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Complete O(a?) results for ete™—(y,Z)—four jets
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We present the next-to-leading-orc[@(ag’)] perturbative QCD predictions f@" e~ annihilation into four
jets. A previous calculation omitted ti@(ag) terms suppressed by one or more powers bllfJ,ANhereNC is
the number of colors, and the “light-by-glue scattering” contributions. We find that all such terms are uni-
formly small, constituting less than 10% of the correction. For the Durham clustering algorithm, the leading
and next-to-leading logarithms in the limit of the small jet resolution paramgfgrcan be resummed. We
match the resummed results to our fixed-order calculation in order to improve the \wmatirediction.
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PACS numbegps): 12.38.Bx, 13.38.Dg, 13.87.Ce

[. INTRODUCTION the one-loop corrections are so large, the renormalization-
scale dependence of the NLO four-jet result is still strong,
Electron-positron annihilation into jets provides an arenaand it is likely that uncalculated higher-order corrections are
for studying quantum chromodynami@@CD) that is free of ~ important. Also, a significant four-jet rate only appears at
initial-state uncertainties such as parton distribution funcsmaller values of the jet resolution parameygy,, where
tions. At the large center-of-mass energies achieved by thédere are large perturbative logarithms, although these can be
SLAC Linear Collider(SLC), CERN e*e~ collider LEP, ~ partially resummed for the Durham algorithhl]. _
and now LEP 2g*e” annihilation is also relatively free of  There are at least two other motivations for studying
nonperturbative final-state effects, i.e., hadronization correc® © annihilation to four jets(1) These events are a back-

o F\N— : .
tions. On the other hand, perturbative QCD corrections to jefound toe e —W"W~—4 jets, particularly when the

rates can be very large. For example, the three-jet rate at tkﬁ{?;etrégférgg‘zsafﬂégg)s;(?Jrfaerte;%%\llesgz):‘irthJ%SehOIg'D
Z° pole receives a 20-30 % correctigt] at order aﬁ. J P Q

h t-to-lead JENLO i ¢ tests to which three-jet events are insensifi%g]. For ex-
1ese next-to-leading-ordéNLO) corrections are of course mple, the non-Abelian three-gluon vertex appears at leading
critical for obtaining a precise experimental measurement o

f he th . 4 related b bl rder in four-jet events; the same is true for the production of
as from the three-jet rate and relatdd(as) observables . nathetical, light, colored but electrically neutral particles,

[2,3] , . i such as light gluino§13—18. In both applications, distribu-
More recently, the NLO corrections ®'e~ production ions of the four jets with respect to energies and anglék
of four jets were computed, and a correction of roughlyare important. Such distributions can be computed at NLO
100% was foundi4] for most jet algorithmswhen the renor- i the same numerical program, and will be the subject of
mghzauon sca!e was ;et equal to the center-of-mass e)aerg)ﬁ separate publicatiofL7]; here we briefly study the sensi-
This computaz'uon omltted_ terms suppressed by one or Moryity of the total four-jet rate to additional light fermions.
powers of IN;, whereN_ is the number of colors in a gen-  The remainder of the paper is organized as follows. In
eral SUN.) gauge theory Nc=3 for QCD). It also ne-  gec. || we describe the dependence of the four-jet rate on
glected the “light-by-glue scattering” contributions — inter- ej|ectroweak and color factors, and outline the structure of the
ference terms where two different flavor quarks couple to theyymerical calculation. In Sec. Ill we present the complete
virtual photon orZ boson. In this work we present the com- o(ag) predictions for three different jet algorithms. We in-
plete o_(ag) results, using an improved_version of the sameyjcate the dependence of the predictions on(thehysical
numerical programmeNLO_PARC [5], which was employed  yenormalization scale:.. The Geneva algorithrfil8] has a
for the leading-inN. computation. The crucial ingredients relatively mild x dependencésmall NLO correction and a
for the construction of the program are the tree-level amp”'relatively strong dependence on the number of light quark
tudes for five massless final-state partoese™—qqggg flavorsN;; we discuss the extent to whidky can be deter-
and e'e"—qqq’q’g [6,7], and especially the recently mined from the Geneva four-jet rate alone. In Sec. IV we
present results from matching the resummed Durham jet rate
to the fixed—orderO(ag) results; the improved prediction
agrees quite well with preliminary SLD dafta9]. Section V
contains our conclusions.

computed one-loop virtual amplitudes fef e”—qqq’q’
[8,9] ande"e” —qqgg [10]. We use the formulas given in
[6,9,10.

