eq. ~15!# and
obtain thep1-p0 mass difference due to electromagnetic
interactions. The corresponding Feynman diagrams are
shown in Figs. 1–3. Denoting the correspondingS matrices
asSp(1), Sp(2), andSp(3), respectively, we have

Sp5Sp~1!1Sp~2!1Sp~3!.

We will compute them separately up toO(e2) below. In
order to show the gauge independence of the final results
explicitly, we take the most general linear gauge condition
for electromagnetic fields to all diagram calculations in this
paper. Namely, theAm propagator with an arbitrary gauge
parametera is taken to be

DF
mn
~g!~x2y!5E d4k

~2p!4 DFmn
~g!~k!e2 ik~x2y!,

DF
mn
~g!~k!52

i

k2 Fgmn2~12a!
kmkn

k2 G . ~21!

First, we computeSp(1) ~Fig. 1!. From Eqs.~15!, ~12!, ~18!,
and ~9! we have

Sp~1!5 K pUTF i E d4x1Lggpp~x1!1
i 2

2!
2

3E d4x1d4x2Lgrpp~x1!Lrg~x2!1
i 3

3!
3

3E d4x1d4x2d4x3Lrrpp~x1!Lrg~x2!

Lrg~x3!GUp L
5

e2g2

4 K pU i E d4x@p1
2~x!

1p2
2~x!#

1

g2f p
2 H 2F2gmnDFmn

~gr!~x2y!ux5y

1
1

p2 gmnglr]l
x]r

yDFmn
~gr!~x2y!ux5yJ UpL ,

~22!

where

DFmn
~gr!~x2y!5E d4k

~2p!4 DFmn
~gr!~k!e2 ik~x2y!,

DFmn
~gr!~k!52

i

k2 F mr
4

~k22mr
2!2 S gmn2

kmkn

k2 D1a
kmkn

k2 G .
~23!

We call DF
mn
(gr)(x2y) the photon propagator withinr ~see

Appendix A for details!.
It is easy to check that Eq.~22! can be reobtained by the

following steps: First compute Fig. 1~a! by usingLggpp and
second substituteDF

mn
(gr)(x2y) for DF

mn
(g)(x2y) in it and then

arrive at Eq.~22! again. It is constructive that the substitution
of DF

mn
(g)→DF

mn
(gr) in the above is the consequence of VMD.

This rule is generally valid for all VMD processes in the
two-flavor case and it is useful for practical calculations.

Using Eq.~16! and substituting Eq.~23! into Eq.~22!, we
get the total contributions of Figs. 1~a!, 1~b!, and 1~c! to
mp1

2
2mp0

2 :

~mp1
2

2mp0
2

!15
2iSp~1!

^pu*d4x~p1
21p2

2!up&

5 i
e2

f p
2 E d4k

~2p!4 S F21
k2

2p2D
3F mr

4

k2~k22mr
2!2 ~D21!1

a

k2G , ~24!

whereD542e. According to the rule of dimensional regu-
larization, i.e., ’t Hooft–Veltman conjecture@28#, the last
term in Eq. ~24! will vanish. Therefore, (mp1

2
2mp0

2 )1 is
gauge independent.

Second, from Eqs.~19!, ~12!, and~15! and using the sub-
stitution ~9!, we have

FIG. 1. One-loop Feynman diagrams contributing to the electro-
magnetic mass difference betweenp1 andp0. The curly line is
the photon line.

FIG. 2. Same as Fig. 1.

FIG. 3. Same as Fig. 1.
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Sp~2!5 K pUTH i 2

2! E d4x1d4x2Lpag~x1!Lpag~x2!

1
i 3

3!
6E d4x1d4x2d4x3Lpar~x1!Lpag~x2!Lrg~x3!

1
i 4

4!
6E d4x1d4x2d4x3d4x4Lpar~x1!Lpar~x2!

3Lrg~x3!Lrg~x4!J Up L . ~25!

Straightforward calculation shows

Sp~2!52
e2g2

2g2f p
2 K pU E d4p pa~p!pa~2p!

3~2p!4G2~p2!Up L , ~26!

wherea51,2, and

pa~p!5
1

~2p!4 E d4x pa~x!e2 ipx, ~27!

G2~p2!5E d4k

~2p!4 S F21
k2

2p2D 2 gmn2
kmkn

ma
2

2k21ma
2

3 F mr
4

q2~q22mr
2!2 S gmn2

qmqn

q2 D1a
qmqn

q4 G .
~28!

Here q5p2k. On the p-mass shell,p25mp
2 50 ~chiral

limit !, so we have

Sp~2!52
e2g2

2g2f p
2 K pU E d4x pa~x!pa~x!Up L G2~p250!,

~29!

where *d4ppa(p)pa(2p)(2p)45*d4x pa(x)pa(x) @see
Eq. ~27!# has been used. From Eq.~28! the gauge-dependent
term of G2(p250) is

aE d4k

~2p!4 S F21
k2

2p2D 2 1

ma
2k2 .

This term is equal to zero according to ’t Hooft–Veltman
conjecture in dimensional regularization. Therefore,Sp(2) is
gauge independent. Thus, using Eq.~16!, we get

~mp1
2

2mp0
2

!252
ie2g2

g2f p
2 G2~p250!5 i

e2g2

g2f p
2 E d4k

~2p!4

3 S F21
k2

2p2D 2 mr
4~D21!

k2~k22mr
2!2~k22ma

2!
.

~30!

The Sp(3) corresponding to Fig. 3 reads

Sp~3!5 K pUTH i 2

2! E d4x1d4x2Lppg~x1!Lppg~x2!

1
i 3

3!
6E d4x1d4x2d4x3Lppr~x1!Lppg~x2!Lrg~x3!

1
i 4

4!
6E d4x1d4x2d4x3d4x4Lppr~x1!Lppr~x2!

3Lrg~x3!Lrg~x4!J Up L
52

e2

2F4 K pU E d4x pa~x!pa~x!Up L G3~p250!,

~31!

where

G3~p250!5E d4k

~2p!4 S F21
k2

2p2D 2 kmkn

k2

3F mr
4

k2~k22mr
2!2 S gmn2

kmkn

k2 D1a
kmkn

k4 G
5E d4k

~2p!4 a
1

k2 S F21
k2

2p2D 2

. ~32!

Using dimensional regularization, we haveG3(p250)50;
thenSp(3)50 and

~mp1
2

2mp0
2

!350. ~33!

The totalp12p0 mass difference is the sum of Eqs.~21!,
~30!, and~33!, which is

mp1
2

2mp0
2

5 i
e2

f p
2 E d4k

~2p!4 ~D21!mr
4

3

F21
k2

2p2

k2~k22mr
2!2

F 11
g2

g2

F21
k2

2p2

k22ma
2
G .

~34!

The integration calculation for Eq.~34! is standard. We get
the result of

mp1
2

2mp0
2

5
3aEMmr

4

8p f p
2 H g2

g2p2mr
2 S F21

ma
2

2p2D 1S 21
g2

g2p2D
3S F2

mr
2 1

1

3p2 28xrD 2
2g2

g2~ma
22mr

2!

