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We present the next-to-leading-order@O(as
3)# perturbative QCD predictions fore1e2 annihilation into four

jets. A previous calculation omitted theO(as
3) terms suppressed by one or more powers of 1/Nc

2 , whereNc is
the number of colors, and the ‘‘light-by-glue scattering’’ contributions. We find that all such terms are uni-
formly small, constituting less than 10% of the correction. For the Durham clustering algorithm, the leading
and next-to-leading logarithms in the limit of the small jet resolution parameterycut can be resummed. We
match the resummed results to our fixed-order calculation in order to improve the smallycut prediction.
@S0556-2821~97!05719-6#

PACS number~s!: 12.38.Bx, 13.38.Dg, 13.87.Ce

I. INTRODUCTION

Electron-positron annihilation into jets provides an arena
for studying quantum chromodynamics~QCD! that is free of
initial-state uncertainties such as parton distribution func-
tions. At the large center-of-mass energies achieved by the
SLAC Linear Collider ~SLC!, CERN e1e2 collider LEP,
and now LEP 2,e1e2 annihilation is also relatively free of
nonperturbative final-state effects, i.e., hadronization correc-
tions. On the other hand, perturbative QCD corrections to jet
rates can be very large. For example, the three-jet rate at the
Z0 pole receives a 20–30 % correction@1# at order as

2 .
These next-to-leading-order~NLO! corrections are of course
critical for obtaining a precise experimental measurement of
as from the three-jet rate and relatedO(as) observables
@2,3#.

More recently, the NLO corrections toe1e2 production
of four jets were computed, and a correction of roughly
100% was found@4# for most jet algorithms~when the renor-
malization scale was set equal to the center-of-mass energy!.
This computation omitted terms suppressed by one or more
powers of 1/Nc

2 , whereNc is the number of colors in a gen-
eral SU(Nc) gauge theory (Nc53 for QCD!. It also ne-
glected the ‘‘light-by-glue scattering’’ contributions — inter-
ference terms where two different flavor quarks couple to the
virtual photon orZ boson. In this work we present the com-
pleteO(as

3) results, using an improved version of the same
numerical program,MENLO_PARC @5#, which was employed
for the leading-in-Nc computation. The crucial ingredients
for the construction of the program are the tree-level ampli-
tudes for five massless final-state partons,e1e2→q q̄ggg

and e1e2→q q̄q8 q̄8g @6,7#, and especially the recently
computed one-loop virtual amplitudes fore1e2→q q̄q8 q̄8

@8,9# ande1e2→q q̄gg @10#. We use the formulas given in
@6,9,10#.

The NLO prediction of the four-jet fraction — an observ-
able whose expansion begins at orderas

2 — makes it pos-

sible to measureas
MS̄ with the same formal level of precision

~NLO! as has previously been reserved forO(as) observ-
ables ine1e2 annihilation. However, the theoretical uncer-
tainty in such a measurement will still be sizable: Because

the one-loop corrections are so large, the renormalization-
scale dependence of the NLO four-jet result is still strong,
and it is likely that uncalculated higher-order corrections are
important. Also, a significant four-jet rate only appears at
smaller values of the jet resolution parameterycut, where
there are large perturbative logarithms, although these can be
partially resummed for the Durham algorithm@11#.

There are at least two other motivations for studying
e1e2 annihilation to four jets:~1! These events are a back-
ground to e1e2→W1W2→4 jets, particularly when the
center-of-mass energy is not far above theW-pair threshold,
as is the case at LEP 2.~2! Four-jet final states provide QCD
tests to which three-jet events are insensitive@12#. For ex-
ample, the non-Abelian three-gluon vertex appears at leading
order in four-jet events; the same is true for the production of
hypothetical, light, colored but electrically neutral particles,
such as light gluinos@13–16#. In both applications, distribu-
tions of the four jets with respect to energies and angles@12#
are important. Such distributions can be computed at NLO
using the same numerical program, and will be the subject of
a separate publication@17#; here we briefly study the sensi-
tivity of the total four-jet rate to additional light fermions.

The remainder of the paper is organized as follows. In
Sec. II we describe the dependence of the four-jet rate on
electroweak and color factors, and outline the structure of the
numerical calculation. In Sec. III we present the complete
O(as

3) predictions for three different jet algorithms. We in-
dicate the dependence of the predictions on the~unphysical!
renormalization scalem. The Geneva algorithm@18# has a
relatively mild m dependence~small NLO correction! and a
relatively strong dependence on the number of light quark
flavorsNf ; we discuss the extent to whichNf can be deter-
mined from the Geneva four-jet rate alone. In Sec. IV we
present results from matching the resummed Durham jet rate
to the fixed-orderO(as

3) results; the improved prediction
agrees quite well with preliminary SLD data@19#. Section V
contains our conclusions.

