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Unpolarized and polarized quark distributions in the large-N. limit
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The isosinglet unpolarized and isovector polarized twist-2 quark distributions of the nucleon at low normal-
ization point are calculated in the larg:limit. The nucleon is described as a soliton of the effective chiral
theory. We derive the expressions for the distribution functions in the IHggkmit starting from their
definition as numbers of partons carrying a momentum fractionthe infinite momentum frame. We develop
a numerical method for computation of the quark and antiquark distributions as sums over the quark single-
particle levels in the pion field of the soliton. The contributions of the discrete bound-state level as well as the
Dirac continuum are taken into account. The quark and antiquark distributions obtained explicitly satisfy all
general requirements. The results are in reasonable agreement with parametrizations of the data at a low
normalization point[S0556-282(197)02817-9

PACS numbsg(s): 12.38.Lg, 12.39.Ki, 13.60.Hb

I. INTRODUCTION limit. In the largeN, limit the quark distributions are con-
centrated at values of~1/N.. Combining this fact with the
The evolution of parton distributions witly?> in the  known largeN. behavior of the integrals of the distributions
asymptotic region is well understood today, being governedverx, one infers that the quark distributions in the lafgg-
by the renormalization group equation of perturbative QCDlimit can be divided in “large” and “small” ones. The lead-
A complete description of experiments at lamgerequires,  ing distributions are the isosinglet unpolarized and isovector
however, the knowledge of parton distributions in thepolarized distributions, which are of the form
nucleon at some initial normalization point. Several sets of

input distributions were determined by fits to the experimen- D'299x) ~NZp(N¢x), 1
tal data at largey® [1—-4]. All these fits include antiquarks
and gluons at a low normalization point. wherep(y) is a stable function in the largd; limit, which

Recently, we have formulated an approach to calculatélepends on the particular distribution considered. The is-
the twist-2 parton distributions at low normalization point in ovector unpolarized and isosinglet polarized distributions ap-
the limit of a large number of colors\(;), where the nucleon pear only in the next-to-leading order of thé\l/expansion,
is described as a chiral solitd®]. At low energies, QCD and are of the form
may be approximated by an effective theory whose degrees
of freedom are quarks with a dynamically generated mass, DM x) ~Ngp(NeX). 2
interacting with pions, which appear as Goldstone bosons of
the dynamically broken chiral symmetry. The nucleon (ii) Sum rules and antiquark distributioriEhe chiral soli-
emerges as a classical soliton of the pion fi@H This pic- ton model is a field-theoretic description of the nucleon,
ture is known to give a successful description of hadroniovhich preserves all general requirements on parton distribu-
observables such as the nucleon mass, magnetic momenti®ns. In particular, the standard sum rules for parton distri-
form factors, etc[7]. In [5] we have shown that this ap- butions and their positivity properties are satisfied automati-
proach possesses all necessary requisites for a successful dally within the model. Also, a consistent description of the
scription of the leading-twist parton distributions of the antiquark distributions can be achieved in this approach.
nucleon. The normalization point of the distribution func-  (iii) Parametric smallness of the gluon distributiaithen
tions obtained in this way is of the order of the ultraviolet working with the effective chiral theory, it is implied that the
cutoff of the effective chiral theory, typically-600 MeV. ratio of the dynamical quark mashl, to the UV cutoff, A
Let us briefly summarize the main characteristics of this de{not to be confused with the QCD scale parametgyep), is
scription[5]. parametrically small. FoM/A <1, the quark distributions

(i) Classification of quark distributions in the largezN computed in the effective theory may be identified with the

“current” quark distributions of QCD. The gluon distribu-
tion is zero at this level, more precisely, it@§ M?/A?). For
*Permanent address: Petersburg Nuclear Physics Institutéinite M/A, the quark distributions computed in the effective
Gatchina, St. Petersburg 188350, Russia. theory should be interpreted as distributions of “constitu-
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ent” quarks — objects which themselves have a substructureeparations, their computation requires evaluation of func-
in terms of QCD partons. The gluon distribution inside thesetional traces of the single-particle energy and momentum
objects could in principle be recovered from the effectiveoperator, which is in general a difficult problem. Using the
theory if one knew the precise way how the UV cutoff arisesfinite-basis method df12], we formulate a reliable and effi-
as a result of integration over the original QCD degrees ofient numerical procedure to compute the Pauli-Villars regu-
freedom. These statements can be made more precise in tifized quark and antiquark distributions. The method takes
framework of the instanton vacuum, which on one hand a|jnt0 account the contributions of the discrete bound-state
lows to derive the effective chiral theory, and on the other®Vel as well as the Dirac continuum of quarks.

hand can be used to evaluate the gluon distribution directly, Finally, using the methods developed in this paper, we
using the method developed i&]. One finds that the gluon compute the |50§|nglet unpplarlzed and isovector ppla_rlzed
distribution is suppressed relative to the quark distributiongiStribution functions and discuss the results. In principle,

by a factor of the packing fraction of the instanton mediumthe resulting distributions should be taken as the starting
[5]. point for perturbative evolution and be compared with struc-

In this paper, we study the properties of tNe-leading ture function data at largg®. The evolution of the calculated
quark and antiquark distributions, namely the isosinglet undistributions and the comparison with the data will be the
polarized and isovector polarized distributions, in the apSubject of a separate investigation. Here, we restrict our-
proach formulated ifi5]. First, we rederive the basic formu- selves to a comparison of the calculated distributions with
las for the parton distributions in the effective chiral theorythe parametrizations of the data at a low normalization point
in a new way. In[5] these formulas were obtained from the PY Gluck and co-worker$3,4].

exact QCD expressions for the parton distributions as matrix

elem_ents of quark bilinears Wi'th. a lightlike separa}tﬁénl()]. ' IIl. QUARK DISTRIBUTION FUNCTIONS
In this paper we t_akg th_e original I_:eynman point of view IN THE LARGE- N, LIMIT

[11] that parton distributions are given by the number of . . .

partons carrying a fractior of the nucleon momentum in A. The nucleon in the effective chiral theory

the nucleon infinite-momentum frame. Despite the apparent |, the |argeN, limit, QCD becomes equivalent to an ef-
difference in wording we show here that the two definitionstective theory of mesons, with baryons emerging as solitonic
are, in fact, equivalent and lead to identical working formu-eycitations[13,14. At low energies, the main guiding prin-
las for computing parton distributions. We think it is remark- ciple for formulating this effective theory is the dynamical
able that the actual equivalence of the two well-known defiyyreaking of chiral symmetry, which, in particular, results in
nitions can explicitly be demonstrated within this field- {he appearance of pions as Goldstone bosons. In the long-
theoretical model of the nucleon. The deep reason for thayelength limit, the effective theory can be expressed in the
equivalence is that the main hypothesis of the Feynman pafyym of the chiral Lagrangian of the pion field, whose struc-
ton model, namely that partons transverse momenta do N@fre is basically determined by chiral symmetry. The mini-
grow with g° [11], is satisfied in the model under consider- ma| chirally invariant interaction of quarks with Goldstone

ation. _ _ _ _ bosons is described by the functional intedreb—17]
Second, we investigate the influence of the ultraviolet cut-

off of the effective chiral theory on the distribution func- . — . 4=

tions. This not only includes the asymptotic dependence oﬁ’XF('Seﬁ[W(X)]):f D yD yex IJ d*Xg(id—MUs) .

