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We calculate the lowest-dimensional nonlocal quark and gluon condensates within the single instanton
approximation of the instanton liquid model. As a result, we determine the values of average virtualities of
quarks\G= (:qD?q:)/(:qq:) and gluons\j= (:GD?G:)/(:GG:) in the QCD vacuum and obtain parameter-
less predictions for the ratimé/)\g:lZ/S, and for some ratios of different vacuum condensates of higher
dimensions. The nonlocal properties of quark and gluon condensates are analyzed, and the insufficiency of the
single instanton approximation is discussggi0556-282(197)05117-3

PACS numbds): 12.38.Lg, 11.15.Kc

[. INTRODUCTION quantity is treated as average virtuality of quarks in the QCD
vacuum and characterizes the space width of quark distribu-
The nonperturbative vacuum of QCD is densely popu-ion. By the equation of motion in the chiral limit the param-
lated by long-wave fluctuations of gluon and quark fields.eter)\g is also related to the mixed quark-gluon condensate
The order parameters of this complicated state are character-

ized by the vacuum matrix elements of various singlet com- A2

binations of quark and gluon fields, condensatesq:), <:a(iggwefw7)q > m2
(:G%,G%, ), (:q(0,,G,\*2)q:), etc. The nonzero quark m2= _ N2=—0 )
condensaté:qq:) is responsible for the spontaneous break- 0 (:qq:) 42

down of chiral symmetry, and its value was estimated a long
time ago within the current algebra approach. The impor-This quantity has been estimated by QCD SR for baryons to
tance of the QCD vacuum properties for hadron phenom,-ncz)zo_gir 0.2 Ge\#[3], and the lattice QCIHLQCD) calcu-
enology have been established by Shifman, Vainshtein, andions yield m§=1.1i0.1 Ge\? [4]. Within the instanton
Zakharov[1]. They used the operator product expansiong el the mixed condensate has first been obtained in the
(OPB to relate the behavior of hadron current correlatlonsin(‘:]le instanton approximation [5].1 Recently, similar cal-
functions at short distances to a small set of condensates. Tlaﬁlations have been performed in a more ad\;anced instanton
values of low-dimensional condensates were obtained phez, .\m mode[6] with the resultm2~ 4/p2, wherep. is the

. . 0 c c
nomenologically from the QCD sum rulQCD SR analysis characteristic size of the instanton fluctuation in the QCD

f vari hadron channels. ' .
of various hadron channels vacuum. Below, we reproduce this result in another way. As

Values of higher-dimensional condensates are knOWI;"or the nonperturbative properties of gluons in the QCD

with less accuracy since usually in the range of applicabilityVacuum new precise LQCD measurement of the gauge-

of QCD SR the static hagron properties: lepton \.N'dths"nvariant bilocal correlator of the gluon field strengths has
masses, etc., are less sensitive to respective corrections. Th

whole series of power corrections characterizes the nonloca Ecome available down to a distance of 0.1[fh
P As it has been proposed j&], the nonlocal properties of
structure of vacuum condensates.

Nonlocality of the quark condensate is characterized b vacuum condensates are of principal importance in the study
the arametgiz] q %f the distribution functions of guarks and gluons in hadrons.
P There, it has been shown that this problem can be correctly

(:qD%q:) considered only if a certain nonlocal form of the vacuum
A§=?_, (1) condensates is suggested. Physically, it means that vacuum
{ag:) quarks and gluons can flow through the vacuum with non-

zero momentum. To construct the simplest ansatzes for the

where D ,=49,—igA2\?/2 is a covariant derivative. This
p= o108 shape of the nonlocal condensates,[238] some general

*Electronic address: dorokhov@thsunl.jinr.dubna.su
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properties of these functions and the restricted informatiorthe straight ling required for gauge invariance and
about their first derivatives have been used. A,(2)=gA%(2) \%2. In the same manner, we will consider
On the other hand, in QCD there is an instant®/i0], a the correlator D#"*?(x) of gluonic  strengths
well-known nontrivial nonlocal vacuum solution of the clas- GMV(X):gGZV(X))\a/z;
sical Euclidean QCD field equations with the finite action
and sizep. The importance of instantons for QCD is that it is
believed that an interacting instanton ensemble provides a
realistic microscopic picture of the QCD vacuum in the form
of “instanton liquid” [5,11,19 (see, e.g., a recent review
[13]). It has been argued on phenomenological grounds thathe correlator may be parameterized in the form consistent
the distribution of instantons over sizes is peaked at a typicawith general requirements of gauge and Lorenz symmetries
valuep.~1.7 GeV ! and the “liquid” is dilute in the sense as[17,8,19:
that the mean separation between instantons is much larger
than the average instanton size. Moreover, the quark Green 1
functions are dominated by zero energy modes localized D”V'P”(X)EZ—A'(:QZGZ»
around the instanton. The effects of condensate nonlocality

D#¥P7(x—y)=(:TrG**(X)E(X,y) G 7 (y)E(y,X):).

