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The isosinglet unpolarized and isovector polarized twist-2 quark distributions of the nucleon at low normal-
ization point are calculated in the large-Nc limit. The nucleon is described as a soliton of the effective chiral
theory. We derive the expressions for the distribution functions in the large-Nc limit starting from their
definition as numbers of partons carrying a momentum fractionx in the infinite momentum frame. We develop
a numerical method for computation of the quark and antiquark distributions as sums over the quark single-
particle levels in the pion field of the soliton. The contributions of the discrete bound-state level as well as the
Dirac continuum are taken into account. The quark and antiquark distributions obtained explicitly satisfy all
general requirements. The results are in reasonable agreement with parametrizations of the data at a low
normalization point.@S0556-2821~97!02817-8#
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I. INTRODUCTION

The evolution of parton distributions withq2 in the
asymptotic region is well understood today, being governed
by the renormalization group equation of perturbative QCD.
A complete description of experiments at largeq2 requires,
however, the knowledge of parton distributions in the
nucleon at some initial normalization point. Several sets of
input distributions were determined by fits to the experimen-
tal data at largeq2 @1–4#. All these fits include antiquarks
and gluons at a low normalization point.

Recently, we have formulated an approach to calculate
the twist-2 parton distributions at low normalization point in
the limit of a large number of colors (Nc), where the nucleon
is described as a chiral soliton@5#. At low energies, QCD
may be approximated by an effective theory whose degrees
of freedom are quarks with a dynamically generated mass,
interacting with pions, which appear as Goldstone bosons of
the dynamically broken chiral symmetry. The nucleon
emerges as a classical soliton of the pion field@6#. This pic-
ture is known to give a successful description of hadronic
observables such as the nucleon mass, magnetic moments,
form factors, etc.@7#. In @5# we have shown that this ap-
proach possesses all necessary requisites for a successful de-
scription of the leading-twist parton distributions of the
nucleon. The normalization point of the distribution func-
tions obtained in this way is of the order of the ultraviolet
cutoff of the effective chiral theory, typically;600 MeV.
Let us briefly summarize the main characteristics of this de-
scription @5#.

~i! Classification of quark distributions in the large-Nc

limit. In the large-Nc limit the quark distributions are con-
centrated at values ofx;1/Nc . Combining this fact with the
known large-Nc behavior of the integrals of the distributions
overx, one infers that the quark distributions in the large-Nc
limit can be divided in ‘‘large’’ and ‘‘small’’ ones. The lead-
ing distributions are the isosinglet unpolarized and isovector
polarized distributions, which are of the form

D large~x!;Nc
2r~Ncx!, ~1!

wherer(y) is a stable function in the large-Nc limit, which
depends on the particular distribution considered. The is-
ovector unpolarized and isosinglet polarized distributions ap-
pear only in the next-to-leading order of the 1/Nc expansion,
and are of the form

Dsmall~x!;Ncr~Ncx!. ~2!

~ii ! Sum rules and antiquark distributions.The chiral soli-
ton model is a field-theoretic description of the nucleon,
which preserves all general requirements on parton distribu-
tions. In particular, the standard sum rules for parton distri-
butions and their positivity properties are satisfied automati-
cally within the model. Also, a consistent description of the
antiquark distributions can be achieved in this approach.

~iii ! Parametric smallness of the gluon distribution.When
working with the effective chiral theory, it is implied that the
ratio of the dynamical quark mass,M , to the UV cutoff,L
~not to be confused with the QCD scale parameter,LQCD), is
parametrically small. ForM /L!1, the quark distributions
computed in the effective theory may be identified with the
‘‘current’’ quark distributions of QCD. The gluon distribu-
tion is zero at this level, more precisely, it isO(M2/L2). For
finite M /L, the quark distributions computed in the effective
theory should be interpreted as distributions of ‘‘constitu-
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ent’’ quarks — objects which themselves have a substructure
in terms of QCD partons. The gluon distribution inside these
objects could in principle be recovered from the effective
theory if one knew the precise way how the UV cutoff arises
as a result of integration over the original QCD degrees of
freedom. These statements can be made more precise in the
framework of the instanton vacuum, which on one hand al-
lows to derive the effective chiral theory, and on the other
hand can be used to evaluate the gluon distribution directly,
using the method developed in@8#. One finds that the gluon
distribution is suppressed relative to the quark distributions
by a factor of the packing fraction of the instanton medium
@5#.

In this paper, we study the properties of theNc-leading
quark and antiquark distributions, namely the isosinglet un-
polarized and isovector polarized distributions, in the ap-
proach formulated in@5#. First, we rederive the basic formu-
las for the parton distributions in the effective chiral theory
in a new way. In@5# these formulas were obtained from the
exact QCD expressions for the parton distributions as matrix
elements of quark bilinears with a lightlike separation@9,10#.
In this paper we take the original Feynman point of view
@11# that parton distributions are given by the number of
partons carrying a fractionx of the nucleon momentum in
the nucleon infinite-momentum frame. Despite the apparent
difference in wording we show here that the two definitions
are, in fact, equivalent and lead to identical working formu-
las for computing parton distributions. We think it is remark-
able that the actual equivalence of the two well-known defi-
nitions can explicitly be demonstrated within this field-
theoretical model of the nucleon. The deep reason for the
equivalence is that the main hypothesis of the Feynman par-
ton model, namely that partons transverse momenta do not
grow with q2 @11#, is satisfied in the model under consider-
ation.

Second, we investigate the influence of the ultraviolet cut-
off of the effective chiral theory on the distribution func-
tions. This not only includes the asymptotic dependence on
the cutoff parameter~i.e., the UV divergences!, but also, and
more importantly, the dependence on the regularization
scheme adopted to make the distributions finite. It is crucial
that the regularization method not violate the completeness
of quark single-particle states in the background pion field,
in order to preserve causality, that is, the anticommutation
relations of quark fields at spacelike separations. A regular-
ization which meets this requirement is, for example, the
Pauli-Villars subtraction. We show explicitly that it leads to
quark and antiquark distribution functions satisfying all gen-
eral requirements, such as rapid decrease for largex, uniform
logarithmic dependence on the cutoff, and positivity. On the
other hand, regularization methods based on an energy cut-
off, such as the popular proper-time regularization of the
determinant, violate causality and lead to unacceptable re-
sults for the distribution functions.

Third, we develop a numerical method for exact compu-
tation of the quark and antiquark distribution functions as
sums over quark single-particle levels in the background
pion field. ~In @5# the polarized distributions were estimated
using an approximation, the so-called interpolation formula.!
Since the quark distribution functions are given by matrix
elements of products of quark fields at finite time and space

separations, their computation requires evaluation of func-
tional traces of the single-particle energy and momentum
operator, which is in general a difficult problem. Using the
finite-basis method of@12#, we formulate a reliable and effi-
cient numerical procedure to compute the Pauli-Villars regu-
larized quark and antiquark distributions. The method takes
into account the contributions of the discrete bound-state
level as well as the Dirac continuum of quarks.

Finally, using the methods developed in this paper, we
compute the isosinglet unpolarized and isovector polarized
distribution functions and discuss the results. In principle,
the resulting distributions should be taken as the starting
point for perturbative evolution and be compared with struc-
ture function data at largeq2. The evolution of the calculated
distributions and the comparison with the data will be the
subject of a separate investigation. Here, we restrict our-
selves to a comparison of the calculated distributions with
the parametrizations of the data at a low normalization point
by Glück and co-workers@3,4#.

II. QUARK DISTRIBUTION FUNCTIONS
IN THE LARGE- Nc LIMIT

A. The nucleon in the effective chiral theory

In the large-Nc limit, QCD becomes equivalent to an ef-
fective theory of mesons, with baryons emerging as solitonic
excitations@13,14#. At low energies, the main guiding prin-
ciple for formulating this effective theory is the dynamical
breaking of chiral symmetry, which, in particular, results in
the appearance of pions as Goldstone bosons. In the long-
wavelength limit, the effective theory can be expressed in the
form of the chiral Lagrangian of the pion field, whose struc-
ture is basically determined by chiral symmetry. The mini-
mal chirally invariant interaction of quarks with Goldstone
bosons is described by the functional integral@15–17#

exp~ iSeff@p~x!# !5E DcD c̄expS i E d4xc̄ ~ i ]”2MUg5!c D .

