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Monte Carlo results for the low-lying glueball spectrum using an improved, anisotropic action are presented.
Ten simulations at lattice spacings ranging from 0.2 to 0.4 fm and two different anisotropies have been
performed in order to demonstrate the advantages of using coarse, anisotropic lattices to calculate glueball
masses. Our determinations of the tensor (211) and pseudovector (112) glueball masses are more accurate
than previous Wilson action calculations.@S0556-2821~97!00419-0#

PACS number~s!: 12.38.Gc, 11.15.Ha, 12.39.Mk

I. INTRODUCTION

Numerical simulations of gluons on a space-time lattice
provide at present the most reliable means of studying glue-
balls. Glueball correlation functions are, however, notori-
ously difficult quantities to measure in Monte Carlo simula-
tions: since the masses of these states are rather high and
their creation operators have large vacuum fluctuations, the
signal-to-noise ratio falls extremely rapidly as the separation
between the source and sink is increased. Because of this,
reliable studies of glueballs on fine lattices have required
prohibitively large computer resources. Thus, the develop-
ment of more efficient simulation techniques in lattice QCD
is crucial to establishing a detailed description of glueballs
and their interactions.

The objective of this work is to examine the effectiveness
of using an improved, anisotropic lattice action to reduce the
computational effort needed to determine the glueball spec-
trum in quenched QCD. Improved actions allow access to
continuum physics on coarser lattices than possible using the
simple Wilson discretization. Coarse lattice simulations are
more efficient for several reasons: for a given physical vol-
ume, much fewer lattice sites are needed; the alleviation of
critical slowing down permits the faster generation of statis-
tically independent gauge-field configurations; glueball op-
erator smearing is faster due to the decreased number of links
and a decrease in the number of smearing iterations required;
glueball wave functions extend over much fewer lattice sites
on a coarse lattice, making the variational technique far more
effective when using a feasible number~a dozen or so! of
basis operators.

However, for glueball mass calculations, the coarseness
of the temporal lattice spacing is a severe drawback. As the
masses in lattice units of the states of interest are so large,
the number of correlator time intervals which can be mea-
sured is reduced greatly@1#. A straightforward solution to
this problem which preserves the computational advantages
of coarse lattices@2–4# is to make use of anisotropic lattices
in which the temporal spacing is much smaller than that in
the spatial directions. This enables us to exploit the enhanced
signal-to-noise ratio of the correlation functions at smaller
temporal separations. A natural scale for the temporal lattice

spacing should be the inverse of the energy of the states of
interest; thus, for glueballs, a temporal cutoff larger than
1.5 GeV allows resolution from accessible statistics of the
correlator over a few time slices. Meanwhile, the scale for
the spatial lattice should be set by the size of the wave func-
tion of the state; a spatial grid separation in the range 0.2–0.4
fm would seem reasonable.

Since we propose to use lattices in which the temporal
lattice spacing is small, improvement of the discretization in
this direction is not needed. Thus, a lattice action which
couples only nearest-neighbor time slices can be used. The
transfer matrix corresponding to such an action is Hermitian
and positive definite; all of our effective masses must con-
verge to their plateau values monotonically from above. This
ensures the validity of variational techniques which mini-
mize the effective masses at small temporal separations.
Such techniques are very effective in diminishing the
excited-state contributions to the glueball correlation func-
tions and are crucial for efficient extraction of ground-state
masses.

In this paper, we demonstrate the increased efficiency of
glueball simulations using these actions on anisotropic lat-
tices. We present results for the masses of three of the lighter
SU~3! glueball states, the scalar (011), the tensor (211),
and the pseudovector (112). The masses of the first-excited
states in the scalar and tensor channels were also examined.
Ten simulations at lattice spacings ranging from 0.2 to 0.4
fm were performed, enabling reliable extrapolations to the
continuum limit ~although the mass of the scalar glueball
was somewhat problematic!. The results are compared to
previous simulation data obtained using the Wilson action
and we find that more accurate determinations of the tensor
and pseudovector glueball masses have been achieved. A
comparison of efficiencies is also made. Lastly, finite-
volume effects are shown to be small.

The new action used in our simulations is described in
Sec. II. The details of the glueball simulations, including the
construction of the glueball operators, the generation of the
gauge-field configurations, and the analysis of the Monte
Carlo data, are given in Sec. III. The hadronic scaler 0 is
used to relate our results at different values of the couplingb
and the aspect ratioj. The determination of this scale in
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terms of the lattice spacing using the static potential is out-
lined in Sec. IV. Section V contains our results and discus-
sion: the glueball mass measurements are presented in detail;
finite-volume effects are studied; extrapolations of the
masses at finite spacing to the continuum limit are under-
taken; the conversion of our results into physical units is
described; and a comparison of efficiencies with Wilson ac-
tion simulations is made. Our conclusions are given in Sec.
VI, along with an outline of future work.

II. AN IMPROVED, ANISOTROPIC DISCRETIZATION
OF QCD

Our glueball mass determinations rely on numerical simu-
lations of glueballs on a Euclidean space-time lattice with
spatial and temporal spacingsas and at , respectively. The
improved gluonic action used in this study is given by@2,4#
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whereb56/g2, g is the QCD coupling,us and ut are the
mean-link renormalization parameters,j is the aspect ratio
~j5as /at at the tree level in perturbation theory!, and
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ordered product of link variables along a closed contourC
on the lattice.Vsp includes the sum over all spatial plaquettes
on the lattice,V tp indicates the temporal plaquettes,Vsr de-
notes the product of link variables about planar 231 spatial
rectangular loops, andVstr refers to the short temporal rect-
angles~one temporal link, two spatial!. Explicitly,
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wherex labels the sites of the lattice,i , j are spatial indices,
andUm(x) is the parallel transport matrix in the gluon field
from sitex to x1m̂.

This action, intended for use withat!as , has
O(as

4 ,at
2 ,asas

2) discretization errors. TheO(at
2) errors can

be removed by the addition of counterterms which couple
next-nearest-neighbor time slices, but this introduces spuri-
ous high-energy modes which can cause considerable prob-
lems for our glueball simulations. These unphysical states
appear in perturbation theory as additional poles in the gluon
propagator. Their detrimental effects on the glueball correla-

tion functions have been previously demonstrated@1#. Al-
though these spurious states do not affect the asymptotic
behavior of the glueball correlators, they do appreciably
change the correlators at short temporal separations and can
seriously hinder attempts to reduce excited-state contamina-
tion to hasten the onset of asymptotic behavior. Since our
glueball mass measurements rely heavily on the reduction of
such excited-state contributions to the glueball correlation
functions, the use of an action which is free of spurious
lattice modes is crucial. The action given in Eq.~1! couples
only link variables on neighboring time slices, which ensures
that all of our effective masses converge to their plateau
values monotonically from above and so validates the varia-
tional techniques employed.

It is now known that perturbation theory by itself does not
reliably determine the couplings in an improved action in
lattice gauge theory. Hence, the interaction strengths inSII
have been determined using a judicious combination of per-
turbation theory and mean-field theory. Mean-field theory is
introduced by separately renormalizing the spatial and tem-
poral link variables: U j (x)→U j (x)/us and Ut(x)→
Ut(x)/ut , whereus and ut denote the renormalization fac-
tors for the spatial and temporal links, respectively. The
mean-link parametersut and us are best determined by
guessing input values for use in the action, measuring the
mean links in the Landau gauge in a simulation, then read-
justing the input values accordingly and tuning until the in-
put values match the measured values. The determination of
these renormalization factors is described in more detail in
Refs. @2,4#. However, whenat is significantly smaller than
as , we expect the mean temporal linkut to be very close to

unity since 12^ 1
3 TrUt&}(at /as)

2 in perturbation theory.
Hence, to simplify matters, we setut51. We introduce fur-
ther simplifications by using a convenient and gauge-
invariant definition for us in terms of the mean spatial

plaquette given byus5^ 1
3 Re TrPss8&

1/4, wherePss8 denotes
the spatial plaquette. This eliminates the need for gauge fix-
ing, yields values forus which differ from those found using
the Landau gauge definition by only a few percent, and sig-
nificantly speeds up the tuning process.

At finite couplingg, the anisotropyas /at is renormalized
away from its input valuej. Measurements of this renormal-
ization have been made using the static potential extracted
from correlations along the different spatial and temporal
axes of the lattice@2,4#. Without mean-link improvement,
this renormalization can be as large as 30%. When the action
includes mean-link corrections, this renormalization is found
to be small, typically a few percent. We usedat /as5j in all
of our calculations, accepting the small radiative corrections
to the anisotropy as finite lattice spacing errors, which vanish
in the continuum limit.