the cutoff parametefi.e., the UV divergencesbut also, and

more importantly, the dependence on the regularization

scheme adopted to make the distributions finite. It is crucia ; "

that the regularization method not violate the completeneslgere’w(x) Is the pion field,

of quark single-particle states in the background pion field,

in order to preserve causality, that is, the anticommutation U(x) =exdim(x) 7], (4)

relations of quark fields at spacelike separations. A regular-

ization which meets this requirement is, for example, the 1+ 1—

Pauli-Villars subtraction. We show explicitly that it leads to U 7s(x) =ex{ i w(x) 72y5] = > U(x)+

quark and antiquark distribution functions satisfying all gen- 2 2

eral requirements, such as rapid decrease for tlargaiform ®)

logarithmic dependence on the cutoff, and positivity. On the

other hand, regularization methods based on an energy cuthe quark field possesses a dynamical milssjue to chiral

off, such as the popular proper-time regularization of thesymmetry breaking. It is understood that, generally, this

determinant, violate causality and lead to unacceptable rgheory of massive quarks is valid up to an UV cutoff,

sults for the distribution functions. A>M. The effective action Eq5) can be derived from the
Third, we develop a numerical method for exact compu-instanton vacuum, where the cutoff is determined by the in-

tation of the quark and antiquark distribution functions asverse instanton size, and the dynamical quark mass is mo-

sums over quark single-particle levels in the backgroundnentum dependent. In practice, rather than working with an

pion field. (In [5] the polarized distributions were estimated explicitty momentum-dependent quark mass, one usually

using an approximation, the so-called interpolation formula. takes a constant quark mass and applies an UV cutoff to

Since the quark distribution functions are given by matrixdivergent quantities derived from E(B), using some regu-

elements of products of quark fields at finite time and spacéarization scheme.

Y5 utx).



56 UNPOLARIZED AND POLARIZED QUAKK. .. 4071

In the effective chiral theory defined by E@3), the fraction x of the nucleon momenturRy in the infinite mo-
nucleon is in the larg&4, limit described by a static classical mentum frame where
pion field. In the nucleon rest frame it is of “hedgehog”
form [6] M v

Pn= , v—1. (10
Uc(x)=exdi(n-7)P(r)],

The number of(anti) quarks can be expressed through the

r=[xl, nucleon matrix element of the creation and annihilation op-
« erators,a”,a (for quarks, andb*,b (for antiquarks. We
n=— (6) define the quark and antiquark distribution functions as
. i . . d3k K3
Here, P(r) is the profile function, withP(0)=— = and Di(x)zj Sl x— _)<Nv|ai+(k)ai(k)|Nv>v
P(r)—0 for r—o, which is determined by minimizing the (2m)® Py
static energy of the pion field. Quarks are described by (12)

means of one-particle wave functions, to be found from the
Dirac equation in the external pion field,

_ d3k k3 N
| 5.0~ | X g B COBIING.
(iy*d,—MU)W (x,1)=0, (12
Wn(x1) = exp(—IEnt) Pn(x), @) Herei denotes the set of quantum numbers characterizing the
quark, such as flavor and polarization.

In the infinite momentum frame it is possible to express
H®,=Ed,, these matrix elements in terms of the quark field operator

which can be written in Hamiltonian form:

3

d°k .
“’”"):fm? [ac(k)exp( —ik-x)uc(k)

H=—iy%y*9,+M»CU7s, (8)

The spectrum of the one-particle Hamiltoni#h, contains a
discrete bound-state level. This level must be occupied by +b; (k)expik-x)vc(k)], (13

N. quarks to have a state of unit baryon number. The

nucleon mass is given by the minimum of the bound-statevhereu(p), v(p) are the wave function of the free quarks
energy and the aggregate energy of the nggative Dirac conyg antiquarks, normalized ou=—pyp=2M, andc=1,2
tinuum, the energy of the free Dirac continuum subtractetjenotes the polarization. Let us consider the Fourier trans-

[6]: form of the equal-time product of and ¢ :
— _g0
MN=NeEiert N 2, By~ ). O [ dxdext—ik-0a—x) 1 0 O30
[E(®) denotes the energy levels of the vacuum Hamiltonian 1, . U
given by Eq.(8) with U=1] It is understood that E9) is _CEC, 2_|(0[ac (Kac (k)ug (k)ue: (k) +ag (k)be, (—k)
made finite by some regularization method, to be discussed '
below. Xuf (K)o e (—k)exp(2ik) +be(—k)ae (K)vk (—k)

Nucleon states of definite spin-isospin and 3-momentum
are obtained by quantizing the rotational and translational X Uc(K)exp(—2ik°)+b(— k)b, (= k)v ¥ (—k)
zero modes of the solitoftheir contributions to the energy
are O(1/N.)], by integrating over the corresponding collec- Xve (=K. (14)

tive coordinates with appropriate wave functides7]. . . . oo
pprop 46s7] Averaging this operator over the nucleon state in the infinite

momentum frame, witkk®=xMyv/\V1—v?, v—1, we get
zero for all terms on the right-hand sid@HS) but the first
The simplest way to determine the quark distributions in-one. Indeed, the probability to find a correlated quark-
side the nucleon is to use the infinite momentum frame anantiquark pair with very large opposite momefitze second
calculate the number of partons th¢fd]. It is well known  and third termsin a fast moving nucleon goes to zero as
that the infinite momentum helps to separate quarks belongr— 1. Similarly, the probability to find antiquarks moving in
ing to the nucleon from the vacuum ones, provided that théhe opposite direction to the nucleon with large longitudinal
transverse momenta of the particles are not growing with thenomenta goes to zero as-1 (the fourth term. To be more
nucleon momentunill]. In our chiral quark soliton model precise, these matrix elements decrease with the nucleon mo-
this condition is, of course, satisfied. mentum and can, in principle, contribute to the structure
More precisely, the quark distributions as functions of thefunctions of nonleading twists. However, we are interested in
Bjorken variable x are, by definition, the number of the leading-twist distribution functions, and can therefore ne-
(ant)) gquarks whose momentum, say, in thelirection, is a glect all terms in Eq(14) except the first one. The distri-

B. Quark distribution functions in the effective chiral theory
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bution functions can thus be expressed in terms of equal-tim&/ith Eq. (18), the distribution functions, Eq$15) and(16),

products of the field operators as can now be written in terms of the Feynman Green function
as limits att,—t,;+0:
d3k k3
Di(x):f(Z )35 N fdsxldgxz f d°k ( kg)f 3y 3
™ N D;(x)=—iN¢ | ——= | x— =] | d°x;d°x
o |( ) c (277)3 PN 1 2
Xexd —ik-(x;—x) N X0, O)Tip(X1,0)[Ny), .
f (X1 =X2) AN (X2, D L1, 1) [Ny) w exil — K- (X1 —Xp)]
(15
XTI Gr(X1,t1,X0,t2) Jty=t, 40, (22)
— d3k K3
Di(x)=f(2 )35 X— 5 fd3x1d3x2 o d3k K3 o
™ N D-x=iNf—5<x——)fdxdx
|( ) c (277)3 PN 1 2

Xexg —ik-(X;—X5)]

L Xexg —ik-(X;—X5)]
XN THT (%0, ) (%1, 1)]INy).  (16)

XTHIGr(Xq,t1,X2,t2) It = t,+0- (23)
The flavor and spin matrice$;;, depend on the particular
distribution one is interested in. For example, for the number TO compute the quark and antiquark distribution functions
of partons polarized along or against the direction of thedne needs an explicit representation of the Feynman Green

nucleon velocity one should use function in the background pion field corresponding to the
fast-moving nucleon. We now want to demonstrate that this
N Gre_en function can be gxpressed in terms of Fhe single-

Fi=y > (17 particle quark wave functionsh,(x), and energy eigenval-

ues,E,, in the nucleon rest frame, E(). The quark eigen-
functions in the time-dependent pion field, E9), can be
obtained from the ones in the static pion field in the rest
&rame by a Lorentz transformation. We can thus write a rep-
resentation of the Feynman Green function as

respectively.