~3!

Here,p(x) is the pion field,

U~x!5exp@ ipa~x!ta#, ~4!

Ug5~x!5exp@ ipa~x!tag5#5
11g5

2
U~x!1

12g5

2
U†~x!.

~5!

The quark field possesses a dynamical mass,M , due to chiral
symmetry breaking. It is understood that, generally, this
theory of massive quarks is valid up to an UV cutoff,
L@M . The effective action Eq.~5! can be derived from the
instanton vacuum, where the cutoff is determined by the in-
verse instanton size, and the dynamical quark mass is mo-
mentum dependent. In practice, rather than working with an
explicitly momentum-dependent quark mass, one usually
takes a constant quark mass and applies an UV cutoff to
divergent quantities derived from Eq.~3!, using some regu-
larization scheme.
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In the effective chiral theory defined by Eq.~3!, the
nucleon is in the large-Nc limit described by a static classical
pion field. In the nucleon rest frame it is of ‘‘hedgehog’’
form @6#

Uc~x!5exp@ i ~n•t!P~r !#,

r 5uxu,

n5
x

r
. ~6!

Here, P(r ) is the profile function, withP(0)52p and
P(r )→0 for r→`, which is determined by minimizing the
static energy of the pion field. Quarks are described by
means of one-particle wave functions, to be found from the
Dirac equation in the external pion field,

~ igm]m2MUg5!Cn~x,t !50,

Cn~x,t !5exp~2 iEnt !Fn~x!, ~7!

which can be written in Hamiltonian form:

HFn5EnFn ,

H52 ig0gk]k1Mg0Ug5. ~8!

The spectrum of the one-particle Hamiltonian,H, contains a
discrete bound-state level. This level must be occupied by
Nc quarks to have a state of unit baryon number. The
nucleon mass is given by the minimum of the bound-state
energy and the aggregate energy of the negative Dirac con-
tinuum, the energy of the free Dirac continuum subtracted
@6#:

MN5NcElev1Nc (
En,0

~En2En
~0!!. ~9!

@En
(0) denotes the energy levels of the vacuum Hamiltonian

given by Eq.~8! with U51.# It is understood that Eq.~9! is
made finite by some regularization method, to be discussed
below.

Nucleon states of definite spin-isospin and 3-momentum
are obtained by quantizing the rotational and translational
zero modes of the soliton@their contributions to the energy
areO(1/Nc)#, by integrating over the corresponding collec-
tive coordinates with appropriate wave functions@6,7#.

B. Quark distribution functions in the effective chiral theory

The simplest way to determine the quark distributions in-
side the nucleon is to use the infinite momentum frame and
calculate the number of partons there@11#. It is well known
that the infinite momentum helps to separate quarks belong-
ing to the nucleon from the vacuum ones, provided that the
transverse momenta of the particles are not growing with the
nucleon momentum@11#. In our chiral quark soliton model
this condition is, of course, satisfied.

More precisely, the quark distributions as functions of the
Bjorken variable x are, by definition, the number of
~anti! quarks whose momentum, say, in thez direction, is a

fraction x of the nucleon momentumPN in the infinite mo-
mentum frame where

PN5
MNv

A12v2
, v→1. ~10!

The number of~anti! quarks can be expressed through the
nucleon matrix element of the creation and annihilation op-
erators,a1,a ~for quarks!, and b1,b ~for antiquarks!. We
define the quark and antiquark distribution functions as

Di~x!5E d3k

~2p!3
dS x2

k3

PN
D ^Nvuai

1~k!ai~k!uNv&,

~11!

D̄ i~x!5E d3k

~2p!3
dS x2

k3

PN
D ^Nvubi

1~k!bi~k!uNv&.

~12!

Herei denotes the set of quantum numbers characterizing the
quark, such as flavor and polarization.

In the infinite momentum frame it is possible to express
these matrix elements in terms of the quark field operator

c~x,t !5E d3k

~2p!3A2k0
(

c
@ac~k!exp~2 ik•x!uc~k!

1bc
1~k!exp~ ik•x!vc~k!#, ~13!

whereu(p), v(p) are the wave function of the free quarks
and antiquarks, normalized toūu52 v̄ v52M , andc51,2
denotes the polarization. Let us consider the Fourier trans-
form of the equal-time product ofc andc1:

E d3x1d3x2exp@2 ik•~x12x2!#c1~x2 ,t !c~x1 ,t !

5(
c,c8

1

2k0
@ac

1~k!ac8~k!uc* ~k!uc8~k!1ac
1~k!bc8

1
~2k!

3uc* ~k!vc8~2k!exp~2ik0t !1bc~2k!ac8~k!vc8
* ~2k!

3uc~k!exp~22ik0t !1bc~2k!bc8
1

~2k!vc* ~2k!

3vc8~2k!#. ~14!

Averaging this operator over the nucleon state in the infinite
momentum frame, withk35xMNv/A12v2, v→1, we get
zero for all terms on the right-hand side~RHS! but the first
one. Indeed, the probability to find a correlated quark-
antiquark pair with very large opposite momenta~the second
and third terms! in a fast moving nucleon goes to zero as
v→1. Similarly, the probability to find antiquarks moving in
the opposite direction to the nucleon with large longitudinal
momenta goes to zero asv→1 ~the fourth term!. To be more
precise, these matrix elements decrease with the nucleon mo-
mentum and can, in principle, contribute to the structure
functions of nonleading twists. However, we are interested in
the leading-twist distribution functions, and can therefore ne-
glect all terms in Eq.~14! except the first one. The distri-
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bution functions can thus be expressed in terms of equal-time
products of the field operators as

Di~x!5E d3k

~2p!3
dS x2

k3

PN
D E d3x1d3x2

3exp@2 ik•~x12x2!#^Nvu c̄ ~x2 ,t !G ic~x1 ,t !uNv&,

~15!

D̄ i~x!5E d3k

~2p!3
dS x2

k3

PN
D E d3x1d3x2

3exp@2 ik•~x12x2!#

3^NvuTr@G ic~x2 ,t !c̄~x1 ,t !#uNv&. ~16!

The flavor and spin matrices,G i , depend on the particular
distribution one is interested in. For example, for the number
of partons polarized along or against the direction of the
nucleon velocity one should use

G i5g0
16g5

2
, ~17!

respectively.
In order to evaluate the equal-time matrix elements in the

nucleon state in Eqs.~15! and ~16! we consider the more
general matrix element of thetime-orderedproduct of quark
fields. In the effective chiral theory, this nucleon matrix ele-
ment can directly be computed as a functional integral over
the quark and pion field with the effective action, Eq.~3!. At
Nc→`, the integral can be performed using the saddle point
method@6#. One finds that

2 i ^NvuT$c~x1 ,t1!c̄~x2 ,t2!%uNv&5GF~x1 ,x2!, ~18!

where GF(x1 ,x2) is the Feynman Green function in the
background pion field corresponding to the moving nucleon.
This saddle point solution of the classical equations of mo-
tion can easily be constructed. Indeed, since the saddle point
equations are relativistically invariant, it is evident that the
pion field is of the form

Ûc~x,t !5UcS x2vt

A12v2D , ~19!

whereUc(x) is the stationary hedgehog pion mean field in
the nucleon rest frame. The Feynman Green function, Eq.
~18!, is thus determined as the solution of the inhomoge-
neous Dirac equation

F igm
]

]x1
m

2MÛg5~x1 ,t1!GGF~x1 ,t1 ,x2 ,t2!5d~4!~x12x2!,

~20!

Ûg5~x,t !5
11g5

2
Ûc~x,t !1

12g5

2
Ûc

†~x,t !. ~21!

With Eq. ~18!, the distribution functions, Eqs.~15! and~16!,
can now be written in terms of the Feynman Green function
as limits att2→t160:

Di~x!52 iNcE d3k

~2p!3
dS x2

k3

PN
D E d3x1d3x2

3exp@2 ik•~x12x2!#

3Tr@G iGF~x1 ,t1 ,x2 ,t2!# t25t110 , ~22!