III. GLUEBALL SIMULATION DETAILS

Glueballs may be labeled by their total~integral! spin J
and their symmetries under spatial inversion and charge con-
jugation. However, on a cubic lattice, glueballs are charac-
terized by their transformation properties under the cubic
point group, combined with parity and charge conjugation
operations. The cubic groupOh has 24 elements that fall into
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five conjugacy classes, and thus, the dimensions of the irre-
ducible representations~irreps! are 1, 1, 2, 3, and 3. These
irreps are labeledA1 , A2 , E, T1 , andT2 , respectively. In-
cluding parity and charge conjugation symmetry operations,
there are 20 irreps~labeled byJPC, whereJ now denotes an
irrep of Oh!. In this study, four of the irreps which generate
light (,3 GeV) glueball states were simulated: theA1

11 ,
E11, T2

11 , andT1
12 channels. Of particular interest are the

E11 andT2
11 irreps whose combined five rows correspond

to the five polarization states of the tensor (211) glueball
which become degenerate as continuum rotational invariance
is restored. This then gives information on the magnitude of
lattice artifacts at finite cutoff.

The mass of a glueballG having a givenJPC can be
extracted from the large-t behavior of a correlation function
C(t)5^0uF̄(R)†(t)F̄(R)(0)u0&, where R denotes the lattice
irrep corresponding to the JPC of interest and
F̄(R)(t)5F (R)(t)2^0uF (R)(t)u0& is a gauge-invariant, trans-
lationally invariant, vacuum-subtracted operator capable of
creating a glueball out of the QCD vacuumu0&. As the tem-
poral separationt becomes large, this correlator tends to a
single decaying exponential limt→`C(t)5Z exp(2mGt),
wheremG is the mass of the lowest-lying glueball which can
be created by the operatorF̄(R)(t). In order to extractmG ,
the correlatorC(t) must be determined fort sufficiently
large thatC(t) is well approximated by its asymptotic form.
However, the signal-to-noise ratio in any Monte Carlo deter-
mination of C(t) falls exponentially fast with respect tot.
Thus, it is crucial to use a glueball operator for whichC(t)
attains its asymptotic form as quickly as possible. IfuG&
denotes the glueball state of interest, this means that we must
choose an operator for which the overlap
^GuF̄(R)(t)u0&/@^GuG&^0uF̄(R)†(t)F̄(R)(t)u0&#1/2 is as near
to unity as possible. For such an operator, the signal-to-noise
ratio is also optimal@5#.

In order to construct such operators, we exploited the
smearing@6,7# and variational techniques which have been
used with success in earlier Wilson action simulations. In
each of theJPC channels of interest, glueball operators were
constructed on each time slice in a sequence of three steps.
First, smeared linksU j

s(x) and fuzzy superlinksU j
f(x) were

formed. Second, a set of basic operatorsfa
(R)(t) were con-

structed using linear combinations of gauge-invariant, path-
ordered products of theU j

s(x) and U j
f(x) matrices about

various closed spatial loops; each such linear combination
was designed to be invariant under spatial translations and to
transform irreducibly under the symmetry operations of the
cubic point group according to the irrep of interest. Last, the
glueball operatorsF (R)(t) were formed from linear combi-
nations of the basic operators,F (R)(t)5(ava

(R)fa
(R)(t),

where the coefficientsva
(R) were determined using the varia-

tional method. Each of these three steps is described below.
Operators constructed out of smeared links and fuzzy su-

perlinks have dramatically reduced mixings with the high
frequency modes of the theory. Thus, the use of spatially
smoothed links is an important part of reducing excited-state
contamination in the glueball correlation functions. Two
smoothening procedures were used: a single-link procedure
and a double-link procedure. In the single-link procedure,

every spatial linkU j (x) on the lattice is replaced by itself
plus a sum of its four neighboring~spatial! staples, projected
back into SU~3!:

U j
s~x!5PSU~3!H U j~x!1ls (

6~kÞ j !

3Uk~x!U j~x1 k̂!Uk
†~x1 ̂ !J , ~6!

wherePSU(3) denotes the projection@8# into SU~3!. Here, we
denote this mapping of the spatial link matrices into the
smeared link variables bysls

. In the double-link procedure,

new superlinksU f of length 2as are built using neighboring
staples which connect sites separated by a distance twice the
length of the source link variables:

U j
f~x!5PSU~3!H U j~x!U j~x1 ̂ !1l f (

6~kÞ j !
Uk~x!

3U j~x1 k̂!U j~x1 ̂1 k̂!Uk
†~x12̂ !J , ~7!

and we denote this mapping byf l f
. Both procedures can be

applied recursively; smeared links can be smeared again and
fuzzy links of increasing length 2as ,4as ,8as , . . . can be
constructed. Asmoothening schemeS is defined as a com-
position of single-link mappings and double-link mappings.
Six different smoothening schemes were used. The simplest
scheme used was the composition of two single-link smear-
ings: S15sls

+sls
. To simplify notation, we write this as

S15sls

2 . We also used the compositions of four and six

single-link mappings:S25sls

4 andS35sls

6 . In the other three

smoothening schemes, the application of several single-link
smearings, followed by one final iteration of double-link
fuzzing was used:S45 f l f

+sls

2 , S55 f l f
+sls

4 , and S6

5 f l f
+sls

6 . Only one iteration of the fuzzing procedure which

results in links connecting sites separated by 2as was found
to be useful for the range of coarseas values explored here.
For the finer lattices~b52.4, j55, andb52.6, j53!, an
extra four initial iterations of single-link smearing were used
in all six smoothening schemes to enhance ground-state
overlap. To simplify matters, the same values for the two
parametersls andl f were used in all smearing and fuzzing
iterations. These values were chosen to minimize excited-
state contamination in the glueball correlation functions. A
crude optimization was done in a set of low statistics runs
and the optimal valuesls50.1 andl f50.5 were then used
in all the glueball simulations.

The second step in the construction of our glueball opera-
tors was the formation of a set of basic operatorsfa

(R)(t)
using linear combinations of gauge-invariant, path-ordered
products of theU j

s(x) and U j
f(x) matrices about various

closed spatial loops. Combinations which were Hermitian,
invariant under spatial translations, and transformed irreduc-
ibly under the operations of the cubic point group according
to the irrep of interest were constructed. For a more detailed
exposition of this construction, see Ref.@9#. In each channel,
a large set of prototypes was programmed, and a short simu-
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lation was then performed to determine the coefficients of
each operator in the variational ground state. In each chan-
nel, the four operators with the highest of these contributions
were then chosen for use in the production runs. The paths in
this optimal set are illustrated in Fig. 1. In the glueball simu-
lations, these Wilson loops were measured on the link vari-
ables from the six smoothening schemes, yielding a total of
N524 basic operatorsfa

(R)(t) in each of the four channels.
Finally, F (R)(t) was formed from a linear combination of

the basic operators,F (R)(t)5(a51
N va

(R)fa
(R)(t). The coeffi-

cients va
(R) were determined using the variational method.

First, the 24324 correlation matrix was computed in the
glueball simulations:

C̃ab~ t !5(
t

^0uf̄a
~R!~t1t !f̄b

~R!~t !u0&, ~8!

where f̄a
(R)(t) denotes a vacuum-subtracted operator

f̄a
(R)(t)5fa

(R)(t)2^0ufa
(R)(t)u0&. Note that̂ 0ufa

(R)(t)u0& is
independent oft. The coefficientsva

(R) were then determined
by minimizing the effective mass

m̃~ tD!52 lnF(ab
va

~R!vb
~R!C̃ab~ tD!

(
ab

va
~R!vb

~R!C̃ab~0!
G , ~9!

where the time separation for optimization was fixed in all
cases totD51. Let v(R) denote a column vector whose ele-
ments are the optimal values of the coefficientsva

(R) . Then
requiring dm̃(tD)/dva

(R)50 for all a yields an eigenvalue
equation:

C̃~ tD!v~R!5e2m̃~ tD!C̃~0!v~R!. ~10!

The eigenvectorv0
(R) corresponding to the largest eigenvalue

e2m̃0(tD) then yields the coefficientsv0a
(R) for the operator

F0
(R)(t) which best overlaps the lowest-lying glueballG in

the channel of interest. Operators which overlap excited
glueball states can also be constructed using the other eigen-
vectors of Eq.~10!. In particular, the operatorF1

(R)(t) ex-
pected to best overlap the first-excited glueball stateG* was
obtained from the eigenvector corresponding to the second
largest eigenvalue of Eq.~10!.

The elements of the correlator matrix given in Eq.~8!
were estimated using the Monte Carlo method. Ten separate
glueball simulations were performed on DEC Alpha work-
stations. Configuration ensembles were generated using both
Cabibbo-Marinari~CM! pseudo-heat-bath and SU~2! sub-
group over-relaxation~OR! methods. Link variables were
updated in serial order on the lattice. We define acompound
sweepas one CM updating sweep followed by three OR
sweeps. In the glueball simulations, three compound sweeps
were performed between measurements, and the measure-
ments were averaged into bins of 100 in order to reduce data
storage requirements~except for theb52.6, j53 run in
which 40 configurations were included in each bin!. In all ten
simulations, 100 bins were obtained. Our ensembles were
tested for residual autocorrelations during the analysis phase
by overbinning by factors of 2 and 4; in all cases, the statis-
tical error estimates remained unchanged.

Values for the mean-link parameterus were determined
self-consistently as previously described. This tuning proce-
dure required a minimal amount of computational effort and
provided thermalized configurations for later computations.
The improved action simulation parameters used are given in
Table I.

