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Efficient glueball simulations on anisotropic lattices
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Monte Carlo results for the low-lying glueball spectrum using an improved, anisotropic action are presented.
Ten simulations at lattice spacings ranging from 0.2 to 0.4 fm and two different anisotropies have been
performed in order to demonstrate the advantages of using coarse, anisotropic lattices to calculate glueball
masses. Our determinations of the tensof (R and pseudovector (1) glueball masses are more accurate
than previous Wilson action calculatiod§0556-282(197)00419-Q

PACS numbgs): 12.38.Gc, 11.15.Ha, 12.39.Mk

[. INTRODUCTION spacing should be the inverse of the energy of the states of
interest; thus, for glueballs, a temporal cutoff larger than
Numerical simulations of gluons on a space-time latticel.5 GeV allows resolution from accessible statistics of the
provide at present the most reliable means of studying gluecorrelator over a few time slices. Meanwhile, the scale for
balls. Glueball correlation functions are, however, notori-the spatial lattice should be set by the size of the wave func-
ously difficult quantities to measure in Monte Carlo simula-tion of the state; a spatial grid separation in the range 0.2—-0.4
tions: since the masses of these states are rather high afid would seem reasonable.
their creation operators have large vacuum fluctuations, the Since we propose to use lattices in which the temporal
signal-to-noise ratio falls extremely rapidly as the separatiofattice spacing is small, improvement of the discretization in
between the source and sink is increased. Because of thiyis direction is not needed. Thus, a lattice action which
reliable studies of glueballs on fine lattices have requiredcouples only nearest-neighbor time slices can be used. The
prohibitively large computer resources. Thus, the developtransfer matrix corresponding to such an action is Hermitian
ment of more efficient simulation techniques in lattice QCDand positive definite; all of our effective masses must con-
is crucial to establishing a detailed description of glueballsverge to their plateau values monotonically from above. This
and their interactions. ensures the validity of variational techniques which mini-
The objective of this work is to examine the effectivenessmize the effective masses at small temporal separations.
of using an improved, anisotropic lattice action to reduce thésuch techniques are very effective in diminishing the
computational effort needed to determine the glueball speexcited-state contributions to the glueball correlation func-
trum in quenched QCD. Improved actions allow access tdions and are crucial for efficient extraction of ground-state
continuum physics on coarser lattices than possible using th@asses.
simple Wilson discretization. Coarse lattice simulations are In this paper, we demonstrate the increased efficiency of
more efficient for several reasons: for a given physical volglueball simulations using these actions on anisotropic lat-
ume, much fewer lattice sites are needed; the alleviation dfices. We present results for the masses of three of the lighter
critical slowing down permits the faster generation of statis-SU(3) glueball states, the scalar {0), the tensor (2 %),
tically independent gauge-field configurations; glueball op-and the pseudovector {1). The masses of the first-excited
erator smearing is faster due to the decreased number of linlssates in the scalar and tensor channels were also examined.
and a decrease in the number of smearing iterations required@en simulations at lattice spacings ranging from 0.2 to 0.4
glueball wave functions extend over much fewer lattice site§m were performed, enabling reliable extrapolations to the
on a coarse lattice, making the variational technique far moreontinuum limit (although the mass of the scalar glueball
effective when using a feasible numbe@r dozen or spof =~ was somewhat problematicThe results are compared to
basis operators. previous simulation data obtained using the Wilson action
However, for glueball mass calculations, the coarsenesand we find that more accurate determinations of the tensor
of the temporal lattice spacing is a severe drawback. As thand pseudovector glueball masses have been achieved. A
masses in lattice units of the states of interest are so largepmparison of efficiencies is also made. Lastly, finite-
the number of correlator time intervals which can be meavolume effects are shown to be small.
sured is reduced greatl]. A straightforward solution to The new action used in our simulations is described in
this problem which preserves the computational advantageSec. Il. The details of the glueball simulations, including the
of coarse latticef2—4] is to make use of anisotropic lattices construction of the glueball operators, the generation of the
in which the temporal spacing is much smaller than that ingauge-field configurations, and the analysis of the Monte
the spatial directions. This enables us to exploit the enhance@arlo data, are given in Sec. Ill. The hadronic scgles
signal-to-noise ratio of the correlation functions at smallerused to relate our results at different values of the couging
temporal separations. A natural scale for the temporal latticand the aspect ratig. The determination of this scale in
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terms of the lattice spacing using the static potential is outtion functions have been previously demonstratgf Al-

lined in Sec. IV. Section V contains our results and discusthough these spurious states do not affect the asymptotic
sion: the glueball mass measurements are presented in detdiehavior of the glueball correlators, they do appreciably
finite-volume effects are studied; extrapolations of thechange the correlators at short temporal separations and can
masses at finite spacing to the continuum limit are underseriously hinder attempts to reduce excited-state contamina-
taken; the conversion of our results into physical units istion to hasten the onset of asymptotic behavior. Since our
described; and a comparison of efficiencies with Wilson acglueball mass measurements rely heavily on the reduction of
tion simulations is made. Our conclusions are given in Secsuch excited-state contributions to the glueball correlation

VI, along with an outline of future work. functions, the use of an action which is free of spurious
lattice modes is crucial. The action given in Ed)) couples

Il. AN IMPROVED, ANISOTROPIC DISCRETIZATION only link variables on neighboring time slices, which ensures

OF QCD that all of our effective masses converge to their plateau

o ) ~values monotonically from above and so validates the varia-
Our glueball mass determinations rely on numerical simuyjgng| techniques employed.
lations of glueballs on a Euclidean space-time lattice with |t js now known that perturbation theory by itself does not
spatial and temporal spacings anda;, respectively. The ygjiaply determine the couplings in an improved action in
improved gluonic action used in this study is given[By4] lattice gauge theory. Hence, the interaction strengthS; in
have been determined using a judicious combination of per-
S =5 E Q_Sf f % - i Q_Ser - i % , (1) turbation theory and mean-field theory. Mean-field theory is
3 &ug 3uguy 12&u; 12 uguy; introduced by separately renormalizing the spatial and tem-
poral link variables: U;(x)—U;(x)/us and U(x)—
U(x)/u;, whereug and u; denote the renormalization fac-
tors for the spatial and temporal links, respectively. The
mean-link parametersl; and ug are best determined by
Qc=3c3Re Tr(1-W¢), with Wc denoting the path- guessing input values for use in the action, measuring the
ordered product of link variables along a closed contGur mean links in the Landau gauge in a simulation, then read-
on the lattice() ¢, includes the sum over all spatial plaguettesjusting the input values accordingly and tuning until the in-
on the lattice (), indicates the temporal plaquetteé3,, de-  put values match the measured values. The determination of
notes the product of link variables about planas 2 spatial  these renormalization factors is described in more detail in
rectangular loops, anf g, refers to the short temporal rect- Refs.[2,4]. However, wheng; is significantly smaller than
angles(one temporal link, two spatipl Explicitly, ag, we expect the mean temporal link to be very close to
1 unity since 1 (3TrU,)=(a;/ag)? in perturbation theory.
Qsng 2 3 Re Tf1— Ui(x)Uj(x+T)Ufr(x+j)U;r(x)], Hence,_ to _si_mpl_ify matters, we sat=1. We_ introduce fur-
ther simplifications by using a convenient and gauge-
) invariant definition forug in terms of the mean spatial

1 plaguette given byi;=(3Re TPsy )4 wherePgy denotes
Qtpzz 2 3 Re Tf1—U(x)U;(x+1)U](x+T)Uf(x)], the spatial plaquette. This eliminates the need for gauge fix-
X ing, yields values foug which differ from those found using
3 the Landau gauge definition by only a few percent, and sig-
nificantly speeds up the tuning process.
Q= E 3 Re T{1—U;(x)Ui(x+1)U;(x+21) At finite goqplmgg, the anisotropyg/a; is renormallzed
X i#] away from its input valu€. Measurements of this renormal-
ization have been made using the static potential extracted
from correlations along the different spatial and temporal
1 axes of the latticd2,4]. Without mean-link improvement,
Q= S ZRe TH1—U;(x)U;(x+ 1)U (x+21) this renormalization can be as large as 30%. When the action
x T 3 includes mean-link corrections, this renormalization is found
to be small, typically a few percent. We usada,= ¢ in all
of our calculations, accepting the small radiative corrections
to the anisotropy as finite lattice spacing errors, which vanish
in the continuum limit.

where 8=6/g?, g is the QCD couplingus and u, are the
mean-link renormalization parameteisijs the aspect ratio
(¢=ag/a, at the tree level in perturbation thegryand

XUl (x+T+) U] (x+7HUf(x)], (4)

XUT(x+T+H U (x+1) U (x)], (5)

wherex labels the sites of the lattice,j are spatial indices,
andU ,(x) is the parallel transport matrix in the gluon field
from sitex to X+ 4.