D̄ i~x!5 iNcE d3k

~2p!3
dS x2

k3

PN
D E d3x1d3x2

3exp@2 ik•~x12x2!#

3Tr@G iGF~x1 ,t1 ,x2 ,t2!# t15t210 . ~23!

To compute the quark and antiquark distribution functions
one needs an explicit representation of the Feynman Green
function in the background pion field corresponding to the
fast-moving nucleon. We now want to demonstrate that this
Green function can be expressed in terms of the single-
particle quark wave functions,Fn(x), and energy eigenval-
ues,En , in the nucleon rest frame, Eq.~7!. The quark eigen-
functions in the time-dependent pion field, Eq.~19!, can be
obtained from the ones in the static pion field in the rest
frame by a Lorentz transformation. We can thus write a rep-
resentation of the Feynman Green function as

GF~x1 ,t1 ,x2 ,t2!

52 iS@v#H u~ t12t2! (
nonoccup

Fn~x18!F̄n~x28!

3exp@2 iEn~ t182t28!#2u~ t22t1!

3 (
occup

Fn~x18!F̄n~x28!exp@2 iEn~ t182t28!#J S21@v#.

~24!

Heret8 andx8 are the Lorentz transforms of the coordinates,

x1,28 5
x1,22vt1,2

A12v2
,

t1,28 5
t1,22v•x1,2

A12v2
, ~25!

andS@v# is the Lorentz transformation matrix acting on the
quark spinor indices,

S@v#5expS i

2
s03v D ,

smn5
i

2
@gm ,gn#,

tanh~v!5v. ~26!
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In the first term of Eq.~24! the summation goes over nonoc-
cupied states, that is over the positive-energy Dirac con-
tinuum, in the second term over occupied states, that is, over
the negative continuum and the discrete bound-state level.

Let us prove that the Green function defined by Eq.~24!
indeed satisfies the inhomogeneous Dirac equation, Eq.~20!.
We first note that the Lorentz transformed single-particle
wave functions,S@v#Fn(x8)exp(2iEnt8), satisfy the homo-
geneous Dirac equation, Eq.~20! with RHS equal to zero,
therefore so does the Green function, Eq.~24!, at t1Þt2. At
t15t2 the Green function has a discontinuity. Taking the
time derivative of Eq.~24! at t15t2 we find that the LHS of
Eq. ~20! is equal toF(x1 ,x2)d(t12t2), where

F~x1 ,x2!5(
all

exp@2 iEnv~x182x28!#g0SFn~x18!F̄n~x28!S21.

~27!

This function should be equal tod (3)(x12x2) in order to
satisfy the inhomogeneous Dirac equation, Eq.~20!, for the
Green function.1 To prove this, we first convince ourselves
that the sum, Eq.~27!, vanishes forx1Þx2, and then show
that it is indeed a delta function with coefficient unity.

We introduce temporarily two moments of ‘‘time,’’
t̃ 15vx18 and t̃ 25vx28 , and note that att̃ 1. t̃ 2, Eq.~27! can
be written via the ‘‘retarded’’ Green function,

F~x1 ,x2!5 ig0SGret„x18 ,~vx18!,x28 ,~vx28!…S21,

Gret~x18 , t̃ 1 ,x28 , t̃ 2!52 iu~ t̃ 12 t̃ 2!(
all

F̄n~x28!Fn~x18!

3exp@2 iEn~ t̃ 12 t̃ 2!#. ~28!

We need this function in the spacelike region, since
( t̃ 12 t̃ 2)22(x182x28)

25„v•(x182x28)…
22(x182x28)

2,0, at
least whenx1Þx2. However, the retarded Green function is
zero in the spacelike region. This is obvious from physical
considerations: the retarded Green function determines the
evolution of a wave packet which att̃ 15 t̃ 2 is localized at
x185x28 , which cannot reach the spacelike region. More for-
mally, this can also be proved using the perturbation expan-
sion for the retarded Green function in the external pion
field:

Gret~x18 , t̃ 1 ,x28 , t̃ 2!5Gret
0 ~x18 , t̃ 1 ,x28 , t̃ 2!1E d3x38d t̃ 3

3Gret
0 ~x18 , t̃ 1 ,x38 , t̃ 3!MUg5~x38!

3Gret
0 ~x38 , t̃ 3 ,x28 , t̃ 2!1•••. ~29!

The free retarded Green function,Gret
0 , is zero for spacelike

separations, therefore the second term is nonzero only for
t̃ 12 t̃ 3.ux182x28u and for t̃ 32 t̃ 2.ux282x38u. This implies

that it is nonzero only for t̃ 12 t̃ 2.ux182x38u

1ux382x28u.ux182x28u. This argument is easily generalized to
any term of the perturbation expansion.

Thus F(x1 ,x2) is zero for x1Þx2. It therefore must be
proportional to a delta function inx12x2 or its derivatives.
This ‘‘point’’ singularity can come only from states with
large energies,En . For such states, one can neglect the pion
field and replace the wave functions,Fn(x), by the eigen-
function of the free Hamiltonian. Saturating the sum in the
RHS of Eq.~28! by plane waves we obtain

F~x1 ,x2!5d~3!~x12x2!. ~30!

~In other words, the leading short-distance singularity of the
Green function in the background pion field is the same as
that of the free Green function.! This completes the proof
that Eq.~24! is a representation of the Feynman Green func-
tion in the time-dependent background field, Eq.~20!.

We now use the representation, Eq.~24!, to express the
distribution functions directly through the quark wave func-
tions in the nucleon rest frame. Passing to the Fourier trans-
forms of the quark wave functions, integrating in Eqs.~22!
and ~23! over x1,2, and taking the limitv→1, we finally
obtain

Di~x!5NcMN (
occup

E d3k

~2p!3
Fn

†~k!~11g0g3!

3g0G id~k31En2xMN!Fn~k!, ~31!

D̄ i~x!5NcMN (
nonoccup

E d3k

~2p!3
Fn

†~k!~11g0g3!

3g0G id~k31En1xMN!Fn~k!. ~32!

These formulas represent the quark distributions as sums
over occupied states, the antiquark distributions as sums over
nonoccupied states. We can also write an alternative repre-
sentation for the distribution functions, using the time-
ordering opposite to the one in Eqs.~22! and ~23!, and the
fact that the discontinuity of the Feynman Green function is
a spaced function. In this case we get

Di~x!52NcMN (
nonoccup

E d3k

~2p!3
Fn

†~k!~11g0g3!

3g0G id~k31En2xMN!Fn~k!, ~33!

D̄ i~x!52NcMN (
occup

E d3k

~2p!3
Fn

†~k!~11g0g3!

3g0G id~k31En1xMN!Fn~k!. ~34!

In both Eqs.~31! and ~32! and Eqs.~33! and ~34! it is un-
derstood that the contribution of free quarks is to be sub-
tracted. In the original representation of the distribution func-
tions through the Feynman Green function, Eqs.~22! and
~23!, this means that the leading short-distance singularity of
the Green function in the background pion field is canceled
by the one of the free Green function, cf. Eq.~30!. However,
Eqs.~31! and~32! and Eqs.~33! and~34! still contain ultra-

1In field theory, Eq.~27! represents the equal-time anticommuta-
tor, $c(x1 ,t),c1(x2 ,t)%5d (3)(x12x2).
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violet divergences and have to be made finite by some regu-
larization scheme, to be discussed in Sec. III.

It is clear that the equivalence of the representations of the
distribution functions as sums over occupied and nonoccu-
pied states, Eqs.~31! and ~32! and Eqs.~33! and ~34!, is
based on the completeness of quark states in the external
pion field, Eq.~30!, which can in principle be violated by
ultraviolet regularization. Fortunately, it is possible to regu-
larize the theory in such a way that this important property is
preserved; see Sec. III.

We emphasize that the expressions in Eqs.~31! and ~32!
and Eqs.~33! and~34! are identical to those which have been
derived in Ref.@5# from a representation of the distribution
functions as nucleon matrix elements of quark bilinears sepa-
rated by a lightlike distance. The above derivation is a dem-
onstration of the equivalence of the two definitions of parton
distributions.