For the data-fitting phase, the large 24324 correlator ma-
trices in each channel were reduced using the coefficients
v0

(R) andv1
(R) to smaller 232 matricesCAB(t) for A,B50,1:

CAB~ t !5(
t

^0uF̄A
~R!~t1t !F̄B

~R!~t !u0&. ~11!

The ground-state correlatorC00(t) was fit for t5tmin , . . . ,tmax
using a single exponential

C00~ t !5Z00$e
2mGt1e2mG~T2t !%, ~12!

FIG. 1. The four Wilson loop shapes in each channel used to
form the lattice glueball operators. The complete set of 24 operators
was formed by computing linear combinations of each of these
loops rotated and translated across the lattice on six different sets of
smoothed links. Where a loop shape occurs twice, it is used in two
different projections into the appropriate irreducible representation.

TABLE I. Input parameters used in the glueball simulations.

b j Lattice us
4

1.7 3 63318 0.3075
1.9 3 63318 0.340
2.0 3 83324 0.356
2.2 3 83324 0.3885
2.4 3 83324 0.421
2.6 3 103330 0.4505

1.7 5 63330 0.295
1.9 5 63330 0.328
2.2 5 83340 0.378
2.4 5 83340 0.409
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whereT was the temporal extent of the periodic lattice, to
obtain an estimate of the massmG ~in terms ofat

21! of the
lowest-lying glueball in each channel. To determine the mass
mG* of the first-excited glueball and another estimate of
mG , the 232 correlator was also fit fort5tmin , . . . ,tmax us-
ing the form

CAB~ t !5 (
p5G,G*

ZApZBp$e
2mpt1e2mp~T2t !%. ~13!

Various fit regionstmin to tmax were used in order to check
for consistency in the extracted values for the masses. Best-
fit values were obtained using the correlatedx2 method. Er-
ror estimates were calculated using a 1024-point bootstrap
procedure; in all cases, error estimates were very close to
being symmetric about the central best-fit values and were
thus averaged to simplify presentation.

IV. SETTING THE SCALE USING THE STATIC
POTENTIAL

In order to convert the glueball masses as measured in our
simulations into physical units, we must set the scale by
determining the lattice spacingat for eachb andj we con-
sider. To do this, we must first choose one physical quantity
to use as a reference. This reference quantity must then be
measured on the lattice in terms ofat . The experimentally
known value for the reference quantity is then used to extract
the lattice spacing. A quantity which can be easily and accu-
rately determined both experimentally and in numerical
simulations is an ideal choice for such a reference. The mass
of a low-lying particle is typically used for setting the scale.
In our case, however, there are no unambiguous experimen-
tal determinations of the glueball masses, so instead, we
must look for another purely gluonic quantity.

The hadronic scale parameterr 0 defined in terms of the
force between static quarks by@r 2dV(rW)/dr# r 5r 0

51.65,

whereV(rW) is the static-quark potential, is an attractive pos-
sibility. It can be measured very accurately on the lattice.
The advantages in usingr 0 to set the scale have been enu-
merated in Ref.@10#. From phenomenological potential mod-
els, one findsr 0'0.5 fm. A disadvantage in usingr 0 is that
its physical value must be deduced indirectly from experi-
ment, and there is some ambiguity in doing this, as will be

discussed below. However, in the absence of a better gluonic
reference, we have chosenr 0 to set the scale. In this section,
we outline the determination ofr 0 in terms ofas .

In order to determiner 0 in terms of the lattice spacing, we
need accurate measurements of the static-quark potential. We
extractedV(rW) for various spatial separationsrW, both on and
off the axes of the lattice, from the expectation values of
Wilson loopsW(rW,t) in the standard manner:

W~rW,t !5Z~rW !exp@2tV~rW !#1excited-state contributions.
~14!

In the Monte Carlo evaluation of the Wilson loops, measure-
ments were taken after every four compound sweeps~as de-
fined in Sec. III!. The measurements of the Wilson loops
were done independently of the glueball mass studies using
separate ensembles of configurations. To minimize contami-
nation from excited states, the Wilson loops were con-
structed from iteratively smeared spatial links. The single-
link smearing method described previously was used. A
given smearing scheme is specified not only by the param-
eterls , but also by the total number of smearing iterations,
denoted bynl. Two different choices of the smearing param-
eter were used in all cases: one smearing was chosen to work
well for small r 5urWu, the other to work well for larger .
Separate measurements for each smearing were taken; cross
correlations were not determined. The statistical noise in the
evaluation ofW(rW,t) was reduced dramatically, especially
for large temporal separations, by constructing the Wilson
loops, whenever possible, from thermally averaged temporal
links @11#. The thermal averaging was accomplished using
the Cabibbo-Marinari pseudo-heat-bath method~40 updates!.
Other relevant run parameters are given in Table II.

The values of the potentialV(rW) were extracted from the
Wilson loop measurements by fittingW(rW,t) to the exponen-
tial form Z(rW)exp@2tV(rW)# in the ranget5tmin , . . . ,tmax, for
each rW. The plateau region fromtmin to tmax was chosen
separately for eachrW in order to minimize the uncertainty in
the extracted values forV(rW) while maintaining a good qual-
ity Q of fit. Best-fit values were determined using the stan-
dard x2 test, taking into account temporal correlations
among theW(rW,t). The covariance matrix inx2 was deter-
mined using the jackknife procedure, and estimates for the
uncertainties in the extracted values forV(rW) were computed

TABLE II. Various run parameters for the static-quark potential measurements, including lattice sizes,
total numbers of configurations used, and parameters for the two different smearing schemes.

b j Lattice No. configs. ~l1 , nl1! ~l2 , nl2!

1.7 3 63318 2275 ~0.05,4! ~0.10,4!
1.9 3 63318 1280 ~0.07,4! ~0.14,4!
2.0 3 83324 848 ~0.07,4! ~0.15,4!
2.2 3 83324 1024 ~0.10,6! ~0.16,6!
2.4 3 83324 1024 ~0.12,6! ~0.25,6!
2.6 3 103330 1100 ~0.25,6! ~0.50,6!

1.7 5 83340 810 ~0.10,6! ~0.25,6!
1.9 5 63330 1024 ~0.08,4! ~0.16,4!
2.2 5 123348 315 ~0.20,4! ~0.30,4!
2.4 5 83340 548 ~0.20,6! ~0.40,6!
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using the bootstrap method. Binning of the data was done as
a crude check that our measurements were statistically inde-
pendent. The results of a typical fit are shown in Fig. 2,
which is an effective mass plot forV(rW) for rW/as5(2,2,2).
The effective mass forV(rW) is a function of t, defined as
ln@W(rW,t)/W(rW,t1at)#, which tends to the true mass ast be-
comes large.

Once a suitable plateau region in the effective mass was
established for eachV(rW), the hadronic scaler 0 /as could be
determined. We found that the on-axis potentialV(rW) for the
range of rW values studied here using coarse lattices fits a
Coulomb plus linear formV(rW)5ec /r 1sr 1V0 very well
~with qualities of fit ranging fromQ50.25 toQ50.99!. We,
therefore, used this form to interpolateV(rW) and the force
between static quarks. Simultaneous fits of the Wil-
son loops for the on-axis potential to the form
Z(r )exp@2t(ec /r1sr1V0)# were done, taking into account
all correlations among theW(r ,t) for both differentt andr .
Different regions int were used for differentr values; the
plateau regions determined previously were used. Only the
on-axis potentials were used; this prevented the covariance

matrix in thex2 to be minimized from getting too large. This
covariance matrix was evaluated using the jackknife method;
uncertainties in the fit parametersec , s, V0 , andZ(r ) were
obtained using the bootstrap method. Once we had an en-
semble of bootstrap estimates for these fit parameters, the
ratio r 0 /as and its bootstrap uncertainty were then deter-
mined using

r 0 /as5A~1.651ec!/sas
2. ~15!

Note that to computer 0 /as , we need the ratioas /at since
our fits yielded estimates ofatV(rW) only. We used the input
valuej since we know that its renormalization is small. Re-
sults for r 0 /as are given in Table III.

Using the results in Table III, we can now express all
energies measured in simulations in terms ofr 0 . For ex-
ample, in Fig. 3, we show the potential, including off-axis
interquark separations, expressed in terms ofr 0 . Lattice
spacing errors are seen to be small.

FIG. 2. Effective mass plot showing the results of a single-
exponential fit to the Wilson loop forV(rW) with rW/as5(2,2,2),
b52.4, andj53. Thetmin2tmax region of the fit is also indicated.

TABLE III. Results for the hadronic scaler 0 in terms of the lattice spacingas . The Coulombic coupling
ec and the string tensions obtained from a fit of the on-axis potential to a Coulomb plus linear form
V(rW)5ec /r 1sr 1V0 are also given.

b j r 0 /as as /r 0 ec r 0
2s

1.7 3 1.161~2! 0.861~2! 20.07(1) 1.58~1!

1.9 3 1.293~3! 0.773~2! 20.13(2) 1.52~2!

2.0 3 1.375~1! 0.7271~8! 20.188(7) 1.462~7!

2.2 3 1.615~2! 0.6192~8! 20.288(8) 1.362~8!