The NLO prediction of the four-jet fraction — an observ-
able whose expansion begins at ordér— makes it pos-

. MS . .. Il. STRUCTURE OF THE CROSS SECTION
sible to measure - with the same formal level of precision
S . AND COMPUTATION

(NLO) as has previously been reserved @¢a;) observ-
ables ine* e~ annihilation. However, the theoretical uncer-  For computational reasons as well as to study the effect of
tainty in such a measurement will still be sizable: Because&varying parameters, it is useful to decompose the leading-
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order(Born) and NLO contributions to the four-jet differen- state radiation and other electroweak corrections are ne-

tial cross section with respect to both their electroweak andgjlected. Then the helicity-summed four-jétlifferential

QCD (colon structure. To simplify the electroweak decom- cross section at center-of-mass enexgymay be written
position we assume that the observable being calculated is

insensitive to both(1) correlations between the final-state _477a2 0 M, () N, £ () an)
hadrons and the electron-positron beam direction, @d ~ Tfourjer= 35 Nel I(S) 0"+ 1T(s) o7 + 17 (s) 0y ],
guark and gluon helicities. We also assume the positrons are (1)

unpolarized and the electrons have a longitudinal polariza-
tion of P, (P.=+1 for a right-handed beamQED initial-  where

1
05)= 3 Q2+ (0D(1=Po+ R)’(1+PIIZ (W] + (0RIIPA9)]?

—%[uf(l—Pe)+v§(l+Pe)]<§q: Qv +vR) |ReP,(s),

f<”>(s)=(§ Q¢ 2+%[(v'f)z(l—F’e)+(v§)2(1+ Pe)](% (v +vR) 2|Pz(3)|2
—%[vf(l—Pe)+veR(1+Pe)] % Qq) % (v9+0v2) |ReP,(s),
0(8) =5z {021~ Po) + (1)1 + PP @

~ 8sirf26y,

where « is the fine structure constar@? is the charge of section) This contribution dominates the cross section at
quark g in units of e, and the left- and right-handed cou- O(«?) and as we will see, again &(a?).

plings to thez® are The remaining contributiong]l) and(lll), have different
origins in the real and virtual parts of the calculation. In the

o —1+2sitFly 2sifoy real part they come from theqq’ q’g final state when the

oL sin26y, ' URT sin26y, ' roles ofq andqg’ are exchanged on the opposite side of the
cut; in particular, a different quark pair couples to theZ)
+1—2QUsir? 6y 2Q9%ir? 6y, on each side of the interference. In the virtual part they can
vl=———————, V= —— (3)
L sin26,y TR sin26y, '

where 6, is the weak mixing angle; the two signs irf
correspond to up+{) and down ) type quarks. Equations

(1) and (2) include both virtual photon and boson ex- @
change(and their interferenge the ratio ofZ and photon
propagators is given by

s
(4)

PZ(S)ZS—M%-HFZMZ’ 191))

whereM; andI'; are the mass and width of the

Representatives of the classes of diagrams contributing to
fO0, £ andf(" are depicted in Fig. 1 as amplitude inter-
ferences. Five-parton cuts of these graphs, shown as dashec (D
lines, correspond to the real part of the NLO correction; four-
parton cuts, shown as dotted lines, correspond to the virtual
part. In contribution(l) a single fermion couples to both G 1. Representative contributions of tyges (1), and(lll),
(7,2) vector bosons in the interference, via either a vector oks described in the text. The coupling of a quark to }1&] vector
axial vector coupling(As shown in the figure, there may be poson is denoted by, with a 1 (y5) for vector (axial vectoy
a second or even a third fermion loop in the interior of thecoupling. Dashed lines correspond to representative five-parton
graph, corresponding to “QCD” factors dfl; in the cross cuts; dotted lines to four-parton cuts.
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have the same kind of exchange origin q@'? final  Correspondingly, we write the fuﬂ)(ag) correction to the

