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We calculate the lowest-dimensional nonlocal quark and gluon condensates within the single instanton
approximation of the instanton liquid model. As a result, we determine the values of average virtualities of
quarkslq

2[ ^:q̄D2q:&/^:q̄q:& and gluonslg
2[ ^:GD̃2G:&/^:GG:& in the QCD vacuum and obtain parameter-

less predictions for the ratiolg
2/lq

2512/5, and for some ratios of different vacuum condensates of higher
dimensions. The nonlocal properties of quark and gluon condensates are analyzed, and the insufficiency of the
single instanton approximation is discussed.@S0556-2821~97!05117-5#

PACS number~s!: 12.38.Lg, 11.15.Kc

I. INTRODUCTION

The nonperturbative vacuum of QCD is densely popu-
lated by long-wave fluctuations of gluon and quark fields.
The order parameters of this complicated state are character-
ized by the vacuum matrix elements of various singlet com-
binations of quark and gluon fields, condensates:^:q̄q:&,
^:Gmn

a Gmn
a :&, ^:q̄(smnGmn

a la/2)q:&, etc. The nonzero quark
condensatê:q̄q:& is responsible for the spontaneous break-
down of chiral symmetry, and its value was estimated a long
time ago within the current algebra approach. The impor-
tance of the QCD vacuum properties for hadron phenom-
enology have been established by Shifman, Vainshtein, and
Zakharov @1#. They used the operator product expansion
~OPE! to relate the behavior of hadron current correlation
functions at short distances to a small set of condensates. The
values of low-dimensional condensates were obtained phe-
nomenologically from the QCD sum rule~QCD SR! analysis
of various hadron channels.

Values of higher-dimensional condensates are known
with less accuracy since usually in the range of applicability
of QCD SR the static hadron properties: lepton widths,
masses, etc., are less sensitive to respective corrections. The
whole series of power corrections characterizes the nonlocal
structure of vacuum condensates.

Nonlocality of the quark condensate is characterized by
the parameter@2#

lq
25

^:q̄D2q:&

^q̄q:&
, ~1!

where Dm5]m2 igAm
a la/2 is a covariant derivative. This

quantity is treated as average virtuality of quarks in the QCD
vacuum and characterizes the space width of quark distribu-
tion. By the equation of motion in the chiral limit the param-
eterlq

2 is also related to the mixed quark-gluon condensate

m0
25

K :q̄S igsmnGmn
a la

2 Dq: L
^:q̄q:&

, lq
25

m0
2

2
. ~2!

This quantity has been estimated by QCD SR for baryons to
m0

250.860.2 GeV2 @3#, and the lattice QCD~LQCD! calcu-
lations yield m0

251.160.1 GeV2 @4#. Within the instanton
model the mixed condensate has first been obtained in the
single instanton approximation in@5#.1 Recently, similar cal-
culations have been performed in a more advanced instanton
vacuum model@6# with the resultm0

2' 4/rc
2, whererc is the

characteristic size of the instanton fluctuation in the QCD
vacuum. Below, we reproduce this result in another way. As
for the nonperturbative properties of gluons in the QCD
vacuum, new precise LQCD measurement of the gauge-
invariant bilocal correlator of the gluon field strengths has
become available down to a distance of 0.1 fm@7#.

As it has been proposed in@2#, the nonlocal properties of
vacuum condensates are of principal importance in the study
of the distribution functions of quarks and gluons in hadrons.
There, it has been shown that this problem can be correctly
considered only if a certain nonlocal form of the vacuum
condensates is suggested. Physically, it means that vacuum
quarks and gluons can flow through the vacuum with non-
zero momentum. To construct the simplest ansatzes for the
shape of the nonlocal condensates, in@2,8# some general
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properties of these functions and the restricted information
about their first derivatives have been used.