This action, intended for use witha,<ag, has
O(a?,a?,a4a?) discretization errors. Th@®(a?) errors can
be removed by the addition of counterterms which couple Glueballs may be labeled by their tot@htegra) spin J
next-nearest-neighbor time slices, but this introduces spuriand their symmetries under spatial inversion and charge con-
ous high-energy modes which can cause considerable proptgation. However, on a cubic lattice, glueballs are charac-
lems for our glueball simulations. These unphysical stateterized by their transformation properties under the cubic
appear in perturbation theory as additional poles in the gluopoint group, combined with parity and charge conjugation
propagator. Their detrimental effects on the glueball correlaoperations. The cubic group,, has 24 elements that fall into

Ill. GLUEBALL SIMULATION DETAILS
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five conjugacy classes, and thus, the dimensions of the irreevery spatial linkU;(x) on the lattice is replaced by itself
ducible representation@rreps are 1, 1, 2, 3, and 3. These plus a sum of its four neighborin@patia) staples, projected
irreps are labeled,, A,, E, T,, andT,, respectively. In-  back into SU3):

cluding parity and charge conjugation symmetry operations,

there are 20 irrepgiabeled bydP¢, whereJ now denotes an US(X) = Psyay| Uj (0 + A >

irrep of Oy,). In this study, four of the irreps which generate =(k#])

light (<3 GeV) glueball states were simulated: tA¢ *,

E**, T, %, andT; ~ channels. Of particular interest are the xUk(x)Uj(x+k)Ul(x+j) , (6)
E** andT, * irreps whose combined five rows correspond

to the five polarization states of the tensor (2 glueball wherePgys) denotes the projectidi] into SU3). Here, we
which become degenerate as continuum rotational invarianG§enote this mapping of the spatial link matrices into the
is restored. This then gives information on the magnitude ofmeared link variables bss . In the double-link procedure,

S

lattice artifacts at finite cutoff, new superlinkdJ of length 2a are built using neighboring

; i PC
The mass of a gluebalb h?“"”g a glvenJ_ can b_e staples which connect sites separated by a distance twice the
extracted from the large-behavior of a correlation function length of the source link variables:

C(t) = (0|d®(t)d®(0)|0), whereR denotes the lattice
irrep corresponding to theJPC of interest and

= fry)y= . . 7

R (1) =d® (1) — (0|®R(1)|0) is a gauge-invariant, trans- Uj00="Psug UJ(X)UJ(X+J)+)\fi%j> Ui(X)
lationally invariant, vacuum-subtracted operator capable of

creating a glueball out of the QCD vacuy@. As the tem- ><Uj(x+k)Uj(x+j+ﬁ)Ul(x+2j) , @

poral separatiort becomes large, this correlator tends to a

single decaying exponential [jm..C(t)=Z exp(—mgt),

wheremg is the mass of the lowest-lying glueball which can and we denote this mapping lﬁyf. Both procedures can be
be created by the operatd®(t). In order to extracimg, applied recursively; smeared links can be smeared again and
the correlatorC(t) must be determined fot sufficiently  fuzzy links of increasing length & ,4a,,8a.,... can be
large thatC(t) is well approximated by its asymptotic form. constructed. Asmoothening schem® is defined as a com-
However, the signal-to-noise ratio in any Monte Carlo deterposition of single-link mappings and double-link mappings.
mination of C(t) falls exponentially fast with respect to  Six different smoothening schemes were used. The simplest
Thus, it is crucial to use a glueball operator for whiCfit) scheme used was the composition of two single-link smear-
attains its asymptotic form as quickly as possible|®) ings: 51=st°3xs- To simplify notation, we write this as
denotes the glueball state of interest, this means that we MUgt=s? . We also used the compositions of four and six
choose an operator for__ which = the overlap sin Ie-SIink mappingsS,=s; andS;=s? . In the other three
(G|dP(1)|0)/[(G|GY(0|dR(1)dP(1)|0)]2 is as near O PPINGSo2 =8, andos =Sy,

to unity as possible. For such an operator, the signal-to-noisgMoothening schemes, the application of several single-link
ratio is also optimal5] smearings, followed by one final iteration of double-link
' - g 2 _ 4
In order to construct such operators, we exploited thduzzing was used:S,=f, esy, Ss=f, s\, and S
smearing[6,7] and variational techniques which have beenzfxfosfs. Only one iteration of the fuzzing procedure which

used with sggcess in earlu_er Wilson action simulations. INagyits in links connecting sites separated by ®as found
each of the]”™~ channels of interest, glueball operators werey, e yseful for the range of coarag values explored here.
constructed on each time slice in a sequence of three stepsy, the finer lattices 8= 2.4, £=5, and8=2.6, £=3), an
First, smeared link&J§(x) and fuzzy superlink&){(x) were  extra four initial iterations of single-link smearing were used
formed. Second, a set of basic operatg§)(t) were con- in all six smoothening schemes to enhance ground-state
structed using linear combinations of gauge-invariant, patheverlap. To simplify matters, the same values for the two
ordered products of therS(x) and U]f(x) matrices about parameters.s and\; were used in all smearing and fuzzing
various closed spatial loops; each such linear combinatioiterations. These values were chosen to minimize excited-
was designed to be invariant under spatial translations and tstate contamination in the glueball correlation functions. A
transform irreducibly under the symmetry operations of thecrude optimization was done in a set of low statistics runs
cubic point group according to the irrep of interest. Last, theand the optimal values,=0.1 and\;=0.5 were then used
glueball operatorsb®(t) were formed from linear combi- in all the glueball simulations.
nations of the basic operatorsb®(t)== 0P ¢P(1), The second step in the construction of our glueball opera-
where the coefficients® were determined using the varia- tors was the formation of a set of basic operat#{§(t)
tional method. Each of these three steps is described belowsing linear combinations of gauge-invariant, path-ordered
Operators constructed out of smeared links and fuzzy suproducts of theUJ-s(x) and UJ-f(x) matrices about various
perlinks have dramatically reduced mixings with the highclosed spatial loops. Combinations which were Hermitian,
frequency modes of the theory. Thus, the use of spatiallynvariant under spatial translations, and transformed irreduc-
smoothed links is an important part of reducing excited-statély under the operations of the cubic point group according
contamination in the glueball correlation functions. Two to the irrep of interest were constructed. For a more detailed
smoothening procedures were used: a single-link procedurexposition of this construction, see RE). In each channel,
and a double-link procedure. In the single-link procedurea large set of prototypes was programmed, and a short simu-
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TABLE I. Input parameters used in the glueball simulations.
APt I
B Lattice ud

¢
1.7 3 %18 0.3075
1.9 3 %18 0.340
pt [ [ [ 2.0 3 Fx24 0.356
2.2 3 &x24 0.3885
2.4 3 &x24 0.421
2.6 3 16x30 0.4505
- [ @ £ L [ 1.7 5 62)(30 0.295
1.9 5 6x30 0.328
2.2 5 8x40 0.378
2.4 5 x40 0.409

T
& Sg ﬁb @ The eigenvectong) corresponding to the largest eigenvalue

e Mo(®0) then vyields the coefficients{Y for the operator
FIG. 1. The four Wilson loop shapes in each channel used tngR)(t) which best overlaps the lowest-lying glueb@llin
form the lattice glueball operators. The complete set of 24 operatorghe channel of interest. Operators which overlap excited

:"’as fo”t“fdd by dc?mpulti?gdlinear ctc;]m?iTta_xtions of 3‘?‘#“ Oft th‘?’*%flueball states can also be constructed using the other eigen-
oops rotated and translated across the lattice on six different sets - (R) :
smoothed links. Where a loop shape occurs twice, it is used in two ectors of Eq.(10). In particular, the operatobi™(t) ex

different projections into the appropriate irreducible representation'.ae(:t_Ed 1o best °Ver"’?‘p the first-excited glue_ball s@tewas
obtained from the eigenvector corresponding to the second

lation was then performed to determine the coefficients O]largest eigenvalue of Eq10).

each operator in the variational ground state. In each chan- The (:—[,\.Iemterzjts qf tr}(ﬁ c&rrelfltcg rr|1atr|x talvgnTm HE) t
nel, the four operators with the highest of these contributiond/€r€ estimated using the Monte L.ario method. 1en separate

were then chosen for use in the production runs. The paths iﬁ'“?ba” S|mul_at|on§ were performed on DEC Alpha yvork-
this optimal set are illustrated in Fig. 1. In the glueball simy-Stations. Configuration ensembles were generated using both

lations, these Wilson loops were measured on the link Vari_Cabibbo—Marir:ari(C_:M)OpRseudor-]h(cajat—tiatrll and EU sub-

ables from the six smoothening schemes, yielding a total ofroup over-re axatlor( ) met 0ds. Link variables were

N=24 basic operator$((t) in each of the four channels. updated in serial order on the lattice. We defineoanpound
Finally, ®(®(t) was formed from a linear combination of sweepas one CM updating sweep followed by three OR

. . sweeps. In the glueball simulations, three compound sweeps
R (ty=3sN (R) 4(R) -
the basic operatorsp™(t)=2,_,v," ¢, (1). The coeffi-  \yare performed between measurements, and the measure-

Ci_e”tSUEIR) were determined using the variational method. ments were averaged into bins of 100 in order to reduce data
FII‘St, the 2424 correlation matrix was Computed in the Storage requirement@xcept for theﬂ: 26, 623 run in

glueball simulations: which 40 configurations were included in each)bin all ten
simulations, 100 bins were obtained. Our ensembles were
Eag(t)=z (0|¢T§,R)(T+t)¢7§f)(r)|0>, (8  tested for residual autocorrelations during the analysis phase
T by overbinning by factors of 2 and 4; in all cases, the statis-