Finally, to get the unpolarized or polarized~anti! quark
distributions corresponding to a nucleon state of definite spin
and isospin, one has to take the desired combinations of the
basic expressions, Eqs.~31! and~32!, and average them with
the nucleon spin-isospin wave function~the procedure is de-
scribed in@5#!. In this paper we consider the distributions
which appear in the leading order of the 1/Nc expansion, the
isosinglet unpolarized and the isovector polarized one. To
obtain the isosinglet unpolarized quark distribution we sum
up the two polarizations in Eq.~31! and average over flavor.
One finds@5#

@u~x!1d~x!#occup5NcMN (
n

occup

E d3k

~2p!3
Fn

†~k!~11g0g3!

3d~k31En2xMN!Fn~k!. ~35!

From Eq.~34! one sees that the corresponding antiquark dis-
tribution can also be written as a sum over occupied states; it
is given by the negative of the RHS of Eq.~35! at x→2x.
Henceforth, we shall consider Eq.~35! as a function defined
for both positive and negativex, and understand that at nega-
tive x it describes minus the antiquark distribution. Alterna-
tively, we can use Eqs.~32! and~33! to obtain a representa-
tion of the isosinglet unpolarized distribution as

@u~x!1d~x!#nonoccup

52NcMN (
n

nonoccup

E d3k

~2p!3
Fn

†~k!~11g0g3!

3d~k31En2xMN!Fn~k!, ~36!

which, again, gives minus the antiquark distribution at nega-
tive x. In Eq. ~35! vacuum subtraction is understood for
x,0, in Eq. ~36! for x.0.

The analogous expression for the isovector polarized dis-
tribution is

@Du~x!2Dd~x!#occup

52
1

3
~2T3!NcMN (

n
occup

E d3k

~2p!3
Fn

†~k!t3~11g0g3!

3g5d~k31En1xMN!Fn~k!, ~37!

with the corresponding antiquark distribution given by the
same expression withx→2x ~vacuum subtraction is again
understood!. Here, 2T3561 for proton and neutron, respec-
tively. The alternative representation as a sum over nonoc-
cupied states analogous to Eq.~36! can easily be written
down.

The isovector unpolarized and isosinglet polarized quark
distributions vanish in the leading order of the 1/Nc expan-
sion. They are nonzero only after considering rotational cor-
rections, i.e., expanding to first order in the soliton angular
velocity, which is O(1/Nc), and are expressed as double
sums over single-particle levels. We shall not consider them
in this paper. We note, however, that the techniques devel-
oped in Secs. III and IV can readily be generalized to analyze
also these ‘‘small’’ distributions.

III. ULTRAVIOLET DIVERGENCES
AND REGULARIZATION

The expressions for the quark distribution functions de-
rived in the previous section are ultraviolet divergent and
require regularization. To be able to compute the distribution
functions using the effective chiral theory we must ensure
that the ultraviolet regularization does not lead to violation of
any of their fundamental properties. We want to show now
that regularization by a Pauli-Villars subtraction, which pre-
serves the completeness of the quark single-particle states in
the chiral soliton, leads to regularized quark and antiquark
distributions satisfying all general requirements. It was noted
in Sec. II that the equivalence of the representations of the
distribution functions as sums over occupied and nonoccu-
pied states relies on the completeness of the single-particle
states. We shall see below that, with Pauli-Villars regulariza-
tion, this equivalence is preserved for the regularized distri-
butions. On the other hand, regularizations based on an en-
ergy cutoff not only destroy the equivalence of summation
over occupied and nonoccupied states, but lead also to other,
related, unphysical features.

The divergent contribution in Eq.~35! comes from the
eigenstates of the Dirac Hamiltonian with large energy,uEnu.
One may think therefore that a natural way to regularize this
divergence is simply to cut the contributions of states with
uEnu larger than some cutoffv0:

@u~x!1d~x!#occup
v0 5NcMNE

2v0

Elev10

dvSp@d~v2H !

3d~v2xMN1p3!~11g0g3!#

2~H→H0!. ~38!

@Here we have written the sum over states, Eq.~35!, as an
integral over energy, the integrand being a functional trace
involving the Hamiltonian and single-particle momentum
operator,p3 @5#. This form is useful for investigating the
ultraviolet asymptotics.# In fact, we shall see below that this
regularization is unphysical, leading to a number of problems
which are easily cured by turning to the Pauli-Villars regu-
larization. However, two reasons force us to devote some
time to the distribution function with the energy cutoff, Eq.
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~38!. First, in order to see explicitly that the Pauli-Villars
subtraction cancels all nonphysical effects, one has to under-
stand precisely what is to be canceled. Second, our numerical
method for computing the distribution function~see Sec. IV!
involves an energy cutoff in the intermediate stages of the
calculation~taken to infinity at the end!, so it is essential to
know the asymptotic properties of the distributions with en-
ergy cutoff.

The ultraviolet divergence of Eq.~38! can be derived us-
ing the technique developed in@5#. One replaces thed func-
tion by the imaginary part~discontinuity! of the quark propa-
gator in the background pion field:

d~v2H !5
1

2p i S 1

v2H2 i0
2

1

v2H1 i0D . ~39!

Writing the quark propagator in the form

1

v2H
5

v1H

v22H2
5

v1g0~2 igk]k1MUg5!

v21]k
22M22 iM gk~]kU

g5!
,

~40!

one can expand in derivatives of the soliton field. One finds
that only the first term in the derivative expansion is diver-
gent. In this way one easily obtains the logarithmic diver-
gence of the distribution function, Eq.~38!, in the limit of
large energy cutoff:

@u~x!1d~x!#occup
v0 ;NcMNM2ln

v0

M
sgn~x!

1

4p2E d3k

~2p!3

3u~k32MNuxu!Tr@Ũ~k!@Ũ~k!#†#

for ~v0→`!. ~41!

@Hereu(y) is the step function.# If the soliton field,Uc(x), is
smooth in coordinate space, then its Fourier transform,
Ũc(k), decays exponentially for largeuku. This means that,
as a function ofuxu, the integral in Eq.~41! also decays
exponentially at largeuxu. One should keep in mind, how-
ever, that the asymptotic formula, Eq.~41!, is valid only in
the parametric rangex;1/Nc!v0 /MN and thus does not
allow us to draw any conclusions about the behavior of the
quark distribution function at largeruxu.

It is therefore interesting to derive the UV behavior of the
distribution function with energy cutoff at larger values of
uxu. An asymptotic expansion can be performed in the do-
main 1/Nc!uxu;v0 /MN by computing the UV divergences
of the moments of the distribution function~see the Appen-
dix!. The asymptotic behavior is given by

@u~x!1d~x!#occup
v0 ;NcMN

21M2
1

24p2F4

x
dS x1

2v0

MN
D

2
1

x2
uS 2v0

MN
2uxu D u~2x!G

3E d3xTr@]kU~x!]kU
†~x!#

for 1/Nc!uxu;v0 /MN. ~42!

It exhibits at large negativex a rather slow 1/x2 decay, up to
the point x522v0 /MN , where it ends with ad-function
peak. One should keep in mind that thisd function appears
only in the asymptotic limitx;2v0 /MN→2`. At large
but finite values ofx;2v0 /MN the delta function in Eq.
~42! approximates a narrow peak whose width is much
smaller thanv0 /MN . This ‘‘large negativex’’ behavior of
the distribution function is an artifact of the energy cutoff.
We shall see below that both the 1/x2 tail and the delta func-
tion cancel in Pauli-Villars regularization.

In the previous section we have shown that the quark
distribution functions can be represented in two equivalent
forms as a sum over either occupied or nonoccupied quark
states. In general, regularization violates this equivalence.
Let us regularize the sum over nonoccupied states by an
energy cutoff similar to Eq.~38!:

@u~x!1d~x!#nonoccup
v0 52NcMNE

Elev10

v0
dvSp@d~v2H !

3d~v2xMN1p3!~11g0g3!#

2~H→H0!. ~43!