On the other hand, in QCD there is an instanton@9,10#, a
well-known nontrivial nonlocal vacuum solution of the clas-
sical Euclidean QCD field equations with the finite action
and sizer. The importance of instantons for QCD is that it is
believed that an interacting instanton ensemble provides a
realistic microscopic picture of the QCD vacuum in the form
of ‘‘instanton liquid’’ @5,11,12# ~see, e.g., a recent review
@13#!. It has been argued on phenomenological grounds that
the distribution of instantons over sizes is peaked at a typical
valuerc'1.7 GeV21 and the ‘‘liquid’’ is dilute in the sense
that the mean separation between instantons is much larger
than the average instanton size. Moreover, the quark Green
functions are dominated by zero energy modes localized
around the instanton. The effects of condensate nonlocality
within the instanton liquid model have implicitly been used
in QCD SR for the pion@14# and nucleon@15#, where they
appear as exponential corrections to the sum rules along with
power corrections typical of the OPE approach.

In this paper, we start a systematic discussion of nonlocal
condensates within the instanton liquid model of the QCD
vacuum. As a first step, we calculate average virtualities of
quarks and gluons in the QCD vacuum in the single instan-
ton ~SI! approximation to the instanton liquid model. Next,
we attempt to obtain the correlation functionsf (n) which
describe distributions over virtualityn of quarks and gluons
in the nonperturbative vacuum. The approximation used
works well for large virtualities, but fails in the description
of physically argued distributions at small virtualities~or
long distances!. The reason is that in order to have a realistic
model of vacuum distributions, the important effects of long-
wave vacuum configurations have to be included in the
vacuum model@16#.

The paper is organized as follows. In the second section,
the general properties of nonlocal condensates are briefly dis-
cussed. The quark and gluon average virtualitiesl2 are esti-
mated within the single instanton approximation in the third
section. To guarantee the gauge invariance, we have intro-
duced the SchwingerÊ exponent as an operator element of
the nonlocal vacuum averages. In the fourth section, we ana-
lyze the space coordinate behavior of nonlocal condensates.
The main asymptotics of the correlation functionsf (n) at
large virtualitiesn are derived. We also demonstrate insuffi-
ciency of the SI approximation to obtain the realistic behav-
ior at large distances. There, we point out the physical reason
for the failure of the approach used in the large distance
region and suggest a way to solve this problem.

II. THE QUARK AND GLUON DISTRIBUTION
FUNCTIONS IN THE QCD VACUUM

To begin, we outline some basic elements of the approach
with the nonlocal vacuum condensates. The simplest bilocal
scalar condensateM (x) or, in other words, the nonperturba-
tive part of the gauge-invariant quark propagator has the
form ~in the below definitions we shall follow works@2,8#!

M ~x![^:q̄~0!Ê~0,x!q~x!:&[^:q̄~0!q~0!:&Q~x2!. ~3!

Here, Ê(x,y)5P exp@i*x
yAm(z)dzm# is the path-ordered

Schwinger phase factor~the integration is performed along

the straight line! required for gauge invariance and
Am(z)5gAm

a (z) la/2. In the same manner, we will consider
the correlator Dmn,rs(x) of gluonic strengths
Gmn(x)5gGmn

a (x)la/2:

Dmn,rs~x2y![^:TrGmn~x!Ê~x,y!Grs~y!Ê~y,x!:&.
~4!

The correlator may be parameterized in the form consistent
with general requirements of gauge and Lorenz symmetries
as @17,8,19#:

Dmn,rs~x![
1

24
^:g2G2:&H ~gmrgns2gmsgnr!@D~x2!

1D1~x2!#1~xmxrgns2xmxsgnr1xnxsgmr

2xnxrgms!
]D1~x2!

]x2 J , ~5!

where ^:G2:&5^:Gmn
a (0)Gmn

a (0):& is a gluon condensate,
and Q(x2), D(x2), andD1(x2) are invariant functions that
characterize nonlocal properties of condensates.

The vacuum expectation values~VEVs! such as
^:q̄q:&,^:g2G2:&,^:q̄D2q:&,... appear as expansion coeffi-
cients of the correlatorsM (x) and Dmn,rs(x) in a Taylor
series in the variablex2/4. The coordinate dependence of the
scalar condensatesQ(x2) andD(x2), normalized at zero by
Q(0)51 andD(0)1D1(0)51, can conventionally be pa-
rametrized similarly to the well-knowna representation for
the propagator:2

Q~x2!5E
0

`

expS x2

4a D f qS 1

a D da

a2 , ~6!