_ tical error estimates remained unchanged.
where ¢(aR)(t) denotes a vacuum-subtracted operator Values for the mean-link parametag were determined
»P1)= P (1) — (0| P (1)|0). Note that 0] P (t)|0) is  self-consistently as previously described. This tuning proce-
independent of. The coefficients (¥ were then determined dure required a minimal amount of computational effort and

by minimizing the effective mass provided thermalized configurations for later computations.
The improved action simulation parameters used are given in
- Table I.
> v C p(tp) For the data-fitting phase, the large>224 correlator ma-
m(tp)=—1In “h , 9) trices in each channel were reduced using the coefficients

5 v(R)v(BR)E 0) VP andvi? to smaller 2< 2 matricesCag(t) for A,B=0,1:
v a a

where the time separation for optimization was fixed in all Cas() =2 (0@ (7+1)DFV(7)[0). (11)
cases tdp=1. Let v(® denote a column vector whose ele- 7
ments are the optimal values of the coefficient® . Then
requiring dm(tp)/dv{®=0 for all « yields an eigenvalue
equation:

The ground-state correlat@pg(t) was fit fort =t - . . tmax
using a single exponential

C(tp)VR=e Mt)C(0)vR), (10) Coo(t)=Zgole et + e Ma(T-D} (12)
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TABLE II. Various run parameters for the static-quark potential measurements, including lattice sizes,
total numbers of configurations used, and parameters for the two different smearing schemes.

B £ Lattice No. configs. (N1, Nyp) N2, Nyy)
1.7 3 6x18 2275 (0.05,4 (0.10,4
1.9 3 6x18 1280 (0.07,4 (0.14,9
2.0 3 Fx24 848 (0.07,4 (0.15,9
2.2 3 gx24 1024 (0.10,6 (0.16,6
2.4 3 gx24 1024 0.12,6 (0.25,6
2.6 3 16x30 1100 (0.25,6 (0.50,8
1.7 5 gx40 810 (0.10,6 (0.25,6
1.9 5 6x30 1024 (0.08,4 (0.16,4
2.2 5 12x48 315 (0.20,4 (0.30,4
2.4 5 gx40 548 (0.20,6 (0.40,6

whereT was the temporal extent of the periodic lattice, todiscussed below. However, in the absence of a better gluonic
obtain an estimate of the masg; (in terms ofa{l) of the reference, we have chosegto set the scale. In this section,
lowest-lying glueball in each channel. To determine the maswe outline the determination af, in terms ofas.
mg+ Of the first-excited glueball and another estimate of In order to determine, in terms of the lattice spacing, we
mg, the 2x2 correlator was also fit far=t,,,... InaxUs- Need accurate measurements of the static-quark potential. We
ing the form extractedVv(r) for various spatial separatioms both on and

off the axes of the lattice, from the expectation values of

Cag(t) = 2 ZApZBp{e*mptﬂLe*mp(T*‘)}. (13 Wilson loopsW(r',t) in the standard manner:

P=6.¢ W(T,t)=Z(F)exd —tV(F)]+ excited-state contributions.
Various fit regionst i, t0 t,,.x Were used in order to check (14
for consistency in the extracted values for the masses. Best-
fit values were obtained using the correlaggdmethod. Er-  In the Monte Carlo evaluation of the Wilson loops, measure-
ror estimates were calculated using a 1024-point bootstragents were taken after every four compound sweéapsie-
procedure; in all cases, error estimates were very close tined in Sec. Il). The measurements of the Wilson loops
being symmetric about the central best-fit values and wergere done independently of the glueball mass studies using

thus averaged to simplify presentation. separate ensembles of configurations. To minimize contami-
nation from excited states, the Wilson loops were con-

IV. SETTING THE SCALE USING THE STATIC structed from iteratively smeared spatial links. The single-
POTENTIAL link smearing method described previously was used. A

given smearing scheme is specified not only by the param-

In order to convert the glueball masses as measured in owter\ ¢, but also by the total number of smearing iterations,
simulations into physical units, we must set the scale bylenoted by,. Two different choices of the smearing param-
determining the lattice spacirg for each and £ we con-  eter were used in all cases: one smearing was chosen to work
sider. To do this, we must first choose one physical quantityvell for small r=|f|, the other to work well for large.
to use as a reference. This reference quantity must then I®eparate measurements for each smearing were taken; cross
measured on the lattice in terms &f. The experimentally correlations were not determined. The statistical noise in the
known value for the reference quantity is then used to extracévaluation of W(f,t) was reduced dramatically, especially
the lattice spacing. A quantity which can be easily and accufor large temporal separations, by constructing the Wilson
rately determined both experimentally and in numericalloops, whenever possible, from thermally averaged temporal
simulations is an ideal choice for such a reference. The masgks [11]. The thermal averaging was accomplished using
of a low-lying particle is typically used for setting the scale. the Cabibbo-Marinari pseudo-heat-bath mett@lupdates
In our case, however, there are no unambiguous experimei®ther relevant run parameters are given in Table II.
tal determinations of the glueball masses, so instead, we The values of the potentidl() were extracted from the
must look for another purely gluonic quantity. Wilson loop measurements by fittiy(,t) to the exponen-

The hadronic scale parametey defined in terms of the tial form Z(F)exd —tV(f)] in the ranget=tp, . . - tmax, O
force between static quarks byr?dV(f)/dr],-, =1.65, eachf. The plateau region fromy, to ty., was chosen
whereV/(r) is the static-quark potential, is an attractive pos-separately for eachiin order to minimize the uncertainty in
sibility. It can be measured very accurately on the latticethe extracted values faf(") while maintaining a good qual-
The advantages in using, to set the scale have been enu-ity Q of fit. Best-fit values were determined using the stan-
merated in Ref[10]. From phenomenological potential mod- dard x? test, taking into account temporal correlations
els, one finds ,=~0.5 fm. A disadvantage in using, is that ~among theW(r,t). The covariance matrix iy? was deter-
its physical value must be deduced indirectly from experi-mined using the jackknife procedure, and estimates for the
ment, and there is some ambiguity in doing this, as will beuncertainties in the extracted values () were computed
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FIG. 2. Effective mass plot showing the results of a single- FIG. 3. The static-quark potentisl(r") expressed in terms of the
exponential fit to the Wilson loop foW(F) with f/a;=(2,2,2), hadronic scaler,. This plot includes measurements from the
B=2.4, andé=3. Thet,,—tnax region of the fit is also indicated. BS=2.2, 2.4, and 2.6 simulations fgr=3, and the=2.2 and 2.4

simulations foré=5. Lattice spacing errors are seen to be small.

using the bootstrap method. Binning of the data was done as

a crude check that our measurements were statistically inderatrix in they? to be minimized from getting too large. This

pendent. The results of a typical fit are shown in Fig. 2,covariance matrix was evaluated using the jackknife method;

which is an effective mass plot for(r) for f/a,=(2,2,2). uncertainties in the fit parametegs, o, Vo, andZ(r) were

The effective mass foW(r) is a function oft, defined as obtained using the bootstrap method. Once we had an en-

In[W(F,t)/VW(Ft+a,)], which tends to the true mass ade- semble of bootstrap estimates for these fit parameters, the

comes large. ratio ro/ag and its bootstrap uncertainty were then deter-
Once a suitable plateau region in the effective mass wagiined using

established for eac(r), the hadronic scaley/a, could be

determined. We found that the on-axis potentér) for the

range off values studied here using coarse lattices fits a

Coulomb plus linear formV(r)=e./r +or+V, very well

(with qualities of fit ranging fronQ=0.25 toQ=0.99. We,  Note that to compute,/as, we need the rati@g/a; since

therefore, used this form to interpola¥4r) and the force our fits yielded estimates @, V() only. We used the input

between static quarks. Simultaneous fits of the Wil-value¢ since we know that its renormalization is small. Re-

son loops for the on-axis potential to the form sults forry/ag are given in Table lll.

Z(r)exd —t(e;/r+or+Vy)] were done, taking into account Using the results in Table Ill, we can now express all

all correlations among the/(r,t) for both differentt andr. energies measured in simulations in termsrgf For ex-

Different regions int were used for different values; the ample, in Fig. 3, we show the potential, including off-axis

plateau regions determined previously were used. Only thinterquark separations, expressed in termsrgf Lattice

on-axis potentials were used; this prevented the covariancgpacing errors are seen to be small.

ro/as=/(1.65+e.)/oaZ.

(15

TABLE lll. Results for the hadronic scalg in terms of the lattice spacings. The Coulombic coupling
e. and the string tensiow obtained from a fit of the on-axis potential to a Coulomb plus linear form
V(F)=e./r+or+V, are also given.