(g,u.pgvo'_ g,uogvp)[D(Xz)

within the instanton liguid model have implicitly been used +D1(X) ]+ (XX, 000~ X X080y + X, X0,
in QCD SR for the piorf14] and nucleor{15], where they

appear as exponential corrections to the sum rules along with dD1(x?)

power corrections typical of the OPE approach. ~XX,Qu0) X2 ' ®)

In this paper, we start a systematic discussion of nonlocal
condensates within the instanton liquid model of the QCD 2 . a N
vacuum. As a first step, we calculate average virtualities opvhere <'2G '>_<2'GM”(O)G#V20)'> s a gluon condensate,
quarks and gluons in the QCD vacuum in the single instanQEdQ(X ), D(x )I, anIle(x ) are flnvar(ljant functions that
ton (SI) approximation to the instanton liquid model. Next, ¢ z_irrr?cterlze nonlocal properties o Iconvznvsates. h
we attempt to obtain the correlation functiohér) which ._.e _V;iggfim,_e[;‘f‘%c‘a“"” valuesVEVs) sue a?f.
describe distributions over virtuality of quarks and gluons (:09:),(:9°G%).(:qD%q;),... appear as expansion coeffi-

in the nonperturbative vacuum. The approximation usec?ie'f‘ts .Of rt}he cqrrellaztorM (:) and D.W'W(X) in a Taylofr h
works well for large virtualities, but fails in the description series in the variable®/4. The coordinate dependence of the

2 2 H
of physically argued distributions at small virtualitiger ~ Scalar condensat&(x®) andD(x%), normalized at zero by

long distances The reason is that in order to have a realisticQ(0)=1 andD(0)+D,(0)=1, can conventionally be pa-
model of vacuum distributions, the important effects of |Ong_rametrlzed similarly to the well-knowr representation for
wave vacuum configurations have to be included in thé"€ propagatof:

vacuum mode[16].

The paper is organized as follows. In the second section, ) o x2
the general properties of nonlocal condensates are briefly dis- Q(x%)= jo exr{ @) fq
cussed. The quark and gluon average virtualiiésire esti-
mated within the single instanton approximation in the third
section. To guarantee the gauge invariance, we have intro-

duced the SchwingdE exponent as an operator element of
the nonlocal vacuum averages. In the fourth section, we ana-
lyze the space coordinate behavior of nonlocal condensates

The main asymptotics of the correlation functions)) at ¢ Thﬁ prot[’:)ertie; and thde_roclie o_fl the cohrrelati?_n_flfmctions
large virtualitiesw are derived. We also demonstrate insuffi- f (¥) have been discussed in detai[8]. The explicit form

ciency of the S| approximation to obtain the realistic behay-2f f(¥) completely fixes the coordinate dependence of the
mined in the future QCD

ior at large distances. There, we point out the physical reasofPndensates and can be deter

1\ da
;) il ©

= Z\ (1\d
D(x2)+D1(x2):jo exp{j—a fg(z)a—f. @)

for the failure of the approach used in the large distanc&/@cuum theory. EV|dentny(y)~5(_v),5{1}2(v), -+, would
region and suggest a way to solve this problem. correspond to the standard VEYs1q:),mg, . . ., while the
behaviorf(»)~const would simulate free propagation. We
Il. THE QUARK AND GLUON DISTRIBUTION expect that the realisti€(v) occurs somewhere in between
FUNCTIONS IN THE QCD VACUUM these two extremes. Thus, it is a continuous function concen-

. ) . trated around a certain finite valu& and rapidly decaying
To begin, we outline some basic elements of the approacfy zero asy goes to 0 ors.