3S F21
ma

2

2p2D 2S 1

mr
2 1

1

ma
22mr

2 ln
mr

2

ma
2D J , ~35!

whereaEM5e2/4p51/137 and

xr5S m2

mr
2D e/2 1

~4p!D/2GS 22
D

2 D . ~36!
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It is essential that the logarithmic divergence in Eq.~35! @or
Eq. ~36!# can be factorized by using the intrinsic parameterg
in this theory. Comparing Eq.~3! with Eq. ~36!, we have

xr5
1

8
g21

1

32p2 1
1

16p2 ln
f p

2

6~g2mr
22 f p

2 !
, ~37!

where Eq.~6! has been used. Wheng is determined,xr will
be fixed and the final result of Eq.~35! is finite.

The determination ofg can be done by takingf p , mr ,
and ma as inputs. Substituting f p50.186 GeV, mr

50.768 GeV, andma51.20 GeV into Eqs.~4! and ~6!, we
obtain

g50.39. ~38!

Then

mp1
2

2mp0
2

50.001 465 GeV252mp35.3 MeV, ~39!

which is in reasonable agreement with the experimental
value of 2mp34.6 MeV @22#.

III. a1
12a1

0 ELECTROMAGNETIC MASS DIFFERENCE

The interaction Lagrangians contributing to thea1
12a1

0

electromagnetic mass difference read

Lrraa52
2g2

g2 rm
j rn

k~aj makn2gmnaj lal
k !

1
g2

p2g4 rm
j rkm~d jkan

i ain2an
j akn!, ~40!

Lraa5
2

g S 12
g2

g2p2D e i jkam
j an

k]nr im2
2

g
e i jkrm

i an
j ~]makn

2g2]nakm!, ~41!

Lrap5
2

g
e i jkrm

i @c1p ja
km1c2~]np j]

makn2an
k]m]np j !#

1
2

g
e i jk~]mrn

i 2]nrm
i !@c3]m~aknp j !1c4]mp ja

kn#,

~42!

where

c15
g

f pg FF21S 1

2p222cgDma
2G , ~43!

c25
g

2 f pp2g S 12
2c

g D , ~44!

c35
3g

2 f pp2g S 12
2c

g D1
2gc

f p
, ~45!

c45
2gc

f p
. ~46!

The corresponding photon-a1 interaction Lagrangians
Lggaa , Lgaa , andLgap can be constructed by the substitu-
tion ~9! and Eqs.~40!–~42!. It is similar to the preceding
section that these Lagrangians andLrg @Eq. ~12!# provide the
dynamics for the mass splitting ofa1 due to electromagnetic
interactions. The Feynman diagrams are shown in Figs. 4–6.
The correspondingS matrices are denoted asSa(1), Sa(2),
andSa(3) and

Sa5Sa~1!1Sa~2!1Sa~3!. ~47!

We calculateSa(1), Sa(2), andSa(3) separately in the fol-
lowing.

For Fig. 4, from Eqs.~40!, ~9!, and~12! we have

Sa~1!5 K aUTF i E d4x1Lggaa~x1!

1
i 2

2!
2E d4x1d4x2Lgraa~x1!Lrg~x2!1

i 3

3!
3

3E d4x1d4x2d4x3Lrraa~x1!Lrg~x2!Lrg~x3!GUaL .

~48!

Using Eq.~15!, we get

FIG. 4. One-loop Feynman diagrams contributing to the electro-
magnetic mass difference betweena1

1 and a1
0. The curly line is

the photon line.

FIG. 5. Same as Fig. 4.

FIG. 6. Same as Fig. 4.
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~ma1
2

2ma0
2

!1

5 ie2
g2^au*d4x aiImaiInua&2^au*d4x aiIlal

iI ua&gmn

^au*d4x am
iI aiImua&

3E d4k

~2p!4

mr
4

k2~k22mr
2!2 S gmn2

kmkn

k2 D , ~49!

whereiI51,2.
For Fig. 5, from Eqs.~41!, ~9!, and~12! we have

Sa~2!5 K aUTH i 2

2! E d4x1d4x2Laag~x1!Laag~x2!

1
i 3

3!
6E d4x1d4x2d4x3Laar~x1!Laag~x2!Lrg~x3!

1
i 4

4!
6E d4x1d4x2d4x3d4x4Laar~x1!Laar~x2!

3Lrg~x3!Lrg~x4!J UaL . ~50!

Using Eq.~15!, we obtain

~ma1
2

2ma0
2

!25
ie2

^au*d4x aiImam
iI ua&

E d4k

~2p!4

1

k222p•k

mr
4

k2~k22mr
2!2 H K aU E d4x aiImam

iI UaL
3F4ma

21~b212bg2!k212g4p•k2
4~pk!2

k2 2
1

ma
2 @bk22~b2g2!p•k#2G

1 K aU E d4x am
iI an

iI UaL kmknF2~3b224b14!1D~b1g2!214g226bg222g4

2
2g4p•k

k2 1
1

ma
2k2 @bk222~12g2!p•k#2G J , ~51!

whereb512g2/p2g2 and p is the external momentum of
a1 fields. The Fourier transformation for mass-shella1 fields
is

am
i ~p!5

1

~2p!4 E d4x am
i ~x!e2 ipx,

with

p25ma
2 , pmam

i ~p!50. ~52!

For Fig. 6, from Eqs.~42!, ~9!, and~12!, we have

Sa~3!5 K aUTH i 2

2! E d4x1d4x2Lapg~x1!Lapg~x2!

1
i 3

3!
6E d4x1d4x2d4x3Lapr~x1!Lapg~x2!Lrg~x3!

1
i 4

4!
6E d4x1d4x2d4x3d4x4Lapr~x1!Lapr~x2!Lrg

3~x3!Lrg~x4!J UaL ~53!

and

~ma1
2

2ma0
2

!35
2 ie2

^au*d4xam
iI aiImua&

E d4k

~2p!4

1

~p2k!2

3
mr

4

k2~k22mr
2!2 H K aU E d4x am

iI aiImUaL
3~c123c2p•k1c3k2!2

1 K aU E d4x am
iI an

iI UaL kmkn

3Fc2ma
22

~c122c2p•k1c3k2!2

k2 G J .

~54!

It needs to be checked that (ma1
2

2ma0
2 )1,2,3 are gauge inde-

pendent. The gauge-dependent terms of (ma1
2

2ma0
2 )1 ,

which come from Fig. 4~a!, will vanish according to the rule
of dimensional regularization.

The gauge-dependent terms inSa(2) @to be denoted as
Sa(2)G# come from Fig. 5~a!. Using VMD, the correspon-
dent photon-meson interaction Lagrangian is

Lgaa5ebe3 jkam
j an

k]nAm2ee3 jkAman
j ~]makn2g2]nakm!.

~55!

Then
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Sa~2!G5a8
e2

2 K aU E d4x am
iI aiImUaL E d4k

~2p!4

1

k2 H 12
2pk

k2

1
k2

D F2
g4

k2 2
~12g2!2

ma
2k2 ~k222pk!G J , ~56!

wherea8 is gauge parameter. ’t Hooft–Veltman conjecture
will make sure thatSa(2) is gauge independent.

The photon-meson interaction Lagrangian contributing to
the gauge-dependent termSa(3)G @Fig. 6~a!# is

Lgap5ee3 jkAm@c1p ja
km1c2~]np j]

man
k2akn]m]np j !#.

~57!

We will have

Sa~3!G52a8
e2

2 K aU E d4x am
iI aiImUaL E d4k

~2p!4

1

k2

3F ~c12c2ma
2!2

k2~p2k!2 1
c2~c12c2ma

2!

k2 1
c2

2~p2k!2

k2 G .
~58!