B & rolag a/ry e roo
1.7 3 1.1612) 0.8612) —0.07(1) 1.581)
1.9 3 1.2983) 0.7732) —-0.13(2) 1.522)
2.0 3 1.37%1) 0.72718) —0.188(7) 1.4627)
2.2 3 1.61%2) 0.61928) —0.288(8) 1.368)
2.4 3 1.9786) 0.5051) —0.321(6) 1.3266)
2.6 3 2.4875) 0.40219) -0.310(2) 1.34@®)
1.7 5 1.2241) 0.81699) —0.177(9) 1.47®)
1.9 5 1.37%2) 0.7271) —0.20(1) 1.4%1)
2.2 5 1.7612) 0.568@5) —0.294(4) 1.35¢4)
2.4 5 2.1806) 0.4591) —0.308(4) 1.3419)
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TABLE IV. Results from fits to thgg=1.7, £=3 glueball correlatordNe,, is the number of exponentials
used in each fit, and the fit range refers to the temporal separatigiRstm. Used in each fitQ is the
standard quality of fit. Energies are givenaﬁl. Final mass estimates are highlighted in boldface.

Channel Nexp Fit range X*/Npg Q Energies Overlaps
AT 1 0-5 0.71 0.58 1.067) 1.0004)
1 1-5 0.83 0.48 1.052) 0.992)
1 2-5 1.20 0.30 1.08) 0.969)
E** 1 0-3 0.02 0.98 1.658) 1.00Q3)
1 1-4 0.12 0.88 1.6505) 1.005)
2 1-3 1.37 0.25 1.65) 0.985)
2.52) 1.12)
T 1 0-3 0.60 0.55 1.99) 1.0002)
1 1-3 0.06 0.81 1.926) 0.94(6)
2 1-3 0.65 0.58 1.96) 0.8898)
2.533) 0.8(3)
T 1 1-3 0.62 0.43 2.099) 0.958)

V. RESULTS AND DISCUSSION

A. Glueball mass measurements

in the A] © channel for3=2.4 and¢=5, spanned ten time
slices. In most cases, the onset of the plateau occurred when

. . _ the source and sink operators were separated by only one
To allow clear resolution of the scaling properties of the; o step. The overlaps with the lowest-lying states were

low-lying glueball masses in the improved action, two sets Ofalso found to be extremely good, better than 90% in most

simulations were performed at two different anisotropies: Sixcases and often consistent with unity. This clearly demon-
lattice spacings for an aspect ragie:3 and four spacings for strates the effectiveness of the link-smearing and variational

52.5 were St.Ud'eQ' The input parameters used in these SImlféchniques in diminishing excited-state contamination. Fits
lations are given in Table I.

The results of fitting the variationally optimized correla- using tmin=2 or O were also done to check for agreement

tors C(t) to the functions given in Eqg12) and (13) are with the t,,;,=1 results. At time separations for WhiCh the
summarized in Tables IV—XIIl. Effective mass plots for the ground state could be reliably observed, the off-diagonal el-

two smallestag simulations are presented in Figs. 4—7 andéments of the reduced correlation matricBgg(t) were
Figs. 8—11 fort=3 and&=>5, respectively. For each channel foynd to t_)e consistent with zero within stf';lt|st|cal uncer-
in each of the ten simulations, it was possible to find a fitt@inty. This suggests that the link-smearing, variational
region t,in—tmay in Which the correlation function was well Method also gives an excellent construction of the first-
described by its asymptotic form as indicated by the qualityeXcited state in each channel.

of fit. In other words, convincing plateaus were observed in  Our best estimates for the glueball masses in ternag Of

all effective masses. The most impressive plateau, observete indicated in boldface in each of the Tables IV-XIII.

TABLE V. Results from fits to the8=1.9, £&=3 glueball correlatorg¢see Table 1V.

Channel Nexp Fit range X%/ Npg Q Energies Overlaps
AFT 1 0-4 1.05 0.37 0.878) 1.00Q5)
1 1-4 1.46 0.23 0.811) 0.991)
2 1-3 0.74 0.53 0.88) 1.002)
1.8(1) 1.02)
E*T 1 0-4 0.11 0.95 1.499) 1.00Q3)
1 1-4 0.04 0.96 1.47(4) 0.993)
2 1-3 0.06 0.98 1.48) 0.955)
1.92) 0.91(9)
T 1 0-3 1.74 0.18 1.688) 1.00Q2)
1 1-3 0.22 0.64 1.6004) 0.924)
2 1-3 0.23 0.88 1.58) 0.884)
2.6(2) 1.3(3)

T

1-3

0.24

0.63

1.806)

0.905)
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TABLE VI. Results from fits to the3=2.0, £=3 glueball correlatorésee Table V.

Channel Nexp Fit range X2/ Npe Q Energies Overlaps
AFT 1 0-6 0.94 0.45 0.794) 1.0004)
1 1-6 1.15 0.33 0.79719) 1.0029)
2 1-3 2.33 0.07 0.798) 1.0018)
1.61(5) 0.955)
E*Y 1 0-4 0.67 0.57 1.428) 1.0002)
1 1-4 0.42 0.65 1.4002) 0.972)
2 1-3 1.30 0.27 1.39) 0.962)
1.81(6) 0.945)
T;Jr 1 0-4 2.54 0.05 1.5%9) 1.00G2)
1 1-4 0.67 0.51 1.492) 0.942)
2 1-3 0.53 0.66 1.49) 0.942)
2.117) 1.01(7)
Tl*’ 1 1-4 0.02 0.98 1.683) 0.923)

These estimates are summarized in Table XIV. Masses fanass have been analyzed beffitg], but the effects on the
the first-excited states are also indicated in fg,=2 fits  tensor and the pseudovector are less well known.

listed in the Tables IV-XIII. In order to ascertain the effects on our glueball masses of
simulating in a finite volume, four extra simulations were
B. Finite volume effects performed forB=2.4, £&=3 using lattices of spatial extent

In this work, we were concerned with the magnitude ofts/@s=6.5,4, and 3. The temporal extent was held fixed at
discretization errors in the glueball mass determinations fron¢4 9rid points. For each of these volumes, the rgean-fleld
coarse lattice simulations using an improved action. In ordefeénormalization parameter; was recalculated. The*3at-
to evaluate these errors, we had to eliminate uncertaintiedc® was the only simulation that required any change in this
from all other sources. The increased efficiency of simulaiParameter, and in this case, the effect was smailcreased
tions on coarse, anisotropic lattices allowed us to reduce st&y only 0.3%. The results from tHe;/a;=8,6,5, and 4 runs
tistical errors to the acceptable level of about 1%. The oniyfor the glueball masses in terms af * are given in Table
remaining source of uncertainty we had to address was th¥V. Note that the results from the’dattice differ very little
finite volume. The masses of particles confined in a smalfrom those from the 8 lattice, suggesting that our lattice
box with periodic boundary conditions can differ appreciablyvolumes are sufficiently large to ensure that finite-volume
from their infinite-volume values; finite-volume effects can errors are negligible. For the*Jattice, no plateaus in the
also induce a splitting in the masses of thand T, tensor  effective masses for thé; *, E**, andT, ™ channels were
polarizations. Finite-volume effects on the scalar glueballobserved; the mass in the; ~ channel was found to be

TABLE VII. Results from fits to the8=2.2, £&=3 glueball correlatorgsee Table 1V.

Channel Nexp Fit range X2 Npe Q Energies Overlaps
AT 1 0-7 1.12 0.35 0.6%9) 0.9986)
1 1-7 0.76 0.58 0.6498) 0.9888)
2 1-4 1.02 0.41 0.643) 0.9848)
1.253) 0.932)
ETF 1 1-4 0.10 0.90 1.192) 0.952)
1 2-4 0.10 0.75 1.1®) 0.91)
2 1-3 0.32 0.81 1.19) 0.952)
1.624) 0.994)
T2+ * 1 0-4 2.32 0.07 1.286) 1.0012)
1 1-4 0.92 0.40 1.242) 0.962)
1 2-4 0.02 0.88 1.16) 0.8(1)
2 1-3 1.30 0.27 1.22) 0.962)
1.655) 0.874)

T 1 1-4 1.13 0.32 1.48(3) 0.993)
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TABLE VIII. Results from fits to theB=2.4, £=3 glueball correlatorésee Table IV.