In order to evaluate the equal-time matrix elements in th
nucleon state in Eq915) and (16) we consider the more
general matrix element of th@éme-orderedproduct of quark
fields. In the effective chiral theory, this nucleon matrix ele-g_(x, ,t,,x,,t,)
ment can directly be computed as a functional integral over
the quark and pion field with the effective action, E8). At L
N.— o0, the integral can be performed using the saddle point =—iS[Vv]{ 8(t;—t,) E D, (X)) Dn(x3)
method[6]. One finds that nonoceup

, _ X expl —iEn(t;—t5)] - 0t~ ty)
—I(NY| T{h(X1,t1) (X2, t2) }INy) = Gr(Xq,X2),  (18)

_ o X D DX D (X exd —iEq(t,—t5)]S V).
where Gg(x;,X,) is the Feynman Green function in the o;up (X)) Polx)exi] —1Eq(t 1)) V]
background pion field corresponding to the moving nucleon. (24)
This saddle point solution of the classical equations of mo-
tion can easily be constructed. Indeed, since the saddle poipferet’ andx’ are the Lorentz transforms of the coordinates,
equations are relativistically invariant, it is evident that the
pion field is of the form

o Xy~ Vi
N v
0.(xt) u( X_Vt> (19) o
C Xy = (o4 L]
Vi-v . T VeXgo
. . ] ] . 1,2_—1_V2 ) (25
whereU(x) is the stationary hedgehog pion mean field in v

the nucleon rest frame. The Feynman Green function, Eq, . . . .
(18), is thus determined as the solution of the inhomoge(fand S v] is the Lorentz transformation matrix acting on the

neous Dirac equation quark spinor indices,

S[V]:eXF<I§O'03w),

Gr(Xq,t1, %, t0) = 8 (X1 —Xy),

(20

0 N
Py ——=MU7”5(xy,t4)
axYy

i
O-,uv:E[‘yM”)’V]v

1_’)/5,\

ML S0l (20

. 1+ ys.
O7s(x,t)= Ou(x,t)+

tanHw)=v. (26)
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In the first term of Eq(24) the summation goes over nonoc- + |x3—X,|>|x;—X;|. This argument is easily generalized to

cupied states, that is over the positive-energy Dirac conany term of the perturbation expansion.

tinuum, in the second term over occupied states, that is, over Thus F(x;,X,) is zero forx;#X,. It therefore must be

the negative continuum and the discrete bound-state level. proportional to a delta function ir, —x, or its derivatives.
Let us prove that the Green function defined by B#)  This “point” singularity can come only from states with

indeed satisfies the inhomogeneous Dirac equation(ZB.  large energiesE,,. For such states, one can neglect the pion

We first note that the Lorentz transformed single-particlefield and replace the wave functiond,,(x), by the eigen-

wave functions [v]®,(x")exp(—iEqt’), satisfy the homo- function of the free Hamiltonian. Saturating the sum in the

geneous Dirac equation, ERO) with RHS equal to zero, RHS of Eq.(28) by plane waves we obtain

therefore so does the Green function, E2f), att;#t,. At

t;=t, the Green function has a discontinuity. Taking the F(X1,%2) =83 (x;—Xy). (30)
time derivative of Eq(24) att,=t, we find that the LHS of
Eq. (20) is equal toF (x4 ,x,) 8(t;—t,), where (In other words, the leading short-distance singularity of the

Green function in the background pion field is the same as
. L AT i e that of the free Green functionThis completes the proof
F(Xl’x2):§,‘ exi —IEnv(x; = X3)]y"SP (X)) @1(X5)S ™ that Eq.(24) is a representation of the Feynman Green func-
(27)  tion in the time-dependent background field, E2p).
We now use the representation, Eg4), to express the
This function should be equal t6®)(x;—x,) in order to  distribution functions directly through the quark wave func-
satisfy the inhomogeneous Dirac equation, Ef), for the  tions in the nucleon rest frame. Passing to the Fourier trans-
Green functiort. To prove this, we first convince ourselves forms of the quark wave functions, integrating in E¢22)
that the sum, Eq(27), vanishes foix;#x,, and then show and (23) over x; ,, and taking the limitv—1, we finally
that it is indeed a delta function with coefficient unity. obtain
We introduce temporarily two moments of “time,”

T ’ T ’ vy iy 3
t,=vx; andt,=vx,, and note that at ;> t ,, Eq.(27) can B ko4 0.3
be written via the “retarded” Green function, Di(x)=N:M Noczcup (277)3q)n(k)(1+ )
F(Xq,X2) =17°S GefXq, (VX1), Xz, (vX3))S ™1, X ¥ 8(k3+ Eq—XMy) @p(K), (31
_ 3
1T 1T yyars T ! ! - k
Gret(xlatlaXZatZ):_la(tl_tz)%:d Dy (X2)P(Xq) D.(x)=NMy > f 3q>l(k)(1+707’3)
nonoccup (277-)
xex —IEn(T1—12)]. (289 X O, S(K3+ E,+ xMy) D, (K). (32

We need this function in the spacelike region, sinceThese formulas represent the quark distributions as sums
(T1—T2)%— (X, —x5)%=(v- (X, — x5))?>— (x; —x5)?<0, at over occupied states, the antiquark distributions as sums over
least wherx, # x,. However, the retarded Green function is nonoccupied states. We can also write an alternative repre-
zero in the spacelike region. This is obvious from physicalsentation for the distribution functions, using the time-
considerations: the retarded Green function determines therdering opposite to the one in Eq22) and (23), and the
evolution of a wave packet which at,=1, is localized at ~ fact that the discontinuity of the Feynman Green function is

x| =x}, which cannot reach the spacelike region. More for-& SPace function. In this case we get
mally, this can also be proved using the perturbation expan-

. h . . 3
sion for the retarded Green function in the external pion f d’k 0 3
- Di(x)=—N:M d (k)(1+
field: i(X) c Nnonzoccup (277)3 n(K)( YY)
~ ~ ~ ~ ~ X YT 8(k3+E,—xMy) @ (K), 33
Gret(x:,bt11xé1tZ)ZG?et(Xiitl!Xé!tZ)+Jd3xédt3 L " 0 @alk) 33
O (X!, T, %%, T 5(x, D ks 0,3
X Gp(xq, T1,x5, TIMUS(X5) Di(0)=~NMy > s (0T YY)
0 r T r T
XGrefXs taxp to) 4o (29 X YT 83+ Bt XMyy) Dp(K). (34

The free retarded Green functioB,, is zero for spacelike

separations, therefore the second term is nonzero only f In both Eqs.(31) and (32) and Eqs(33) and(34) it is un-

— A Tz JR T YQerstood that the contribution of free quarks is to be sub-
1= ts>|x =X and for t3—t,>[x;—Xs|. This implies  {racted. In the original representation of the distribution func-
that it is nonzero only for t;—t,>|x;—xj] tions through the Feynman Green function, E(2) and
(23), this means that the leading short-distance singularity of
the Green function in the background pion field is canceled
YIn field theory, Eq.(27) represents the equal-time anticommuta- by the one of the free Green function, cf. E§0). However,
tor, {g(x1,t), " (X2, 1)} =6 (x— %y). Egs.(31) and(32) and Eqs(33) and(34) still contain ultra-
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violet divergences and have to be made finite by some regu- X yg6(k3+E,+xMy)®,(k), (37)
larization scheme, to be discussed in Sec. Ill.