states, but they can also arise from eithgrgg or qqq’q’  four-jet rate as

graphs where a quark loop couples directly to the photon or

Z (for example, the contributiofg.5 (AZ) in [9]). C,=CP+cP+cP+cP+cP+cyP+cy+c",
Contribution (II) represents “light-by-glue scattering,” (10

whereby a different fermion line couples to each vector bo-

son, via a vector coupllng in each case. There is no suchbsorbing all prefactors into the definitions of t8§°. |
contribution atO(a?) if only charge-blind observables are [4] we calculatedC{®® ; here we add the remaining terms
considered[20], due to Furry’s theorem — the order:  in Eq.(10). The subleadmg -color tern@{®*" come partly
amplitude interferences all contain fermion trlangle subfrom nonplanar interference graplisot shown in Fig. 1
graphs. Although the cross section is nonvanishin@@t?),  They include identical-quark Pauli exchange contributions
we shall see that it is still extremely small, due partly toanalogous to theE terms of [20], as well as various
cancellations in the sum over quark couplmgsfﬁ'ﬁ(s) and  subleading-color virtual subamplitudé8,10], and sublead-
partly to approximate cancellations in the phase-space inténg terms in the real and virtual color sums. We find that all
gratlons that are related to the exact cancellations at ordene additional terms are considerably smaller tieif>®

as at least for the overall four-jet rate.

Contribution (Ill), “ Z-by-glue” scattering, is similar to The Monte Carlo integrations required to numerically
contribution (I1) except that the quarks couple to tie  evaluate theC(¥ are done separately for each term, except
through the axial vector coupling. This contribution is non- thatC(d) andC(f) are combined. An advantag4] of break-
zero atO(«?) [21], although small for the three- and four-jet ing up the problem in this way is that theNE-suppressed
rates, and it remains small @(«3). In Eq. (2) we have  integrands have significantly more complicated analytic rep-
already carried out the sum over the five light quark flavorsyesentations than the leading terms, and therefore take more
in which the massless weak isospin doubletgl) and (€,S)  time per point to evaluatén some cases up to a factor of 5
cancelled, leaving only thet o) contribution. The top quark |ongey. On the other hand, the N parametric suppression
contribution to(lll) is purely virtual for ys<2m;, but it  implies that far fewer numerical evaluations of the sublead-
does not decouple in the large, limit [21]. We expand in ing terms are required in order to achieve an absolute statis-
the limit of large top quark mass, including all terms throughtical accuracy comparable to that for the leadindNinterms.
O(s/m?); at this order the top quark does not appear in theContributions(ll) and (Ill) could have been further decom-

vector contribution(ll) [9,10]. posed by analogy to Eq9), but in view of their small over-
Dividing the four-jet cross sectiowr,,.je: Dy the total  all contribution they were each integrated as a single expres-
hadronic cross section &i(«y), sion.

As in any NLO QCD computation, the real and virtual
(5) corrections to the cross section are separately divergent, but
have a finite sum. In dimensional regularization with
] ) ] D=4-2¢, the singularities of the virtual part manifest
yields the four-jet fraction themselves as poles inin the one-loop amplitudes, whereas
the real singularities are obtained upon phase-space integra-
tion of the squared tree amplitudes. We use a general version
of the subtraction methd@®0] to extract the singular parts of
(6) the real cross section and combine them with the virtual
poles. This method leaves a finite integral over five-parton
Neglecting for the moment the renormalization-scale depenphase space, and another over four-parton phase space,
dence of the calculated cross section we write the expansiophich are performed by adaptive Monte Carlo integration
in ag as using VEGAS [22]. The particular form of the subtraction
3 . method used here is essentially that describedi2Bl, to
_ (ﬁ ﬁ) cll1+ a_s) 7 which we refer the reader for more details. No approximation
4 y . .
2 2 T of the matrix elements or the phase space has to be made in
this method.
f(A) » §\? N s\ a The subtraction method relies on the fact that the integral
PR :(E> B, +<z) Cy7, A=LILII, (8  over the tree cross section is rendered finite by subtracting all
soft and collinear limits. This means that for a phase-space
point that lies very close to a singular point, the integrand is
the square of the difference of two large humbers, namely
the tree amplitude and its soft or collinear limit. In order to