Channel Nexp Fit range X*/Npg Q Energies Overlaps
AFT 1 1-8 0.19 0.98 0.5486) 0.9886)
1 2-8 0.22 0.96 0.5%9) 0.992)
2 1-4 1.12 0.35 0.556) 0.991(6)
1.032) 0.961)
ETF 1 0-5 1.30 0.27 1.0123) 1.0003)
1 1-5 0.31 0.82 0.9959) 0.9829)
2 1-3 2.14 0.09 0.998) 0.9828)
1.372) 1.002)
T5F 1 0-5 3.98 0.00 1.038) 1.00%2)
1 1-5 0.28 0.84 1.0048) 0.9699)
2 1-3 0.53 0.66 1.0G8) 0.96638)
1.422) 0.992)
T 1 1-4 0.75 0.47 1.24(1) 0.991)

1.441). The operators used in these runs were the same dsr sufficiently largez and arises from the exchange of scalar
those constructed for the large-volume runs and thus, werglueballs across the periodic boundaries of the lattice. Finite-
not optimized to give large overlaps with the light torelon volume errors in our glueball masses measured on an 8
states(flux excitations encircling the toroidal latticpresent  lattice at3=2.4, £=3 (whereL¢~2 fm, similar to the vol-
in small volumes. It is likely that this effect was responsibleumes used in the other nine simulatipoan be estimated by
for the poor overlap of our operators with the scalar andfitting the form given in Eq(16) to the masses in Table XV.
tensor states on the’3attice. Let w=ama++ andp=£Ls/as, thenz=pw. The Ay ™ fit

The properties, such as the mass, of a glueball confined iwas done first wusing the function a;m(z)=w
a small box with periodic boundary conditions differ from —)\Al++ exp(—v3pw/2)/p, where v and Aaj+ were the fit-

those in an infinite volume. The modification of the mass Ofting parameters. The best-fit value fowas then used in the
a particle due to finite volume effects has been estimated ifits to the results for the other irreps; to simplify matters, the
Ref. [13]: uncertainty ino was neglected in these fits. Th¢ ~ fit also
included the energy estimate extracted from théa;=3
simulation. The results of these fits are summarized in Table
wherez is the dimensionless length scate mas Ly, M+ XVI; t_he estimates of the f_inite-volume errors are listed in
Ap s A the final column of this table and are given by
is the infinite-volume mass of the scalar glueball, argdis mg(8wé&)/mg() — 1 using Eq.(16). In all cases, these er-
related to the strength of an effective triple scalar gluebalkors were insignificant compared to the statistical errors; this
interaction vertex. The mass shift given in E@6) is valid  means, for example, that any differences between the large-

a;mg(z) =aimg(°)[1—Agexp —v3z/2)/z], (16)

TABLE IX. Results from fits to the3=2.6, £=3 glueball correlatorésee Table V.

Channel Nexp Fit range X%/ Npg Q Energies Overlaps
AFT 1 1-10 0.88 0.53 0.4647) 0.9848)
1 2-10 1.01 0.42 0.46) 0.992)
2 1-4 0.89 0.50 0.468) 0.9888)
0.841) 0.961)
E** 1 1-6 0.60 0.67 0.7818) 0.9848)
1 2-6 0.36 0.78 0.18) 0.944)
2 1-4 0.89 0.50 0.789) 0.9829)
1.092) 0.952)
T 1 1-6 0.31 0.87 0.7718) 0.9718)
1 2-6 0.12 0.95 0.18) 0.953)
2 1-4 0.53 0.79 0.718) 0.9768)
1.121) 0.991)
T~ 1 1-5 0.27 0.85 0.9711) 0.971)
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TABLE X. Results from fits to the8=1.7, £&=5 glueball correlatorg¢see Table 1V.

Channel Nexp Fit range X*/Npe Q Energies Overlaps
AT 1 0-5 1.36 0.24 0.588) 0.9994)
1 1-5 0.26 0.86 0.5785) 0.9925)
2 1-4 0.38 0.89 0.578) 0.9925)
1.192) 0.9712)
Ef* 1 0-5 2.09 0.08 0.943) 1.00G2)
1 1-5 0.12 0.95 0.9248) 0.9817)
2 1-4 0.29 0.94 0.928) 0.9797)
1.292) 0.981)
T 1 0-5 1.25 0.29 1.1Q3) 1.0012)
1 1-5 1.58 0.19 1.1038) 0.9979)
2 1-4 0.87 0.52 1.1@9) 0.9979)
1.41(2) 0.942)
T~ 1 0-3 2.65 0.07 1.214) 1.0002)
1 1-3 0.21 0.65 1.191) 0.971)
2 1-3 0.39 0.76 1.18) 0.9711)
1.553) 0.922)

volume masses in tHg, andE channels must be due purely lowest-lying masses in each of the channals™, E**,
to discretization errors. It is interesting to note that our esti-T; *, and T, ~ are compared with results from small-

mate of)\Al++ agrees well with the value 19070 found in
Ref.[12].

C. Continuum limit extrapolations

The glueball mass estimates in termsapf' were com-
bined with the determinations of the hadronic saajéas.

Wilson action simulations. The lowest-lying and first-excited
masses in th&" " andT, © channels are shown in Fig. 13,
and the ground state and first-excited state inAfié chan-

nel are depicted in Fig. 14. To extract physical predictions
(for the pure-gauge thearythe curves in these plots must be
extrapolated to the continuum lirat;/r c— 0. Discretization
errors are given by the deviations of the finitgresults from

The results are shown in Figs. 12—14. In these figures, ththese limiting values.

dimensionless product of, and the glueball mass estimates ~ The lowest-lying states in thE** and T, © channels
are shown as functions of{/ry)?. Solid symbols indicate correspond to the five polarizations of the tensdr 2glue-
results from the¢=3 simulations, while open symbols are ball in the continuum. Differences between tB& " and

used for the results from thé=5 runs. In Fig. 12, the T, * masses are a measure of violations of rotational sym-

TABLE XI. Results from fits to the8=1.9, £&=5 glueball correlatorgsee Table V.

Channel Nexp Fit range X2/ Npe Q Energies Overlaps
ATT 1 1-9 1.26 0.26 0.4754) 0.9925)
1 2-9 111 0.35 0.468) 0.991)
2 2-4 1.03 0.38 0.468) 0.981)
0.923) 0.855)
ETF 1 1-6 0.42 0.80 0.8446) 0.9926)
1 2-6 0.20 0.90 0.83) 0.972)
2 1-4 0.69 0.66 0.848) 0.9926)
1.091) 0.951)
T 1 1-5 0.91 0.43 0.9187) 0.9826)
1 2-5 111 0.33 0.92) 0.9613)
2 1-4 1.44 0.19 0.918) 0.9816)
1.231) 0.961)
T 1 1-5 0.30 0.83 1.0538) 0.9797)
1 2-5 0.18 0.84 1.02) 0.954)
2 1-4 0.48 0.82 1.059) 0.971)
1.301) 0.921)
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TABLE XII. Results from fits to theB=2.2, £&=5 glueball correlatorgsee Table 1V.

Channel Nexp Fit range X2/ Npe Q Energies Overlaps
AFT 1 1-14 0.60 0.84 0.36233) 0.9985)
1 2-14 0.50 0.90 0.366) 1.0047)
2 1-4 0.86 0.52 0.363) 0.9985)
0.6976) 0.97Q7)
E*+ 1 1-7 1.33 0.25 0.6614) 0.9824)
1 2-7 1.65 0.16 0.668) 0.991)
2 1-4 0.57 0.75 0.66%) 0.98Q5)
0.8787) 0.9687)
T;Jr 1 1-8 1.05 0.39 0.6844) 0.9833)
1 2-8 1.20 0.31 0.688) 0.991)
2 1-4 0.77 0.59 0.688) 0.9823)
0.93§5) 0.9705)
Tf* 1 1-6 0.48 0.75 0.8194) 0.9744)
1 2-6 0.57 0.63 0.82) 0.982)
2 1-4 0.60 0.73 0.820) 0.9744)
1.0258) 0.9587)

metry due to finite spacing artifacts. In Fig. 12, such viola- The leading discretization errors in the tensor glueball
tions are seen to be small for our less coarse lattices antlasses are expected to B¥a?,a?,a.a?). However, we
become appreciable as the spacing gets very large. Discretiave already argued that the results in Fig. 12 imply that the
zation errors in thel, © exceed those of thE**; on our O(atz) errors are negligible. Since the action included mean-
coarsest lattices, finite spacing errors are only a few perceffield correction factors, we also expected th¥@?) errors

for the E** channel, but about 15% in thgj * channel. In  would dominate oveD(asa2) errors and in our continuum
the E** channel, theé=3 results differ very little from limit extrapolations, we assumed that this was true unless the
those using the higher aspect rafie 5, suggesting that the fit provided compelling evidence to the contrary. Although
O(a?) errors are negligible. However, small differences be-We expected the leading discretization errors toC@y),
tween the results from the two anisotropies are visible in théhe following three functions were used in our continuum
T4 * channel. One expects tha(a?) errors will decrease as limit extrapolations:

¢ is increased. Since tha@, © discretization errors are _ 1

; _ 2 ®o(as) =romg, 17
slightly larger for theé=5 runs,O(as) errors can account
for this difference only if such errors offset th’la(ag) errors. @o(ag) =TroMg+Cx(ag/ro)?, (18

TABLE XIllII. Results from fits to theB=2.4, £=5 glueball correlator¢see Table IV.

Channel Nexp Fit range X2/ Npe Q Energies Overlaps
ATT 1 1-13 1.35 0.19 0.3033) 0.9957)
1 2-13 1.15 0.32 0.30%2) 1.0008)
2 1-5 0.86 0.56 0.3@3) 0.9947)
0.5694) 0.9735)
ETF 1 1-9 1.33 0.23 0.5343) 0.99233)
1 2-9 1.46 0.19 0.536) 0.9869)
2 2-5 2.71 0.01 0.538) 0.991)
0.7239) 0.941)
T3 1 1-9 1.08 0.38 0.5422) 0.9883)
1 2-7 0.34 0.85 0.540) 0.9837)
2 2-5 1.28 0.26 0.538) 0.9788)
0.7308) 0.941)
T 1 2-6 1.03 0.38 0.6535) 0.951)
2 2-6 1.77 0.07 0.648) 0.951)

0.7949) 0.882)
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FIG. 4. Effective mass plot showing the results of a single- FIG. 7. Effective mass plot showing the results of a single-
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channel forB=2.6 andé= 3. Thet,—tnax region of the fitis also  channel for3=2.6 andé=3.
indicated.