The third term will vanish because of dimensional regular-
ization. By Eq.~5! and the definition ofc1 andc2 , we obtain
that c12c2ma

250. ThusSa(3)G50.
The g has been determined in Eq.~38! and the logarith-

mic divergences in the above Feynman integrations@Eqs.
~49!, ~51!, and~54!# can also be factorized by using Eq.~37!,
so there are no further unknown parameters in the expres-
sions of (ma1

2
2ma0

2 )1,2,3. After a long but straightforward
calculation, we can get the final results for (ma1

2

2ma0
2 )1,2,3, whose form is very tedious. The numerical re-

sults for them are

~ma1
2

2ma0
2

!1520.000 648 GeV2,

~ma1
2

2ma0
2

!2520.002 688 GeV2,

~ma1
2

2ma0
2

!350.001 896 GeV2. ~59!

Totally,

~ma1
2

2ma0
2

!EM520.001 440 GeV2522ma30.57 MeV.
~60!

IV. K12K0 ELECTROMAGNETIC MASS DIFFERENCE
AND THE VIOLATION OF DASHEN’S THEOREM

In this section and Secs. V and VI our method is extended
to the studies of the electromagnetic self-energies of the
strange-flavor mesons. As mentioned above, the large
strange quark mass will result in the SU~3! symmetry break-
ing playing an important role in these calculations. Dashen’s
theorem, which states that the electromagnetic contributions
to the difference between the mass square of kaons and pions
are equal, is valid only in the chiral SU~3! limit. Corrections
to the electromagnetic self-energies to the leading order in
quark mass expansion are sure to lead to the violation of
Dashen’s theorem. Therefore, it is necessary to evaluate the
electromagnetic self-energies of the strange-flavor mesons
and the corrections to Dashen’s theorem to the order ofms or
mK

2 .
From Eq. ~3! in Ref. @11# (LRe), the interaction

Lagrangians that can contribute to the electromagnetic mass
difference betweenK1 andK0 are

LKKvv5
1

f k
2g2

H 2F2r3mvm
8 ~K1K22K0K̄0!1

1

p2 ]nr3m]nvm
8 ~K1K22K0K̄0!1F 11S 12

2c8

g D 2

p2

28c82G r3mvm
8 ~]nK1]nK22]nK0]nK̄0!2

2S 12
2c8

g D
p2 rn

3vm
8 ~K1]mnK22K0]mnK̄01H.c.!

14c82rm
3 vn

8~]mK1]nK22]mK0]nK̄01H.c.!J , ~61!

LKKv5
i

g
a1@rm

3 ~K1]mK22K0]mK̄0!1vm
8 ~K1]mK21K0]mK̄0!#2

i

g
a2@rm

3 ~K1]2]mK22K0]2]mK̄0!1vm
8 ~K1]2]mK2

1K0]2]mK̄0!#1
i

g
a3@rm

3 ~]mnK1]nK22]mnK0]nK̄0!1vm
8 ~]mn

K1]nK21]mnK0]nK̄0!#1H.c., ~62!
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LKK1v5
i

g
b1@rm

3 ~K1K1
2m2K0K̄1

0m!1vm
8 ~K1K1

2m1K0K̄1
0m!#1

i

g
b2@rn

3~]mnK1K1m2]mnK0K̄1m
0 !1vn

8~]mnK1K1m

1]nuK0K̄1m
0 !#1

i

g
b3@rm

3 ~K1
1m]2K22K1

0m]2K̄0!1vm
8 ~K1

1m]2K21K1
0m]2K̄0!#2

i

g
b4@rm

3 ~K1]2K1
2m

2K0]2K̄1
0m!1vm

8 ~K1]2K1
2m1K0]2K̄1

0m!#2
i

g
b3@rn

3~K1]mnK1m
2 2K0]mnK̄1m

0 !1vn
8~K1]mnK1m

2 1K0]mnK̄1m
0 !#

2
i

g
b5@rm

3 ~]nK1m
1 ]nK22]nK1m

0 ]nK̄0!1vm
8 ~]nK1m

1 ]nK21]nK1m
0 ]nK̄0!#1H.c., ~63!

with

a15

S 12
2c8

g DF2

f k
2 ,

a25

S 12
2c8

g D
2p2f k

2 1

3S 12
2c8

g D 2

2p2f k
2 2

4c82

f k
2 ,

a35

S 12
2c8

g D 2

p2f k
2 2

4c82

f k
2 ~64!

and

b15
gF2

g fk
, b25

g

2p2g fk
S 12

2c8

g D ,

b35
3g

2p2g fk
S 12

2c8

g D1
2gc8

f k
, b45

g

2p2g fk
,

b55
3g

2p2g fk
S 12

2c8

g D1
4gc8

f k
. ~65!

Here v denotes the vector mesons includingr, v, and f.
vm

8 5vm2&fm and ]mn5]m]n. Distinguishing from the
case of massless pions system, the nonzero strange quark
mass, i.e.,mk

2Þ0, will bring about the contributions to
mK1

2
2mK0

2 from the abnormal part of the effective Lagrang-
ian. These vertices have been found by the evaluation of
(1/g)Kam* ^c̄lagmc& in Ref. @11#:

LK* Kv52
3

2p2g2

2

f k
emnabKm

1]bK2S 1

2
]nra

31
1

2
]nva

1
&

2
]nfaD2

3

2p2g2

2

f k
emnabKm

0 ]bK̄0S 2
1

2
]nra

3

1
1

2
]nva1

&

2
]nfaD1H.c. ~66!

Here we adopt the following definitions for the strange-
flavor mesons:

K65
1

&
~K46 iK 5!, K0~K̄0!5

1

&
~K66 iK 7!,

K1m
6 5

1

&
~K1m

4 6 iK 1m
5 !, K1m

0 ~K̄1m
0 !5

1

&
~K1m

6 6 iK 1m
7 !,

Km
65

1

&
~Km

4 6 iK m
5 !, Km

0 ~K̄m
0 !5

1

&
~Km

6 6 iK m
7 !. ~67!

The interaction Lagrangians between the photon and
K-mesonLggKK , LgKK , LgK1K , andLgK* K can be obtained
by the substitutions~9!–~11! and Eqs.~61!–~63! and ~66!.
The Feynman diagrams contributing to the electromagnetic
mass difference betweenK1 and K0 are shown in Figs.
7–10. The correspondingS matrices are denoted asSK(1),
SK(2), SK(3), andSK(4), respectively.

In Sec. II we obtainedSp by substitutingDF
mn
(gr)(x2y) for

DF
mn
(g)(x2y) after computing Figs. 1~a!, 2~a!, and 3~a!. Here

the involved vector mesons are not onlyr mesons but alsov
andf mesons. So it is not as simple as in the case of pions.
Practical calculations will show that we can getSK by chang-
ing the form of this substitution~see Appendix B!. Specifi-
cally, for SK(1), SK(2), andSK(3) coming from theLRe,
the corresponding propagator of the substitution should be
DF

1mn
(gv) instead ofDF

mn
(gr):

DF
1mn
~gv !~x2y!5E d4k

~2p!4 DF
1mn
~gv !~k!e2 ik~x2y!,

FIG. 7. One-loop Feynman diagrams contributing to the electro-
magnetic mass difference betweenK1 andK0. The curly line is
the photon line andv denotes neutral vector mesonsr, v, andf.
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DF
1mn
~gv !~k!5 2

i

k2 H F1

3

mr
2mv

2

~k22mr
2!~k22mv

2 !

1
2

3

mr
2mf

2

~k22mr
2!~k22mf

2 !G S gmn2
kmkn

k2 D
1a

kmkn

k2 J . ~68!