It is clear that the equivalence of the representations of thaith the corresponding antiquark distribution given by the
distribution functions as sums over occupied and nonoccusame expression witk— —X (vacuum subtraction is again
pied states, Eqs.31) and (32) and Eqgs.(33) and (34), is  understooyl Here, 2ZI';= =1 for proton and neutron, respec-
based on the completeness of quark states in the externgely. The alternative representation as a sum over nonoc-
pion field, Eq.(30), which can in principle be violated by cupied states analogous to E@6) can easily be written
ultraviolet regularization. Fortunately, it is possible to regu-down.
larize the theory in such a way that this important property is The isovector unpolarized and isosinglet polarized quark
preserved; see Sec. lll. distributions vanish in the leading order of theéNl/expan-

We emphasize that the expressions in E84) and(32)  sion. They are nonzero only after considering rotational cor-
and Eqs(33) and(34) are identical to those which have been rections, i.e., expanding to first order in the soliton angular
derived in Ref[5] from a representation of the distribution velocity, which is O(1/N.), and are expressed as double
functions as nucleon matrix elements of quark bilinears sepasums over single-particle levels. We shall not consider them
rated by a lightlike distance. The above derivation is a demin this paper. We note, however, that the techniques devel-
onstration of the equivalence of the two definitions of partonoped in Secs. Ill and IV can readily be generalized to analyze

distributions. also these “small” distributions.
Finally, to get the unpolarized or polarizédnti) quark
distributions corresponding to a nucleon state of definite spin lIl. ULTRAVIOLET DIVERGENCES
and isospin, one has to take the desired combinations of the AND REGULARIZATION
basic expressions, Eq81) and(32), and average them with
the nucleon spin-isospin wave functi¢the procedure is de- The expressions for the quark distribution functions de-

scribed in[5]). In this paper we consider the distributions rived in the previous section are ultraviolet divergent and
which appear in the leading order of thé\l/expansion, the require regularization. To be able to compute the distribution
isosinglet unpolarized and the isovector polarized one. Tdunctions using the effective chiral theory we must ensure
obtain the isosinglet unpolarized quark distribution we sunthat the ultraviolet regularization does not lead to violation of
up the two polarizations in Eq31) and average over flavor. any of their fundamental properties. We want to show now

One find9[5] that regularization by a Pauli-Villars subtraction, which pre-
serves the completeness of the quark single-particle states in

d3k the chiral soliton, leads to regularized quark and antiquark

[u(x)+d(X) Joceu= NeMy 2 f > 3q>$(k)(1ﬁL Y°y?) distributions satisfying all general requirements. It was noted
ocT:up (2m) in Sec. Il that the equivalence of the representations of the

X S(KE+ B, — XMy) D (K). (35) distribution functions as sums over occupied and nonoccu-

pied states relies on the completeness of the single-particle

From Eq.(34) one sees that the corresponding antiquark disstates. We shall see below that, with Pauli-Villars regulariza-

tribution can also be written as a sum over occupied states; fion: this equivalence is preserved for the regularized distri-
is given by the negative of the RHS of E@5) at x— — x. butions. On the other hand, regularizations based on an en-

Henceforth, we shall consider E85) as a function defined ©€rdy cutoff not only destroy the equivalence of summation
for both positive and negative and understand that at nega- ©V€r occupied qnd nonoccupied states, but lead also to other,
tive x it describes minus the antiquark distribution. Alterna- "€lated, unphysical features.

tively, we can use Eqg32) and(33) to obtain a representa- | n€ divergent contribution in Eq35) comes from the
tion of the isosinglet unpolarized distribution as eigenstates of the Dirac Hamiltonian with large eneq@qj. _
One may think therefore that a natural way to regularize this

[u(x)+d(X) Jnonoccup divergence is simply to cut the contributions of states with
|E,| larger than some cutofby:

=—NMy > f ok OT(K)(1+9°93) Elevt 0
N 4 (2m)3 " [U0) +d(X) T ogus= NCMNf doSH 8(w—H)
nonoccup —wq
X 8(K3+Ep—xMy) (), (36) X 8(w—XMy+p3)(1+1°%)]
which, again, gives minus the antiquark distribution at nega- —(H—Hy). (39
tive x. In Eqg. (35 vacuum subtraction is understood for
x<0, in Eq.(36) for x>0. [Here we have written the sum over states, B%), as an
The analogous expression for the isovector polarized disntegral over energy, the integrand being a functional trace
tribution is involving the Hamiltonian and single-particle momentum
operator,p? [5]. This form is useful for investigating the
[Au(x) = Ad(X)]Joccup ultraviolet asymptoticg.In fact, we shall see below that this
regularization is unphysical, leading to a number of problems
1 d3k + 3 0.3 which are easily cured by turning to the Pauli-Villars regu-
=- §(ZT3)NCMN ; f (Zw)g‘bn(k)T (1+v"y°) larization. However, two reasons force us to devote some

occup time to the distribution function with the energy cutoff, Eq.
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(38). First, in order to see explicitly that the Pauli-Villars It exhibits at large negative a rather slow > decay, up to
subtraction cancels all nonphysical effects, one has to undethe pointx=—2wy/My, Where it ends with as-function
stand precisely what is to be canceled. Second, our numericpeak. One should keep in mind that tiifunction appears

method for computing the distribution functigeee Sec. IY

only in the asymptotic limitx~ —wq/My— —. At large

involves an energy cutoff in the intermediate stages of théut finite values ofx~— wy/My the delta function in Eq.

calculation(taken to infinity at the end so it is essential to

(42) approximates a narrow peak whose width is much

know the asymptotic properties of the distributions with en-smaller thanw,/My . This “large negativex” behavior of

ergy cutoff.

The ultraviolet divergence of E¢38) can be derived us-
ing the technique developed [[B]. One replaces thé func-
tion by the imaginary pairtdiscontinuity of the quark propa-
gator in the background pion field:

1 / 1

No=H)=s i o—n=i0 w-rti0)
Writing the quark propagator in the form
1 wtH 0+ y%(—iy*+MUs)
o—H  2—H2 w2+ g2 -M2=iM Y (9 U7s)’
(40)

the distribution function is an artifact of the energy cutoff.
We shall see below that both thexitail and the delta func-
tion cancel in Pauli-Villars regularization.

In the previous section we have shown that the quark
distribution functions can be represented in two equivalent
forms as a sum over either occupied or nonoccupied quark
states. In general, regularization violates this equivalence.
Let us regularize the sum over nonoccupied states by an
energy cutoff similar to Eq(38):

[u(x)+d(x¥) 10 occus — NeM Non dwSH 8(w—H)

Ejeyt+0
X 8(w—xMy+p3)(1+9°y%)]

—(H—Hy). 43

one can expand in derivatives of the soliton field. One finds

that only the first term in the deriyative expans_ion _is di_ver'One can easily show that this sum over nonoccupied states
gent. In this way one easily o_btams the I.ogar|th_m|.c dlVer'has; the same logarithmic divergence for latggeas the sum
gence of the d|str|F)ut|on function, E¢38), in the limit of over occupied states, E@l1). This means that the difference
large energy cutoff: between the two representations of the quark distribution
functions remains finite fowy— . The question is whether
this finite limit is zero or not. The answer is, surprisingly, no.
Moreover, this limit can be computed analytically, using a
technique similar to the one described in the Appendix. One
finds

d
(2m)°

® g 1
[U() +d(X)Jogs™ NeMyM 2Inmsgr(x) 4—772f

X O(K3=My|x) T U(k)[U(k)]"]

for - (wp==). 4D im {[u(x)+ 001285 [U00 + 0012 0eeud
wg—®

[Here 6(y) is the step function If the soliton field,U.(x), is

smooth in coordinate space, then its Fourier transform, 1 d3k _ _

U.(k), decays exponentially for largé|. This means that, =NcM NMZ_ZI STHUK[UK)]']

as a function of|x|, the integral in Eq.(41) also decays 4m"t (2m)

exponentially at largex|. One should keep in mind, how- [xMy+ k3|

ever, that the asymptotic formula, E@t1), is valid only in XMy (44)

the parametric rang&~ 1/N.<wy/My and thus does not

allow us to draw any conclusions about the behavior of therpys regularization by an energy cutoff leads to an anoma-

quark distribution function at largex|. . lous difference between summation over occupied and non-
It is therefore interesting to derive the UV behavior of the g¢ccupied states even in the infinite-cutoff limit.

distribution function with energy cutoff at larger values of  The deeper reason for the artifacts encountered with the
Ix|. An asymptotic expansion can be performed in the doenergy cutoff is that this regularization violates the com-
main 1N¢<|x|~wo/My by computing the UV divergences pleteness of the set of single-particle quark states. The
of the moments of the distribution functidsee the Appen- equivalence of the two representations of the distribution
dix). The asymptotic behavior is given by functions as sums over occupied and nonoccupied states re-
lies on the locality of the equal-time anticommutator of