41ra? 0 ag
Ttot™ 3s NcF(s) 1"’?,

£ £ -1
a I i
oDt — D4 —— g

f(l) £

o
1+—
aa

O'four—jet

RAE

Otot

2
B,+

Next we decompose the one-loop correctiomﬂ% with re-
spect toN, andN;:

N Nfz 1 obtain the desired cancellation it is crucial to compute this
=N%(N2- 1)[ o+ N_ggbhr — o+ —2051“) difference in a numerically stable way, even if a certain in-
c N Ne variant mass becomes very small. Thus, if the phase-space
1 point is so close to a singular point that a straightforward
+ _;Ugeur o (9)  evaluation of the amplitude becomes unstable, the amplitude
N¢ Ne is replaced by itgmore stablg soft or collinear limit. We
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checked that the error introduced by this treatment is com-
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TABLE I. Jet algorithm definitions.

pletely negligible. We also checked that our results are inde

pendent of the arbitrary parametetsand &.; which have to
be introduced in the subtraction methi@&8.
Another potential numerical problem is related to spuri-

ous singularities in the one-loop amplitudes. Besides the ex-

pected poles in the soft and collinear limitahich are
avoided by the program since they lie in the three-jet region

the one-loop amplitudes have unphysical poles, i.e., poleBurham

with zero residue. Unfortunately, it is not possible to elimi-

nate all these poles analytically, as long as the amplitude i

Algorithm Yij Pij
2 5+ D
FO (i) E+E)[1, Ff'“fl)
S Ipi+pjl
1—cos;
2 min(E7 E? — ! Pit+ P
8 1—cogY;
Geneva SEEi——— Pit P
9 (E+E)

expressed in terms of logarithms and dilogarithms multiplied

by kinematic coefficient$10]; this elimination is only pos-
sible if the amplitude is rewritten in terms of more general
functions[24]. However, in the helicity formalism, one can
simplify the (di)logarithmic coefficients to greatly alleviate
the spurious pole§10]. We checked that the numerical
evaluation of the matrix elements as giverfd10] is stable,
even for points that are quite close to a spurious pole, an
that the probability for hitting an unstable point in the Monte
Carlo integration is very small. Indeed, we had to evaluat
close to a million points in a test ruiorresponding to sub-
percent statistical accuracy on the integtal order to find
one point that was “close” to a particular spurious pole; a

tnamely the

fects and hadronization. Obviously the comparison would
benefit from a reanalysis using the full currétt pole data
samples. As expected, the subleading-color pieces are
roughly 10% of the corresponding leading-color contribu-
H’ons, reflecting the Ng suppression. This feature holds
Separately for the terms lacking and havinghyrfactor. The
contributionsg(ll) and(l11) are so small that we multiply them

eby a factor of 1000 and 10, respectively, in the figure. Table

Il presents the same results, for,.e{0.005,0.01,0.08
coefficients of/2m)3CY/(1+ ag/7) at

that one point the value of the vanishing denominator was/S=Mz, including the statistical uncertainties from Monte

still about an order of magnitude larger than where the nu

merical evaluation of the cross section typically becomes un

stable.

lll. FIXED-ORDER RESULTS

We now present results for the four-jet fractiéty at
next-to-leading order inxg. We useN.=3 colors,N;=5
massless quarks, a strong coupling constant
as(M5)=0.118, a top mass oh,=175 GeV, az° mass and
width of M;=91.187 GeV and';=2.490 GeV, and a weak
mixing angle of siAA,=0.230[25]. The numerical results
given here are fok/s=M, but to the extent that contribu-
tions (1) and (lll) can be neglectedR, depends essentially
only onN;, N¢, and as(\/g). We consider the EO, Durham
[26,11] , and Genev@l8] jet algorithms. These cluster algo-
rithms begin with a set of final-state particlgmrtons in the
QCD calculation and cluster the paifi,j} with the smallest
value of a dimensionless measwrg into a single “proto-
jet.” The procedure is repeated until all tyg exceed the
value of the jet resolution parametgr,;, at which point the

protojets are declared to be jets. The algorithms differ in the 030f  ~w ' ' -
measurey;; used and/or in the rule used to assign a four-

momentump;; to two clustered momentg;, p;. The same
value ofy in different schemes may sample quite different

classes of events. For the reader’'s convenience, we collect 3
the definitions of the EO, Durham, and Geneva schemes in 07 : . ) .