Obviously, under the SU~3! limit mr5mv5mf , DF
1mn
(gv) will

go back DF
mn
(gr) . However, for SK(4), which receives the

contributions from the abnormal part LagrangianLIm , the
substituting propagator should beDF

2mn
(gv) :

DF
2mn
~gv !~x2y!5E d4k

~2p!4 DF
2mn
~gv !~k!e2 ik~x2y!,

DF
2mn
~gv !~k!52

i

k2 H F1

3

mr
2mv

2

~k22mr
2!~k22mv

2 !

2
2

3

mr
2mf

2

~k22mr
2!~k22mf

2 !G S gmn2
kmkn

k2 D
1a

kmkn

k2 J . ~69!

Note thatDF
2mn
(gv) is different fromDF

1mn
(gv) ~see Appendix B!.

Thus it is easy to obtain the contributions of Figs. 7–10 to
mK1

2
2mK0

2 , respectively. The contribution of Fig. 7 is

~DmK
2 !15~mK1

2
2mK0

2
!15

iSK~1!

^Ku*d4x K1K2uK&

5 i
e2

f k
2 E d4k

~2p!4 S FK
2 1

k2

2p2D ~D21!

3F1

3

mr
2mv

2

k2~k22mr
2!~k22mv

2 !

1
2

3

mr
2mf

2

k2~k22mr
2!~k22mf

2 !G , ~70!

with

FK
2 5F21F 11S 12

2c8

g D1S 12
2c8

g D 2

2p2 23c82G p2,

wherep is the external momentum of kaons andp25mK
2 on

the K-mass shell. The contribution of Fig. 8 is

~DmK
2 !25~mK1

2
2mK0

2
!25

iSK~2!

^Ku*d4xK1K2uK&

52 ie2E d4k

~2p!4

XmXnS gmn2
kmkn

k2 D
~p2k!22mK

2

3F1

3

mr
2mv

~k22mr
2!~k22mv

2 !

1
2

3

mr
2mf

2

~k22mr
2!~k22mf

2 !G , ~71!

with

Xm5a1~qm1pm!1a2~q2qm1p2pm!2a3~p•q!~qm1pm!,
~72!

q5p2k.

The contribution of Fig. 9 is

~DmK
2 !35~mK1

2
2mK0

2
!35

iSK~3!

^Ku*d4xK1K2uK&

5 ie2E d4k

~2p!4 Ymn

gmn2
qmqn

mK1

2

q22mK1

2

3F1

3

mr
2mv

2

k2~k22mr
2!~k22mv

2 !

1
2

3

mr
2mf

2

k2~k22mr
2!~k22mf

2 !G , ~73!

where

Ymn5~b11b3p21b4q22b5p•q!2S gmn2
kmkn

k2 D22~b1

1b4q2!b2pmpn1b3
2qmqnS p22

~p•k!2

k2 D12~b1

1b4q22b5p•q!b3pmqn22~b11b4q22b5p•q!

FIG. 8. Same as Fig. 7. FIG. 9. Same as Fig. 7.

FIG. 10. Same as Fig. 7.
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b2

p•k

k2 pnqm1b3

p•k

k2 kmqnD ~74!

andq5p2k.
The contribution of Fig. 10 is

~DmK
2 !45~mK1

2
2mK0

2
!45

iSK~4!

^Ku*d4xK1K2uK&

52
9ie2

2p4g2f k
2 E d4k

~2p!4

p2k22~p•k!2

~p2k!22mK*
2

3F1

3

mr
2mv

2

k2~k22mr
2!~k22mv

2 !

2
2

3

mr
2mf

2

k2~k22mr
2!~k22mf

2 !G . ~75!

The gauge independence of (mK1
2

2mK0
2 )1,2,3,4should be ex-

amined. The gauge-dependent terms in (mK1
2

2mK0
2 )1 will

vanish according to ’t Hooft–Veltman conjecture, which is
similar to the cases ofSp(1) andSa(1).

The gauge-independent terms inSK(2) @to be denoted as
SK(2)G# come from Fig. 8~a!. Using VMD, LgKK can be
constructed fromLKKv . Thus we have

SK~2!G52ae2K KU E d4x K1K2UK L
3E d4k

~2p!4

XmXnkmkn

~q22mK
2 !~k2!2 . ~76!

From Eq.~72! we have

Xmkm52a1~q22p2!2a2~p22p•k1k2!~q22p2!

1a3~p22p•k!~q22p2!.

The mass shell condition leads top25mK
2 , so the termq2

2mK
2 in the denominator ofSK(2)G will be reduced. This

means that the contribution ofSK(2)G is zero in the frame-
work of the dimensional regularization.

Likewise, we will obtainSK(3)G @Fig. 9~a!#, which is

SK~3!G5ae2K KU E d4x K1K2UK L E d4k

~2p!4

3
1

q4

gmn2
kmkn

mK1

2

k22mK1

2 ~W1pm2W2km!~W1pn2W2kn!

5ae2K KU E d4x K1K2UK L E d4k

~2p!4

1

q4

3H W1
2

p22
~p•k!2

mK1

2

k22mK1

2 12W1W2

p•k

mK1

2 2W2
2 k2

mK1

2
J ,

~77!

where

W15b11~b42b22b6!k21b2mK
2 ,

W25b11b4k22b6p•k,

b652gc8 f k .

The contributions of the second and third terms in Eq.~77!
are zero because of ’t Hooft–Veltman conjecture. Since our
calculations are only to the order ofmK

2 , the denominator of
the first term in Eq.~77!, k22mK1

2 , can also be reduced. Here

the relationb11(b42b22b6)mK1

2 50, which can be easily

obtained by Eq.~7!, has been used. ThusSK(3) is gauge
independent.

The gauge-dependent termsSK(4)G @Fig. 10~a!#, which
receive contributions from the abnormal part of the effective
LagrangianLKK* g , are

SK~4!G52a
3e2

4p4g2f k
2 K KU E d4x K1K2UK L

3E d4q

~2p!4 pbpb8e
mnabem8n8a8b8

3

gmm82
~p2q!m~p2q!m8

mK*
2

~p2q!22mK*
2

qnqn8qaqa8
q4 .

~78!

It is obvious thatSK(4)G will vanish because of the totally
antisymmetric tensoremnab .

From Eqs.~70!, ~71!, ~73!, and ~75!, it is not difficult to
conclude that the contributions ofSK(2) andSK(4) are pro-
portional to p2. So in the chiral limit p25mK

2 50, only
SK(1) andSK(3) contribute tomK1

2
2mK0

2 . Then we have

DmKms50
2 5 i

e2

f k
2 E d4k

~2p!4 ~D21!S F21
k2

2p2D

3S 11
g2

g2

F21
k2

2p2

k22mK1

2 D
3F1

3

mr
2mv

2

k2~k22mr
2!~k22mv

2 !

1
2

3

mr
2mf

2

k2~k22mr
2!~k22mf

2 !G ; ~79!