2.4 3 1.978~6! 0.505~1! 20.321(6) 1.329~6!

2.6 3 2.487~5! 0.4021~9! 20.310(2) 1.340~2!

1.7 5 1.224~1! 0.8169~9! 20.177(9) 1.473~9!

1.9 5 1.375~2! 0.727~1! 20.20(1) 1.45~1!

2.2 5 1.761~2! 0.5680~5! 20.294(4) 1.356~4!

2.4 5 2.180~6! 0.459~1! 20.308(4) 1.342~4!

FIG. 3. The static-quark potentialV(rW) expressed in terms of the
hadronic scaler 0 . This plot includes measurements from the
b52.2, 2.4, and 2.6 simulations forj53, and theb52.2 and 2.4
simulations forj55. Lattice spacing errors are seen to be small.

4048 56COLIN J. MORNINGSTAR AND MIKE PEARDON



V. RESULTS AND DISCUSSION

A. Glueball mass measurements

To allow clear resolution of the scaling properties of the
low-lying glueball masses in the improved action, two sets of
simulations were performed at two different anisotropies: six
lattice spacings for an aspect ratioj53 and four spacings for
j55 were studied. The input parameters used in these simu-
lations are given in Table I.

The results of fitting the variationally optimized correla-
tors C(t) to the functions given in Eqs.~12! and ~13! are
summarized in Tables IV–XIII. Effective mass plots for the
two smallest-as simulations are presented in Figs. 4–7 and
Figs. 8–11 forj53 andj55, respectively. For each channel
in each of the ten simulations, it was possible to find a fit
region tmin–tmax in which the correlation function was well
described by its asymptotic form as indicated by the quality
of fit. In other words, convincing plateaus were observed in
all effective masses. The most impressive plateau, observed

in the A1
11 channel forb52.4 andj55, spanned ten time

slices. In most cases, the onset of the plateau occurred when
the source and sink operators were separated by only one
time step. The overlaps with the lowest-lying states were
also found to be extremely good, better than 90% in most
cases and often consistent with unity. This clearly demon-
strates the effectiveness of the link-smearing and variational
techniques in diminishing excited-state contamination. Fits
using tmin52 or 0 were also done to check for agreement
with the tmin51 results. At time separations for which the
ground state could be reliably observed, the off-diagonal el-
ements of the reduced correlation matricesCAB(t) were
found to be consistent with zero within statistical uncer-
tainty. This suggests that the link-smearing, variational
method also gives an excellent construction of the first-
excited state in each channel.

Our best estimates for the glueball masses in terms ofat
21

are indicated in boldface in each of the Tables IV–XIII.

TABLE V. Results from fits to theb51.9, j53 glueball correlators~see Table IV!.

Channel Nexp Fit range x2/NDF Q Energies Overlaps

A1
11 1 0–4 1.05 0.37 0.878~6! 1.000~5!

1 1–4 1.46 0.23 0.87„1… 0.99~1!

2 1–3 0.74 0.53 0.88~1! 1.00~1!

1.8~1! 1.0~1!

E11 1 0–4 0.11 0.95 1.493~9! 1.000~3!

1 1–4 0.04 0.96 1.47„4… 0.98~3!

2 1–3 0.06 0.98 1.47~4! 0.95~5!

1.9~1! 0.91~9!

T2
11 1 0–3 1.74 0.18 1.681~8! 1.000~2!

1 1–3 0.22 0.64 1.60„4… 0.92~4!

2 1–3 0.23 0.88 1.58~4! 0.88~4!

2.6~2! 1.3~3!

T1
12 1 1–3 0.24 0.63 1.80„6… 0.90~5!

TABLE IV. Results from fits to theb51.7, j53 glueball correlators.Nexp is the number of exponentials
used in each fit, and the fit range refers to the temporal separationstmin2tmax used in each fit.Q is the
standard quality of fit. Energies are given inat

21 . Final mass estimates are highlighted in boldface.

Channel Nexp Fit range x2/NDF Q Energies Overlaps

A1
11 1 0–5 0.71 0.58 1.061~7! 1.000~4!

1 1–5 0.83 0.48 1.05„2… 0.99~2!

1 2–5 1.20 0.30 1.04~5! 0.96~9!

E11 1 0–3 0.02 0.98 1.653~8! 1.000~3!

1 1–4 0.12 0.88 1.65„5… 1.00~5!

2 1–3 1.37 0.25 1.65~5! 0.98~5!

2.5~2! 1.1~2!

T2
11 1 0–3 0.60 0.55 1.99~1! 1.000~2!

1 1–3 0.06 0.81 1.92„6… 0.94~6!

2 1–3 0.65 0.58 1.90~6! 0.88~8!

2.5~3! 0.8~3!

T1
12 1 1–3 0.62 0.43 2.09„9… 0.95~8!
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These estimates are summarized in Table XIV. Masses for
the first-excited states are also indicated in theNexp52 fits
listed in the Tables IV–XIII.

B. Finite volume effects

In this work, we were concerned with the magnitude of
discretization errors in the glueball mass determinations from
coarse lattice simulations using an improved action. In order
to evaluate these errors, we had to eliminate uncertainties
from all other sources. The increased efficiency of simula-
tions on coarse, anisotropic lattices allowed us to reduce sta-
tistical errors to the acceptable level of about 1%. The only
remaining source of uncertainty we had to address was the
finite volume. The masses of particles confined in a small
box with periodic boundary conditions can differ appreciably
from their infinite-volume values; finite-volume effects can
also induce a splitting in the masses of theE andT2 tensor
polarizations. Finite-volume effects on the scalar glueball

mass have been analyzed before@12#, but the effects on the
tensor and the pseudovector are less well known.

In order to ascertain the effects on our glueball masses of
simulating in a finite volume, four extra simulations were
performed forb52.4, j53 using lattices of spatial extent
Ls /as56,5,4, and 3. The temporal extent was held fixed at
24 grid points. For each of these volumes, the mean-field
renormalization parameterus was recalculated. The 33 lat-
tice was the only simulation that required any change in this
parameter, and in this case, the effect was small;us increased
by only 0.3%. The results from theLs /as58,6,5, and 4 runs
for the glueball masses in terms ofat

21 are given in Table
XV. Note that the results from the 63 lattice differ very little
from those from the 83 lattice, suggesting that our lattice
volumes are sufficiently large to ensure that finite-volume
errors are negligible. For the 33 lattice, no plateaus in the
effective masses for theA1

11 , E11, andT2
11 channels were

observed; the mass in theT1
12 channel was found to be

TABLE VI. Results from fits to theb52.0, j53 glueball correlators~see Table IV!.

Channel Nexp Fit range x2/NDF Q Energies Overlaps

A1
11 1 0–6 0.94 0.45 0.794~4! 1.000~4!

1 1–6 1.15 0.33 0.797„9… 1.002~9!

2 1–3 2.33 0.07 0.794~8! 1.001~8!

1.61~5! 0.95~5!

E11 1 0–4 0.67 0.57 1.423~6! 1.000~2!

1 1–4 0.42 0.65 1.40„2… 0.97~2!

2 1–3 1.30 0.27 1.39~2! 0.96~2!

1.81~6! 0.94~5!

T2
11 1 0–4 2.54 0.05 1.559~5! 1.000~2!

1 1–4 0.67 0.51 1.49„2… 0.94~2!

2 1–3 0.53 0.66 1.49~2! 0.94~2!

2.11~7! 1.01~7!

T1
12 1 1–4 0.02 0.98 1.68„3… 0.92~3!

TABLE VII. Results from fits to theb52.2, j53 glueball correlators~see Table IV!.

Channel Nexp Fit range x2/NDF Q Energies Overlaps

A1
11 1 0–7 1.12 0.35 0.659~4! 0.998~6!

1 1–7 0.76 0.58 0.649„8… 0.988~8!

2 1–4 1.02 0.41 0.647~8! 0.984~8!

1.25~3! 0.93~2!

E11 1 1–4 0.10 0.90 1.19„2… 0.95~2!

1 2–4 0.10 0.75 1.17~6! 0.9~1!

2 1–3 0.32 0.81 1.19~2! 0.95~2!

1.62~4! 0.99~4!

T2
11 1 0–4 2.32 0.07 1.280~6! 1.001~2!

1 1–4 0.92 0.40 1.24„2… 0.96~2!

1 2–4 0.02 0.88 1.16~6! 0.8~1!

2 1–3 1.30 0.27 1.24~2! 0.96~2!

1.65~5! 0.87~4!

T1
12 1 1–4 1.13 0.32 1.48„3… 0.98~3!

4050 56COLIN J. MORNINGSTAR AND MIKE PEARDON



1.44~1!. The operators used in these runs were the same as
those constructed for the large-volume runs and thus, were
not optimized to give large overlaps with the light torelon
states~flux excitations encircling the toroidal lattice! present
in small volumes. It is likely that this effect was responsible
for the poor overlap of our operators with the scalar and
tensor states on the 33 lattice.