Table I.

ofional to «

Carlo integration. The “Born” line gives the tree-level result
(ad27)?ByI(1+ ag/ 7).

Observable quantities calculated in QCD should be inde-
pendent of the arbitrary renormalization scale However,
the perturbative expansion is invariably truncated at a finite
order, leading to a residual dependence of the result.on
The tree-levelw dependence is much stronger for the four-jet
rate than for the three-jet rate, because the former is propor-
§ instead ofag. The full u dependence of the
NLO four-jet rate is given by

EO scheme

ISNEE.
@

(‘n)xmoo
o (m)x10

Jet fraction R,

L -,
0.010 0.020 0.050

Yeut

(b) Yeuw=0.015

Jet fraction R,

2.00

1
0.05 0.10 0.20 1.00

/s

0.50

We start the presentation of the results with the EO

scheme. Figure () shows the absolute value of the contri-

butions of the different electroweak/color pieces to the four-

jet fraction at\s=M,, as a function ofy,,, setting the
renormalization scale ta=M;. Note (from Table I)) that
cP+c, cP+cl andc{" are negative. These curves
are compared to preliminary SLAC Large Detect&LD)
data pointg19] which have been corrected for detector ef-

FIG. 2. (a) Absolute value of the contributions of the differ-
ent electroweak-color pieces to the four-jet fraction &=M
for the EO scheme, i.e., ag/2m)%C/(1+ ag/m) with
xe{a,b,c,d,e f,ILlll}. We also show the Born and full one-loop
prediction, and data fronj19]. (b) Dependence of the tree-level
(dashed lingand one-loogsolid line) prediction on the renormal-
ization scaleu for y.,~=0.015.
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TABLE Il. EO algorithm.

Contribution toR, Yeur=0.005 Yeur=0.01 Yeur=0.03
Born (2.60-0.02)x 10 * (1.16-0.01)x 10! (1.79+0.01)x 10 2
a (2.43+0.08)x 10! (1.27+0.03)x 107! (2.42+0.05)x 1072
b —(1.23+0.02)x 10! —(4.75+0.04)x 102 —(5.57+0.06)x 103
c —(4.06+0.02)x 102 —(1.83+0.01)x10° 3 —(2.93+0.01)x 10 °*
d+f —(1.13+0.18)x 102 —(1.01+0.08)x 102 —(2.42-0.10)x 1073
e (1.42+0.01)x 102 (5.45+0.04)x 103 (6.69+0.06)x 10" 4
Il (1.66+0.28)x 10"/ (2.43+0.32)x 1077 (1.88+0.18)x 10’
11} —(1.18+0.01)x10°* —(7.53+0.03)x10°° —(2.37+0.02)x 10 ®
Full=R, (3.79+0.08)x 107 * (1.88+0.03)x 107! (3.46+0.05)x 102
ag(u)\? ag(w)\® w? some interest in experimentally constrainiNg, in particu-
o4(p)= (7) B4+( 5 ) Cyt 250'”(?) B4, lar because a massless gluino would effectively shift the
(11  value of Ny by AN¢=+3 in O(ag) four-jet distributions
[13,14. [At O(a?d) the effect is not simply given by
whereag(u) is the two-loop running coupling, AN¢=+3, as is illustrated by the structure of ti@(«a2)
results for the totat™ e~ hadronic cross sectidi27].] Vari-
ay(p)= “S(MZ)/ 1— as(Mz) & In(w)), ous au@hors have _suggested that the existence of a light
wo| T Bo W gluino is already in doub{14,28,14. Nevertheless, we