® Z1y,2 4 2wy quark fields[or, equivalently, of the discontinuity of the
[U(x) +d(X) ] ggeu~ NeMy ™M 242 o x+ My Feynman Green function, E¢30)]. Leaving out the contri-
bution of high-energy states one is dealing with an incom-
1 (2w, plete set of quark eigenstates, which results in a modification
T2 B(M—N - |X|) 6(—x) of the 5-function equal-time anticommutator. In other words,

one violates causality, i.e., the anticommutativity of the
quark fields at spacelike separations. What is remarkable,
though, is that cutoff regularization leads to anomaly-type
phenomena which persist even in the infinite-cutoff limit, cf.
Eq. (44). Furthermore, Eq(42) tells us that such regulariza-

X f d3XTr 9U(x)9UT(x)]

for 1/NC<|X|""Q)0/M N- (42)
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tion always leads to unphysical results for the distribution For intermediate regularization we now introduce an en-
function, no matter which representation of the distributionergy cutoff in Eqs.(35) and(37) in the form
function one adopts. It should be noted that the usual proper-

time regularization of the determinant is of this type. R _ 0.3
o . + = +
A regularization which preserves the completeness of [u00+d() Joccup NCMNZ (nl(3+7%7)
states is the Pauli-Villars regularization, where one subtracts oceup
from the divergent sums a multiple of the corresponding X 8(Ep—XMy+ p3)|n>R(En),

sums over eigenstates of the Hamiltonian in which the quark

mass,M, has been replaced by a regulator milks,. This (46)
mass now plays the role of the physical cutoff of the effec- A _Ad R
tive theory, which was denoted generically Ayin Sec. IlI. [Au(x) (%) Joccup
The coefficient of the subtraction is chosen such as to cancel 1
the logarithmic divergence of the distribution function with =— Z(2Ty)N;My X, (n|S(Ep—xMy+p3) 73
the energy cutoff, Eq41). We thus define 3 . )
u
N X(1+9%9%) ys|MR(Ey). (47)
u(x) +d(x X)= lim { [u(x)+d(x)]*% (x

[U(x)+A0x) Joceud ) g (U0 F A0 Toceud ) We have written the matrix elements between single-particle

levels in abstract form, witip® denoting thez component of
the single-particle momentum operator. HeR{E,) is a
- @Q . - s—=n
M2 [U(X)“Ld(x)]occuéx)h\"pv ' smooth regulator function with a cutof, 5. For example,
PV one may employ a Gaussian

2

(49)

2

n
and similarly for the sum over nonoccupied states. One ob- R(En):exp< - £2 ) . (48
serves that the unphysical phenomena associated with the ma;

energy cutoff—the negative-behavior, Eq.(42), and the  ajernatively, one may use a Strutinskigrror function
anomalous difference of summing over occupied and NoNOGqy jator of the kind described in RéfL8], which leads to
cupied statzes,th442]—argfpropo;t|%nal to the qua][fk massl more rapidly converging sums over levels. A corresponding
squaredM”. T \us, the artifacts of the energy cutoll cance regularization can be introduced also in the sums over non-
under the Pauli-Villars subtraction, E@5), as it should be. occupied states

In particular, the Pauli-Villars regularized distributions can Before evaluéting the sums over levels, E¢6) and
now equivalently be computed as sums over occupied Of47) it is convenient to convert them to a more symmetric
nonoccupied states. form. In the derivation of the distribution functions in Sec. II,

| In Fh:S Sectloln we _have |n\r/]esggat_ebd t_he ;:ons_equenc_es sing the infinite-momentum frame, it was assumed that the
ultraviolet regularization on the distribution functions Using , ,¢je0n is moving in the direction. The orientation of the

asymptotic expansion techniques. The physical distributions, ,jeon velocity is, of course, arbitrary, and the distribution

for finite Pauli-Villars cutoff, can only be computed numeri- functions do not depend on it. We can thus write E¢$)
cally. Below we shall see that the numerically computed dis—and (47) equivalently as '

tribution functions in Pauli-Villars regularization satisfy all
general requirements. The distributions decrease rapidly for

large |x| and exhibit the correct positivity properties, in full [U(X)+d(X)]5eu= NcMy 2 (nl(1+9°v- %)
accordance with the results of the asymptotic analysis. ocr;up
X 8(Ep—XMy+V-p)[MR(Ey),

IV. COMPUTATION OF QUARK

DISTRIBUTION FUNCTIONS (49)

A. Spherically symmetric representation [Au(x) —Ad(x)]gCcup
for distribution functions

; ; 1
We n(_)W_deveIop a method_ fo_r nu_merlcal computation of =~ Z(2T)NMy D (n|v- A1+ y%- »)
the Pauli-Villars regularized distribution functions. Our gen- 3 n

eral strategy will be as follows. We compute the distribution
functions as sums over quark levels, E@$) and(37), for a X y58(En—XMy+p-V)|NYR(E,). (50)

large but finite energy cutoff. Such “intermediate” regular-

ization is necessary in order to have expressions which cawhere v is an arbitrary three-dimensional unit vector,
be computed using finite basis methods. The physical distriv>’=1. For the isosinglet unpolarized distribution this is im-
bution functions are then obtained by subtracting the corremediately obvious; in the case of the isovector polarized dis-
sponding sums with the PV regulator makk,y,, according tribution, Eg. (50), we have made use of the “hedgehog”
to Eq.(45), and removing the energy cutoff by extrapolation symmetry of the classical meson field, E@), and the

to infinity. In this way, the energy cutoff affects only the Hamiltonian, Eq.(8), i.e., the invariance under simultaneous
intermediate steps of the calculation, not the final result.  rotations in spin and isospin space. We can now pass to a

occup
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spherically symmetric representation by averaging over tthu(x)—Ad(X)]Eccup
orientations ofv before computing the sum over quark lev-
els. Using the identity

1 1 _ ! 3)
EJ dQvfs(En_Xl\AN*'V'p):m0(|p|—|En—xMN|), = 3(2T3)NCMN; (n|A®ysp- 7
(51

occup

+A® 0. - 7+ A®07 5INR(E,). (53
and its generalizations, we rewrite E¢49) and (50) in the VP YYsh- T v AmRE). (53

form
[UC) +d() Iceup
Here,A®(k=1, .. .,5), arescalar functions of the magni-
—NMy En: (n|A(1)+A(2)y°p- YMR(E,), (52 ';Jsdce)f(:Léhlzvs(;?glﬁé?ggflyear:gzentum operaip(, as well
occup
(1, k=1,
_(Ex—xMy) 5
p? ’
1 _ (Ep—xMy) 3,
ACPLE, x)= 57 6Bl =B, —xMy]) % 4 el
1 3 (E,—xMy)> (54
2 2 pt T
1 1(E,—xMy)? s
\ 22 |P|2 , ‘

These operator functions ¢| are understood in the usual st
sense, as functions of the eigenvalues in a basis where the Hij= Jboxd X i (X)H ¢;(x), (57)
operator is diagonal.