D~x2!1D1~x2!5E
0

`

expS x2

4a D f gS 1

a D da

a2 . ~7!

The properties and the role of the correlation functions
f (n) have been discussed in detail in@2,8#. The explicit form
of f (n) completely fixes the coordinate dependence of the
condensates and can be determined in the future QCD
vacuum theory. Evidently,f (n);d(n),d$1%(n), . . . , would
correspond to the standard VEVs^:q̄q:&,m0

2, . . . , while the
behavior f (n);const would simulate free propagation. We
expect that the realisticf (n) occurs somewhere in between
these two extremes. Thus, it is a continuous function concen-
trated around a certain finite valuel2 and rapidly decaying
to zero asn goes to 0 or̀ .

The correlation functionf q(n) describes the virtuality dis-
tribution of quarks in the nonperturbative vacuum@2#. Its n
moment is proportional to the VEV of the local operator with
the covariant derivative squaredD2 to thenth power:

2One has to remember that in this work we make use of the
Euclidean space andx2,0.
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E
0

`

nnf q~n!dn5
1

G~n12!

^:q̄~D2!nq:&

^:q̄q:&
. ~8!

It is natural to suggest that VEVs in the right-hand side
~RHS! of Eq. ~8! should exist for anyn. It means that the
decrease off (n) for large arguments has to be faster than
any inverse power ofn, e.g., like some exponential

f q~n!;exp~2const3n! as n→`. ~9!

The two lowest moments give the normalization condi-
tions and the average vacuum virtualities of quarkslq

2 and
gluonslg

2:

E
0

`

f q~n!dn51, E
0

`

n f q~n!dn5
1

2

^:q̄D2q:&

^:q̄q:&
[

lq
2

2
,

~lq
2.0.4 GeV2,QCD SR @3# !, ~10!

E
0

`

f g~n!dn51,

E
0

`

n f g~n!dn5
1

2

^:Gmn
a ~D̃2!Gmn

a :&

^:G2:&
[

lg
2

2
. ~11!

Note that the quark correlator~3! has a direct physical
interpretation in the heavy quark effective theory~HQET! of
heavy-light mesons as it describes the propagation of a light
quark in the color field of an infinitely heavy quark@5,13#.
This behavior has been analyzed in detail in@20#. There, it
was demonstrated that for large distancesuxu the correlator is
dominated by the contribution of the lowest state of a heavy-
light meson with energyLq : Q(x2);exp(2Lquxu). This law
provides the behavior off (n) at smalln:

f q~n!;exp~2Lq
2/n! as n→0. ~12!

In the case of gluon correlator~5! the correlation lengthLg
has recently been estimated in the LQCD calculations@7#.
The quantityLg51/Lg plays a similar role asLq for the
quark distribution, i.e.,D(x2);exp(2Lguxu) for large uxu. It
is formed at typical distances of an order of 0.5 fm and
describes long range vacuum fluctuations of gluon field.

In works @21,22#, the arguments in favor of a definite
continuous dependence off (n) have been analyzed and dif-
ferentAnsatzefor these functions were suggested which are
consistent with the requirements~9!, ~12!. In particular, one
ansatz has been constructed by the simplest combination of
both these asymptotics

f q~n!;expS 2
Lq

2

n
2sq

2n D ~13!

with the parametersLq.0.45 GeV andsq
2.10 GeV22.

This ansatz has been successfully applied in QCD SR for a
pion and its radial excitations@22#, and the main features of
the pion have been described: the mass spectrum of pion
radial excitationsp8 andp9 which is in agreement with the
experiment and the shapes of the wave functions ofp andp8
which have been confirmed by an independent analysis in

@2,21#. Thus, we will regard the form~13! as following di-
rectly from the pion phenomenology. Below, we will make
some conclusions about the form of the correlation function
f q(n) using concrete solutions for the instanton field and
quark zero mode around it.