The properties, such as the mass, of a glueball confined in
a small box with periodic boundary conditions differ from
those in an infinite volume. The modification of the mass of
a particle due to finite volume effects has been estimated in
Ref. @13#:

atmG~z!5atmG~`!@12lGexp~2)z/2!/z#, ~16!

wherez is the dimensionless length scalez5mA
1
11Ls , mA

1
11

is the infinite-volume mass of the scalar glueball, andlG is
related to the strength of an effective triple scalar glueball
interaction vertex. The mass shift given in Eq.~16! is valid

for sufficiently largez and arises from the exchange of scalar
glueballs across the periodic boundaries of the lattice. Finite-
volume errors in our glueball masses measured on an 83

lattice atb52.4, j53 ~whereLs'2 fm, similar to the vol-
umes used in the other nine simulations! can be estimated by
fitting the form given in Eq.~16! to the masses in Table XV.
Let v5atmA

1
11 and r5jLs /as , thenz5rv. The A1

11 fit

was done first using the function atm(z)5v
2lA

1
11 exp(2)rv/2)/r, wherev and lA

1
11 were the fit-

ting parameters. The best-fit value forv was then used in the
fits to the results for the other irreps; to simplify matters, the
uncertainty inv was neglected in these fits. TheT1

12 fit also
included the energy estimate extracted from theLs /as53
simulation. The results of these fits are summarized in Table
XVI; the estimates of the finite-volume errors are listed in
the final column of this table and are given by
mG(8vj)/mG(`)21 using Eq.~16!. In all cases, these er-
rors were insignificant compared to the statistical errors; this
means, for example, that any differences between the large-

TABLE IX. Results from fits to theb52.6, j53 glueball correlators~see Table IV!.

Channel Nexp Fit range x2/NDF Q Energies Overlaps

A1
11 1 1–10 0.88 0.53 0.464„7… 0.986~8!

1 2–10 1.01 0.42 0.46~1! 0.98~2!

2 1–4 0.89 0.50 0.464~6! 0.988~8!

0.84~1! 0.96~1!

E11 1 1–6 0.60 0.67 0.781„8… 0.984~8!

1 2–6 0.36 0.78 0.76~2! 0.94~4!

2 1–4 0.89 0.50 0.782~9! 0.982~9!

1.09~2! 0.95~2!

T2
11 1 1–6 0.31 0.87 0.777„8… 0.977~8!

1 2–6 0.12 0.95 0.76~2! 0.95~3!

2 1–4 0.53 0.79 0.777~8! 0.976~8!

1.12~1! 0.99~1!

T1
12 1 1–5 0.27 0.85 0.97„1… 0.97~1!

TABLE VIII. Results from fits to theb52.4, j53 glueball correlators~see Table IV!.

Channel Nexp Fit range x2/NDF Q Energies Overlaps

A1
11 1 1–8 0.19 0.98 0.548„6… 0.988~6!

1 2–8 0.22 0.96 0.550~9! 0.99~2!

2 1–4 1.12 0.35 0.550~6! 0.991~6!

1.03~2! 0.96~1!

E11 1 0–5 1.30 0.27 1.012~4! 1.000~3!

1 1–5 0.31 0.82 0.995„9… 0.982~9!

2 1–3 2.14 0.09 0.993~8! 0.982~8!

1.37~2! 1.00~2!

T2
11 1 0–5 3.98 0.00 1.035~4! 1.001~2!

1 1–5 0.28 0.84 1.006„8… 0.969~9!

2 1–3 0.53 0.66 1.006~8! 0.966~8!

1.42~2! 0.99~2!

T1
12 1 1–4 0.75 0.47 1.24„1… 0.98~1!
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volume masses in theT2 andE channels must be due purely
to discretization errors. It is interesting to note that our esti-
mate oflA

1
11 agrees well with the value 190670 found in

Ref. @12#.

C. Continuum limit extrapolations

The glueball mass estimates in terms ofat
21 were com-

bined with the determinations of the hadronic scaler 0 /as .
The results are shown in Figs. 12–14. In these figures, the
dimensionless product ofr 0 and the glueball mass estimates
are shown as functions of (as /r 0)2. Solid symbols indicate
results from thej53 simulations, while open symbols are
used for the results from thej55 runs. In Fig. 12, the

lowest-lying masses in each of the channelsA1
11 , E11,

T2
11 , and T1

12 are compared with results from small-as
Wilson action simulations. The lowest-lying and first-excited
masses in theE11 andT2

11 channels are shown in Fig. 13,
and the ground state and first-excited state in theA1

11 chan-
nel are depicted in Fig. 14. To extract physical predictions
~for the pure-gauge theory!, the curves in these plots must be
extrapolated to the continuum limitas /r 0→0. Discretization
errors are given by the deviations of the finite-as results from
these limiting values.

The lowest-lying states in theE11 and T2
11 channels

correspond to the five polarizations of the tensor 211 glue-
ball in the continuum. Differences between theE11 and
T2

11 masses are a measure of violations of rotational sym-

TABLE X. Results from fits to theb51.7, j55 glueball correlators~see Table IV!.

Channel Nexp Fit range x2/NDF Q Energies Overlaps

A1
11 1 0–5 1.36 0.24 0.585~3! 0.999~4!

1 1–5 0.26 0.86 0.578„5… 0.992~5!

2 1–4 0.38 0.89 0.578~5! 0.992~5!

1.19~2! 0.97~2!

E11 1 0–5 2.09 0.08 0.943~3! 1.000~2!

1 1–5 0.12 0.95 0.924„8… 0.981~7!

2 1–4 0.29 0.94 0.924~8! 0.979~7!

1.29~2! 0.98~1!

T2
11 1 0–5 1.25 0.29 1.107~3! 1.001~2!

1 1–5 1.58 0.19 1.103„8… 0.997~9!

2 1–4 0.87 0.52 1.104~9! 0.997~9!

1.41~2! 0.94~2!

T1
12 1 0–3 2.65 0.07 1.214~4! 1.000~2!

1 1–3 0.21 0.65 1.19„1… 0.97~1!

2 1–3 0.39 0.76 1.18~1! 0.97~1!

1.55~3! 0.92~2!

TABLE XI. Results from fits to theb51.9, j55 glueball correlators~see Table IV!.

Channel Nexp Fit range x2/NDF Q Energies Overlaps

A1
11 1 1–9 1.26 0.26 0.475„4… 0.992~5!

1 2–9 1.11 0.35 0.468~6! 0.98~1!

2 2–4 1.03 0.38 0.468~6! 0.98~1!

0.92~3! 0.85~5!

E11 1 1–6 0.42 0.80 0.844„6… 0.992~6!

1 2–6 0.20 0.90 0.83~1! 0.97~2!

2 1–4 0.69 0.66 0.844~6! 0.992~6!

1.09~1! 0.95~1!

T2
11 1 1–5 0.91 0.43 0.918„7… 0.982~6!

1 2–5 1.11 0.33 0.91~2! 0.96~3!

2 1–4 1.44 0.19 0.918~6! 0.981~6!

1.23~1! 0.96~1!

T1
12 1 1–5 0.30 0.83 1.053„8… 0.979~7!

1 2–5 0.18 0.84 1.04~2! 0.95~4!

2 1–4 0.48 0.82 1.052~9! 0.97~1!

1.30~1! 0.92~1!
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metry due to finite spacing artifacts. In Fig. 12, such viola-
tions are seen to be small for our less coarse lattices and
become appreciable as the spacing gets very large. Discreti-
zation errors in theT2

11 exceed those of theE11; on our
coarsest lattices, finite spacing errors are only a few percent
for the E11 channel, but about 15% in theT2

11 channel. In
the E11 channel, thej53 results differ very little from
those using the higher aspect ratioj55, suggesting that the
O(at

2) errors are negligible. However, small differences be-
tween the results from the two anisotropies are visible in the
T2

11 channel. One expects thatO(at
2) errors will decrease as

j is increased. Since theT2
11 discretization errors are

slightly larger for thej55 runs,O(at
2) errors can account

for this difference only if such errors offset theO(as
4) errors.

The leading discretization errors in the tensor glueball
masses are expected to beO(at

2 ,as
4 ,asas

2). However, we
have already argued that the results in Fig. 12 imply that the
O(at

2) errors are negligible. Since the action included mean-
field correction factors, we also expected thatO(as

4) errors
would dominate overO(asas

2) errors and in our continuum
limit extrapolations, we assumed that this was true unless the
fit provided compelling evidence to the contrary. Although
we expected the leading discretization errors to beO(as

4),
the following three functions were used in our continuum
limit extrapolations:

w0~as!5r 0mG , ~17!

w2~as!5r 0mG1c2~as /r 0!2, ~18!

TABLE XII. Results from fits to theb52.2, j55 glueball correlators~see Table IV!.

Channel Nexp Fit range x2/NDF Q Energies Overlaps

A1
11 1 1–14 0.60 0.84 0.362„3… 0.998~5!

1 2–14 0.50 0.90 0.366~4! 1.004~7!

2 1–4 0.86 0.52 0.362~3! 0.998~5!

0.697~6! 0.970~7!

E11 1 1–7 1.33 0.25 0.667„4… 0.982~4!

1 2–7 1.65 0.16 0.666~7! 0.98~1!

2 1–4 0.57 0.75 0.667~4! 0.980~5!

0.878~7! 0.968~7!