B. Evaluation in a discrete basis Dp(X)= 2 Cridhi(X). (58)
I

The distribution functions, Eq$52) and(53), are sums of
diagonal matrix elements of functions of single-particle op-Since the operatdp| is a function of the free Hamiltonian,
erators between eigenstates of the Dirac Hamiltonian in the

background pion field, E48). To evaluate them numerically pl=VHG—M?, (59
we employ a basis of eigenfunctions of the free Dirac Hamil- =~ ) ) )
tonian: it is diagonal in the basis dfl; eigenstates, E¢55), and one
has
Hodi=E” ¢,

(f(pDliy="1(Ipl) &y,
0.k 0
Ho=—1y"y "9+ My". (55) Ipli= /_(Ei(O))z_Mz" (60

The basis is made discrete by placing the soliton in a three- ) ) ) )
dimensional spherical box of finite radius, imposing thefor any function,f(|p|). Using this property one can explic-

Kahana-Ripka boundary conditions on the surfgd. The itly evaluate the m_atrix elements between levels in E§R)
eigenvalues and eigenfunctions of the full Hamiltonian, Eq.2"d (53), and obtains
(8), are then determined by numerical diagonalization in the

discrete basis: [U(X)+d(x)]§ccup: N:My E 2 C:icnj
n i,j
occup

HijCnj=EnCni. 56
; ijCnj = EnCni (56 X[AD([pli ,Eq %) &
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+A2(|p|; ,Ep.x) These are now continuous functions of the level momenta
0 and energies, so one may perform the sums over levels in the
X (7P MijIR(En), (61) discrete basis, provided one makes sure that the separation
between the momentum eigenvalues of the basis states is
[Au(x)—Ad(x)]fjccup significantly smaller than the smearing width, The level
spacing is inversely proportional to the size of the Kahana-
A®(|pli ,En,X) Ripka box, so it becomes necessary to use rather large boxes
to attain small values o§. In the calculations described in
this paper we use a value pf=0.1, which requires box sizes
@ 0 >20M 1,
X (ysp- )iy AP ([pl; ,En,x>2k (P Vi In this way one can compute the smeared distribution
functions, Eq.(65). At values ofx where the exact distribu-
(5) 0 tions are smooth the smeared functions provide an excellent
X(ysp D+ AR ([pli, En ) (¥ 7 9)ij |R(Ep). approximation to the exact ones. An exception is the iso-
singlet unpolarized distribution near=0. The exact distri-
(62 bution has a discontinuity at=0, which becomes a smooth
® . ) crossover of width~1/y in the smeared distribution. It is
Now the A™, (k=1,...,5) areordinary functions of the possible to recover the discontinuity by “deconvoluting” the
eigenvalues ofp| in basis stategp|;. Here, (... ); denote  nymerically computed smeared distributions. Dividing the
the matrix elements of the corresponding operator betweefgyrier transform irx of the numerically computed smeared
bgsis_ states. We remind that.the corresponding antiquark digfistribution by that of the Gaussian, H§5), one can recon-
tributions are given, respectively, by minus the RHS of Eq.stryct the Fourier transform of the exact distribution for val-
(61) at negativex, and that of Eq(62) at negativex; see end  yes of the argument up te 1/y. The exact distribution func-
of Sec. II B. . o ~tion itself is then obtained by inverse Fourier transformation,
We note that the Dirac and isospin structures appearing ifhcorporating the known asymptotic behavior of the Fourier
Egs. (61) and (62) are essentially the same as those in theyansform for large arguments corresponding to a discontinu-
sums determining the nucleon mass and isovector axial COlry at x=0.

pling, g [6,7]. To simplify the calculation of the matrix e thus compute the mode sums for the smeared distri-

1
= 3@TINM X 2 chy,

occup

elements one may use that butions, Eqs(61) and (62), for a number of values of the
o 0 energy cutoff, typically up td,,,=10M, and also the cor-
yp-y=Ho—My", (63 responding sums with the constituent quark mass replaced by

the PV regulator mas$p,,. We then perform the PV sub-
and that the operator appearing in the first and second teriaction, Eq.(45), and remove the energy cutoff by numeri-
on the RHS of Eq(62) can be expressed as an anticommu-cal extrapolation td,,,,— % pointwise inx. One computes a
tator: least-squares fit of the PV subtracted sums to a constant plus
inverse powers oE,,,, for eachx. The stability of the ex-
1 0 0 trapolation can be checked by adding more terms to the fit.
YsP 7= 5{vsY T %Y P Y (64) In Sec. Ill we investigated the asymptotic behavior of the
distribution functions with an energy cutoff and noted a
The terms in the sums Eq&1) and(62) are proportional number of unphysical features, which are removed by the
to a step function depending on the level energy, the Pauli-Villars subtraction. This can also be seen directly in
momenta of the basis statép|;, and the Bjorken variable, the numerical calculations. The numerically computed distri-
x. The expressions can not directly be used for numericapution functions for finite energy cutoff, Eq&1) and (62),
evaluation in a discrete basis, since the result would be &xhibit a “tail” at large negativex, which is proportional to
discontinuous function ok. There are, however, ways to M?, consistent with the asymptotic formula, E¢2). (For
convert Eqs(61) and (62) to a form suitable for evaluation Summation over nonoccupied states, the “tail” occurs at
in a discrete basis. One possibility is to apply GaussiarPOsitive X.) Moreover, the result for the anomalous differ-
smearing inx to the distribution functions. Let us define ~ ence between summation over occupied and nonoccupied
states, Eq(44), is confirmed by numerical calculations. Thus
the numerical results fully support the conclusions of Sec.
D(x'), M.
Given the equivalence of summing over occupied and
(65 nonoccupied states in PV regularization, one may choose any
of the two representations for the numerical calculations. In
whereD(x) stands for the regularized isosinglet unpolarizedpractice, it is convenient to compute the quark distributions
or isovector polarized distributions. Hergs<1 is a small but by summing over occupied states and the antiquark distribu-
finite number. These “smeared” distribution functions cantions by summing over nonoccupied states. In this way, no
now be calculated using Eqé61) and (62) with A% re-  vacuum subtraction is required. Furthermore, these sums ex-
placed by the corresponding “smeared” functionsxin hibit asymptotic behavior in the energy cutoff earlier than the
respective other representations, making the extrapolation to
AR(|p|; Ep,x)— AlIsmeared | E ). (66) infinite cutoff more stable.

Dsmeareex)= 1 * dx’ex;{ _(X—X/)Z
ym) - ¥
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When computing the isovector polarized distribution one
must keep in mind that it is defined as the limit of zero pion
mass of the distribution computed for finite pion mass, i.e.,
for a soliton profile vanishing exponentially at large rd8i.
(The same limit is understood in the definition of the isovec-
tor axial coupling,gt®.) We thus must carry out the entire
calculation described abowghat is, summing over quark
levels, PV subtraction and extrapolation E,,,— ) for
M .#0, and take the limitvi .—0 by numerical extrapola-
tion at the very end.

The Gaussian smearing, E@5), offers a simple possi-
bility to compute the distribution function directly as a func-
tion of x. We note, however, that the use of the spherically
symmetric representation, Eq$1) and (62), is not limited
to this method. In fact, performing other functional transfor-
mations of the expression$1) and (62) before summing
over levels one can obtain prescriptions for evaluating the FIG. 1. The isosinglet unpolarized quark and antiquark distribu-
distribution functions in a variety of representations. For ex-tions. Solid line: quark distribution,u(x) +d(x), total result(dis-
ample, replacing in Eq$61) and(62) the functionsA® by  crete level plus Dirac continuumdotted line:contribution of the
their moments, discrete level(after PV subtractionto u(x)+d(x). Dashed line:
antiquark distribution,u(x) + d(x), total result;dot-dashed line:
contribution of the discrete level to(x) + d(X).

0.0 1.0

1
Aol B = | o A0l By %)

with ro=1.0M ~1, which gives a reasonable description of a
varitey of hadronic observables of the nucleon. For these
parameters, the nucleon mass is found to Nbg=1150

one obt?irr]]s 3_ forrg)nu!a f?r nu_me;icall evaluation of the MO-\1a\; [The nucleon mass is also computed in PV regulariza-
ments of the distribution functioifAgain, one must compute tion, subtracting from Eq9) MZ/M,%Vtimes the correspond-

the sums for finite energy cutoff, perform the Pauli-Villars ing expression for the Hamiltonian with o, . The contribu-

subtraction and extrapolate to |nf|n|te_ Cl!‘ﬁ”"\_’e ha_ve COM" " ion of the discrete level is also subtractieBor calculation
puted the lowest moments of the distributions in this way

(m<10) and verified that they coincide with the moments Ofof the isovector polarized distribution, we introduce a finite
the numerically computed distribution functions. pion mass in Eq(69) in the form

(m=1.2,...), (67)

2

r
V. NUMERICAL RESULTS AND DISCUSSION _0(1+ M_r)exp—M_r)|. (70
r2

Pu_(r)=-2 arctar{
In the numerical calculations we use the standard value
for the constituent quark mas$) =350 MeV, as derived
from the instanton vacuurfl?7]. The value of the PV regu-
lator massMpy, is determined by reproducing the experi-
mental value of the pion decay constant:

4ch

This form has the correct Yukawa tail at largebut is not
modified compared to Eq69) atr=0. The limitM ,—0 is
taken at the very end of the calculation.