III. VACUUM AVERAGE VIRTUALITIES
IN THE SINGLE INSTANTON APPROXIMATION

Let us consider an instanton solution of the classical
Yang-Mills equations in the Euclidean space@9#. It is well
known that in the vicinity of the instanton the quark ampli-
tudes are dominated by the localized mode with zero energy
@10#. We will consider the expressions for the instanton field
and quark zero mode in the axial gaugeAm(z)nm50 since in
this gauge with the vectornm5xm2ym the Schwinger factor
Ê(x,y)51. The expressions in the axial gauge for the instan-
ton (1) @anti-instanton (2)] field

Am~ax!~x!5R~x!Am~reg!R~x!11 iR~x!]mR~x!1,

Gmn~ax!~x!5R~x!Gmn~reg!R~x!1, ~14!

and the quark zero mode

Cax
6 ~x!5R6~x!C reg

6 ~x!, ~15!

where

R6~x!5exp@6 i ~xWtW !a~x!#,

a~x!5
uxW u

Ax21r2
arctan

x4

Ax21r2

have been introduced in@23#. In Eqs.~14! and ~15! the ex-
pressions for the instanton and quark fields in the regular
gauge are given by

Am,reg
6a ~x!5hmn

7a 2xn

x21r2 , Gmn,reg
6a ~x!52hmn

7a 4r2

~x21r2!2 ,

~16!

C reg
6 ~x!5w reg~x!j6, w reg~x!5

r

p~x21r2!3/2. ~17!

In Eqs.~14!–~17!, x5(x4 ,xW ) is a relative coordinate with
respect to the position of the instanton centerz. The solu-
tions ~14! and ~15! are given within the SU~2! subgroup of
the SUc(3) theory@ta are the corresponding generators nor-
malized according to Tr(tatb)51/2dab# and the following

notation is introduced:hmn
a65e4amn6 1

2 eabcebcmn are the
’t Hooft symbols, j6j̄651/8gmgn (16g5)/2Utm

7tn
6U1

with t65(6 i ,tW ), andU is the matrix of color space rota-
tions.

In the SI background in the zero mode approximation the
bilocal quark and gluon condensates acquire the form

Mq~x!5^:q̄~ax!~0!q~ax!~x!:&

52(
6

nc
6E d4zE dV

Tr@Cax
6 ~x2z!C̄ax

6 ~2z!#

mq*
,

~18!
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Dmn,rs~x!5^:G~ax!mn
a ~0!G~ax!rs

a ~x!:&

5
1

12
~gmrgns2gmsgnr!(

6
nc

6E d4z

3E dVGdd8~ax!
6a

~x2z!Gdd8~ax!
6a

~2z!. ~19!

Here, nc
6 is the effective instanton / anti-instanton density.

The collective coordinatez of the instanton center and its
color space orientation are integrated over. In the SI approxi-
mation the term in Eq.~5! with the second Lorenz structure
does not appear. This fact is due to the specific topological
structure of the instanton solution. Both the Lorenz structures

will appear in the RHS of Eq.~19! if one takes into account
the long-wave background fields@16#.

The averaging over the instanton orientations in the color
space is carried out by using the relation*dVUb

aUd
1c

5 1/Nc dd
adb

c , whereNc is the number of colors. Using the
definitions~3!–~5!, ~18!, and~19! we obtain

Qax~x2!5
8r2

p E
0

`

drr 2

3E
2`

`

dt

cosH r

R FarctanS t1uxu
R D2arctanS t

RD G J
@R21t2#3/2@R21~ t1uxu!2#3/2 ,

~20!

Dax~x2![D~x2!1D1~x2!5
24r4

p E
0

`

drr 2E
2`

`

dt

12
4

3
sin2H r

R FarctanS t1uxu
R D2arctanS t

RD G J
~R21t2!2@R21~ t1uxu!2#2 , ~21!

whereR25r21r 2, r 5uzWu, t5z4 . In the derivation of these
equations we have used a reference frame where the instan-
ton sits at the origin andxm is parallel to one of the coordi-
nate axes, saym54, serving as a ‘‘time’’ direction~i.e.,
xW50, x45uxu!. Expression~20! corresponds to that derived
in @5,23# and expression~21! was derived in@24#.3

In the derivation of~20! and ~21! the following relations
between the quark and gluon condensates, on the one hand,
and the effective densitync5n11n2, (n15n2) and the
effective quark massmq* , on the other hand, have been used

^:q̄~0!q~0!:&52
nc

mq*
, ^:g2G2:&532p2nc . ~22!