Taking f k5 f p , mr5mv5mf , and mK1
5ma , the above

equation reduces to Eq.~34!. This indicates that Dashen’s
theorem is automatically obeyed in the chiral SU~3! limit of
the present theory. However, SU~3! symmetry-breaking ef-
fects will lead to the violation of Dashen’s theorem. The total
DmK

2 @the sum of (mK1
2

2mK0
2 )1,2,3,4#, which is evaluated to

the order ofmK
2 , can be read off from Eqs.~70!, ~71!, ~73!,

and~75!. It is straightforward to perform these Feynman in-
tegrations, although the calculating processes and the results
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are not as simple as that in the case of pions. We do not
present the final expressions of (mK1

2
2mK0

2 )1,2,3,4here. Note
that only the logarithmic divergences are involved in the
above Feynman integrations, which can be factorized by us-
ing Eq.~37!. f k is determined from Eqs.~7! and~8!, not as an
input, andg50.39 still holds. Numerically, the results of
Eqs.~70!, ~71!, ~73!, and~75! are

~mK1
2

2mK0
2

!150.002 193 GeV2,

~mK1
2

2mK0
2

!2520.000 430 GeV2,

~mK1
2

2mK0
2

!350.000 571 GeV2,

~mK1
2

2mK0
2

!450.000 139 GeV2.

Totally, we have

~DmK
2 !EM5~mK1

2
2mK0

2
!EM50.002 473 GeV2

52mK32.5 MeV. ~80!

Then the correction to Dashen’s theorem beyond the chiral
limit is

rEM5
~mK1

2
2mK0

2
!EM

~mp1
2

2mp0
2

!EM
51.68,

~DmK
2 !EM2~Dmp

2 !EM51.0831023 GeV2. ~81!

The results show a rather large violation of Dashen’s theo-
rem, which is in correspondence with the one by Donoghue
et al. @5# and Bijnenset al. @6,29#.

It has been known that the mass difference betweenK1

andK0 receives the contributions from both electromagnetic
self-energy and mass difference ofmu andmd , i.e.,

~mK1
2

2mK0
2

!expt5~mK1
2

2mK0
2

!EM1~mK1
2

2mK0
2

!QM .
~82!

Employing the value of (mK1
2

2mK0
2 )EM and experimental

data of the mass difference betweenK1 and K0 @22#, we
obtain

~mK1
2

2mK0
2

!QM520.006 346 GeV2522mK36.4 MeV.
~83!

The use of the result of (mK1
2

2mK0
2 )QM together with Eq.

~17! will yield mass ratios of light quarks

mu1md

ms1m̂
5

f p
2 mp

2

f k
2mK

2 50.070,

md2mu

ms2m̂
5

f k
2~mK0

2
2mK1

2
!QM

f k
2mK

2 2 f p
2 mp

2 50.028,

where m̂5(mu1md)/2. These above results can be trans-
lated into

md

ms
50.050,

md2mu

ms
50.027,

mu

md
50.44.

The results are in agreement with the data of light quark
mass ratios@19#. Similar results have been given recently by
Bijnens et al. @30#, Leutwyler @31#, and Duncanet al. @32#.
The value ofmu /md50.44 reflects the breaking of isospin
symmetry in the present theory.

Finally, using the value ofms5175616 MeV, which is
obtained with QCD sum rules@33# in the modified minimal
subtraction (MS) scheme at scalem51 GeV, we can calcu-
late mu andmd with the above mass ratios. The result reads

mu~1 GeV2!53.860.3 MeV,

md~1 GeV2!58.760.8 MeV.

V. K1
12K1

0 ELECTROMAGNETIC MASS DIFFERENCE

The LagrangiansLK1K1vv , LK1K1v , and LK1Kv , which

contribute to the electromagnetic self-energies of theK1 me-
son, are

LK1K1vv52
2

g2 Frm
3 v8m~K1n

1 K1
2n2K1n

0 K̄1
0n!

2
g2

2
rm

3 vn
8~K1

1mK1
2n2K1

0mK̄1
0n1H.c.!G ,

~84!

FIG. 11. One-loop Feynman diagrams contributing to the elec-
tromagnetic mass difference betweenK1

1 andK1
0. The curly line

is the photon line andv denotes neutral vector mesonsr, v, andf.

FIG. 12. Same as Fig. 11.

FIG. 13. Same as Fig. 11.
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LK1K1v5
i

g S 12
g2

p2g2D [ ]nrm
3 ~K1

1mK1n
2 2K1

0mK̄1n
0 !

1]nvm
8 ~K1

1mK1n
2 1K1

0mK̄1n
0 !] 2

i

g
rn

3@K1
1m~]nK1m

2

2g2]mK1
2n!2K1

0m~]nK̄1m
0 2g2]mK̄1

0n!#

2
i

g
vn

8@K1
1m~]nK1m

2 2g2]mK1
2n!1K1

0m~]nK̄1m
0

2g2]mK̄1
0n!#1H.c., ~85!

LKK1v5
i

g
b1[rm

3 ~K1K1
2m2K0K̄1

0m!1vm
8 ~K1K1

2m

1K0K̄1
0m!] 1

i

g
b2@rn

3~]mnK1K1m
2 2]mnK0K̄1m

0 !

1vn
8~]mnK1K1m

2 1]mnK0K̄1m
0 !#

1
i

g
b3@rm

3 ~K1
1m]2K22K1

0m]2K̄0!1vm
8 ~K1

1m]2K2

1K1
0m]2K̄0!#2

i

g
b4@rm

3 ~K1]2K1
2m2K0]2K̄1

0m!

1vm
8 ~K1]2K1

2m1K0]2K̄1
0m!#

2
i

g
b5@rm

3 ~]nK1m
1 ]nK22]nK1m

0 ]nK̄0!

1vm
8 ~]nK1m

1 ]nK21]nK1m
0 ]nK̄0!#1H.c. ~86!

The photon-meson interaction Lagrangians can be obtained
by combining the above Lagrangians with the substitutions
~9!–~11! and the corresponding Feynman diagrams have
been shown in Figs. 11–13. The examination of gauge inde-
pendence can be done in the same way as in the previous
sections.

From Fig. 11 we have

~mK
1
1

2
2mK

1
0

2
!15 ie2

g2^K1u*d4x K1
m1K1

n2uK1&2^K1u*d4x K1
l1K1l

2 uK1&g
mn

^K1u*d4xK1m
1 K1

m2uK1&

3E d4k

~2p!4 S gmn2
kmkn

k2 D F1

3

mr
2mv

2

k2~k22mr
2!~k22mv

2 !
1

2

3

mr
2mf

2

k2~k22mr
2!~k22mf

2 !G . ~87!

From Fig. 12 we obtain

~mK
1
1

2
2mK

1
0

2
!25

ie2

^K1u*d4xK1
m1K1m

2 uK1&
E d4k

~2p!4

1

k222p•k H K K1U E d4xK1
m1K1m

2 UK1L
3F4mK1

2 1~b212bg2!k212g4p•k2
4~p•k!2

k2 2
1

mK1

2 @bk22~b2g2!p•k#2G
1 K K1U E d4xK1m

1 K1n
2 UK1L kmknF2~3b224b14!1D~b1g2!214g226bg222g42

2g4p•k

k2

1
1

mK1

2 k2 @bk222~12g2!p•k#2G J F1

3

mr
2mv

2

k2~k22mr
2!~k22mv

2 !
1

2

3

mr
2mf

2

k2~k22mr
2!~k22mf

2 !G . ~88!

From Fig. 13 we get

~mK
1
1

2
2mK

1
0

2
!35

2 ie2

^K1u*d4x K1m
1 K1

m2uK1&
E d4k

~2p!4

1

~p2k!22mK
2 H K K1U E d4x K1m

1 K1
m2UK1L

3~b1823b2p•k1b3k2!21 K K1U E d4x K1m
1 K1n

2 UK1L kmknFb2mK1

2 2
~b1822b2p•k1b3k2!2

k2 G J
3F1

3

mr
2mv

2

k2~k22mr
2!~k22mv

2 !
1

2

3

mr
2mf

2

k2~k22mr
2!~k22mf

2 !G , ~89!
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with

b185b11~b31b42b5!mK1

2 .