The result for the isosinglet unpolarized quark and anti-
quark distributions is shown in Fig. 1. For both distributions
we show separately the total resilie sum of the discrete
level and the negative Dirac continuliand the contribution
of the discrete level. One sees that the discrete level contrib-

dk  M?
(2m)* (M?+Kk?)?

FZ_

w

2 4 2 2 2
—4N M d’k Mpy _ NcM .PMPV utes to the antiquark distribution with a negative sifgFhe
cha2 4 12 2\2 2 g2 ibuti f the di level h f i
Mgy (2m)* (Mpy+Kk?) A M contribution of the discrete level to the RHS of E§l) is
68) continuous atx=0, and the antiquark distribution is just

given by the negative of E¢61) at negativex.] An approxi-

mation in which only the discrete level is taken into account
would thus lead to negative antiquark distributiofi9].

Positivity of the antiquark distribution is naturally restored
by including the Dirac continuum. This is clear in the light of
the discussion of Sec. Ill: Restricting oneself to the contri-
bution of the discrete level one is working with an incom-

With F =93 MeV one obtain®13,/M?=2.52. For the soli-

ton profile, Eq.(6), we use the variational form of Rg6],
rs
r2)’
plete set of states. Only the sum of all levédscrete plus
Dirac continuum gives the correct realization of the distri-
2If one computed the isovector distribution directly for a masslessution function in the effective theory.

P(r)=-2 arcta( (69

soliton profile,P(r)~ 1/r2 for r —o, one would find a singularity at
x=0 (regulated only by the finite box sizeThe distribution ob-
tained as a limit of a massive profile is nonsingulax&t0.

The result for the isovector polarized quark and antiquark
distributions is displayed in Fig. 2total results and level
contributiong. One again observes a sizable contribution
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FIG. 2. The isovector polarized quark and antiquark distribu-
tions. Solid line: quark distribution,Au(x) —Ad(x), total result
(discrete level plus Dirac continuymdotted line: contribution of
the discrete levefafter PV subtractionto Au(x) —Ad(x). Dashed
line: antiquark distribution,Au(x)—Ad(x), total result; dot-
dashed line:contribution of the discrete level thu(x) —Ad(x).

FIG. 3. The isosinglet quIariAed distribution of quarks plus
antiquarks,%x[u(x)+d(x)+ u(x)+d(x)]. Solid line: calculated
distribution(total result, cf. Fig. L Points:NLO parametrization of
Ref.[3].

proach. In fact, théunregularizeglcontribution of each level

from the Dirac continuum, which reverses the sign of theto the baryon number i, as can be seen, for instance, by
level contribution to the antiquark distribution. Here, how- integrating Eq(52) over both negative and positive Since
ever, contrary to the isosinglet unpolarized distribution, nothe baryon number of the discrete levelNs, the contribu-
definite sign is required priori. tion of the negative Dirac continuum to the baryon number

The calculated distributions should in principle be used asnust be zero in order to satisfy the sum rule for the total
input for perturbative evolution, starting with a scale of thedistribution. Indeed, one observes that the baryon number of
order of the cutoffMp,~600 MeV. We stress that we are the negative continuum vanishes when the cutoff is taken to
computing the twist-2 parton distributions at a low normal-infinity. However, this does not mean that the Dirac con-
ization point, not the structure functigoross sectionat low  tinuum does not contribute to the valence quark
g2, so a meaningful comparison with the data can be perdistribution—just the integral of its contribution is zero. In
formed only after evolution to largg?. Alternatively, we  Fig. 4 we show both the total resitliscrete level plus con-
may compare our calculations with the parametrizations ofinuum) and the continuum contribution, which integrates to
Gluck and co-workerd3,4]. Starting from “valencelike”  zero.
(nonsingulay quark, antiquark, and gluon distributions at a  The isovector polarized total distributidgquarks plus an-
normalization point well below 1 GeV, these authors can fittiquarks is shown in Fig. 5. The calculated distribution is
at largeg? not only all the data in the largesegion, but also ~ systematically smaller than the fit §#4]. This is related to
the recent smalk data down tox~ 10 *. We emphasize that
the quark and antiquark distributions obtained in our ap-
proach are precisely of this “valencelike” form. Moreover,
the normalization points of the leading ord&O) and next
LO (NLO) distributions of[3,4] are close to our cutoff, so
one may perform a preliminary comparison without taking
into account evolution. I e

Figure 3 shows the isosinglet unpolarized total distribu- 05
tion (quarks plus antiquark$ogether with the fits off3]. Our |
distribution is larger than that 48] since their fit includes ] "
gluons, which carry about 30% of the nucleon momentum at z
this scale. For the variational soliton profile, E§9), the

1.0 —————————

x(g-9)/2

second moment of the calculated distribution of quarks plus
antiquarks is 0.8(With a self-consistent solution it would be
unity, since the energy momentum sum rule follows from the
equations of motion for the pion fiel&].)

The isosinglet unpolarized valence quark distribution
(quarks minus antiquarkds compared in Fig. 4. Here we
have taken in our calculatiov p,— o, since this distribution

ing to see how this sum rule is realized in the laMeap-

- ———

0.0

0.0

FIG. 4. The isosinglet unpolarized valence quark distribution,
function is ultraviolet finite and should not be regularized in 1x[u(x)+d(x) — u(x) — d(x)]. Solid line: calculated distribution
order to preserve the baryon number sum rule. It is interesttotal resulj; dashed line:contribution of the Dirac continuum.

Points: NLO parametrization of Ref.3].
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FIG. 5. The isovector polarized distribution of quarks plus anti-

1.0

quarks, SX[Au(x) —Ad(x)+Au(x)—Ad(x)]. Solid line: calcu-
lated distribution(total result, cf. Fig. 2 Points: NLO parametri-
zation of Ref[4].

the fact that the isovector axial coupling®’, which deter-
mines the normalization of this distribution, is underesti-chiral theory.
mated in the leading order of theN expansion(with our
parameters for the chiral soliton we obtajﬁf’)=0.9). We

4081

gives a reasonable overall description of a number of had-
ronic observables, for example thi\ splitting [6]. In prin-
ciple, the classical pion field describing the nucleon should
be determined as the minimum of the static energy, i.e., as
the self-consistent solution of the equations of motion of the
pion field. The calculation of parton distributions with the
self-consistent pion field will be the subject of a separate
investigation.

The exact numerical calculations fully support the ap-
proximation used in5], based on the “interpolation for-
mula” for the quark propagator in the background pion field.
For both unpolarized and polarized distributions the differ-
ences to the exact results are of the order of 10% for the total
distributions (quarks plus antiquayk somewhat larger for
quarks and antiquarks separately.