T2
11 1 1–8 1.05 0.39 0.686„4… 0.983~3!

1 2–8 1.20 0.31 0.683~6! 0.98~1!

2 1–4 0.77 0.59 0.686~3! 0.982~3!

0.938~5! 0.970~5!

T1
12 1 1–6 0.48 0.75 0.819„4… 0.974~4!

1 2–6 0.57 0.63 0.82~1! 0.98~2!

2 1–4 0.60 0.73 0.820~4! 0.974~4!

1.025~8! 0.956~7!

TABLE XIII. Results from fits to theb52.4, j55 glueball correlators~see Table IV!.

Channel Nexp Fit range x2/NDF Q Energies Overlaps

A1
11 1 1–13 1.35 0.19 0.303„3… 0.995~7!

1 2–13 1.15 0.32 0.307~4! 1.000~8!

2 1–5 0.86 0.56 0.304~3! 0.994~7!

0.569~4! 0.972~5!

E11 1 1–9 1.33 0.23 0.538„3… 0.992~3!

1 2–9 1.46 0.19 0.536~5! 0.986~9!

2 2–5 2.71 0.01 0.538~5! 0.99~1!

0.723~9! 0.94~1!

T2
11 1 1–9 1.08 0.38 0.542„2… 0.988~3!

1 2–7 0.34 0.85 0.540~4! 0.982~7!

2 2–5 1.28 0.26 0.538~4! 0.978~8!

0.730~8! 0.94~1!

T1
12 1 2–6 1.03 0.38 0.652„5… 0.95~1!

2 2–6 1.77 0.07 0.648~6! 0.95~1!

0.794~9! 0.88~2!
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FIG. 4. Effective mass plot showing the results of a single-
exponential fit to the glueball correlation function for theA1

11

channel forb52.6 andj53. Thetmin2tmax region of the fit is also
indicated.

FIG. 5. Effective mass plot showing the results of a single-
exponential fit to the glueball correlation function for theT1

12

channel forb52.6 andj53.

FIG. 6. Effective mass plot showing the results of a single-
exponential fit to the glueball correlation function for theE11

channel forb52.6 andj53.

FIG. 7. Effective mass plot showing the results of a single-
exponential fit to the glueball correlation function for theT2

11

channel forb52.6 andj53.

FIG. 8. Effective mass plot showing the results of a two-
exponential fit to the 232 matrix of glueball correlation functions
for the A1

11 channel forb52.4 andj55. Thetmin2tmax region of
the fit is also indicated.

FIG. 9. Effective mass plot showing the results of a single-
exponential fit to the glueball correlation function for theT1

12

channel forb52.4 andj55.
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w4~as!5r 0mG1c4~as /r 0!4, ~19!

wherec2 , c4 , andr 0mG are best-fit parameters. The results
of these fits are given in Table XVII for thej53 data and
Table XVIII for the j55 simulations. Comparing the values
of x2/NDF, one sees that the fitting functionw4 was pre-
ferred for both thej53 and j55 results, although only
marginally so forj53. Given this fact and our expectation
that w4 should best describe the leading discretization ef-
fects, we tookr 0mG from thew4 fits as our continuum limit
estimates~indicated in boldface in Tables XVII and XVIII!.
These four estimates are in very good agreement not only
with one another, but also with the Wilson action estimates.
These fits usingw4 are shown in Fig. 12. For our final esti-
mate of the tensor glueball mass, we performed a simulta-
neous fit with the four data sets~two irreps and two anisotro-
pies! using four separatew4 functions but constraining the
intercept parameterr 0mG to be the same for all four fitting
functions. This yielded r 0m(211)55.8560.02 with
x2/NDF51.01, in agreement with the Wilson action estimate
r 0m(211)56.060.1, obtained by fitting all of the Wilson
action measurements shown in Fig. 12 tow0 .

We also examined the discretization errors in the masses
of the first-excited glueball states in theE11 andT2

11 chan-

nels. These are shown in Fig. 13. There are several reasons
for interpreting these data as different polarizations of a spin-
two excited state: the two irreps extrapolate to the same con-
tinuum limit value; if theT2

11 state were spin three, then
there would be a degeneracy with theT1

11 andA2
11 chan-

nels and this was not observed~these results will be pre-
sented elsewhere!; if they were polarizations of a spin-four
state, then again, a similar level must also be found in the
T1

11 channel. The degeneracy between the two irreps and
the weak finite-volume dependence of their energies also
makes an interpretation of this state as a torelon pair or a
two-scalar-glueball scattering state unlikely, although the
mass of this level lies close to twice the mass of the scalar
glueball. Continuum limit extrapolations were performed us-
ing the three functions of Eqs.~17!–~19!; measurements
from the two largestas spacings forj53 and the single
largest spacing forj55 were excluded from these fits. The
results are given in Tables XVII and XVIII. Again, we ex-
pectedw4 to provide the most reliable extrapolations to the
as→0 limit; this was confirmed by the fact thatw4 yielded
E11 andT2

11 continuum limits in best agreement with each
other. Differences found between thej53 and j55 ex-
trapolations were not statistically significant. The fits using
w4 are shown in Fig. 13. Our final determination of the mass

FIG. 11. Effective mass plot showing the results of a two-
exponential fit to the 232 matrix of glueball correlation functions
for the T2

11 channel forb52.4 andj55. Thetmin2tmax region of
the fit is also indicated.

TABLE XIV. Summary of final mass estimates from allj53 andj55 simulations.

b j atm(A1
11) atm(E11) atm(T2

11) atm(T1
12)

1.7 3 1.05~2! 1.65~5! 1.92~6! 2.09~9!

1.9 3 0.87~1! 1.47~4! 1.60~4! 1.80~6!

2.0 3 0.797~9! 1.40~2! 1.49~2! 1.68~3!

2.2 3 0.649~8! 1.19~2! 1.24~2! 1.48~3!

2.4 3 0.548~6! 0.995~9! 1.006~8! 1.24~1!

2.6 3 0.464~7! 0.781~8! 0.777~8! 0.97~1!

1.7 5 0.578~5! 0.924~8! 1.103~8! 1.19~1!

1.9 5 0.475~4! 0.844~6! 0.918~7! 1.053~8!

2.2 5 0.362~3! 0.667~4! 0.686~4! 0.819~4!

2.4 5 0.303~3! 0.538~3! 0.542~2! 0.652~5!

FIG. 10. Effective mass plot showing the results of a two-
exponential fit to the 232 matrix of glueball correlation functions
for the E11 channel forb52.4 andj55. Thetmin2tmax region of
the fit is also indicated.
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of the excited tensor glueball, obtained from a constrained
set of four w4 , similar to the ground-state extraction, was
r 0m(2* 11)58.1160.04, wherex2/NDF52.3. This mass
has not been reliably determined in any previous simulation.

Finite-spacing errors in the mass of theT1
12 pseudovector

glueball were also studied. These were found to be small and
are shown in Fig. 12. The results from the different anisotro-
pies are in good agreement. Extrapolations to theas→0 limit
were done using the three functionsw0 , w2 , and w4 ; the
results of these fits are summarized in Tables XVII and
XVIII. The continuum limits obtained from fits to thej53
andj55 data agreed only for the constant fit formw0 . The
fits to w2 andw4 yielded slope parameters~c2 andc4! with
large relative errors and opposite signs for the different
anisotropies. Hence, the functionw0 was used to extrapolate
to the continuum limit. Due to the very good agreement be-
tween thej53 and j55 results, all ten data points were
used in our extrapolation fit. Our estimate from this fit
~shown in Fig. 12! was r 0m(112)57.2160.02, where
x2/NDF51.55, in agreement with the extrapolation
r 0m(112)57.560.4, usingw0 of the Wilson action results
shown in Fig. 12.

In contrast to the tensor and pseudovector, the scalar glue-
ball mass showed significant finite-spacing errors~see Fig.
12!, even for our less coarse lattices. Asas was increased,
the scalar mass first decreased, reached a minimum near
as /r 0;0.6, then gradually increased. Near the minimum, the
mass was about 25% lower than estimates of the continuum
limit from small-as Wilson action computations; a 20% dis-
cretization error was observed in the result from our smallest
as simulation. Although the magnitudes of these errors were
significant, they were smaller than those obtained using the
Wilson action by a factor of 2. In order to extrapolate to the

continuum limit, an appropriate fitting function was needed.
The leading discretization errors were expected to be
O(at

2 ,as
4 ,asas

2). However, there were no distinguishable
differences between thej53 and j55 results, suggesting
that theO(at

2) errors were negligible, leaving us to consider
O(as

4 ,asas
2) effects. By inspection, one sees that the fitting

form w4 , which neglects one-loopO(asas
2) effects, cannot

describe the data, in contrast to the data for the tensor and
pseudovector glueballs. Asas→0, we expect the coupling
as(as) to vanish as21/ln(asL), whereL is an appropriate
scale parameter. Hence, we were led to consider the follow-
ing four-parameter fitting function:

w1L~as!5r 0mG1c2

~as /r 0!2

cL2 ln@~as /r 0!2#
1c4~as /r 0!4.

~20!