Comparing Eqs.~87!–~89! and Eqs.~49!, ~51!, and ~54!
and taking f k5 f p , mK

2 5mp
2 50, mr5mv5mf , and ma

5mK1
, we can conclude that

~ma1
2

2ma0
2

! i5~mK
1
1

2
2mK

1
0

2
! i , i 51,2,3.

This means that the square mass difference coming from the
electromagnetic interaction between the charged axial-vector
mesons and their corresponding neural partners are equal in
the chiral SU~3! limit, i.e.,

~ma1
2

2ma0
2

!EM5~mK
1
1

2
2mK

1
0

2
!EM , ~90!

which is similar to Dashen’s theorem for the pseudoscalarp
andK mesons. Certainly, the SU~3! symmetry breaking will
bring about the violation of the above equation.

After carrying out the Feynman integrations of Eqs.~87!–
~89!, the numerical results formK

1
1

2
2mK

1
0

2
are

~mK
1
1

2
2mK

1
0

2
!1520.000 781 GeV2,

~mK
1
1

2
2mK

1
0

2
!2520.003 474 GeV2,

~mK
1
1

2
2mK

1
0

2
!350.001 252 GeV2.

Thus the correction of the electromagnetic mass toK1(1400)
mesons is

~mK
1
1

2
2mK

1
0

2
!EM520.003 003 GeV2522mK1

31.1 MeV.

~91!

This result gives a very large violation of Eq.~90!:

~mK
1
1

2
2mK

1
0

2
!EM

~ma1
2

2ma0
2

!EM
52.08. ~92!

VI. K* 12K* 0 ELECTROMAGNETIC MASS DIFFERENCE

The Lagrangians contributing tomK* 12mK* 0 come from
both the normal part of the effective LagrangianLRe and the
abnormal partLIm . LKK* v deriving fromLIm is exactly Eq.
~66!:

LK* K* vv52
2

g2 rm
3 v8m~Kn

1K2n2Kn
0K̄0n!

1
1

g2 rm
3 vn

8~K1mK2n2K0mK̄0n1H.c.!,

~93!

LK* K* v5
i

g
@]nrm

3 ~K1mK2n2K0mK̄0n!1]nvm
8 ~K1mK2n

1K0mK̄0n!#2
i

g
rn

3@Km
1~]nK2m2]mK2n!

2Km
0 ~]nK̄0m2]mK̄0n!#2

i

g
vn

8@Km
1~]nK2m

2]mK2n!1Km
0 ~]nK̄0m2]mK̄0n!#1H.c. ~94!

Substitutions~9!–~11! together with Eqs.~66!, ~93!, and~94!
will produce the photon–K* -meson interaction Lagrangians
LK* K* gg , LK* K* g , andLK* Kg . The one-loop Feynman dia-
grams contributing to electromagnetic mass splitting ofK* 1

and K* 0 are shown in Figs. 14–16. The gauge-dependent
terms from Figs. 14~a! and 15~a! will vanish in the frame-
work of dimensional regularization and one from Fig. 16 will
also vanish due to the totally antisymmetric tensoremnab in
Eq. ~66!. It is straightforward to evaluate the contributions to
mK* 1

2
2mK* 0

2 from Figs. 14–16 one by one.
The contribution of Fig. 14 is

~mK* 1
2

2mK* 0
2

!152
i9e2

4 E d4q

~2p!4

3F1

3

mr
2mv

2

q2~q22mr
2!~q22mv

2 !

1
2

3

2mr
2mf

2

q2~q22mr
2!~q22mf

2 !G . ~95!

The contribution of Fig. 15 is

FIG. 14. One-loop Feynman diagrams contributing to the elec-
tromagnetic mass difference betweenK* 1 and K* 0. The curly
line is the photon line andv denotes neutral vector mesonsr, v,
andf.

FIG. 15. Same as Fig. 14.
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~mK* 1
2

2mK* 0
2

!25
ie2

^K* u*d4x Km
1K2muK* &

E d4q

~2p!4 H K K* U E d4x Km
1Km2UK* L Fk22

~k2!2

mK*
2 14p214q21

4~p•q!2

mK*
2

2
4q2p•q

mK*
2 2

4~p•q!2

q2 G1 K KU E d4x Km
1Kn

2UK* L qmqnF81
4p•q

mK*
2 2

4~p•q!2

q2mK*
2 2

k2

q2

1
~k2!2

q2mK*
2 G J 1

k22mK*
2 F1

3

mr
2mv

2

q2~q22mr
2!~q22mv

2 !
1

2

3

mr
2mf

2

q2~q22mr
2!~q22mf

2 !G , ~96!

wherep is the external momentum ofK* mesons andk5p2q. For mass-shellK* mesons,p25mK*
2 andpmKm(p)50. Here

Km(p) is the Fourier transformation of theK* -mesons field

Km~p!5
1

~2p!4 E d4x Km~x!e2 ipx.

The contribution of Fig. 16 is

~mK* 1
2

2mK* 0
2

!35
ie2

^K* u*d4x Km
1K2muK* &

9

4p4g2f k
2 E d4q

~2p!4 H K K* U E d4x Km
1K2mUK* L @p2q22~p•q!2#

2 K K* U E d4x Km
1Kn

2UK* L qmqnp2J 1

k22mK
2 F1

3

mr
2mv

2

q2~q22mr
2!~q22mv

2 !
2

2

3

mr
2mf

2

q2~q22mr
2!~q22mf

2 !G .
~97!

The Feynman integrations of (mK* 1
2

2mK* 0
2 )1,3 are finite;

only the logarithmic divergence emerges in (mK* 1
2

2mK* 0
2 )2 , which can be factorized by using Eq.~37!. Per-

forming these Feynman integrations is standard. The numeri-
cal results are

~mK* 1
2

2mK* 0
2

!1520.000 938 GeV2,

~mK* 1
2

2mK* 0
2

!2520.001 547 GeV2,

~mK* 1
2

2mK* 0
2

!3520.000 662 GeV2.

The electromagnetic mass correction to a total ofK* (892)
mesons is

~mK* 1
2

2mK* 0
2

!EM520.003 147 GeV2

522mK* 31.76 MeV. ~98!

However, the mass difference betweenK* 1 and K* 0 re-
ceives contributions not only from the virtual photon ex-
change, but also from the other nonelectromagnetic interac-
tions, such as isospin symmetry breaking, which is similar to
the case of pseudoscalarK mesons. So we have

~mK* 12mK* 0!expt5~mK* 12mK* 0!EM

1~mK* 12mK* 0!nonEM. ~99!

Using the experimental value of (mK* 12mK* 0)expt526.7
61.2 MeV @22#, we obtain

~mK* 12mK* 0!nonEM524.9461.2 MeV. ~100!

The nonelectromagnetic mass difference of (mK* 1

2mK* 0)nonEM, which comes from isospin breaking effects,
has been evaluated@27,34#. In Ref. @27#, Schechteret al.
predicted that (mK* 12mK* 0)nonEM would be from
22.04 MeV to26.78 MeV. By choosing the best-fit param-
eter, they concluded that (mK* 12mK* 0)nonEM5
24.47 MeV, which is close to our result of Eq.~100!.