VI. CONCLUSIONS

In this paper we have completed the first part of the pro-
gram formulated ii5]. We have computed the leading quark
distribution functions in the N expansion, namely the iso-
singlet unpolarized and isovector polarized, in the effective

Starting from the original definition of parton distribu-
tions as numbers of particles carrying fractianof the

note that 1N, corrections to this quantity have been com-nucleon momentum in the infinite-momentum frame, we
puted[20]; the same techniques could also be applied to thé/ave shown that it leads in the largg-limit to the same
distribution functions. In Fig. 6 we show the polarized anti-"esults as the QCD definition of distribution functions as

quark distribution, which was assumed to be zero in the fit offatrix elements of bilinears of quark fields on the light cone.

nificantly smaller than the total distribution of quarks plusPution functions can be established within the mean-field
antiquarks. picture at largeN, shows the scope of this relativistically

To summarize, we obtain a reasonable description of th€ovariant, field-theoretical description of the nucleon.
isosinglet unpolarized and isovector polarized quark and an- We have observed that, generally speaking, the calcula-
tiquark distributions. In particular, we find a large antiquarktion of quark distribution functions puts strong demands on
distribution at the low normalization point, in agreementthe regularization of the effective theory. A crucial require-
with the parametrizations of the data. ment is that it should preserve the completeness of the basis

In the calculations reported here we have chosen th€f single-particle quark wave functions in which one ex-

variational soliton profile, Eq(69), with a radius which Pands the fermion fields in the mean-field approximation. A
regularization by subtraction, such as the Pauli-Villars regu-

larization, meets this requirement, while methods based on
" an energy(or othe) cutoff violate this completeness, and
thus, causality. In particular, the anomaly observed in the
difference of summation over occupied and nonoccupied
states in Sec. Ill shows that one faces here a truly qualitative
difference between regularization methods, not simply finite-
cutoff effects vanishing in the infinite-cutoff limit. By ex-
plicit calculation, we have shown that Pauli-Villars regular-
ization leads to quark and antiquark distributions satisfying
all general requirements.

As to the numerical calculations, we have presented a
general scheme for computing the distribution functions in
various representations. It is remarkable that the Kahana-
Ripka method, using a basis of eigenstates of the free Hamil-

1.0 tonian, lends itself so naturally to the computation of distri-
X bution functions after one has converted them to a
spherically symmetric form.

FIG. 6. The isovector polarized antiquark distribution, =~ The methods developed here, both analytical and numeri-
$x[Au(x)—Ad(x)]. Solid line: calculated distribution(total re-  cal, can readily be generalized to compute also the “small”
sult, cf. Fig. 2. In the fit of Ref.[4] this distribution is assumed to quark distributions in the N, expansion, the isovector un-
be zero. polarized and isosinglet polarized distributions. They are

0.05

xAG/2

0.00

0.0 0.5
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given by double sums over quark levels in the background he delta function of the Hamiltonian can be represented as
pion field (formulas have been presented%j). Calculations the discontinuity of the quark propagator, cf. E§9). One
of these distributions are in progress. obtains a representation of the moments as
We have found reasonable agreement of our results with
the fits of Glick and co-worker$3,4]. Indeed, the largéd,
approach to parton distributions formulated[B] provides i (o _ _
justification for the picture of “valencelike” distributions at M, °=— ﬁJ do'[My(—ie'+0)=M(-ie’'-0)],
a low normalization point. The fact that at largé¢, the 0 (A2)
nucleon is characterized by a classical pion figld equiva-
lently, a polarized Dirac sea of quajksaturally explains the
large antiquark content at the low normalization point. Thewhere
antiquark distributions obtained in our approach are nonsin-
gular at smallx. We note also that the parametric suppres-
sion of the gluon relative to the quark distributions, which is — 1
implied by the effective chiral theorjsee Sec. | and Ref. Mp(w)= —iNCMh"S;{_w—JFiH(—iwnL pHnt
[5]), seems not to be in contradiction with the parametriza-
tion of the data at low normalization poifi8]. A 30% mo- 0.3
mentum fraction of gluons at the low normalization point is X(1+y7y")|—(H—=Ho). (A3)
consistent with the suppression of the gluon distribution by
M2/A2. However, in order to make this more quantitative

hould develop thi h level which all The integrand of EqiAL) is ultraviolet finite for any fixed
one should develop this approach to a level which allows ong,, and an ultraviolet divergence appears in El) only in

to compute a nonzero gluon distribution. This can be done i he limit wy— due the largas behavior of the integrand
0

the framework of the instanton vacuum, using the methOdf‘typically a powerlike growth: see belgwEquation(A3), on

of [8]. the other hand, contains ultraviolet divergences even for
fixed w due to large momenta. The difference is that in Eq.
(A1) we have the delta function of the Hamiltonian, which

constrains the ultraviolet growth of the integrand. We there-

This work has been supported in part by the NATO gcj-fore have to introduce an additional regularization of the
entific Exchange Grant No. OIUR.LG 951035, by INTAS functional trace in Eq(A3) at fixed w. The dependence on
Grants Nos. 93-0283 EXT and 93-1630-EXT, by a jointthis additional cutoff cancels, however, after taking the dis-
grant of the Deutsche Forschungsgemeinschaft and the Rugontinuity in Eq.(A2), and thus does not influence the final
sian Foundation for Basic Research, and by CQditich). ~ result.
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Mi(w)=2, M%(w), (A4)
APPENDIX: ASYMPTOTICS FOR LARGE

ENERGY CUTOFF I L

— \n —-n

In this appendix we discuss the asymptotic properties of Mp™ (@) =(=1)"NMy
the distribution function with the energy cutoff, which was
introduced in Sec. Il as a device to control the intermediate 1
steps of the calculation. In particular, we show how the XS 02— 2+ M?2
largex asymptotic behavior, Eq42), can be derived. This k
formula assumes the double limit of larg€gin the sense of
Ncx>1) and large energy cutoffu(p>M). It is convenient X (—iwyo— Y+ IMU ™ 78) (w+d5)" 1
to analyze this limit in terms of the moments of the distribu-
tion functions. An explicit expression for the moments is

obtained by integrating Ed38) overx, X(—iwyy+ 'ys)]_ (A5)

M(4U?s
( )wz—ﬁ§+M2

For the calculation of the leading largeasymptotics it is
wo_ 1 n wg sufficient to restrict oneself to the first two terms in E&4).
My fﬁldxx” [u(x) d(x)]occup The traces are easily evaluated by inserting plane-wave

states:
Ejeyt 0

=NCMh7nf doSd 8(w—H)(w+p3)" 1t

—wg

X(1+ 9%y ]—-(H—Hy) (n=1,2,...). (A1)

d3p d3q

(2m®) (2m)®

|\'7|<nk>(w)=4M2NcM§‘“f



~ It 1
XTU(p)[U(p)] T2+ (p—q)2+M2]

p3(_iw+q3)nfl
(02+|gl2+M?)
(—iw+ag®)"|p|?

(AB)

The integral over is divergent, but, as said above, the di-
vergent terms do not contribute to the discontinuityain

Keeping only those terms that lead to the discontinuity we

obtain

M (w)=4M2N MY "(—i)" 20" 3sgr(Rew)
X f d3XxTr 3, U(x) 3 UT(%)]
—-2“*2(n—2)—55 k=1

al 2°nip '

2.

1 1
—77_2”_3(“— 1)+ 55,1]2}, k=
(A7)

Inserting this asymptotic behavior in EgA2) we obtain the
leading divergences of the moments fog—oo:

UNPOLARIZED AND POLARIZED QUAKK. ..
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M 0~M2N M * f d3xTr 9 U (x) 3 U T (x) ]

1L [2%0 n-2 s 2 (=3
D e My -z "
X
1
5iNwg, n=2.
(A8)

Thus the moments far=3 have power divergences with the
energy cutoff, while fom=2 the divergence is logarithmic.

The asymptotic behavior of the moments may be ex-
pressed in the form of a function of, assuming that
1N <|x|~wg/My. Computing the moments of the func-
tion of Eqg.(42) one may easily check that it corresponds to
the largee, behavior of then>3 moments, Eq(A8).

To conclude, we have shown that, with an energy cutoff,
the moments of the distribution function generally have
power divergences. These manifest themselves not in a
power divergence of the distribution function at fixedbut
in the occurrence of a “tail” at large negative(large posi-
tive x in the case of summation over nonoccupied sjates
The power divergences are artifacts of the energy cutoff and
cancel under the Pauli-Villars subtraction, E¢5). The
physical, Pauli-Villars regularized distribution functions are
well localized inx.
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