One can easily show that this sum over nonoccupied states
has the same logarithmic divergence for largev0 as the sum
over occupied states, Eq.~41!. This means that the difference
between the two representations of the quark distribution
functions remains finite forv0→`. The question is whether
this finite limit is zero or not. The answer is, surprisingly, no.
Moreover, this limit can be computed analytically, using a
technique similar to the one described in the Appendix. One
finds

lim
v0→`

$@u~x!1d~x!#occup
v0 2@u~x!1d~x!#nonoccup

v0 %

5NcMNM2
1

4p2E d3k

~2p!3
Tr@Ũ~k!@Ũ~k!#†#

3 ln
uxMN1k3u

uxMNu
. ~44!

Thus regularization by an energy cutoff leads to an anoma-
lous difference between summation over occupied and non-
occupied states even in the infinite-cutoff limit.

The deeper reason for the artifacts encountered with the
energy cutoff is that this regularization violates the com-
pleteness of the set of single-particle quark states. The
equivalence of the two representations of the distribution
functions as sums over occupied and nonoccupied states re-
lies on the locality of the equal-time anticommutator of
quark fields @or, equivalently, of the discontinuity of the
Feynman Green function, Eq.~30!#. Leaving out the contri-
bution of high-energy states one is dealing with an incom-
plete set of quark eigenstates, which results in a modification
of thed-function equal-time anticommutator. In other words,
one violates causality, i.e., the anticommutativity of the
quark fields at spacelike separations. What is remarkable,
though, is that cutoff regularization leads to anomaly-type
phenomena which persist even in the infinite-cutoff limit, cf.
Eq. ~44!. Furthermore, Eq.~42! tells us that such regulariza-
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tion always leads to unphysical results for the distribution
function, no matter which representation of the distribution
function one adopts. It should be noted that the usual proper-
time regularization of the determinant is of this type.

A regularization which preserves the completeness of
states is the Pauli-Villars regularization, where one subtracts
from the divergent sums a multiple of the corresponding
sums over eigenstates of the Hamiltonian in which the quark
mass,M , has been replaced by a regulator massMPV. This
mass now plays the role of the physical cutoff of the effec-
tive theory, which was denoted generically byL in Sec. II.
The coefficient of the subtraction is chosen such as to cancel
the logarithmic divergence of the distribution function with
the energy cutoff, Eq.~41!. We thus define

@u~x!1d~x!#occup
PV ~x!5 lim

v0→`
H @u~x!1d~x!#occup

v0 ~x!uM

2
M2

MPV
2 @u~x!1d~x!#occup

v0 ~x!uMPVJ ,

~45!

and similarly for the sum over nonoccupied states. One ob-
serves that the unphysical phenomena associated with the
energy cutoff—the negative-x behavior, Eq.~42!, and the
anomalous difference of summing over occupied and nonoc-
cupied states, Eq.~44!—are proportional to the quark mass
squared,M2. Thus, the artifacts of the energy cutoff cancel
under the Pauli-Villars subtraction, Eq.~45!, as it should be.
In particular, the Pauli-Villars regularized distributions can
now equivalently be computed as sums over occupied or
nonoccupied states.

In this section we have investigated the consequences of
ultraviolet regularization on the distribution functions using
asymptotic expansion techniques. The physical distributions,
for finite Pauli-Villars cutoff, can only be computed numeri-
cally. Below we shall see that the numerically computed dis-
tribution functions in Pauli-Villars regularization satisfy all
general requirements. The distributions decrease rapidly for
large uxu and exhibit the correct positivity properties, in full
accordance with the results of the asymptotic analysis.

IV. COMPUTATION OF QUARK
DISTRIBUTION FUNCTIONS

A. Spherically symmetric representation
for distribution functions

We now develop a method for numerical computation of
the Pauli-Villars regularized distribution functions. Our gen-
eral strategy will be as follows. We compute the distribution
functions as sums over quark levels, Eqs.~35! and~37!, for a
large but finite energy cutoff. Such ‘‘intermediate’’ regular-
ization is necessary in order to have expressions which can
be computed using finite basis methods. The physical distri-
bution functions are then obtained by subtracting the corre-
sponding sums with the PV regulator mass,MPV, according
to Eq. ~45!, and removing the energy cutoff by extrapolation
to infinity. In this way, the energy cutoff affects only the
intermediate steps of the calculation, not the final result.

For intermediate regularization we now introduce an en-
ergy cutoff in Eqs.~35! and ~37! in the form

@u~x!1d~x!#occup
R 5NcMN (

n
occup

^nu~11g0g3!

3d~En2xMN1p3!un&R~En!,

~46!

@Du~x!2Dd~x!#occup
R

52
1

3
~2T3!NcMN (

n
occup

^nud~En2xMN1p3!t3

3~11g0g3!g5un&R~En!. ~47!

We have written the matrix elements between single-particle
levels in abstract form, withp3 denoting thez component of
the single-particle momentum operator. Here,R(En) is a
smooth regulator function with a cutoff,Emax. For example,
one may employ a Gaussian

R~En!5expS 2
En

2

Emax
2 D . ~48!

Alternatively, one may use a Strutinsky~error function!
regulator of the kind described in Ref.@18#, which leads to
more rapidly converging sums over levels. A corresponding
regularization can be introduced also in the sums over non-
occupied states.

Before evaluating the sums over levels, Eqs.~46! and
~47!, it is convenient to convert them to a more symmetric
form. In the derivation of the distribution functions in Sec. II,
using the infinite-momentum frame, it was assumed that the
nucleon is moving in thez direction. The orientation of the
nucleon velocity is, of course, arbitrary, and the distribution
functions do not depend on it. We can thus write Eqs.~46!
and ~47! equivalently as

@u~x!1d~x!#occup
R 5NcMN (

n
occup

^nu~11g0v• g!

3d~En2xMN1v•p!un&R~En!,

~49!

@Du~x!2Dd~x!#occup
R

52
1

3
~2T3!NcMN (

n
occup

^nuv• t~11g0v• g!

3g5d~En2xMN1p•v!un&R~En!. ~50!

where v is an arbitrary three-dimensional unit vector,
v251. For the isosinglet unpolarized distribution this is im-
mediately obvious; in the case of the isovector polarized dis-
tribution, Eq. ~50!, we have made use of the ‘‘hedgehog’’
symmetry of the classical meson field, Eq.~6!, and the
Hamiltonian, Eq.~8!, i.e., the invariance under simultaneous
rotations in spin and isospin space. We can now pass to a
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spherically symmetric representation by averaging over the
orientations ofv before computing the sum over quark lev-
els. Using the identity

1

4pE dVvd~En2xMN1v•p!5
1

2upu
u~ upu2uEn2xMNu!,

~51!

and its generalizations, we rewrite Eqs.~49! and ~50! in the
form

@u~x!1d~x!#occup
R

5NcMN (
n

occup

^nuA~1!1A~2!g0p• gun&R~En!, ~52!

@Du~x!2Dd~x!#occup
R

52
1

3
~2T3!NcMN (

n
occup

^nuA~3!g5p• t

1A~4!g0p•gg5p• t1A~5!g0t• gun&R~En!. ~53!

Here,A(k)(k51, . . .,5), arescalar functions of the magni-
tude of the single-particle momentum operator,upu, as well
as of the level energy,En , andx:

~54!

These operator functions ofupu are understood in the usual
sense, as functions of the eigenvalues in a basis where the
operator is diagonal.

B. Evaluation in a discrete basis

The distribution functions, Eqs.~52! and~53!, are sums of
diagonal matrix elements of functions of single-particle op-
erators between eigenstates of the Dirac Hamiltonian in the
background pion field, Eq.~8!. To evaluate them numerically
we employ a basis of eigenfunctions of the free Dirac Hamil-
tonian:

H0f i5Ei
~0!f i ,

H052 ig0gk]k1Mg0. ~55!

The basis is made discrete by placing the soliton in a three-
dimensional spherical box of finite radius, imposing the
Kahana-Ripka boundary conditions on the surface@12#. The
eigenvalues and eigenfunctions of the full Hamiltonian, Eq.
~8!, are then determined by numerical diagonalization in the
discrete basis:

(
j

Hi j cn j5Encni , ~56!

Hi j 5E
box

d3xf i
†~x!Hf j~x!, ~57!

Fn~x!5(
i

cnif i~x!. ~58!