0.7 _—;9=|2f4o; I§=I5;I as)ulm)L.la.mcleI Pttt
1.1 | L L L B | Q=0.56 ]
[ #=2.60; £=3; 10°30 Lattice i - 2:2;:8:2(6’38; 1
N g;),'zgsv(l) Il 0.6 = -
1.05 - 1 - == = .
; i 05 } .
3 I < r ]
nor 4 i EF
= S S S I B & L _
g R S, S S | 041
< 0.95 [ 1 - - f
L H 0.3 Loe=a =% ¢ a
0.9 - ] L 100 bins
r 1l [~ 100 configs/bin 7
C I 0.2 [T
[ 100 bins H
i 40 comligs/ ‘bin | | H 0 2 4 6 8 10 12
0'85 | I L1111 ) | 1111 11 1 ¢ time Separ‘ation
0 1 2 3 4 5

time separation 3 .
FIG. 8. Effective mass plot showing the results of a two-

exponential fit to the X2 matrix of glueball correlation functions

FIG. 5. Effective mass plot showing the results of a single-
P g 9% tor the A+ channel for8=2.4 and¢=>5. Thet i, —tmnax region of

exponential fit to the glueball correlation function for tAg ~

channel for@=2.6 andé=3. the fit is also indicated.
09 I TT 1T I LB LI I TTrTT TTITT T T T I T T T | T T T T
F 8=2.60; ¢=3; 1050 Lattice H | #=2.40; £=5; 8940 Lattice
F 3;’,’53.781(a> M 0.7 _g:r?‘ggﬁ&w) T
0.85 — B ¢
L i IR
T 08l I il 1,065 - .
= o & I e L
E o £
s P
0.75 — b L
- H 06 — -
0.7 - B r
- 100 bins M 100 bins
|- 40 configs/bin H 100 configs/bin
1 1)) | 1 ¢ | i1 11 | 111 ) | | | 1 1 1] i 1 1 | 1 1 1 | 1
0 1 2 3 4 5 0 2 4 6
time separation time separation

FIG. 6. Effective mass plot showing the results of a single- FIG. 9. Effective mass plot showing the results of a single-
exponential fit to the glueball correlation function for e * exponential fit to the glueball correlation function for tAg ~
channel for3=2.6 andé=3. channel for8=2.4 andé=5.



56 EFFICIENT GLUEBALL SIMULATIONS ON . .. 4055

I T L | T r T | T T T T T T T J T T T I T T T | T L T I T T T
| B=2.40; ¢=5: 8%x40 Lattic . | 8=2.40; £=5; 8940 Lattice ]
g=001 53806 |- @=0.26 4
[ am,=0. M =0.!
R 0.8 -imISHE .
0.8 - - L i
- . o __ . p— 4
- === 0.7 - -
i I { | W ]
a | | &L ]
g = - ]
3 0.6 — > 0.6 _
* o _— = * 7 f [ J——— _*_E& * {
I * 0.5 - b
| 100 bins | I 100 bi
0.4 100 conﬁFs/bin - }00 c:)rtllsﬁgs/bin l
| PRI TR U R 0.4 P I IR SO SR
0 2 4 6 8 0 2 4 6 8
time separation time separation
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the fit is also indicated. the fit is also indicated.

@4(as) =roMg+Cy(ag/ro)?, (19 nels. These are shown in Fig. 13. There are several reasons
for interpreting these data as different polarizations of a spin-
wherec,, c,, andro,mg are best-fit parameters. The results tWo excited state: the two irreps extrapolate to the same con-
of these fits are given in Table XVII for thé=3 data and tinuum limit value; if theT; * state were spin three, then
Table XVIII for the £=5 simulations. Comparing the values there would be a degeneracy with tfi¢ * andA; * chan-
of x?/Npg, one sees that the fitting functiap, was pre- nels and this was not observéthese results will be pre-
ferred for both the¢=3 and £=5 results, although only sented elsewheygif they were polarizations of a spin-four
marginally so foré=3. Given this fact and our expectation State, then again, a similar level must also be found in the
that ¢, should best describe the leading discretization ef-T; © channel. The degeneracy between the two irreps and
fects, we tookrymg from the ¢, fits as our continuum limit the weak finite-volume dependence of their energies also
estimatedindicated in boldface in Tables XVII and XVl  makes an interpretation of this state as a torelon pair or a
These four estimates are in very good agreement not onliwo-scalar-glueball scattering state unlikely, although the
with one another, but also with the Wilson action estimatesmass of this level lies close to twice the mass of the scalar
These fits usingp, are shown in Fig. 12. For our final esti- glueball. Continuum limit extrapolations were performed us-
mate of the tensor glueball mass, we performed a simultaing the three functions of Eq917)—(19); measurements
neous fit with the four data sefsvo irreps and two anisotro- from the two largestag spacings foré=3 and the single
pies using four separate, functions but constraining the largest spacing fof=5 were excluded from these fits. The
intercept parametarymg to be the same for all four fitting results are given in Tables XVII and XVIIl. Again, we ex-
functions. This yielded rom(2**)=5.85-0.02 with  pectede, to provide the most reliable extrapolations to the
x%INpe=1.01, in agreement with the Wilson action estimateas— 0 limit; this was confirmed by the fact that, yielded
rom(2**)=6.0+0.1, obtained by fitting all of the Wilson E** andT, * continuum limits in best agreement with each
action measurements shown in Fig. 12¢g. other. Differences found between tlie=3 and £=5 ex-
We also examined the discretization errors in the massesapolations were not statistically significant. The fits using
of the first-excited glueball states in tBe * andT, * chan- ¢, are shown in Fig. 13. Our final determination of the mass

TABLE XIV. Summary of final mass estimates from g3 andé=5 simulations.

B 3 am(A; am(E" ") am(T; " am(Ty ")
1.7 3 1.0%2) 1.655) 1.926) 2.099)
1.9 3 0.871) 1.474) 1.604) 1.80(6)
2.0 3 0.7979) 1.4012) 1.492) 1.683)
2.2 3 0.6498) 1.192) 1.242) 1.4803)
2.4 3 0.5486) 0.9959) 1.0048) 1.241)
2.6 3 0.4647) 0.7818) 0.7718) 0.972)
17 5 0.5785) 0.9248) 1.1038) 1.191)
1.9 5 0.47%4) 0.8446) 0.9187) 1.0538)
2.2 5 0.3623) 0.6674) 0.6864) 0.8194)
2.4 5 0.3083) 0.53§3) 0.5422) 0.6545)
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TABLE XV. Glueball mass estimates in terms af * for 8=2.4, £=3, and various lattice volumes.

Channel L,/ag=4 Ls/ag=5 Ls/as=6 L,/a;=8
AI+ 0.4836) 0.5516) 0.5458) 0.5486)
AFtF 0.8639) 0.971) 1.003) 1.02717)
E** 0.8489) 0.98010 1.00419) 0.9959)
E** 1.112) 1.272) 1.414) 1.372)
T2++ 1.03329) 1.0059) 1.00214) 1.0068)
T2x++ 1.372) 1.422) 1.4Q03) 1.422)
T1%~ 1.24513) 1.23511) 1.20925) 1.23714)

of the excited tensor glueball, obtained from a constrainec¢ontinuum limit, an appropriate fitting function was needed.
set of four¢,, similar to the ground-state extraction, was The leading discretization errors were expected to be
rom(2* **)=8.11+0.04, wherex?/Np=2.3. This mass O(a?,a?,a.a?). However, there were no distinguishable
has not been reliably determined in any previous simulationdifferences between thé=3 and £&=5 results, suggesting
Finite-spacing errors in the mass of fig~ pseudovector that theO(a?) errors were negligible, leaving us to consider
glueball were also studied. These were found to be small and(a?,a.a?) effects. By inspection, one sees that the fitting
are shown in Flg 12. The results from the different aniSOtrO‘form ©4, which neg|ects one_|ooﬁ)(asa§) effects] cannot
pies are in good agreement. Extrapolations toethe 0 limit  gescribe the data, in contrast to the data for the tensor and
were done using the three functiopg, ¢, and ¢4; the  pseydovector glueballs. As—0, we expect the coupling
results of these fits are summarized in Tables XVII andy (a,) to vanish as—1/In(asA), whereA is an appropriate

XVIII. The continuum limits obtained from fits to thé=3  scale parameter. Hence, we were led to consider the follow-
and¢{=5 data agreed only for the constant fit forsg. The ing four-parameter fitting function:

fits to ¢, and ¢, yielded slope parametefs, andc,) with
large relative errors and opposite signs for the different
anisotropies. Hence, the functiagr was used to extrapolate
to the continuum limit. Due to the very good agreement be-
tween theé=3 and ¢é=5 results, all ten data points were

used in our extrapolation fit. Our estimate from this fit
(shown in Fig. 12 was rom(17~)=7.21+0.02, where However, it was not known how reliably the leading pertur-

¥?INpe=1.55, in agreement with the extrapolation bative behavior otxs(as) would describe the true cutoff de-
rom(1*~)=7.5+0.4, usinge, of the Wilson action results Pendence of the coupling over the large range of spacings
shown in Fig. 12. considered. Taking this into account and inspecting the be-

In contrast to the tensor and pseudovector, the scalar glue-
ball mass showed significant finite-spacing err(gse Fig.