with the nonlocal vacuum_condensates. The simplest bilocal The correlation functiori,(v) describes the virtuality dis-
scalar condensafd (x) or, in other words, the nonperturba- tripytion of quarks in the nonperturbative vacu(igi. Its n
tive part of the gauge-invariant quark propagator has thenoment is proportional to the VEV of the local operator with
form (in the below definitions we shall follow work2,8]) the covariant derivative squar@f to thenth power:

M (x)=(:q(0)E(0x)q(x):)=(:q(0)q(0):)Q(x?). (3)

Here, E(x,y)=P exdif3A(2dz] is the path-ordered 20One has to remember that in this work we make use of the
Schwinger phase factdthe integration is performed along Euclidean space amnf<0.
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o 1 (:q(D?)"q:) [2,21]. Thus, we will regard the forng13) as following di-
f vg(v)dv= — - (8)  rectly from the pion phenomenology. Below, we will make
0 r'(n+2) (:qq:) ; . .
some conclusions about the form of the correlation function

It is natural to suggest that VEVs in the right-hand sidefq(?) using concrete soIL_Jtions for the instanton field and
(RHS) of Eq. (8) should exist for anyn. It means that the duark zero mode around it.
decrease of (v) for large arguments has to be faster than

any inverse power of, e.g., like some exponential ll. VACUUM AVERAGE VIRTUALITIES
IN THE SINGLE INSTANTON APPROXIMATION

fq(¥)~exp(—conskv) as v—ee. ©) Let us consider an instanton solution of the classical

The two lowest moments give the normalization condi- Yang-Mills equations in the Euclidean spa@. It is well
tions and the average vacuum virtualities of quaxﬁsand known that in the vicinity of the instanton the quark ampli-

gluonsi2: tudes are dominated by the localized mode with zero energy
g [10]. We will consider the expressions for the instanton field
o o 1 (:qD2q:) )\g aqd quark zero mode in the axial gau@@(z)n“fo since in
j fq(v)dv=1, f vig(v)dv= > ooy =2 this gauge with the vectar,=x,—y, the Schwinger factor
0 0 (:qq:) E(x,y)= 1. The expressions in the axial gauge for the instan-
ton (+) [anti-instanton field
(A\5=0.4 GeV,QCD SR[3]), (10) (1 €l
Ao () =R(X)A 4 1egR(X) " +iIR(X)3,R(X) T,
fo fo(v)dv=1, G un(an(¥) =R(X) G reg RO, (14)
- ) and the quark zero mode
= 1(:G5,(DAGE, 1) Ag ) )
fo Mgdv=5 —"rgzy =72 @D W (X) =R (X)W e X), (15)
. . here
Note that the quark correlatdB) has a direct physical
interpretation in the heavy quark effective thedHQET) of R.(x)=exd *i (X7 a(X)],
heavy-light mesons as it describes the propagation of a light
quark in the color field of an infinitely heavy quafk,13]. %]
This behavior has been analyzed in detai[20]. There, it a(X)= arctan
was demonstrated that for large distanjegghe correlator is VXEtp VXEt+p

dominated by the contribution of the lowest state of a heavyhave been introduced ii23]. In Egs.(14) and (15) the ex-

. . . 2 — a .
light meson with energy: Q(x°) ~exp(~Aglx|). This law  essions for the instanton and quark fields in the regular
provides the behavior of(v) at smallv: gauge are given by

fo(v)~exp(—AZ/v) as v—0. (12 . 2, ) 42
. AuledX)= M s 20 CuniedX)= = M 52y 2y

In the case of gluon correlat@®) the correlation lengtit. P P (16)
has recently been estimated in the LQCD calculatipfls
The quantityAy=1/14 plays a similar role as\, for the p
quark distribution, i.e.D(x%) ~exp(~A4lx|) for large|x|. It Wied X)=@red X) €, @red X) = 2O+ (17)
is formed at typical distances of an order of 0.5 fm and P
describes long range vacuum fluctuations of gluon field. In Egs.(14)—(17), X=(X,4,X) is a relative coordinate with

In works [21,22, the arguments in favor of a definite ragpect to the position of the instanton cerzefThe solu-
continuous dependence b@v). have been analyzed an.d dif- tions (14) and (15) are given within the S(2) subgroup of
ferentAnsatzefor these functions were suggested which areo SW(3) theory[, are the corresponding generators nor-

consistent with the requirement), (12). In particular, one  5jized according to Tr,,)=1/26%"] and the following
ansatz has been constructed by the simplest combination %tation is introduced:-72* — 1 are the
both these asymptotics U774y = €4auv— 2 €abc€beur