VII. SUMMARY AND DISCUSSION

In the framework of the present theory, the dynamics of
meson fields comes from the quark-loop integrations within
mesonic background fields. The logarithmic divergence due
to the quark-loop integrations is absorbed into the parameter
g @Eq. ~3!# in this truncated field theory. Thus both meson’s
effective Lagrangians with VMD and criteria to factorize the
logarithmic divergences in the loop calculations are well es-
tablished. In this paper, by using this theory, we have com-
puted all one-loop diagrams contributing to the electromag-
netic mass splitting of the low-lying mesons including
pseudoscalar mesonsp and K, axial-vector mesonsa1 and
K1(1400), and vector mesonK* (892). Fortunately, no other
higher-order divergences but the logarithmic divergences
emerge in the Feynman integrations of the above loop dia-
grams. Therefore, it is reasonable to factorize these logarith-FIG. 16. Same as Fig. 14.
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mic divergences by using the intrinsic parameterg in this
theory, which is determined by the experimental values of
f p , mr , andma1

. Then it is unnecessary to introduce other
additional parameters or counterterms into this theory to ab-
sorb the mesonic loop divergences. The dimensional regular-
ization has been employed and the gauge independence of
the calculations is examined.

The electromagnetic mass splittings ofp anda1 are cal-
culated in the chiral limit because of the smallness ofu and
d quark masses, and the result ofmp12mp0 is close to the
experimental data. However, the electromagnetic mass split-
tings of the strange-flavor mesonsK, K1 , andK* have been
evaluated to the order ofms or mK

2 because of the large
strange quark mass. Thus a rather large violation of Dashen’s
theorem@which holds in the chiral SU~3! limit of the present
theory# has been revealed at leading order in the quark mass
expansion. The mass ratios of light quarks have been calcu-
lated and masses ofu,d quarks have been estimated by em-
ploying the value ofms obtained with QCD sum rules. It has
been found that there exists a different relation for axial-
vector mesons, i.e., (ma1

2
2ma0

2 )EM5(mK
1
1

2
2mK

1
0

2
)EM is

obeyed in the chiral SU~3! limit. Moreover, the nonelectro-
magnetic mass difference betweenK* 1 and K* 0 is esti-
mated by using the experimental value ofmK* 12mK* 0 with
(mK* 12mK* 0)EM calculated in this paper.

The electromagnetic self-energies of the other low-lying
mesons, such as vector mesonsr,v,f~1020! and pseudosca-
lar mesonsh,h8(960), also need to be evaluated. However,
the quadratic or higher-order divergences will emerge in the
Feynman integrations of the loop calculations ofr, v, andf.
It is unsuitable to factorize these higher-order divergences by
the parameterg in which only the logarithmic divergence is
involved. As forh and h8, the U~1! anomaly problem and
the mixing of h and h8 should be taken into account. The
investigation on these problems is beyond the scope of the
present work.
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APPENDIX A: FEYNMAN RULES AND THE PHOTON
PROPAGATOR WITHIN r

The propagators taken in this paper are as follows: the
pseudoscalar-meson fields

^0uTf~x!f~y!u0&5E d4k

~2p!4 DF~k!e2 ik~x2y!,

DF~k!5
i

k22m21 i e
~A1!

and the vector-meson fields

^0uT~Vm
i ~x!Vn

j ~y!u0&5E d4k

~2p!4 d i j DFmn~k!e2 ik~x2y!,

DFmn~k!5
2 i

k22mV
21 i e S gmn2

kmkn

mV
2 D , ~A2!

whereVm
i (x)5am

i (x), rm
i (x), vm(x), fm(x), K1m(x), and

Km(x).
For the photon propagator withinr, from Eqs.~22! and

~12! we have

DF
mn
~gr!~x2y!5 K 0UTH Am~x!An~y!22i E d4x1Am~x!rn

3~y!

3$]lrs
3~x1!@]lAs~x1!2]sAl~x1!#%

2
1

2 E d4x1d4x2rm
3 ~x!rn

3~y!$]lrs
3~x1!

3@]lAs~x1!2]sAl~x1!#%$]arb
3~x2!

3@]aAb~x2!2]aAb~x2!#%J U0L . ~A3!

Using Eqs.~22! and ~A2!, we get

DF
mn
~gr!~x2y!

5E d4k

~2p!4 ~2 i !
1

k2 e2 ik~x2y!H a
kmkn

k2 1S gmn2
kmkn

k2 D
3F12

2k2

k22mr
2 1

k4

~k22mr
2!2G J .

Then

DF
mn
~gr!~x2y!5E d4k

~2p!4 ~2 i !
1

k2 F mr
4

~k22mr
2!2

3S gmn2
kmkn

k2 D1a
kmkn

k2 Ge2 ik~x2y!.

~A4!

This is Eq.~23!.

APPENDIX B: DF 1µn
„gv… AND DF 2µn

„gv…

The photon propagator withinr can be generalized to the
photon propagator withinv includingr, v, andf to simplify
the corresponding calculations of the strange-flavor mesons.
In this appendix, as an example, we display the whole cal-
culating process of Fig. 7 to deduceDF

1mn
(gv) .

LKKvv has been shown in Eq.~61!. The corresponding
photon-meson couplingsLKKgg , LKKrg , LKKvg , and
LKKfg , which contribute to electromagnetic mass differ-
ences betweenK1 andK0, can be obtained by the substitu-
tions ~9!–~11!. All the one-loop Feynman diagrams contrib-
uting to (mK1

2
2mK0

2 )1 are shown in Figs. 7~a!–7~c! and the
correspondingS matrices are denoted asSK(1)i , i 5a,b,c.
Thus we have
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SK~1!a5 i K KUTE d4x LKKgg~x!UK L
5 K KU E d4x K1K2UK L ie2

f k
2

d4k

~2p!4 S FK
2 1

k2

2p2D
3

2 i

k2 gmnF S gmn2
kmkn

k2 D1a
kmkn

k2 G ~B1!

and

SK~1!b5SK~1!r1SK~1!v1SK~1!f ,

with

SK~1!r5
i 2

2!
2K KUTE d4x d4y LKKrg~x!Lrg~y!UK L

5 K KU E d4x K1K2UK L ie2

f k
2

d4k

~2p!4 S FK
2 1

k2

2p2D
3

i

~2k21mr
2!~2k2!

k2gmnS gmn2
kmkn

k2 D , ~B2!

SK~1!v5
i 2

2!
2K KUTE d4x d4y LKKvg~x!Lvg~y!UK L

5 K KU E d4x K1K2UK L 1

3

ie2

f k
2

d4k

~2p!4 S FK
2 1

k2

2p2D
3

i

~2k21mv
2 !~2k2!

k2gmnS gmn2
kmkn

k2 D , ~B3!

SK~1!f5
i 2

2!
2K KUTE d4x d4yLKKfg~x!Lfg~y!UK L

5 K KU E d4x K1K2UK L 2

3

ie2

f k
2

d4k

~2p!4 S FK
2 1

k2

2p2D
3

i

~2k21mf
2 !~2k2!

k2gmnS gmn2
kmkn

k2 D . ~B4!

and

SK~1!c5SK~1!rv1SK~1!rf ,

with

SK~1!rv5
i 3

3!
6K KUTE d4x d4y d4z LKKrv~x!Lrg~y!Lvg~z!UK L 5 K KU E d4x K1K2UK L 1

3

ie2

f k
2

d4k

~2p!4 S FK
2 1

k2

2p2D
3

i

~2k21mr
2!~2k21mv

2 !~2k2!
~k2!2gmnS gmn2

kmkn

k2 D , ~B5!