Since the operatorupu is a function of the free Hamiltonian,

upu5AH0
22M2, ~59!

it is diagonal in the basis ofH0 eigenstates, Eq.~55!, and one
has

^ i u f ~ upu!u j &5 f ~ upu i !d i j ,

upu i[A~Ei
~0!!22M2, ~60!

for any function,f (upu). Using this property one can explic-
itly evaluate the matrix elements between levels in Eqs.~52!
and ~53!, and obtains

@u~x!1d~x!#occup
R 5NcMN (

n
occup

(
i , j

cni* cn j

3@A~1!~ upu i ,En ,x!d i j
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1A~2!~ upu i ,En ,x!

3~g0p• g! i j #R~En!, ~61!

@Du~x!2Dd~x!#occup
R

52
1

3
~2T3!NcMN (

n
occup

(
i , j

cni* cn jFA~3!~ upu i ,En ,x!

3~g5p• t! i j 1A~4!~ upu i ,En ,x!(
k

~g0p• g! ik

3~g5p• t!k j1A~5!~ upu i ,En ,x!~g0 t• g! i j GR~En!.

~62!

Now the A(k), (k51, . . . ,5) areordinary functions of the
eigenvalues ofupu in basis states,upu i . Here, (. . . )i j denote
the matrix elements of the corresponding operator between
basis states. We remind that the corresponding antiquark dis-
tributions are given, respectively, by minus the RHS of Eq.
~61! at negativex, and that of Eq.~62! at negativex; see end
of Sec. II B.

We note that the Dirac and isospin structures appearing in
Eqs. ~61! and ~62! are essentially the same as those in the
sums determining the nucleon mass and isovector axial cou-
pling, gA

(3) @6,7#. To simplify the calculation of the matrix
elements one may use that

g0p•g5H02Mg0, ~63!

and that the operator appearing in the first and second term
on the RHS of Eq.~62! can be expressed as an anticommu-
tator:

g5p•t5
1

2
$g5g0t•g,g0p•g%. ~64!

The terms in the sums Eqs.~61! and~62! are proportional
to a step function depending on the level energy,En , the
momenta of the basis states,upu i , and the Bjorken variable,
x. The expressions can not directly be used for numerical
evaluation in a discrete basis, since the result would be a
discontinuous function ofx. There are, however, ways to
convert Eqs.~61! and ~62! to a form suitable for evaluation
in a discrete basis. One possibility is to apply Gaussian
smearing inx to the distribution functions. Let us define

Dsmeared~x![
1

gAp
E

2`

`

dx8expS 2~x2x8!2

g2 D D~x8!,

~65!

whereD(x) stands for the regularized isosinglet unpolarized
or isovector polarized distributions. Here,g!1 is a small but
finite number. These ‘‘smeared’’ distribution functions can
now be calculated using Eqs.~61! and ~62! with A(k) re-
placed by the corresponding ‘‘smeared’’ functions inx:

A~k!~ upu i ,En ,x!→A~k!smeared~ upu i ,En ,x!. ~66!

These are now continuous functions of the level momenta
and energies, so one may perform the sums over levels in the
discrete basis, provided one makes sure that the separation
between the momentum eigenvalues of the basis states is
significantly smaller than the smearing width,g. The level
spacing is inversely proportional to the size of the Kahana-
Ripka box, so it becomes necessary to use rather large boxes
to attain small values ofg. In the calculations described in
this paper we use a value ofg50.1, which requires box sizes
.20M 21.

In this way one can compute the smeared distribution
functions, Eq.~65!. At values ofx where the exact distribu-
tions are smooth the smeared functions provide an excellent
approximation to the exact ones. An exception is the iso-
singlet unpolarized distribution nearx50. The exact distri-
bution has a discontinuity atx50, which becomes a smooth
crossover of width;1/g in the smeared distribution. It is
possible to recover the discontinuity by ‘‘deconvoluting’’ the
numerically computed smeared distributions. Dividing the
Fourier transform inx of the numerically computed smeared
distribution by that of the Gaussian, Eq.~65!, one can recon-
struct the Fourier transform of the exact distribution for val-
ues of the argument up to;1/g. The exact distribution func-
tion itself is then obtained by inverse Fourier transformation,
incorporating the known asymptotic behavior of the Fourier
transform for large arguments corresponding to a discontinu-
ity at x50.

We thus compute the mode sums for the smeared distri-
butions, Eqs.~61! and ~62!, for a number of values of the
energy cutoff, typically up toEmax.10 M , and also the cor-
responding sums with the constituent quark mass replaced by
the PV regulator mass,MPV. We then perform the PV sub-
traction, Eq.~45!, and remove the energy cutoff by numeri-
cal extrapolation toEmax→` pointwise inx. One computes a
least-squares fit of the PV subtracted sums to a constant plus
inverse powers ofEmax, for eachx. The stability of the ex-
trapolation can be checked by adding more terms to the fit.

In Sec. III we investigated the asymptotic behavior of the
distribution functions with an energy cutoff and noted a
number of unphysical features, which are removed by the
Pauli-Villars subtraction. This can also be seen directly in
the numerical calculations. The numerically computed distri-
bution functions for finite energy cutoff, Eqs.~61! and ~62!,
exhibit a ‘‘tail’’ at large negativex, which is proportional to
M2, consistent with the asymptotic formula, Eq.~42!. ~For
summation over nonoccupied states, the ‘‘tail’’ occurs at
positive x.! Moreover, the result for the anomalous differ-
ence between summation over occupied and nonoccupied
states, Eq.~44!, is confirmed by numerical calculations. Thus
the numerical results fully support the conclusions of Sec.
III.

Given the equivalence of summing over occupied and
nonoccupied states in PV regularization, one may choose any
of the two representations for the numerical calculations. In
practice, it is convenient to compute the quark distributions
by summing over occupied states and the antiquark distribu-
tions by summing over nonoccupied states. In this way, no
vacuum subtraction is required. Furthermore, these sums ex-
hibit asymptotic behavior in the energy cutoff earlier than the
respective other representations, making the extrapolation to
infinite cutoff more stable.
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When computing the isovector polarized distribution one
must keep in mind that it is defined as the limit of zero pion
mass of the distribution computed for finite pion mass, i.e.,
for a soliton profile vanishing exponentially at large radii@5#.
~The same limit is understood in the definition of the isovec-
tor axial coupling,gA

(3) .! We thus must carry out the entire
calculation described above~that is, summing over quark
levels, PV subtraction and extrapolation toEmax→`) for
MpÞ0, and take the limitMp→0 by numerical extrapola-
tion at the very end.2

The Gaussian smearing, Eq.~65!, offers a simple possi-
bility to compute the distribution function directly as a func-
tion of x. We note, however, that the use of the spherically
symmetric representation, Eqs.~61! and ~62!, is not limited
to this method. In fact, performing other functional transfor-
mations of the expressions~61! and ~62! before summing
over levels one can obtain prescriptions for evaluating the
distribution functions in a variety of representations. For ex-
ample, replacing in Eqs.~61! and ~62! the functionsA(k) by
their moments,

Am
~k!~ upu i ,En!5E

21

1

dxxm21A~k!~ upu i ,En ,x!

~m51,2, . . .!, ~67!

one obtains a formula for numerical evaluation of the mo-
ments of the distribution function.~Again, one must compute
the sums for finite energy cutoff, perform the Pauli-Villars
subtraction and extrapolate to infinite cutoff.! We have com-
puted the lowest moments of the distributions in this way
(m,10) and verified that they coincide with the moments of
the numerically computed distribution functions.

V. NUMERICAL RESULTS AND DISCUSSION

In the numerical calculations we use the standard value
for the constituent quark mass,M5350 MeV, as derived
from the instanton vacuum@17#. The value of the PV regu-
lator mass,MPV, is determined by reproducing the experi-
mental value of the pion decay constant:

Fp
2 54NcE d4k

~2p!4

M2

~M21k2!2

24Nc

M2

MPV
2 E d4k

~2p!4

MPV
2

~MPV
2 1k2!2

5
NcM

2

4p2
ln

MPV
2

M2
.

~68!