These relations are valid in the mean field approximation of
the instanton liquid model@13# and provide the normaliza-
tion conditions in Eqs.~18! and ~19!. Let us emphasize two
features of expressions~20! and ~21!.

First, it is important that the factors cos( . . . ) or sin2( . . . )
in the numerator of integrands reflect the presence of theÊ
factor in the definition of the bilocal condensates.

Second, the correlatorsQ(x2)5Qax(x
2) andDax(x

2) are
gauge-invariant objects by construction. Therefore, the same
expressions for the correlators can be derived using any other
gauge. But the axial gauge used seems to be the most ad-
equate in this case.

From Eqs.~20! and ~21! one may derive the average vir-
tualities of vacuum quarks and gluons in the SI approxima-
tion which characterize the behavior of nonperturbative
propagators at short distances in the instanton field:

lq
2528

dQax~x!

dx2 U
x50

52
1

rc
2 ,

lg
2528

dDax~x!

dx2 U
x50

5
24

5

1

rc
2 , lg

25
12

5
lq

2 . ~23!

In expressions~23! for l2, factor 8 arises from the expansion
of correlators in the variablex2/4 and also due to the defini-
tion of lq(g)

2 , ~10! and ~11!. The result forlq
2 in Eq. ~23!

agrees with the value for the mixed condensate derived in@6#
if the relation~2! is used.

We see that our result coincides numerically with that
derived from the QCD SR,~10!, if the effective size of the
instanton is approximately chosen asrc'2 GeV21:

lq
2'0.5 GeV2, lg

2'1.2 GeV2. ~24!

This value is quite close to the commonly accepted typical
instanton radii 1.7 GeV21 chosen to reproduce the phenom-
enological properties of the instanton vacuum~see review
@13#!. The recent analysis of the instanton liquid parameters
on the lattice@25# leads to an estimaterc'1.7 GeV21. It is
interesting to note that gluons are distributed more compact
than quarks in the QCD vacuum as it follows from~23!. To
demonstrate this it is instructive to compare the short-
distance correlation lenghts for quarkl q5 1/lq'0.28 fm and
gluon l g5 1/lg'0.18 fm distributions in the QCD vacuum
(rc'2 GeV21).

We ignore the effects of radiative corrections to the con-
densates connected with a possible change of normalization
point m where the condensates are defined. These effects as
well as the effects due to nonzero modes contributions are
not very important. Thus, the SI approximation works fairly
well in describing virtuality of vacuum quarks~gluons! and

3We are grateful to A. Radyushkin who communicated us this
reference.
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nonlocal properties of condensates at short distances. In the
next section, we are going to study the shape of nonlocal
condensates in more detail.

The relation of the quantitylg
2 to the combination of

VEVs of dimension six has been obtained in@18# ~see also
@19#!:

lg
2

2
5

^:g3f G3:&

^:g2G2:&
2

^:g4J2:&

^:g2G2:&
, ~25!

where ^:g3f G3:&5^:g3f abcGmn
a Gnr

b Grm
c :&, J25Jm

a Jm
a , and

Jm
a 5q̄(x) la/2gmq(x). This formula is analogous to Eq.~2!

for quarks and relates short distance characteristic~23! of
nonlocal gluon condensateD(x) to the standard VEVs
of higher dimensions. The estimation^:g3f G3:&
' 12/5rc

2 ^:g2G2:& following from Eqs.~23! and~25! ~with-
out the second numerically small term! coincides with that
obtained in@1,5# in a different way. The latter relation in Eq.
~23! and the expressions forlq

2 , ~1!, andlg
2 , ~25!, allow us

to obtain a new parameterless relation

^:g3f G3:&

^:g2G2:&
5

3

5

^:q̄~ igsmnGmn!q:&

^:q̄q:&

1
^:g4J2:&

^:g2G2:&
~SI approximation! ~26!

and then to estimate a poorly known value of^:g3f G3:&:

^:g3f G3:&

^:g2G2:&
'~0.4560.12! GeV2.