't Hooft symbols, £°¢*=1/8y,y,(1*ys)l2UT, 7, U"
Aé 5 with 7= =(=i,7), andU is the matrix of color space rota-
fo(v)~exp ——=—ogv (13  tions.
In the Sl background in the zero mode approximation the
with the parametersi,=~0.45 GeV and 032 10 GeV 2. bilocal quark and gluon condensates acquire the form
This ansatz has been successfully applied in QCD SR for a v .
pion and its radial excitation®2], a{ndl?tﬁe main?eatures of M) =(: Qi (0)Gan (X))

the pion have been described: the mass spectrum of pion . TV 5(x—2) V5~ 2)]
radial excitationsr’ and#” which is in agreement with the = —Z n{f d42f dQ e :
experiment and the shapes of the wave functions ahd =’ - q

which have been confirmed by an independent analysis in (19
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DA"P7(X)=(:G2 4 ., (0)GZ, o (X): will appear in the RHS of Eq(19) if one takes into account
(:Clann (@00 (X)%) the long-wave background field&6].
1 N 4 The averaging over the instanton orientations in the color
= 1_2(g,upgv0_ g,wgvp)él Ne f d“z space is carried out by using the relatigdQUZU ;¢

= 1IN, 8365, whereN, is the number of colors. Using the

. . definitions(3)—(5), (18), and(19) we obtain
xf dOQG 5 2y (X= 2G5 (a(—2). (19

8p? (=
an(X2)= :_ f drr?
+ . . . .. - O
Here,n. is the effective instanton / anti-instanton density.

The collective coordinata of the instanton center and its r t tIx[| ¢ t
color space orientation are integrated over. In the S| approxi- - €0 R arcta R arcta R
mation the term in Eq(5) with the second Lorenz structure X J,mdt [RZ+ 2R+ (t+ |x|)2]3’2 )

does not appear. This fact is due to the specific topological
structure of the instanton solution. Both the Lorenz structures (20
t+ x|
arcta —arctan =

4 |
1—§sm2{§ R R H

(RP+15)[R*+ (t+[x])?] '

t

4 o0 o
DaX(Xz)ED(XZ)"-Dl(Xz):%J' drrzf dt (21
0 —o0

whereR?=p?+r2, r=|Z|, t=z,. In the derivation of these , dQay(X) 1
equations we have used a reference frame where the instan- Ng=— T =2—,
ton sits at the origin and* is parallel to one of the coordi- x=0  Pe

nate axes, sayu=4, serving as a “time” direction(i.e.,
X=0, X4=|X|). Expression(20) corresponds to that derived
in [5,23] and expressiofi21) was derived iff24].2 9= dx2
In the derivation of(20) and (21) the following relations
between the quark and gluon condensates, on the one hand, ) . .
and the effective densitpy.=n*+n~, (n*=n") and the In expreSS|on§23) for )\2., factzor 8 arises from the expansion
effective quark massi? , on the other hand, have been usedof correla;tors in the variable“/4 and also du;a to the defini-
tion of Ay, (10 and (11). The result for\§ in Eq. (23)
agrees with the value for the mixed condensate derivé6]in
— N oo ) if the relation(2) is used.
<-Q(0)Q(0)->__W’ (:g°G%)=327"n;. (22 We see that our result coincides numerically with that
q derived from the QCD SR(10), if the effective size of the
instanton is approximately chosen gs=2 GeV
These relations are valid in the mean field approximation of
the instanton liquid moddl13] and provide the normaliza- x§~0_5 Ge, )\§~1_2 Ge\2. (24)
tion conditions in Eqs(18) and(19). Let us emphasize two
features of expressior{@0) and (21). This value is quite close to the commonly accepted typical
, First, it is |mportar1t that the factors dos.) or sirf(.. ) instanton radii 1.7 GeV* chosen to reproduce the phenom-
in the numerator of integrands reflect the presence oEthe gngogical properties of the instanton vacudsee review
factor in the definition of thezbllocal cc;ndensates. ) [13]). The recent analysis of the instanton liquid parameters
Second, the correlato@(x”) = Qax(x“) andDa(X%) are  op the lattice25] leads to an estimate.~1.7 GeV' . It is
gauge-invariant objects by construction. Therefore, the samM@eresting to note that gluons are distributed more compact
expressions for the correlators can be derived using any othgqan quarks in the QCD vacuum as it follows frd&8). To

gauge. But the axial gauge used seems to be the most afamonstrate this it is instructive to compare the short-

equate in this case. _ _ distance correlation lenghts for qudgk= 1/ ;~0.28 fm and
From Eqgs.(20) and(21) one may derive the average vir- g0 = 1/\ ~0.18 fm distributions in the QCD vacuum
tualities of vacuum quarks and gluons in the Si approxima-(p Nngev»li‘]
. .