With Fp593 MeV one obtainsMPV
2 /M252.52. For the soli-

ton profile, Eq.~6!, we use the variational form of Ref.@6#,

P~r !522 arctanS r 0
2

r 2D , ~69!

with r 051.0M 21, which gives a reasonable description of a
varitey of hadronic observables of the nucleon. For these
parameters, the nucleon mass is found to beMN51150
MeV. @The nucleon mass is also computed in PV regulariza-
tion, subtracting from Eq.~9! M2/MPV

2 times the correspond-
ing expression for the Hamiltonian withMPV. The contribu-
tion of the discrete level is also subtracted.# For calculation
of the isovector polarized distribution, we introduce a finite
pion mass in Eq.~69! in the form

PMp
~r !522 arctanF r 0

2

r 2
~11Mpr !exp~2Mpr !G . ~70!

This form has the correct Yukawa tail at larger but is not
modified compared to Eq.~69! at r 50. The limit Mp→0 is
taken at the very end of the calculation.

The result for the isosinglet unpolarized quark and anti-
quark distributions is shown in Fig. 1. For both distributions
we show separately the total result~the sum of the discrete
level and the negative Dirac continuum! and the contribution
of the discrete level. One sees that the discrete level contrib-
utes to the antiquark distribution with a negative sign.@The
contribution of the discrete level to the RHS of Eq.~61! is
continuous atx50, and the antiquark distribution is just
given by the negative of Eq.~61! at negativex.# An approxi-
mation in which only the discrete level is taken into account
would thus lead to negative antiquark distributions@19#.
Positivity of the antiquark distribution is naturally restored
by including the Dirac continuum. This is clear in the light of
the discussion of Sec. III: Restricting oneself to the contri-
bution of the discrete level one is working with an incom-
plete set of states. Only the sum of all levels~discrete plus
Dirac continuum! gives the correct realization of the distri-
bution function in the effective theory.

The result for the isovector polarized quark and antiquark
distributions is displayed in Fig. 2~total results and level
contributions!. One again observes a sizable contribution

2If one computed the isovector distribution directly for a massless
soliton profile,P(r );1/r 2 for r→`, one would find a singularity at
x50 ~regulated only by the finite box size!. The distribution ob-
tained as a limit of a massive profile is nonsingular atx50.

FIG. 1. The isosinglet unpolarized quark and antiquark distribu-
tions. Solid line: quark distribution,u(x)1d(x), total result~dis-
crete level plus Dirac continuum!; dotted line:contribution of the
discrete level~after PV subtraction! to u(x)1d(x). Dashed line:

antiquark distribution,ū (x)1 d̄ (x), total result;dot-dashed line:

contribution of the discrete level toū (x)1 d̄ (x).
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from the Dirac continuum, which reverses the sign of the
level contribution to the antiquark distribution. Here, how-
ever, contrary to the isosinglet unpolarized distribution, no
definite sign is requireda priori.

The calculated distributions should in principle be used as
input for perturbative evolution, starting with a scale of the
order of the cutoff,MPV.600 MeV. We stress that we are
computing the twist-2 parton distributions at a low normal-
ization point, not the structure function~cross section! at low
q2, so a meaningful comparison with the data can be per-
formed only after evolution to largeq2. Alternatively, we
may compare our calculations with the parametrizations of
Glück and co-workers@3,4#. Starting from ‘‘valencelike’’
~nonsingular! quark, antiquark, and gluon distributions at a
normalization point well below 1 GeV, these authors can fit
at largeq2 not only all the data in the large-x region, but also
the recent small-x data down tox;1024. We emphasize that
the quark and antiquark distributions obtained in our ap-
proach are precisely of this ‘‘valencelike’’ form. Moreover,
the normalization points of the leading order~LO! and next
LO ~NLO! distributions of@3,4# are close to our cutoff, so
one may perform a preliminary comparison without taking
into account evolution.

Figure 3 shows the isosinglet unpolarized total distribu-
tion ~quarks plus antiquarks! together with the fits of@3#. Our
distribution is larger than that of@3# since their fit includes
gluons, which carry about 30% of the nucleon momentum at
this scale. For the variational soliton profile, Eq.~69!, the
second moment of the calculated distribution of quarks plus
antiquarks is 0.8.~With a self-consistent solution it would be
unity, since the energy momentum sum rule follows from the
equations of motion for the pion field@5#.!

The isosinglet unpolarized valence quark distribution
~quarks minus antiquarks! is compared in Fig. 4. Here we
have taken in our calculationMPV→`, since this distribution
function is ultraviolet finite and should not be regularized in
order to preserve the baryon number sum rule. It is interest-
ing to see how this sum rule is realized in the large-Nc ap-

proach. In fact, the~unregularized! contribution of each level
to the baryon number isNc , as can be seen, for instance, by
integrating Eq.~52! over both negative and positivex. Since
the baryon number of the discrete level isNc , the contribu-
tion of the negative Dirac continuum to the baryon number
must be zero in order to satisfy the sum rule for the total
distribution. Indeed, one observes that the baryon number of
the negative continuum vanishes when the cutoff is taken to
infinity. However, this does not mean that the Dirac con-
tinuum does not contribute to the valence quark
distribution—just the integral of its contribution is zero. In
Fig. 4 we show both the total result~discrete level plus con-
tinuum! and the continuum contribution, which integrates to
zero.

The isovector polarized total distribution~quarks plus an-
tiquarks! is shown in Fig. 5. The calculated distribution is
systematically smaller than the fit of@4#. This is related to

FIG. 2. The isovector polarized quark and antiquark distribu-
tions. Solid line: quark distribution,Du(x)2Dd(x), total result
~discrete level plus Dirac continuum!; dotted line:contribution of
the discrete level~after PV subtraction! to Du(x)2Dd(x). Dashed

line: antiquark distribution,D ū (x)2D d̄ (x), total result; dot-

dashed line:contribution of the discrete level toD ū (x)2D d̄ (x).

FIG. 3. The isosinglet unpolarized distribution of quarks plus

antiquarks, 1
2 x@u(x)1d(x)1 ū (x)1 d̄ (x)#. Solid line: calculated

distribution~total result, cf. Fig. 1!. Points:NLO parametrization of
Ref. @3#.

FIG. 4. The isosinglet unpolarized valence quark distribution,
1
2 x@u(x)1d(x)2 ū (x)2 d̄ (x)#. Solid line: calculated distribution
~total result!; dashed line:contribution of the Dirac continuum.
Points: NLO parametrization of Ref.@3#.
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the fact that the isovector axial coupling,gA
(3) , which deter-

mines the normalization of this distribution, is underesti-
mated in the leading order of the 1/Nc expansion~with our
parameters for the chiral soliton we obtaingA

(3)50.9). We
note that 1/Nc corrections to this quantity have been com-
puted@20#; the same techniques could also be applied to the
distribution functions. In Fig. 6 we show the polarized anti-
quark distribution, which was assumed to be zero in the fit of
@4#. In our calculation it is obtained nonzero, however, sig-
nificantly smaller than the total distribution of quarks plus
antiquarks.

To summarize, we obtain a reasonable description of the
isosinglet unpolarized and isovector polarized quark and an-
tiquark distributions. In particular, we find a large antiquark
distribution at the low normalization point, in agreement
with the parametrizations of the data.

In the calculations reported here we have chosen the
variational soliton profile, Eq.~69!, with a radius which

gives a reasonable overall description of a number of had-
ronic observables, for example theND splitting @6#. In prin-
ciple, the classical pion field describing the nucleon should
be determined as the minimum of the static energy, i.e., as
the self-consistent solution of the equations of motion of the
pion field. The calculation of parton distributions with the
self-consistent pion field will be the subject of a separate
investigation.

The exact numerical calculations fully support the ap-
proximation used in@5#, based on the ‘‘interpolation for-
mula’’ for the quark propagator in the background pion field.
For both unpolarized and polarized distributions the differ-
ences to the exact results are of the order of 10% for the total
distributions ~quarks plus antiquark!, somewhat larger for
quarks and antiquarks separately.

VI. CONCLUSIONS

In this paper we have completed the first part of the pro-
gram formulated in@5#. We have computed the leading quark
distribution functions in the 1/Nc expansion, namely the iso-
singlet unpolarized and isovector polarized, in the effective
chiral theory.