To obtain this value, we have used the approximation

^:g4J2:&'2 4
3 g2^:gūu:&2 @1# and the estimation form0

2 @3#.
The expressions forQax(x) and Dax(x) may be consid-

ered as generation functions to obtain the condensates of
higher dimensions in the SI approximation. From a technical
point of view this procedure is more convenient than the
direct calculations of them. In Appendix A we present some
new relations for quark VEVs of dimension seven and gluon
VEVs of dimension eight in the SI approximation.

IV. NONLOCAL CONDENSATES WITHIN THE SINGLE
INSTANTON APPROXIMATION

The aim of this section is to study the form of the distri-
butions over virtuality of quarks and gluons in the SI ap-
proximation. To understand the main asymptotical behavior
of correlators at short and long distances it is enough to
inspect the expressions~3! and~4! dropping the SchwingerÊ
factor. We will also consider numerical effects connected
with the neglect of this factor.

To this goal, let us first calculate the correlators using the
regular gauge and neglecting theÊ factor. The corresponding
expressions are given by Eqs.~20! and~21! with the changes
cos( . . . )→1 and sin( . . . )→0 in the integrands and are re-
duced to

Qreg~x2!5
2

y2 S 12
1

A11y2D , ~27!

D reg~x2!5
3

4y2~11y2! S 112y2

yA11y2
lnuA11y21yu21D ,

~28!

where the dimensionless parametery5 x/2r is introduced.
From Eqs.~27! and ~28! we easily find for the average

virtualities

lq,reg
2 5

3

2

1

r2 , lg,reg
2 5

16

5

1

r2 ,

which are about 30% less than the corresponding gauge-
invariant ‘‘physical’’ values in Eq.~23!. The same quantities
~without Ê factor! calculated in the singular gauge look like

lq,sing
2 5

9

2

1

r2 , lg,sing
2 5

96

5

1

r2 . ~29!

Thus, we see that the gauge dependence is very strong and
the results derived withoutÊ factors may be far from being
correct numerically.4

Now, let us consider the correlation functionsf (n) in the
regular gauge. To this end, we make the inverse Laplace
transform of the correlators~27! and ~28! and obtain

f q
reg~n!52r2erfc~rAn!, ~30!

f g
reg~n!5

3

2
r2S r2n

2 DexpS 2
r2n

2 DK0S r2n

2 D , ~31!

where erfc(t)512erf(t) is the error function andK0(t) is the
MacDonald function. Then, it is easy to obtain largen as-
ymptotics of these functions

f q
reg~n!52r2

e2r2n

Ar2np
F11OS 1

n D G , ~32!

f g
reg~n!5

3

4
r2e2r2nAr2npF11OS 1

n D G , ~33!

which reflect the behavior of the corresponding correlators in
the region of smallx. The same exponential asymptotics
have physical correlation functionsf q(g)(n) resulting from
the gauge-invariant correlators~20! and ~21!. Thus, we can
conclude that the model of nonlocal condensates in the SI
approximation can reproduce the main exponential asymp-
totical behavior;exp(2sn) of the physical correlation func-
tions at large virtualities~short distances!, and the phenom-
enological parameters in Exp. ~13! may be identified as
s.rc .

As to the description of the small virtuality~long dis-
tance! region, this approximation fails since in that regime
f (n→0) decays too slowly in contradiction with the physi-
cally argued ‘‘color screening’’ exponential asymptotics
given in Eq.~12!. In other words, the correlators in Eqs.~27!
and ~28! decrease too slowly at largex. These conclusions

4Note, that an estimate forlq
2 calculated by nongauge-invariant

manner@which is close tolq,sing
2 in Eq. ~29!# is presented in@26#.
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remain valid for the physical case of gauge-invariant correla-
tors ~20! and ~21!, that is easily seen from the behavior of
corresponding numerators of the integrands at largex. As it
is explained in@16#, the SI approximation considered in the
present paper does not correspond to the real physical
vacuum picture. We should take into account the important
long-wave background fields too. These fields modify the
long-distance behavior of the correlators and lead to appear-
ance of the ‘‘second scale’’ parametersLq andLg51/Lg in
quark and gluon distributions, respectively@see Exp.~12!
and discussion there#. This effect allows us to reproduce the
long- and short-distance behavior of the physical correlators
~13! in a complete form. It is also shown that the effect of
long-wave vacuum fluctuations is not very essential for the
values oflq(g) related to short distances.