would like to ask whether one can determide with suffi-
cient accuracy solely from the overall four-jet rate in the
Geneva algorithm. In Fig. 3 we plot the NLO Geneva pre-
diction as a function ofy., for Ny=5 (u,d,s,c, and b
with  Bo=3(XCa—2Ny), 31:%[1?7C,2A_(§CA+ Ce)N;], quarks andN¢=8 (u,d,s,c, andb quarks, plys.a massless
Ca=N., Ce=(N2—1)/(2N,). As expected, the strong gluino), where the bands represent the variationuobver
renormalization-scale dependence of the tree-level result i&e interval[ 3s,2ys] and[3+/s,3Vs], respectively. These
reduced by the inclusion of the next-to-leading order contri-bands are compared to preliminary SLD dgi8]. The huge
bution. Figure 2b) plots theu dependence d®, at tree level  uncertainty for small values of. reflects the fact that the
and at one loop for the EO scheme yai=0.015. fixed-order prediction is not converging well fgg,~0.02,
The results for the Durham scheme are presented in Tablgresumably due to large logarithms ofydy. This break-

[ll, for the same values of, as in the EO scheme. Again, down happens at larggg, for Ny=8, since in this particular
the subleading-color terms are of the expected size. caseCE,,b) is the dominant contribution to the one-loop cor-
The Geneva algorithm has the feature that the leadingrection, and it is further enhancedNf is increased from 5 to

order results, evaluated at= /s, give a reasonable descrip- 8.

tion of the data for large values gf,;, although the shape of As can be seen in Fig. 3 the data tend to faMer=5, at

the prediction is not quite correct, especially at snya}. least for 0.03<y,,=0.04, however, the uncertainties coming
Also, the renormalization-scale dependence is quite flat arom uncalculated higher-order terms are still too large to
moderatey.,. Finally, the dependence of the prediction on permit excluding light gluinos using this observable alone.
the number of light flavor§\; is reasonably large, at least in ~ Various angular distributions in four-jet events have been
comparison with other algorithmsee Table IV. There is  proposed to help separate the relatively small contributions

w=1-p8,

as(MZ)l (MZ) (12)
o

T

TABLE lll. Durham algorithm.

Contribution toR, Yeur=0.005 Yeur=0.01 Yeur=0.03

Born (6.78-0.02)x 102 (2.87+0.01)x 102 (4.11+0.01)x 1073
a (6.60+0.13)x 102 (3.03+0.06)x 1072 (4.23+0.07)x 1072
b —(2.68+0.02)x 10?2 —(1.03£0.01)x 1072 —(1.24+0.02)x 1073
c —(1.27£0.01)x 1073 —(5.16+0.02)x 1074 —(6.94+0.02)x107°
d+f —(4.54+0.41)x 1073 —(2.50+0.09)x 1073 —(3.67+0.45)x10™4
e (2.93+0.02)x 103 (1.14+0.01)x 103 (1.43+0.01)x 104
I (2.28+0.20)x 107 (2.22+0.12)x 1077 (9.06+0.39)x 1078
M —(5.57+0.03)x 10 —(3.16+0.02)x 10" ® —(7.82+0.07)x 10 ©

Ful=R, (1.04+0.02)x 101 (4.70+0.06)x 1072 (6.82+0.08)x 1072
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TABLE IV. Geneva algorithm.

Contribution toR, Yeur=0.02

Yeu=0.03 Yeur=0.05

Born (2.63-0.02)x 10 ? (1.50-0.01)x 107! (6.33-0.02)x 10 2
a (1.16+0.05)x 10 * (8.91+0.25)x 102 (4.90+0.14)x 1072
b —(1.37+0.02)x 10! —(6.99+0.09)x 10 2 —(2.51+0.03)x 10 2
c —(7.78+0.12)x 103 —(4.32+0.04)x 103 —(1.68+0.02)x 103
d+f (6.90+1.07)x 1073 —(1.10+1.88)x 103 —(2.55+0.78)x 103
e (1.44+0.02)x 102 (7.58+0.08)x 102 (2.83+0.03)x 102
Il (1.72+0.52)x 10°7 (2.89+0.47)x 1077 (2.53+0.35)x 10"/
M —(1.06+0.02)x 104 —(7.86+0.06)x 10 ° —(4.91+0.04)x 10 ®
Full=R, (2.56+0.06)x 1071 (1.71+0.03)x 107! (8.58+0.15)x 102