Starting from the original definition of parton distribu-
tions as numbers of particles carrying fractionx of the
nucleon momentum in the infinite-momentum frame, we
have shown that it leads in the large-Nc limit to the same
results as the QCD definition of distribution functions as
matrix elements of bilinears of quark fields on the light cone.
The fact that the equivalence of the two definitions of distri-
bution functions can be established within the mean-field
picture at largeNc shows the scope of this relativistically
covariant, field-theoretical description of the nucleon.

We have observed that, generally speaking, the calcula-
tion of quark distribution functions puts strong demands on
the regularization of the effective theory. A crucial require-
ment is that it should preserve the completeness of the basis
of single-particle quark wave functions in which one ex-
pands the fermion fields in the mean-field approximation. A
regularization by subtraction, such as the Pauli-Villars regu-
larization, meets this requirement, while methods based on
an energy~or other! cutoff violate this completeness, and
thus, causality. In particular, the anomaly observed in the
difference of summation over occupied and nonoccupied
states in Sec. III shows that one faces here a truly qualitative
difference between regularization methods, not simply finite-
cutoff effects vanishing in the infinite-cutoff limit. By ex-
plicit calculation, we have shown that Pauli-Villars regular-
ization leads to quark and antiquark distributions satisfying
all general requirements.

As to the numerical calculations, we have presented a
general scheme for computing the distribution functions in
various representations. It is remarkable that the Kahana-
Ripka method, using a basis of eigenstates of the free Hamil-
tonian, lends itself so naturally to the computation of distri-
bution functions after one has converted them to a
spherically symmetric form.

The methods developed here, both analytical and numeri-
cal, can readily be generalized to compute also the ‘‘small’’
quark distributions in the 1/Nc expansion, the isovector un-
polarized and isosinglet polarized distributions. They are

FIG. 5. The isovector polarized distribution of quarks plus anti-

quarks, 1
2 x@Du(x)2Dd(x)1D ū (x)2D d̄ (x)#. Solid line: calcu-

lated distribution~total result, cf. Fig. 2!. Points: NLO parametri-
zation of Ref.@4#.

FIG. 6. The isovector polarized antiquark distribution,
1
2 x@D ū (x)2D d̄ (x)#. Solid line: calculated distribution~total re-
sult, cf. Fig. 2!. In the fit of Ref.@4# this distribution is assumed to
be zero.
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given by double sums over quark levels in the background
pion field~formulas have been presented in@5#!. Calculations
of these distributions are in progress.

We have found reasonable agreement of our results with
the fits of Glück and co-workers@3,4#. Indeed, the large-Nc
approach to parton distributions formulated in@5# provides
justification for the picture of ‘‘valencelike’’ distributions at
a low normalization point. The fact that at largeNc the
nucleon is characterized by a classical pion field~or, equiva-
lently, a polarized Dirac sea of quarks! naturally explains the
large antiquark content at the low normalization point. The
antiquark distributions obtained in our approach are nonsin-
gular at smallx. We note also that the parametric suppres-
sion of the gluon relative to the quark distributions, which is
implied by the effective chiral theory~see Sec. I and Ref.
@5#!, seems not to be in contradiction with the parametriza-
tion of the data at low normalization point@3#. A 30% mo-
mentum fraction of gluons at the low normalization point is
consistent with the suppression of the gluon distribution by
M2/L2. However, in order to make this more quantitative
one should develop this approach to a level which allows one
to compute a nonzero gluon distribution. This can be done in
the framework of the instanton vacuum, using the methods
of @8#.
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APPENDIX: ASYMPTOTICS FOR LARGE
ENERGY CUTOFF

In this appendix we discuss the asymptotic properties of
the distribution function with the energy cutoff, which was
introduced in Sec. III as a device to control the intermediate
steps of the calculation. In particular, we show how the
large-x asymptotic behavior, Eq.~42!, can be derived. This
formula assumes the double limit of largex ~in the sense of
Ncx@1) and large energy cutoff (v0@M ). It is convenient
to analyze this limit in terms of the moments of the distribu-
tion functions. An explicit expression for the moments is
obtained by integrating Eq.~38! over x,

Mn
v05E

21

1

dxxn21@u~x!1d~x!#occup
v0

5NcMN
12nE

2v0

Elev10

dvSp@d~v2H !~v1p3!n21

3~11g0g3!#2~H→H0! ~n51,2, . . .!. ~A1!

The delta function of the Hamiltonian can be represented as
the discontinuity of the quark propagator, cf. Eq.~39!. One
obtains a representation of the moments as

Mn
v052

i

2pE0

v0
dv8@M̃n~2 iv810!2M̃n~2 iv820!#,

~A2!

where

M̃n~v!52 iNcMN
12nSpF 1

2v1 iH
~2 iv1p3!n21

3~11g0g3!G2~H→H0!. ~A3!

The integrand of Eq.~A1! is ultraviolet finite for any fixed
v, and an ultraviolet divergence appears in Eq.~A1! only in
the limit v0→` due the large-v behavior of the integrand
~typically a powerlike growth; see below!. Equation~A3!, on
the other hand, contains ultraviolet divergences even for
fixed v due to large momenta. The difference is that in Eq.
~A1! we have the delta function of the Hamiltonian, which
constrains the ultraviolet growth of the integrand. We there-
fore have to introduce an additional regularization of the
functional trace in Eq.~A3! at fixedv. The dependence on
this additional cutoff cancels, however, after taking the dis-
continuity in Eq.~A2!, and thus does not influence the final
result.

Writing the propagator as in Eq.~40! one can expand Eq.
~A3! in derivatives of the pion field:

M̃n~v!5 (
k51

`

M̃n
~k!~v!, ~A4!

M̃n
~k!~v!5~2 i !nNcMN

12n

3SpH 1

v22]k
21M2FM ~]”Ug5!

1

v22]k
21M2G k

3~2 ivg02gk]k1 iMU 2g5!~v1]3!n21

3~2 ivg01g3!J . ~A5!

For the calculation of the leading large-x asymptotics it is
sufficient to restrict oneself to the first two terms in Eq.~A4!.
The traces are easily evaluated by inserting plane-wave
states:

M̃n
~k!~v!54M2NcMN

12nE d3p

~2p!3E d3q

~2p!3
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3Tr@Ũ~p!@Ũ~p!#†#
1

@v21~p2q!21M2#

35
p3~2 iv1q3!n21

~v21uqu21M2!
, k51,

~2 iv1q3!nupu2

~v21uqu21M2!2
, k52.

~A6!

The integral overq is divergent, but, as said above, the di-
vergent terms do not contribute to the discontinuity inv.
Keeping only those terms that lead to the discontinuity we
obtain

M̃n
~k!~v!54M2NcMN

12n~2 i !n12vn23sgn~Rev!

3E d3xTr@]kU~x!]kU
†~x!#

3H 1

32pF2n22~n22!2
1

2
dn,1G , k51,

1

48pF2n23~n21!1
1

2
dn,2G , k52.

~A7!

Inserting this asymptotic behavior in Eq.~A2! we obtain the
leading divergences of the moments forv0→`:

Mn
v0;M2NcMN

21E d3xTr@]kU~x!]kU
†~x!#

35 ~21!n
1

48p2S 2v0

MN
D n22F81

2

n22G , n>3,

1

12p2
lnv0 , n52.

~A8!

Thus the moments forn>3 have power divergences with the
energy cutoff, while forn52 the divergence is logarithmic.

The asymptotic behavior of the moments may be ex-
pressed in the form of a function ofx, assuming that
1/Nc!uxu;v0 /MN . Computing the moments of the func-
tion of Eq. ~42! one may easily check that it corresponds to
the large-v0 behavior of then.3 moments, Eq.~A8!.

To conclude, we have shown that, with an energy cutoff,
the moments of the distribution function generally have
power divergences. These manifest themselves not in a
power divergence of the distribution function at fixedx, but
in the occurrence of a ‘‘tail’’ at large negativex ~large posi-
tive x in the case of summation over nonoccupied states!.
The power divergences are artifacts of the energy cutoff and
cancel under the Pauli-Villars subtraction, Eq.~45!. The
physical, Pauli-Villars regularized distribution functions are
well localized inx.
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