SK~1!rf5
i 3

3!
6K KUTE d4x d4y d4z LKKrf~x!Lrg~y!Lfg~z!UK L 5 K KU E d4x K1K2UK L 2

3

ie2

f k
2

d4k

~2p!4 S FK
2 1

k2

2p2D
3

i

~2k21mr
2!~2k21mf

2 !~2k2!
~k2!2gmnS gmn2

kmkn

k2 D . ~B6!

Thus the total contribution of Fig. 7 is

SK~1!5 K KU E d4x K1K2UK L ie2

f k
2 E d4k

~2p!4 S FK
2 1

k2

2p2D i

2k2 gmnH F1

3

mr
2mv

2

~k22mr
2!~k22mv

2 !

1
2

3

mr
2mf

2

~k22mr
2!~k22mf

2 !
S gmn2

kmkn

k2 D G1a
kmkn

k2 J
5 K KU E d4x K1K2UK L ie2

f k
2 E d4k

~2p!4 S FK
2 1

k2

2p2DgmnDF
1mn
~gv !~k!. ~B7!

HereD
F1mn
(gv) (k) is exactly Eq.~68!.

A similar procedure can be easily applied to Figs. 8–10. We can conclude that Figs. 7–9, which receive contributions from
the normal part of the effective LagrangianLRe, yield the same expression ofDF

1mn
(gv)(k); however, Fig. 10, which is from the

abnormal part of the effective LagrangianLIm , gives the form ofDF
2mn
(gv)(k) @Eq. ~69!#. The difference betweenDF

1mn
(gv)(k) and

DF
2mn
(gv)(k) comes fromv andf mesons fields always appearing as the combinationvm2&fm in LRe and as the combination

vm1&fm in LIm @see Eq.~66!#.

56 4131ELECTROMAGNETIC MASS SPLITTINGS OFp, a1 , . . .



@1# T. Das, G. Guralnik, V. Mathur, F. Low, and J. Young, Phys.
Rev. Lett.18, 759 ~1967!.

@2# R. H. Socolow, Phys. Rev.137, 1221~1965!; I. S. Gerstein, B.
W. Lee, H. T. Nieh, and H. J. Schnitzer, Phys. Rev. Lett.19,
1064~1967!; B. W. Lee and H. T. Nieh, Phys. Rev.166, 1507
~1968!; A. Zee, Phys. Rep.3, 127~1972!; P. Langacker and H.
Pagels, Phys. Rev. D8, 4620~1973!; N. Deshpande, D. Dicus,
K. Johnson, and V. Teplitz,ibid. 15, 1885~1977!; K. Maltman
and D. Kotchan, Mod. Phys. Lett. A5, 2457~1990!; K. Malt-
man, T. Goldman, and G. L. Stephenson, Jr., Phys. Lett. B
234, 158 ~1990!; V. Dmitrasinovic, H.-J. Schulze, R. Tegen,
and R. H. Lemmer, Phys. Rev. D52, 2855~1995!; J. F. Dono-
ghue and A. F. Perez,ibid. 55, 7075~1997!.

@3# R. Dashen, Phys. Rev.183, 1245~1969!.
@4# J. Gasser and H. Leutwyler, Phys. Rep.87, 77 ~1982!; R. D.

Peccei and J. Sola, Nucl. Phys.B281, 1 ~1987!; T. N. Pham,
Phys. Lett. B374, 205 ~1996!.

@5# J. F. Donoghue, B. R. Holstein, and D. Wyler, Phys. Rev. Lett.
69, 3444~1992!; Phys. Rev. D47, 2089~1993!.

@6# J. Bijnens and E. de Rafael, Phys. Lett. B273, 483~1991!; W.
A. Bardeen, J. Bijnens, and J.-M. Gerard, Phys. Rev. Lett.62,
1343 ~1989!.

@7# J. Bijnens and J. Prades, Nucl. Phys.B490, 239 ~1997!.
@8# G. Ecker, J. Gasser, A. Pich, and E. de Rafael, Nucl. Phys.

B321, 311 ~1995!.
@9# R. Urech, Nucl. Phys.B433, 234 ~1995!; R. Baur and R.

Urech, Phys. Rev. D53, 6552~1996!.
@10# B. A. Li, Phys. Rev. D52, 5165~1995!.
@11# B. A. Li, Phys. Rev. D52, 5184~1995!.
@12# S. Weinberg, Physica A96, 327 ~1979!; J. Gasser and H.

Leutwyler, Ann. Phys.~N.Y.! 158, 142 ~1984!; J. Gasser and
H. Leutwyler, Nucl. Phys.B250, 465 ~1985!; H. Leutwyler,
Ann. Phys.~N.Y.! 235, 165 ~1994!.

@13# B. A. Li, Phys. Rev. D55, 1425~1997!; 55, 1436~1997!.
@14# B. A. Li ~unpublished!.

@15# J. F. Donoghue, C. Ramirez, and G. Valencia, Phys. Rev. D
39, 1947~1989!; J. F. Donoghue and B. R. Holstein,ibid. 40,
238 ~1989!.

@16# G. Ecker, J. Gasser, H. Leutwyler, A. Pich, and E. de Rafael,
Phys. Lett. B223, 425 ~1989!.

@17# X. J. Wang and M. L. Yan~unpublished!.
@18# B. A. Li and M. L. Yan ~unpublished!.
@19# J. J. Sakurai,Currents and Mesons~University of Chicago

Press, Chicago, 1969!.
@20# J. J. Sakurai, Phys. Rev. Lett.19, 803 ~1967!.
@21# D. Ebert and H. Reinhardt, Nucl. Phys.B271, 188 ~1986!.
@22# Particle Data Group, L. Montanetet al., Phys. Rev. D50, 1173

~1994!.
@23# D. J. Gross, S. B. Treiman, and F. Wilczek, Phys. Rev. D19,

2188 ~1979!.
@24# D. Kaplan and A. Manohar, Phys. Rev. Lett.56, 2004~1986!.
@25# M. Gell-mann, R. J. Oakes, and B. Renner, Phys. Rev.175,

2195 ~1968!.
@26# B. A. Li ~unpublished!.
@27# J. Schechter, A. Subbaraman, and H. Weigel, Phys. Rev. D48,

339 ~1993!.
@28# G. Leibbrandt, Rev. Mod. Phys.47, 849 ~1975!; G. ’t Hooft

and M. Veltman~private communication!.
@29# J. Bijnens, Phys. Lett. B306, 343 ~1993!.
@30# J. Bijnens, J. Prades, and E. de Rafael, Phys. Lett. B348, 226

~1995!.
@31# H. Leutwyler, Phys. Lett. B378, 313 ~1996!.
@32# A. Duncan, E. Eichten, and H. Thacker, Phys. Rev. Lett.76,

3894 ~1996!.
@33# M. Jamin and M. Mu¨nz, Z. Phys. C66, 633 ~1995!; K. G.

Chetyrkin, C. A. Dominguez, D. Pirjol, and K. Schicher, Phys.
Rev. D51, 5090~1995!.

@34# J. F. Donoghue, E. Golowich, and B. R. Holstein,Dynamics of
the Standard Model~Cambridge University Press, Cambridge,
England, 1992!, pp. 368–370.

4132 56DAO-NENG GAO, BING-AN LI, AND MU-LIN YAN