of four-quark final states from the dominant two-quark two-
gluon final state$12]. These distributions have been studied
at leading order irxg in order to constraiN; as well as the
other color factorsC, and Cr [29,15,18. The next-to-
leading-order corrections to the distributions will be dis-
cussed elsewheffd 7], but they are remarkably small, given
the size of the corrections to the overall four-jet rate. Unfor-
tunately, in many cases the dependenceNgnis not that
strong, such that a precise determinatioNefis difficult in

the face of hadronization uncertainties.

IV. RESUMMED RESULTS

The four-jet fraction declines rapidly at large,;, and
there are little data publicly available with which to compare
our predictions fory.,~>0.07. On the other hand, at the ki-
nematic limit y,—0 the QCD expansion parameter be-
comesagl?, whereL=In(1/y.,), and the NLO prediction
would be improved if these large logarithms could be re-
summed. This is possible at leading ordeL ) and next-to-
leading ordefNLL) in L in the Durham clustering algorithm
because the phase space factorizes appropriftély The
NLL four-jet rate is then given by11]

Geneva scheme

T
, Mz/2 < p < 2M;
. Mz/3 < p < 3N,
, Mz/2 < p < 2My
, Mz/3 < < 3My

0.30

0.20

Jet fraction R,

0.10

0.07

0.05 0.06 0.07

Q 2
R o[ Aq(Q)]zH fQ quq(Q,q)Ag(Q)>
0

+der A fqd'r "A4(q’
Qoqq(Q,q) g(d) Qoq[g(q,q)g(q)

+I¢(q")Aw(q")]]. (13
The NLL emission probabilities are
I'y(Q.a)= Z—ST:F %q) In%— ;) ;
rya= 2 29 1)
i(q)= ;\l—; asém, (14)

and the Sudakov factofprobability of no emissionare

Durham scheme
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— = == One-loop plus resummed
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Yeut
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FIG. 4. The four-jet fraction for the Durham algorithm at

FIG. 3. NLO prediction for the four-jet rate using the Geneva /s=M,, illustrating the improvements to the Born term from add-

algorithm forN;=5 andN;=8. The theoretical bands have been i
obtained by varying the renormalization scale frén/ug<,u<2\/§
and from3/s<u<3\/s. The data are fronfi19].

ng successively the leading-color loop corrections, the subleading-

color corrections, and the resummed corrections after matching.
The data are fronf19].
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Q Durh heme
AQ(Q):eXV{ _J’Q quq(Q,q)), 0.500 . ur‘am sc- - . T
0 K 3 I

(a) full one—loop

0.100F
0,050

Q
Ag<Q>=exp( —fQ dq[rq<Q,q>+rf<q>]),

Jet fraction Ry

0.010y _ _ . M;/3 < p < 3Mz
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u =M, ag = 0.118

A 2 X
s (o) 2@ 5 I . Y
f . 0.001 0.002 0.005 0.010 0.020 0.050
Ay(Q) Yout
0.500 T T T T T T
i (b) resummed and matched

The Durham four-jet rate is an example of a quantity that
can be resummed at leading and next-to-leading logarithmic
order, but which does not exponentiate. The NLL results for
such quantities do not include the proper renormalization-
scale dependence of even the leading-log téB0% Under a
change of renormalization scale, a leading terfh 2" varies 0.001 Lt ‘ ‘ . . N
by ~a2+1L2n=a2+1L2(n+1)_2, which is not contained in 77 0001 0.002 0.005 0.010  0.020 0.050
the NLL approximation. This is reflected in a relatively large e

scale uncertainty.” Thus one should not rely on the re- 5 5 pojendence on the renormalization scalépthe full
summedR, alone for a determination afl'®. one-loop prediction angb) the resummed and matched result, for