(as/ro)2

TSy 4
C—In[(a,/rg)7] T Ca(@s/To)".

(20

p1(ag)=romg+c,

12), even for our less coarse lattices. Agwas increased, 8 .

the scalar mass first decreased, reached a minimum near X e SV
. L .

as/ro~0.6, then gradually increased. Near the minimum, the 4 { oY

mass was about 25% lower than estimates of the continuum o gty

limit from small-ag Wilson action computations; a 20% dis- 6 =’=—%“"ﬁ=“:%:»?———J;Lﬂﬁvv,;;

cretization error was observed in the result from our smallest g

a simulation. Although the magnitudes of these errors were =

significant, they were smaller than those obtained using the
Wilson action by a factor of 2. In order to extrapolate to the

=
. ’O-o\g,',,,,.—c&"/o
TABLE XVI. The effects of simulating in a finite box: results 0
from fits of Eq. (16) to the energy estimates given in Table XV ‘ ,
from lattices of spatial extent/a;=4,5,6,8. TheT; ~ fit also 0.4 , 06 0.8
includes an energy estimate fog/a;=3. The final column esti- (ary)

mates the expected finite-volume errors in glueball masses from the
Ls/a;,=8 simulation aj{B3= 2.4 andé=3. These errors are estimated
by mg(8wé&)/mg(e0)—1 using Eq.(16).

FIG. 12. Glueball mass estimates in termsrgfagainst the
lattice spacing &/ro)?. Results from th&=5 simulations for the
lattice irrepsA; *, E* Y, T, *, andT{ ~ are labeledD, O, ¢,

Channel amg () g XZ/NDF % correction and A, respectively. The corresponding solid symbols indicate the
results from thef=3 simulations. Data from Wilson action simu-

A" 0.5544) 260(37) 23 —0.020 lations taken from Refs[19-27 are shown using crosses. The

ETT 1.0027) 31923 0.62 —-0.024 dashed, dotted, and dash-dotted curves indicate extrapolations to the

T, " 1.0036) —59(24) 0.15 +0.004 continuum limit obtained by fitting to thé=3 data, the¢=5 data,

T 1.2237) —66(4) 1.05 +0.005 and all data, respectively. The solid line indicates the extrapolation

of the Wilson action data to the continuum limit.
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FIG. 13. Estimates of the masses of the tensor glueball and its FIG. 14. Masses of the scalar glueball and its first-excited state
first-excited state in terms of, against the lattice spacingy/r)?. in terms ofr, against the lattice spacing{/r)?. Open and solid

Results from thg=5 simulations for the&e* " and T, * irreps are ~ Ssymbols indicate results from the=5 and ¢=3 simulations, re-
labeled by[d and ¢, respectively. The corresponding solid sym- spectively. The extrapolation to the continuum limit is indicated by
bols show the results from th&=3 simulations. The dashed and the dash-dotted curve.

dotted curves indicate extrapolations to the continuum limit ob- ) ) o . .
tained by fitting to thet=3 and the¢="5 data, respectivelysee  the Wilson action, this slight discrepancy raises doubts con-
Tables XVII and XVIII). cerning the reliability of the extrapolation using, ; mass

estimates using the improved action for a few values.of
havior of the actual data, we decided to also consider thémaller than those considered here would be needed to re-
following simpler quadratic form: solve this discrepancy.
One explanation for the 20% discretization errors in the
@z 48g)=rogMmg+ Co(as/rg)?+cy(as/ro)?. (21) scalar glueball mass is that the scalar glueball is extremely
small. However, there is eviden¢&4,15 that the presence
Both of these functions were fit to the mass measurementsf a critical end point of a line of phase transitiofrsot
from all ten simulations; the results of these fits are summaeorresponding to any physical transition found in QdB
rized in Table XIX. The functionp,, yielded a slightly bet- the fundamental-adjoint coupling plane is responsible for
ter fit and a continuum limit for the scalar glueball mass oflowering the scalar glueball mass near the crossover region
3.98+0.15. This fit is shown in Fig. 12. An extrapolation of in the Wilson action. It is possible that the scalar glueball
existing Wilson action data using, yielded 4.33-0.05.  mass in the improved action used here may be similarly in-
Given the quality of the scalar glueball mass estimates usinfluenced. If so, the fact that this effect appears to be less

TABLE XVII. Extrapolations of the glueball mass estimates to the continuum limit fogth8 runs. The
three scaling formsg, ¢,, ande, which are fit to the data are given in Eq$7)—(19). The values indicated
in bold are taken as our final continuum mass estimates.

Channel Fit function roMg c, C4 X*Npge
Et+ @0 5.833) 0.71
@, 5.91(7) —0.26(20) 0.49
®a 5.87(5) —0.33(25) 0.46
TS ®o 5.983) 5.35
o 5.667) 1.0221) 0.90
@4 5.835) 1.2927) 0.87
T~ ®o 7.225) 1.81
@, 7.4411) —0.71(31) 0.96
o4 7.327) —0.87(40) 1.07
E¥*Y @0 7.998) 2.44
®s 8.5220) —1.8(6) 0.31
@4 8.2512) —2.6(9) 0.12
TS ®o 8.376) 1.33
o 8.3216) 0.27) 1.94

Q4 8.34(8) 0.5(11) 1.89
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TABLE XVIII. Extrapolations of the glueball mass estimates to the continuum limit for&k& runs.
The three scaling formeg,, ¢,, and ¢, which are fit to the data are given in Eq47)—(19). The values
indicated in bold are taken as our final continuum mass estimates.

Channel Fit function roMg C, C4 X2/ Npe
Et+ %o 5.822) 5.03
®> 5.995) —0.41(12) 1.55
o4 5.91(3) —0.50(14) 0.81
T, %o 6.122) 82
o 5.534) 1.6911) 5.16
N 5.823) 2.0213 1.32
T . 7.212) 161
®, 7.097) 0.31(16) 0.57
Pq 7.154) 0.3218) 0.80
Ex*+ ®o 7.674) 5.88
©s 8.1214) —1.2(4) 0.02
@4 7.91(8) —1.5(4) 0.27
LE ®o 8.293) 9.17
®2 7.80(10) 1.333) 1.37
o 8.06(6) 1.4(3) 2.48

pronounced for this action suggests the possible existence of the static-quark potential. However, the static-quark po-
other perturbatively improved actions in which the scalantential cannot be directly measured in an experiment; it must
glueball mass is even less affected by scaling violations. Wee deduced indirectly from other observables. We decided to
are currently searching for such actions. use a variety of different physical quantities to deduge
Discretization errors in the mass of the first-excited state |n Taple XX, estimates af,  using the results from vari-
in the A] * channel were also found to be significant, asous quenched lattice simulations are shown. For each com-
shown in Fig. 14. The mass of this state is nearly twice thapytation, the quantity used to set the lattice spacing, such as
of the lowest-lying scalar glueball, suggesting that this statghe mass of the or the 1P-1S splitting in heavy quarkonia,
may simply be two glueballs. Given the significant discreti-ig indicated. The determination of * from a~* was accom-
zation errors in the single glueball scaling data, one wouldhjished using values d/r, given in Ref.[16] for the Wil-
expect similar systematic errors in the two glueball state. Thggy, gluonic action at various values@finterpolating where

absence of any level of similar mass in all other Chan”elﬁecessary. Note that due to quenching effegisaries with
justifies the spin-zero interpretation of this state. Consideringp,o quantity used to set the scale. The entr}es in the last

the difficulties encountered in extrapolating the lowest-lying.o1ymn of Table XX cannot be considered as different mea-
scalar to the continuum limit, we made no serious attempt {Q,rements of a single quantity and thus, strictly speaking,
determine the continuum limit of this first-excited state. inejr weighted average has no statistical meaning. The last
However, the result of a fit using, , is included in Table  ¢o1ymn of the table is meant to illustrate the range of values
XIX. The possible interpretation of this level as a two glue- 5\« obtains for =% when using various scale setting quanti-
ball system might be strengthened by a more precise ﬁniteﬁes. We expec(t) that the value 051 appropriate for the

volume study. low-lying glueballs should lie somewhere within this range.

The simple average,'=410+20 MeV of the determina-

tions in Table XX was taken as our estimate of the hadronic
In order to convert our glueball mass computations intoscale.

physical units, we must specify the value of the hadronic For our final continuum mass estimates of the tensor glue-

scale. The hadronic scatg has a precise definition in terms ball, we found 2408 10+ 120 MeV (where the first error is

D. Conversion to physical units

TABLE XIX. Extrapolations of the scalar glueball mass estimates to the continuum limit. The fit func-
tions used are given in EqR0) and(21). The value indicated in bold is our final continuum mass estimate
for the scalar glueball.