tion which characterize the behavior of nonperturbativ
propagators at short distances in the instanton field:

N2="N2. (23

€ We ignore the effects of radiative corrections to the con-
densates connected with a possible change of normalization
point u where the condensates are defined. These effects as
well as the effects due to nonzero modes contributions are
SWe are grateful to A. Radyushkin who communicated us thisnot very important. Thus, the SI approximation works fairly
reference. well in describing virtuality of vacuum quarkgluong and
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nonlocal properties of condensates at short distances. In the 3 1+2y2
next section, we are going to study the shape of nonlocal D"™®4x?)=-— > In|\/1+yz+y|—1>,
condensates in more detail. 4y (1+y9) \yyi+y?

The relation of the quantityxs to the combination of (28)
VEVs of dimension six has been obtained[I8] (see also \ypere the dimensionless parameger x/2p is introduced.
[19]): From Egs.(27) and (28) we easily find for the average

virtualities
)\_Sz (:g%fG3:) B (:g*3%) -
2 (:9°G%)  (:g°G%)’ \2 31 A2 _161
a.reg o p2' greg. g p21

where (:g*fG*)=(:g*f"G3,G> G, 1), J?=J3J%, and
Jizﬁx))\alz ¥.9(X). This formula is analogous to E)  which are about 30% less than the corresponding gauge-
for quarks and relates short distance characteri@® of  invariant “physical” values in Eq(23). The same quantities
nonlocal gluon condensat®(x) to the standard VEVs (without E facton calculated in the singular gauge look like
of higher dimensions. The estimation(:g*fG?:)

~ 12/52(:g?G?:) following from Egs.(23) and(25) (with- \2 91 \2 9% 1
out the second numerically small terrooincides with that asing=p 20 “gsingT 5 2
obtained in1,5] in a different way. The latter relation in Eq.

(23) and the expressions fmg, (1), a”d)‘gzz’ (25), allow us ~ Thus, we see that the gauge dependence is very strong and

(29

to obtain a new parameterless relation the results derived witholuE factors may be far from being
o correct numerically.
(:0°G%) 3(:a(igo,,G,,)a:) Now, let us consider the correlation functiof{s’) in the
(:gZGZ:> ~5 (:qq:) regular gauge. To this end, we make the inverse Laplace
gty transform of the correlator®7) and (28) and obtain
o R o
+m (Sl approximation (26) faeg(y)zzpzerfc(p\/;), (30)
and then to estimate a poorly known value(a§®fG3:): 3 2y 2y 2y
poorly e(af ) f;eg(y):_pz(p_>exp(_p_ JEN @3
3¢ 3 2 2 2 2
(:g°*tG>:)

(:gZGZ:) ~(0.45:0.12 GeV’. where erfc{)=1—erf(t) is the error function an&(t) is the

MacDonald function. Then, it is easy to obtain larges-
To obtain this value, we have used the approximationymptotics of these functions

(:g*3%)~—%g?(:guu:)? [1] and the estimation fom3 [3].

2
The expressions foR,4(x) and D,,(x) may be consid- £e9 1)) =22 " 1+O(E” (32)
ered as generation functions to obtain the condensates of a Vpvar v |
higher dimensions in the Sl approximation. From a technical
point of view this procedure is more convenient than the 3 ) 1
direct calculations of them. In Appendix A we present some fadv)= sze"’ "VpPvm| 1+ 0 ;) : (33
new relations for quark VEVs of dimension seven and gluon
VEVs of dimension eight in the SI approximation. which reflect the behavior of the corresponding correlators in
the region of smallx. The same exponential asymptotics
IV. NONLOCAL CONDENSATES WITHIN THE SINGLE have physical correlation functiorfg,g(v) resulting from
INSTANTON APPROXIMATION the gauge-invariant correlato(20) and (21). Thus, we can

conclude that the model of nonlocal condensates in the SI
approximation can reproduce the main exponential asymp-
totical behavior~ exp(—ov) of the physical correlation func-
fions at large virtualitiegshort distances and the phenom-