Indeed at finite values of, one should match the re- the Durham algorithm afs=M .
summed results with the fixed-order results. For observables ]
that exponentiate, a number of matching schemes have been The agreement between theory and data is spectacularly
defined [31,3—R matching, iR matching, modifiedR  900d for the resummed and matched prediction. On the other
matching, and modified Rmatching. FoIR,, the following ~ Nand, the “scale uncertainty” in the prediction is still siz-
matching scheme correspondsRamatching: able. This is illustrated in Fig. 5 where the full one-loop and
the resummed and matched results are shown as bands.
These bands have been obtained by varying the renormaliza-
tion scale fromzM,<u<2M, and sM;<u<3Mz, re-
spectively.(The large scale dependence at laygg in the
resummed and matched prediction might be improved by a

0.100
0.050

- Mg/2 < p < 2M
0010 — — . /3 < p<3My,
0.005 |

b =My, ag = 0.118

Jet fraction Ry

223

R match_ pNLL
R, =R, + o

2 s 3
) (B4= By )+ Z) (Ca=C3™)

-1

o m .
«| 14 ?s , (16) modified matching scheme.
V. CONCLUSIONS
where the “overlap” termsB)'" and C}'" are defined by In this work we presented the compled¢a?) results for
NLL

expandingR, — out in powers ofxg, in analogy to Eq(7).  four-jet production in electron-positron annihilation. Gener-
A modified R-matching scheme could be defined by replac-ally, the NLO corrections are large and improve the agree-
ing L=In(1y¢y) by Inyot—yri+1) in RS, wherey.c ~ ment between theory and experiment considerably. The
is the maximum kinematic value gf,. This scheme would 1/N2-suppressed correction terms are indeed smaller than the
switch the resummed prediction over to the fixed-order preleading-color terms by the naive factor of 10 or so. For the
diction more quickly ay,,increases, and might therefore be Durham algorithm, after the large logarithms of 34 have
more reliable at largg.,:, but we have not yet implemented been resummed and the result is matched to the fixed-order

it. One could try to define an analog ofRmatching by prediction, and evaluated at the renormalization scale
n= Js, theory agrees remarkably well witf data. Because
NLL the NLO corrections to the overall rate are so large, signifi-
RINR match_ pNLL B4 e s %_ Cs cant renormalization-scale dependence remains for both the
4 =R, X 2+ — |, . o -
BT"" 2 B4 BQL'— fixed-order and resummed predictions, suggesting that there

(17) are still ~10-20 % uncertainties from uncalculated higher-
order corrections. More precise NLO predictions are possible
NLL , _ , for normalized four-jet distributions, for example the angles
but B4~ vanishes fOWCutWO'Ol’LSLO th's approach fails. defined in[12], and will be reported elsewhef&7].

We evaluate the r?summﬁg using the two-loop for- Note added in proofAfter we submitted this manuscript,
mula(12) for the running coupling appearing in EQ4). To  campbell, Glover, and Miller reported on an independent
evaluate the renormalization-scale dependencB)bt we  calculation of the typél) contributions to the one-loop vir-
make the substitutionvg— ag+ Boln(u2/s)a§/27r. In Fig. 4 tual matrix elements foe*e~”—qqgg [32]. We have subse-
we show the resummed and matched predicﬁﬁﬁ"amhfor quently compared the virtual matrix elements used in this
the Durham algorithm, together with the tree-level and onepaper[9,10] to the results 0f32,8] and we find agreement
loop fixed-order predictions. In order to illustrate once morefor both the four-quark and the two-quark—two-gluon final
that the subleading-color terms are small we also show thstates. We thank J. M. Campbell and E. W. N. Glover for
leading-color one-loop result in Fig. 4. providing us with numerical results frof32,8]. Also, Nagy
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and Trasanyi [33] have recently repeated our NLO calcula- ACKNOWLEDGMENTS

tion of R, for the Durham, Geneva, and EO algorithms, using

the matrix elements d82,8]. They obtain general agreement  We thank Zvi Bern, Phil Burrows, and David Kosower
with our results, within statistical uncertainties. However, afor valuable conversations and suggestions. This research
relatively large differencécompared to the statistical errprs was supported by the Department of Energy under Grant No.

occurring at large,; for the Geneva algorithm needs further DE-AC03-76SF00515, and by the Swiss National Science

investigation.
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