State Fit function roMg C, C, cL X2/ Npg
AF* oL 3.0915  —18(4) 185) 0.9613 0.25
024 3.848) —3.5(4) 4.55) 0.55

AFTT ®24 6.9319) —5.3(1.1) 8.81.4) 0.41
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TABLE XX. Estimates ofr,* using results from various quenched lattice simulations with the Wilson gluonic action. The simple
averagagl=410(20) MeV of the last column is taken as our estimate.

Source B Quark action Scale setting quantity a ! (Gev) ro 1 (MeV)
NRQCD|[23] 6.0 NRQCD Y (2S5-1S,1P—-19) 2.4(1) 43423
NRQCD[24] 5.7 NRQCD Jy(1P—-19) 1.234) 430(16)
LANL [25] 6.0 Wilson M, 2.33041) 422(16)
GF11[26] 6.17 Wilson My 2.9311 41917
JLQCD[27] 6.1 Wilson Jy(1P—1S) 2.547) 39413
JLQCD[27] 6.3 Wilson Jy(1P—1S) 3.3611) 401(14)
JLQCD 28] 6.3 Wilson M, 3.41(20) 406(24)
Fermilab[29] 6.1 Fermilab J/y(1P—1S) 2.558) 39514)
BLS [30] 6.3 Heavy light f 3.21(9) 38311
BLS [30] 6.3 Heavy light M, 3.449) 41011
UKQCD [31] 6.2 Wilson M, 2.77(16) 376(22)

statistical and the second is from uncertainties in the detethe discretization errors in these cases are of comparable
mination ofrg). It is interesting to note that our mass esti- magnitude, excepting the scalar glueball mass. For the
mate lies within 8% of the mass of ttfg(2220) resonance g=6.4 Wilson action run in Ref.19] by the GF11 Collabo-
[17,18, reported to have quantum numbers (eveh) In  ration using gauge-invariant glueball operators, a total of
order to make a direct comparison with experiment, how-3.13x 10'? link updates were performed, an error of 2.5%
ever, corrections to our result from light quark effects andwas achieved in the scalar glueball mass, and a fractional

mixings with nearby conventional mesons must be taken int@rror of 3.6% was obtained for the tensor mass. Using
account. Our estimate of the mass of the first-excited gluer0:0_48 fm andag/r ,=0.1012), thelattice volume in this

ball in the tensor channel was 332a0+160 MeV; for the  iui1ation was (1.55 fnf)x (1.45 fm). For the same value
pseudovector  state, we found a mass of 2960 .t 5y Ref [20] by the UKQCD Collaboration, 1.3510'
10=140 MeV. Qur estimate from the fit using, for the  jink updates were made and fractional errors 3.4%, 3.3%,
mass of the scalar gluebgll was 1&360i 80 Mey, how- ._and 9% were obtained for the scalar, tensor, and pseudovec-
ever, we regard the continuum limit extrapolation for '[hISt tivelv. The lati I 158 f
state as being less reliable than those for the other gluebaIIFg: szszﬁhlr;isgﬁclrzvi&#_§6aflfzvilﬁm5e7vé?ié9 I'ink m)
updates were performed and 1.5%, 1.0%, and 1.0% errors in
the scalar, tensor, and pseudovector masses were achieved.
A quantitative comparison of efficiencies is difficult to QOur lattice volume was (1.93 fri)sinceag/r,=0.40219).
make. There are many factors which affect the overall efﬁ-For Our[B: 2.4, §:5 run, the number of link updates was

!ink updates is an importa_nt factor. The_speed of an uPdatBseudovector masses were 1.0%, 0.5%, and 0.8%, respec-
is, of course, platform, action, and algorithm dependent. O'?ively. Using a,/r,=0.45q1), our lattice volume for this

the DEC Alpha workstations we used, a CM update using aPun was (1.76 fmj. Thus, the ratios of thé values for our
improved action required twice as much time as for the Wil- '

e . : L g:2.6 and 8=2.4 simulations to those of the GF11 run
son action; the improved-action OR updating time was threwere 1500 and 2000, respectively, for the scalar glueball
times longer. Critical slowing down and thermalization are ' P Y, 9

also contributing factors, but a crucial issue is the reductior] 255 and 7000 and 17 000 for the tensor glueball mass. The
of excited-state contaminations in the glueball correlators. I§atos of thef=2.6 and=2.4 £ values to those of the
our coarse lattice simulations, we found that current methods KQCD run were 120 and 160, respectively, for the scalar
for constructing good glueball operators were very effectiveass, 260 and 600 for the tensor, and 1900 and 1700 for the
in hastening the onset of plateaus in the effective masses. PSeudovector.

Given these difficulties in assessing the efficiency of a Considering our ten simulations together, a total of
glueball simulation, we decided to make our comparison$ X 10'° link updates were performed. For the Wilson action
based simply on the number of link updatss, and the simulations of Refs[19,20, an estimated 8 and 162 link
fractional errore attained in the final mass estimates. Sinceupdates were required, respectively, to generate continuum
the error in a Monte Carlo estimate decreases with the nunlimit results whose statistical uncertainties were lar@er
ber of measurements as 1A/N, we expect that the recipro- the tensor and pseudovector statdgn those quoted here:
cal product of the number of link updates and the square othe statistical error on our estimate figym(2**) was about
the fractional error is approximately proportional to the effi-five times smaller than that from the extrapolation of the
ciency of a simulation; we denote this quantity by Wilson action results, and form(1* ), the uncertainty
£=1/(€*N,,). An interesting comparison to make is betweenwas 20 times smaller, implying that about 25-400 times
simulations at a small lattice spacing, suchags-0.05 fm,  greater statistics would be required for similar accuracy.
using the Wilson action and improved-action simulations at arhus, in total, the anisotropic lattice simulations were cer-
spacingas~0.2 fm. Such a comparison is relevant becauseainly more than 1000 times more efficient.

E. Comparison of efficiencies
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The above discussion illustrates the computational advarestimates from Wilson action simulations carried out with
tages of extracting nonscalar glueball masses from simulahe aid of supercomputer resources. Extrapolation of the sca-
tions on coarse, anisotropic latticeas{-0.2 fm) using an lar glueball mass to the continuum limit was hampered by
improved action instead of lattices for whieh~0.05 fm.  uncertainties in choosing the fitting function and discretiza-
The excellent overlaps achieved from our variational calcution errors which were 20-25 % even for our smallest lattice
lations demonstrate another advantage of simulating ospacings; although uncomfortably large, these finite-spacing
coarse spatial lattices. The glueball wave functions extenérrors were half as large as those obtained using the Wilson
over only a few points of the lattice when~0.2 fm. Thus, action. Finite-volume errors in our results were shown to be
variational calculations using a feasible number of basisegligible. The masses of the first-excited states in the scalar
functions(a dozen or spcan yield very good approximations and tensor channels were also examined.
to the glueball wave functions. This will be especially im-  Our results show that spatially coarse, anisotropic lattice
portant for future decay constant calculations and determinasimulations are an effective means of studying gluonic sys-
tions of mixings with nonglueball states. These advantagetems. The techniques exploited here are sufficiently powerful
have already enabled us to study the more massive gluebdfl overcome the difficulties which plague Monte Carlo cal-
states which have yet to be simulated reliably using the Wilculations involving gluonic excitations. These methods
son action; these results will be reported elsewhere. should be useful for studying the spectrum of heavier glue-

These advantages are less clear for the scalar gluebdibll states. Data for the masses of all 20 lattice irreps of the
mass due to the presence of 20% discretization errors aubic group(including parity and charge conjugatjoare
a;~0.2 fm. Using the action of E¢1), simulations at one currently being accumulated in order to survey the spectrum
or more lattice spacings smaller than 0.2 fm would be neededf SU(3) glueball states below 4 GeV comprehensively. We
to firmly establish the continuum limit. A more attractive shall report on these results in the near future. We also plan
approach would be to use an action for which discretizatioto use the techniques outlined in this paper to determine
errors in the scalar glueball massagt-0.2 fm are negligi- various glueball matrix elements and decay strengths, to in-
bly small. The search for such an action is currently undervestigate the mixings of glueballs with conventional had-
way. ronic states, and to study mesonic states containing excited

glue (the so-called hybrid mesonsThe size of the discreti-
VI. CONCLUSION zation errors in the scalar glueball mass was the only disap-
pointing aspect of this work; we are currently investigating a
We have demonstrated the advantages of using anis@rew class of lattice actions with the hope of reducing these

tropic lattices and an improved gluonic action for simulating|attice artifacts fora;~0.2 fm to the level of a few percent.
glueballs. Ten simulations at lattice spacings ranging from

0.2 to 0.4 fm were performed using DEC Alpha worksta-

tions, and the results were extrapolated to the continuum
limit. Results for the masses of the scalar (0, the tensor We would like to thank Peter Lepage, Julius Kuti, Chris

(2*7), and the pseudovector {I) glueballs in SW3)  Michael, Terrence Draper, and Keh-Fei Liu for helpful dis-

pure-gauge theory were presented in terms of the hadronicussions. This work was supported by the U.S. DOE, Grant
scale rgl. The continuum limits for the tensor and No. DE-FG03-90ER40546. M.P. is grateful to the University

pseudovector glueball masses were obtained with uncertaiof Kentucky Center for Computational Sciences for financial
ties of less than 1%, significantly improving upon previoussupport.
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