However, it was not known how reliably the leading pertur-
bative behavior ofas(as) would describe the true cutoff de-
pendence of the coupling over the large range of spacings
considered. Taking this into account and inspecting the be-

FIG. 12. Glueball mass estimates in terms ofr 0 against the
lattice spacing (as /r 0)2. Results from thej55 simulations for the
lattice irrepsA1

11 , E11, T2
11, andT1

12 are labeleds, h, L,
andn, respectively. The corresponding solid symbols indicate the
results from thej53 simulations. Data from Wilson action simu-
lations taken from Refs.@19–22# are shown using crosses. The
dashed, dotted, and dash-dotted curves indicate extrapolations to the
continuum limit obtained by fitting to thej53 data, thej55 data,
and all data, respectively. The solid line indicates the extrapolation
of the Wilson action data to the continuum limit.

TABLE XV. Glueball mass estimates in terms ofat
21 for b52.4, j53, and various lattice volumes.

Channel Ls /as54 Ls /as55 Ls /as56 Ls /as58

A1
11 0.483~6! 0.551~6! 0.545~8! 0.548~6!

A1*
11 0.863~9! 0.97~1! 1.00~3! 1.027~17!

E11 0.848~9! 0.980~10! 1.004~19! 0.995~9!

E* 11 1.11~2! 1.27~2! 1.41~4! 1.37~2!

T211 1.032~9! 1.005~9! 1.002~14! 1.006~8!

T2* 11 1.37~2! 1.42~2! 1.40~3! 1.42~2!

T112 1.245~13! 1.235~11! 1.209~25! 1.237~14!

TABLE XVI. The effects of simulating in a finite box: results
from fits of Eq. ~16! to the energy estimates given in Table XV
from lattices of spatial extentLs /as54,5,6,8. TheT1

12 fit also
includes an energy estimate forLs /as53. The final column esti-
mates the expected finite-volume errors in glueball masses from the
Ls /as58 simulation atb52.4 andj53. These errors are estimated
by mG(8vj)/mG(`)21 using Eq.~16!.

Channel atmG(`) lG x2/NDF % correction

A1
11 0.554~4! 260~37! 2.3 20.020

E11 1.002~7! 319~23! 0.62 20.024
T2

11 1.003~6! 259(24) 0.15 10.004
T1

12 1.223~7! 266(4) 1.05 10.005
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havior of the actual data, we decided to also consider the
following simpler quadratic form:

w2,4~as!5r 0mG1c2~as /r 0!21c4~as /r 0!4. ~21!

Both of these functions were fit to the mass measurements
from all ten simulations; the results of these fits are summa-
rized in Table XIX. The functionw1L yielded a slightly bet-
ter fit and a continuum limit for the scalar glueball mass of
3.9860.15. This fit is shown in Fig. 12. An extrapolation of
existing Wilson action data usingw2 yielded 4.3360.05.
Given the quality of the scalar glueball mass estimates using

the Wilson action, this slight discrepancy raises doubts con-
cerning the reliability of the extrapolation usingw1L ; mass
estimates using the improved action for a few values ofas
smaller than those considered here would be needed to re-
solve this discrepancy.

One explanation for the 20% discretization errors in the
scalar glueball mass is that the scalar glueball is extremely
small. However, there is evidence@14,15# that the presence
of a critical end point of a line of phase transitions~not
corresponding to any physical transition found in QCD! in
the fundamental-adjoint coupling plane is responsible for
lowering the scalar glueball mass near the crossover region
in the Wilson action. It is possible that the scalar glueball
mass in the improved action used here may be similarly in-
fluenced. If so, the fact that this effect appears to be less

FIG. 13. Estimates of the masses of the tensor glueball and its
first-excited state in terms ofr 0 against the lattice spacing (as /r 0)2.
Results from thej55 simulations for theE11 andT2

11 irreps are
labeled byh and L, respectively. The corresponding solid sym-
bols show the results from thej53 simulations. The dashed and
dotted curves indicate extrapolations to the continuum limit ob-
tained by fitting to thej53 and thej55 data, respectively~see
Tables XVII and XVIII!.

FIG. 14. Masses of the scalar glueball and its first-excited state
in terms ofr 0 against the lattice spacing (as /r 0)2. Open and solid
symbols indicate results from thej55 andj53 simulations, re-
spectively. The extrapolation to the continuum limit is indicated by
the dash-dotted curve.

TABLE XVII. Extrapolations of the glueball mass estimates to the continuum limit for thej53 runs. The
three scaling formsw0 , w2 , andw4 which are fit to the data are given in Eqs.~17!–~19!. The values indicated
in bold are taken as our final continuum mass estimates.

Channel Fit function r 0mG c2 c4 x2/NDF

E11 w0 5.83~3! 0.71
w2 5.91~7! 20.26(20) 0.49
w4 5.87„5… 20.33(25) 0.46

T2
11 w0 5.98~3! 5.35

w2 5.66~7! 1.02~21! 0.90
w4 5.83„5… 1.29~27! 0.87

T1
12 w0 7.22„5… 1.81

w2 7.44~11! 20.71(31) 0.96
w4 7.32~7! 20.87(40) 1.07

E* 11 w0 7.99~8! 2.44
w2 8.52~20! 21.8(6) 0.31
w4 8.25„12… 22.6(9) 0.12

T2*
11 w0 8.37~6! 1.33

w2 8.32~16! 0.2~7! 1.94
w4 8.34„8… 0.5~11! 1.89
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pronounced for this action suggests the possible existence of
other perturbatively improved actions in which the scalar
glueball mass is even less affected by scaling violations. We
are currently searching for such actions.

Discretization errors in the mass of the first-excited state
in the A1

11 channel were also found to be significant, as
shown in Fig. 14. The mass of this state is nearly twice that
of the lowest-lying scalar glueball, suggesting that this state
may simply be two glueballs. Given the significant discreti-
zation errors in the single glueball scaling data, one would
expect similar systematic errors in the two glueball state. The
absence of any level of similar mass in all other channels
justifies the spin-zero interpretation of this state. Considering
the difficulties encountered in extrapolating the lowest-lying
scalar to the continuum limit, we made no serious attempt to
determine the continuum limit of this first-excited state.
However, the result of a fit usingw2,4 is included in Table
XIX. The possible interpretation of this level as a two glue-
ball system might be strengthened by a more precise finite-
volume study.

D. Conversion to physical units

In order to convert our glueball mass computations into
physical units, we must specify the value of the hadronic
scale. The hadronic scaler 0 has a precise definition in terms

of the static-quark potential. However, the static-quark po-
tential cannot be directly measured in an experiment; it must
be deduced indirectly from other observables. We decided to
use a variety of different physical quantities to deducer 0 .

In Table XX, estimates ofr 0
21 using the results from vari-

ous quenched lattice simulations are shown. For each com-
putation, the quantity used to set the lattice spacing, such as
the mass of ther or the 1P-1S splitting in heavy quarkonia,
is indicated. The determination ofr 0

21 from a21 was accom-
plished using values ofa/r 0 given in Ref.@16# for the Wil-
son gluonic action at various values ofb, interpolating where
necessary. Note that due to quenching effects,r 0 varies with
the quantity used to set the scale. The entries in the last
column of Table XX cannot be considered as different mea-
surements of a single quantity and thus, strictly speaking,
their weighted average has no statistical meaning. The last
column of the table is meant to illustrate the range of values
one obtains forr 0

21 when using various scale setting quanti-
ties. We expect that the value ofr 0

21 appropriate for the
low-lying glueballs should lie somewhere within this range.
The simple averager 0

215410620 MeV of the determina-
tions in Table XX was taken as our estimate of the hadronic
scale.

For our final continuum mass estimates of the tensor glue-
ball, we found 24006106120 MeV ~where the first error is

TABLE XVIII. Extrapolations of the glueball mass estimates to the continuum limit for thej55 runs.
The three scaling formsw0 , w2 , andw4 which are fit to the data are given in Eqs.~17!–~19!. The values
indicated in bold are taken as our final continuum mass estimates.

Channel Fit function r 0mG c2 c4 x2/NDF

E11 w0 5.82~2! 5.03
w2 5.98~5! 20.41(12) 1.55
w4 5.91„3… 20.50(14) 0.81

T2
11 w0 6.12~2! 82

w2 5.53~4! 1.69~11! 5.16
w4 5.82„3… 2.02~13! 1.32

T1
12 w0 7.21„2… 1.61

w2 7.09~7! 0.31~16! 0.57
w4 7.15~4! 0.32~18! 0.80

E* 11 w0 7.67~4! 5.88
w2 8.12~14! 21.2(4) 0.02
w4 7.91„8… 21.5(4) 0.27

T2*
11 w0 8.29~3! 9.17

w2 7.80~10! 1.3~3! 1.37
w4 8.06„6… 1.4~3! 2.48

TABLE XIX. Extrapolations of the scalar glueball mass estimates to the continuum limit. The fit func-
tions used are given in Eqs.~20! and~21!. The value indicated in bold is our final continuum mass estimate
for the scalar glueball.