The aim of this section is to study the form of the distri-
butions over virtuality of quarks and gluons in the Sl ap-
proximation. To understand the main asymptotical behavio
of correlators at short and long distances it is enough t%nological parameter in Exp. (13) may be identified as
inspect the expressioit3) and(4) dropping the Schwingee ~ ,— ..
factor. We will also consider numerical effects connected Ag to the description of the small virtualitong dis-

with the neglect of this factor. _ tance region, this approximation fails since in that regime
To this goal, let us first _calcglate the correlators usmg thef(y_>0) decays too slowly in contradiction with the physi-

regular gauge and neglecting thdactor. The corresponding cally argued “color screening” exponential asymptotics

expressions are given by Eq20) and(21) with the changes  given in Eq.(12). In other words, the correlators in Eq87)

cos(...)»1 and sin(...}>0 in the integrands and are re- and(28) decrease too slowly at large These conclusions
duced to

, (27 “Note, that an estimate fOrfI calculated by nongauge-invariant

manner{which is close to\] g, in Eq. (29)] is presented ifi26].

2

1
y Ji+y?
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APPENDIX

The instanton model provides a way for con-
structing of the nonlocal vacuum condensates. Wesz (x?) 7 1
have obtained the expressions for the nonlocalﬁ ——
gluon  (:TrG*(x)E(x,y)G**(y)E(y,X):) and quark S0X
(:q(0)E(0x)q(x):) condensates within the single instanton 3
approximation to the instanton liquid model. The average 3Q1 - EQ;—3Q;+QZ
virtualities of quarkské and gluongxé in the QCD vacuum = LYCT
are derived. The results akt%: 2/p§ for vacuum quarks, and '24(qq)

Na=%(1/p?) for vacuum gluons. The value of estimated (A1)
in the QCD SR analysif3] is reproduced ap.~2 GeV .
This number is close to the estimate from the phenomenol- d?Da(x?) 5 1
ogy of the QCD vacuum in the instanton liquid model 21d2x2 21,2
[13,25. Tge gnodel provides parameterless predictions for
the ratioA5/N5=12/5 and the relatio§26) for the vacuum 7 8 8 8 8
averages of dimension six. 2 C1-212365 4+ 30Gs+8G5—3G;
The calculations have been performed in a gauge-
invariant manner by using the expressions for the instanton
field and quark zero mode in the axial ga(ig8]. It is shown (Sl approximation), (A2)
that the usage of the singular gau@j@ neglecting the
Schwinger gauge factoE(0x)] in the calculations of where the quark condensate basis was chosen in the form
nongauge-invariant quantities leads to a strong numerical de-
viation from correct values. [(ypere —iaG G
The behavior of the correlation functions demonstrates Q1=(9C,, Gy Q=1{aCGysa).
that in the single instanton approximation the model of non- 7 — 7 —
local condensates can well reproduce the asymptotic behav- Q3=(AG G0 ), Qa=i(AD,J,07,0),
ior of the functiong13) at large virtualitiegshort distances
This conclusion agrees with the analysis of the meson corand the gluon condensate basis was chosen as
relators presented ifiL3]. There, the coordinate dependen-
cies of the correlators calculated in the S| approximation and G4=(TrGMGM),
in more refined instanton liquid models are close each to
other up to distances-0.5 fm. The results for nonlocal
quark(20) and gluon(21) condensates are also supported by
the independent test of their local characteristifand\2. 8 o
The latter may be obtained from standard VEVs calculated G3=(TrG .G u,G,sGpu),  Ga=(TrG,.Gu,GsCp.),
within the instanton model if1], [5], and[6].
~ Nevertheless, the approximation used fails in the descrip- Gg:i<Tr\]ﬂG’uV\]V>, G§=i<TFJx[DxGw,GW]>,
tion of the small virtuality(long distancg regime. The rea-
son is the neglect of long-wave vacuum fluctuations in the
single instanton approximation. In the forthcoming paper
[16] we will prove that inclusion of the effects of these fluc-
tuations cures this disease. and the notatiots?_; =G}~ G is used.

(SI approximatiom,

7
1p?

416G*

GI=(TrG,,G,,GapCup). G3=(T1G,,GupG,,Cup).

G3=(TrJ,D2],),
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