V. CONCLUSION

The instanton model provides a way for con-
structing of the nonlocal vacuum condensates. We
have obtained the expressions for the nonlocal
gluon ^:TrGmn(x)Ê(x,y)Grs(y)Ê(y,x):& and quark
^:q̄(0)Ê(0,x)q(x):& condensates within the single instanton
approximation to the instanton liquid model. The average
virtualities of quarkslq

2 and gluonslg
2 in the QCD vacuum

are derived. The results arelq
252/rc

2 for vacuum quarks, and

lg
25 24

5 (1/rc
2) for vacuum gluons. The value oflq

2 estimated
in the QCD SR analysis@3# is reproduced atrc'2 GeV21.
This number is close to the estimate from the phenomenol-
ogy of the QCD vacuum in the instanton liquid model
@13,25#. The model provides parameterless predictions for
the ratiolg

2/lq
2512/5 and the relation~26! for the vacuum

averages of dimension six.
The calculations have been performed in a gauge-

invariant manner by using the expressions for the instanton
field and quark zero mode in the axial gauge@23#. It is shown
that the usage of the singular gauge@in neglecting the
Schwinger gauge factorÊ(0,x)# in the calculations of
nongauge-invariant quantities leads to a strong numerical de-
viation from correct values.

The behavior of the correlation functions demonstrates
that in the single instanton approximation the model of non-
local condensates can well reproduce the asymptotic behav-
ior of the functions~13! at large virtualities~short distances!.
This conclusion agrees with the analysis of the meson cor-
relators presented in@13#. There, the coordinate dependen-
cies of the correlators calculated in the SI approximation and
in more refined instanton liquid models are close each to
other up to distances;0.5 fm. The results for nonlocal
quark~20! and gluon~21! condensates are also supported by
the independent test of their local characteristicslq

2 andlg
2 .

The latter may be obtained from standard VEVs calculated
within the instanton model in@1#, @5#, and@6#.

Nevertheless, the approximation used fails in the descrip-
tion of the small virtuality~long distance! regime. The rea-
son is the neglect of long-wave vacuum fluctuations in the
single instanton approximation. In the forthcoming paper
@16# we will prove that inclusion of the effects of these fluc-
tuations cures this disease.
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APPENDIX

Here, we present the relations between the derivatives
d2Q(x2)/2!d2x2 and d2D(x2)/2!d2x2 calculated in the SI
approximation and the same quantities expressed via the
quark and gluon VEVs obtained in@19# ~below we put the
current quark massmq50!,

d2Qax~x2!

2!d2x2 [
7

120

1

rc
4

5

3Q1
72

3

2
Q2

723Q3
71Q4

7

4!24̂ q̄q&
~SI approximation!,

~A1!

d2Dax~x2!

2!d2x2 [
5

21

1

rc
4

5

7

2
G122

8 123G324
8 130G5

818G6
823G7

8

4!6G4

(SI approximation), ~A2!

where the quark condensate basis was chosen in the form

Q1
75^q̄GmnGmnq&, Q2

75 i ^q̄GmnG̃mng5q&,

Q3
75^q̄GmlGlnsmnq&, Q4

75 i ^q̄DmJnsmnq&,

and the gluon condensate basis was chosen as

G45^TrGmnGmn&,

G1
85^TrGmnGmnGabGab&, G2

85^TrGmnGabGmnGab&,

G3
85^TrGmaGanGnbGbm&, G4

85^TrGmaGanGmbGbn&,

G5
85 i ^TrJmGmnJn&, G6

85 i ^TrJl@DlGmn ,Gmn#&,

G7
85^TrJmD2Jm&,

and the notationGi 2 j
8 5Gi

82Gj
8 is used.
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