State Fit function r 0mG c2 c4 cL x2/NDF

A1
11 w1L 3.98„15… 218(4) 18~5! 0.96~13! 0.25

w2,4 3.86~8! 23.5(4) 4.5~5! 0.55

A1*
11 w2,4 6.93~19! 25.3(1.1) 8.8~1.4! 0.41
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statistical and the second is from uncertainties in the deter-
mination of r 0!. It is interesting to note that our mass esti-
mate lies within 8% of the mass of thef J(2220) resonance
@17,18#, reported to have quantum numbers (even)11. In
order to make a direct comparison with experiment, how-
ever, corrections to our result from light quark effects and
mixings with nearby conventional mesons must be taken into
account. Our estimate of the mass of the first-excited glue-
ball in the tensor channel was 33206206160 MeV; for the
pseudovector state, we found a mass of 29606
106140 MeV. Our estimate from the fit usingw1L for the
mass of the scalar glueball was 1630660680 MeV; how-
ever, we regard the continuum limit extrapolation for this
state as being less reliable than those for the other glueballs.

E. Comparison of efficiencies

A quantitative comparison of efficiencies is difficult to
make. There are many factors which affect the overall effi-
ciency of a Monte Carlo simulation. Certainly, the number of
link updates is an important factor. The speed of an update
is, of course, platform, action, and algorithm dependent. On
the DEC Alpha workstations we used, a CM update using an
improved action required twice as much time as for the Wil-
son action; the improved-action OR updating time was three
times longer. Critical slowing down and thermalization are
also contributing factors, but a crucial issue is the reduction
of excited-state contaminations in the glueball correlators. In
our coarse lattice simulations, we found that current methods
for constructing good glueball operators were very effective
in hastening the onset of plateaus in the effective masses.

Given these difficulties in assessing the efficiency of a
glueball simulation, we decided to make our comparisons
based simply on the number of link updatesNlu and the
fractional errore attained in the final mass estimates. Since
the error in a Monte Carlo estimate decreases with the num-
ber of measurementsN as 1/AN, we expect that the recipro-
cal product of the number of link updates and the square of
the fractional error is approximately proportional to the effi-
ciency of a simulation; we denote this quantity by
E51/(e2Nlu). An interesting comparison to make is between
simulations at a small lattice spacing, such asas;0.05 fm,
using the Wilson action and improved-action simulations at a
spacingas;0.2 fm. Such a comparison is relevant because

the discretization errors in these cases are of comparable
magnitude, excepting the scalar glueball mass. For the
b56.4 Wilson action run in Ref.@19# by the GF11 Collabo-
ration using gauge-invariant glueball operators, a total of
3.1331012 link updates were performed, an error of 2.5%
was achieved in the scalar glueball mass, and a fractional
error of 3.6% was obtained for the tensor mass. Using
r 050.48 fm andas /r 050.101(2), thelattice volume in this
simulation was (1.55 fm)23(1.45 fm). For the same value
of b in Ref. @20# by the UKQCD Collaboration, 1.3531011

link updates were made and fractional errors 3.4%, 3.3%,
and 9% were obtained for the scalar, tensor, and pseudovec-
tor masses, respectively. The lattice volume was (1.55 fm)3

for this simulation. In ourb52.6, j53 run, 5.763109 link
updates were performed and 1.5%, 1.0%, and 1.0% errors in
the scalar, tensor, and pseudovector masses were achieved.
Our lattice volume was (1.93 fm)3 sinceas /r 050.4021(9).
For our b52.4, j55 run, the number of link updates was
9.833109 and the errors obtained in the scalar, tensor, and
pseudovector masses were 1.0%, 0.5%, and 0.8%, respec-
tively. Using as /r 050.459(1), our lattice volume for this
run was (1.76 fm)3. Thus, the ratios of theE values for our
b52.6 andb52.4 simulations to those of the GF11 run
were 1500 and 2000, respectively, for the scalar glueball
mass, and 7000 and 17 000 for the tensor glueball mass. The
ratios of theb52.6 andb52.4 E values to those of the
UKQCD run were 120 and 160, respectively, for the scalar
mass, 260 and 600 for the tensor, and 1900 and 1700 for the
pseudovector.

Considering our ten simulations together, a total of
531010 link updates were performed. For the Wilson action
simulations of Refs.@19,20#, an estimated 1013 and 1012 link
updates were required, respectively, to generate continuum
limit results whose statistical uncertainties were larger~for
the tensor and pseudovector states! than those quoted here:
the statistical error on our estimate forr 0m(211) was about
five times smaller than that from the extrapolation of the
Wilson action results, and forr 0m(112), the uncertainty
was 20 times smaller, implying that about 25–400 times
greater statistics would be required for similar accuracy.
Thus, in total, the anisotropic lattice simulations were cer-
tainly more than 1000 times more efficient.

TABLE XX. Estimates ofr 0
21 using results from various quenched lattice simulations with the Wilson gluonic action. The simple

averager 0
215410(20) MeV of the last column is taken as our estimate.

Source b Quark action Scale setting quantity a21 ~GeV! r 0
21 ~MeV!

NRQCD @23# 6.0 NRQCD Y(2S21S,1P21S) 2.4~1! 434~23!

NRQCD @24# 5.7 NRQCD J/c(1P21S) 1.23~4! 430~16!

LANL @25# 6.0 Wilson M r 2.330~41! 422~16!

GF11 @26# 6.17 Wilson Mf 2.93~11! 419~17!

JLQCD @27# 6.1 Wilson J/c(1P21S) 2.54~7! 394~13!

JLQCD @27# 6.3 Wilson J/c(1P21S) 3.36~11! 401~14!

JLQCD @28# 6.3 Wilson M r 3.41~20! 406~24!

Fermilab@29# 6.1 Fermilab J/c(1P21S) 2.55~8! 395~14!

BLS @30# 6.3 Heavy light f p 3.21~9! 383~11!

BLS @30# 6.3 Heavy light M r 3.44~9! 410~11!

UKQCD @31# 6.2 Wilson M r 2.77~16! 376~22!
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The above discussion illustrates the computational advan-
tages of extracting nonscalar glueball masses from simula-
tions on coarse, anisotropic lattices (as;0.2 fm) using an
improved action instead of lattices for whichas;0.05 fm.
The excellent overlaps achieved from our variational calcu-
lations demonstrate another advantage of simulating on
coarse spatial lattices. The glueball wave functions extend
over only a few points of the lattice whenas'0.2 fm. Thus,
variational calculations using a feasible number of basis
functions~a dozen or so! can yield very good approximations
to the glueball wave functions. This will be especially im-
portant for future decay constant calculations and determina-
tions of mixings with nonglueball states. These advantages
have already enabled us to study the more massive glueball
states which have yet to be simulated reliably using the Wil-
son action; these results will be reported elsewhere.

These advantages are less clear for the scalar glueball
mass due to the presence of 20% discretization errors at
as;0.2 fm. Using the action of Eq.~1!, simulations at one
or more lattice spacings smaller than 0.2 fm would be needed
to firmly establish the continuum limit. A more attractive
approach would be to use an action for which discretization
errors in the scalar glueball mass atas;0.2 fm are negligi-
bly small. The search for such an action is currently under-
way.

VI. CONCLUSION

We have demonstrated the advantages of using aniso-
tropic lattices and an improved gluonic action for simulating
glueballs. Ten simulations at lattice spacings ranging from
0.2 to 0.4 fm were performed using DEC Alpha worksta-
tions, and the results were extrapolated to the continuum
limit. Results for the masses of the scalar (011), the tensor
(211), and the pseudovector (112) glueballs in SU~3!
pure-gauge theory were presented in terms of the hadronic
scale r 0

21. The continuum limits for the tensor and
pseudovector glueball masses were obtained with uncertain-
ties of less than 1%, significantly improving upon previous

estimates from Wilson action simulations carried out with
the aid of supercomputer resources. Extrapolation of the sca-
lar glueball mass to the continuum limit was hampered by
uncertainties in choosing the fitting function and discretiza-
tion errors which were 20–25 % even for our smallest lattice
spacings; although uncomfortably large, these finite-spacing
errors were half as large as those obtained using the Wilson
action. Finite-volume errors in our results were shown to be
negligible. The masses of the first-excited states in the scalar
and tensor channels were also examined.

Our results show that spatially coarse, anisotropic lattice
simulations are an effective means of studying gluonic sys-
tems. The techniques exploited here are sufficiently powerful
to overcome the difficulties which plague Monte Carlo cal-
culations involving gluonic excitations. These methods
should be useful for studying the spectrum of heavier glue-
ball states. Data for the masses of all 20 lattice irreps of the
cubic group~including parity and charge conjugation! are
currently being accumulated in order to survey the spectrum
of SU~3! glueball states below 4 GeV comprehensively. We
shall report on these results in the near future. We also plan
to use the techniques outlined in this paper to determine
various glueball matrix elements and decay strengths, to in-
vestigate the mixings of glueballs with conventional had-
ronic states, and to study mesonic states containing excited
glue ~the so-called hybrid mesons!. The size of the discreti-
zation errors in the scalar glueball mass was the only disap-
pointing aspect of this work; we are currently investigating a
new class of lattice actions with the hope of reducing these
lattice artifacts foras;0.2 fm to the level of a few percent.
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