II. STRUCTURE OF THE CROSS SECTION
AND COMPUTATION

For computational reasons as well as to study the effect of
varying parameters, it is useful to decompose the leading-
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order~Born! and NLO contributions to the four-jet differen-
tial cross section with respect to both their electroweak and
QCD ~color! structure. To simplify the electroweak decom-
position we assume that the observable being calculated is
insensitive to both~1! correlations between the final-state
hadrons and the electron-positron beam direction, and~2!
quark and gluon helicities. We also assume the positrons are
unpolarized and the electrons have a longitudinal polariza-
tion of Pe (Pe511 for a right-handed beam!. QED initial-

state radiation and other electroweak corrections are ne-
glected. Then the helicity-summed four-jet~differential!
cross section at center-of-mass energyAs may be written

s four-jet5
4pa2

3s
Nc@ f ~ I!~s!s4

~ I!1 f ~ II !~s!s4
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wherea is the fine structure constant,Qq is the charge of
quark q in units of e, and the left- and right-handed cou-
plings to theZ0 are

vL
e5

2112sin2uW
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, vR
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where uW is the weak mixing angle; the two signs invL
q

correspond to up (1) and down (2) type quarks. Equations
~1! and ~2! include both virtual photon andZ boson ex-
change~and their interference!; the ratio of Z and photon
propagators is given by

PZ~s!5
s

s2MZ
21 iGZMZ

, ~4!

whereMZ andGZ are the mass and width of theZ.
Representatives of the classes of diagrams contributing to

f (I) , f (II) , and f (III) are depicted in Fig. 1 as amplitude inter-
ferences. Five-parton cuts of these graphs, shown as dashed
lines, correspond to the real part of the NLO correction; four-
parton cuts, shown as dotted lines, correspond to the virtual
part. In contribution~I! a single fermion couples to both
(g,Z) vector bosons in the interference, via either a vector or
axial vector coupling.~As shown in the figure, there may be
a second or even a third fermion loop in the interior of the
graph, corresponding to ‘‘QCD’’ factors ofNf in the cross

section.! This contribution dominates the cross section at
O(as

2) and as we will see, again atO(as
3).

The remaining contributions,~II ! and~III !, have different
origins in the real and virtual parts of the calculation. In the
real part they come from theq q̄q8 q̄8g final state when the
roles ofq andq8 are exchanged on the opposite side of the
cut; in particular, a different quark pair couples to the (g,Z)
on each side of the interference. In the virtual part they can

FIG. 1. Representative contributions of types~I!, ~II !, and~III !,
as described in the text. The coupling of a quark to the (g,Z) vector
boson is denoted by3, with a 1 (g5) for vector ~axial vector!
coupling. Dashed lines correspond to representative five-parton
cuts; dotted lines to four-parton cuts.
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have the same kind of exchange origin inq q̄q8 q̄8 final
states, but they can also arise from eitherq q̄gg or q q̄q8 q̄8
graphs where a quark loop couples directly to the photon or
Z ~for example, the contributionA6;3 (A6

ax) in @9#!.
Contribution ~II ! represents ‘‘light-by-glue scattering,’’

whereby a different fermion line couples to each vector bo-
son, via a vector coupling in each case. There is no such
contribution atO(as

2) if only charge-blind observables are
considered@20#, due to Furry’s theorem — the orderas

2

amplitude interferences all contain fermion triangle sub-
graphs. Although the cross section is nonvanishing atO(as

3),
we shall see that it is still extremely small, due partly to
cancellations in the sum over quark couplings inf (II) (s), and
partly to approximate cancellations in the phase-space inte-
grations that are related to the exact cancellations at order
as

2 .
Contribution ~III !, ‘‘ Z-by-glue’’ scattering, is similar to

contribution ~II ! except that the quarks couple to theZ
through the axial vector coupling. This contribution is non-
zero atO(as

2) @21#, although small for the three- and four-jet
rates, and it remains small atO(as

3). In Eq. ~2! we have
already carried out the sum over the five light quark flavors,
in which the massless weak isospin doublets (u,d) and (c,s)
cancelled, leaving only the (t,b) contribution. The top quark
contribution to ~III ! is purely virtual for As,2mt , but it
does not decouple in the largemt limit @21#. We expand in
the limit of large top quark mass, including all terms through
O(s/mt

2); at this order the top quark does not appear in the
vector contribution~II ! @9,10#.

Dividing the four-jet cross sections four-jet by the total
hadronic cross section atO(as),

s tot5
4pa2

3s
Ncf ~ I!~s!S 11

as

p D , ~5!

yields the four-jet fraction

R4[
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Neglecting for the moment the renormalization-scale depen-
dence of the calculated cross section we write the expansion
in as as

R45F S as
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Next we decompose the one-loop correction tos4
(I) with re-

spect toNc andNf :
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Correspondingly, we write the fullO(as
3) correction to the

four-jet rate as

C45C4
~a!1C4

~b!1C4
~c!1C4

~d!1C4
~e!1C4

~ f !1C4
~ II !1C4

~ III ! ,
~10!

absorbing all prefactors into the definitions of theC4
(x) . In

@4# we calculatedC4
(a,b,c) ; here we add the remaining terms

in Eq. ~10!. The subleading-color termsC4
(d,e, f ) come partly

from nonplanar interference graphs~not shown in Fig. 1!.
They include identical-quark Pauli exchange contributions
analogous to theE terms of @20#, as well as various
subleading-color virtual subamplitudes@9,10#, and sublead-
ing terms in the real and virtual color sums. We find that all
the additional terms are considerably smaller thanC4

(a,b,c) ,
at least for the overall four-jet rate.

The Monte Carlo integrations required to numerically
evaluate theC4

(x) are done separately for each term, except
thatC4

(d) andC4
( f ) are combined. An advantage@4# of break-

ing up the problem in this way is that the 1/Nc
2-suppressed

integrands have significantly more complicated analytic rep-
resentations than the leading terms, and therefore take more
time per point to evaluate~in some cases up to a factor of 5
longer!. On the other hand, the 1/Nc

2 parametric suppression
implies that far fewer numerical evaluations of the sublead-
ing terms are required in order to achieve an absolute statis-
tical accuracy comparable to that for the leading-in-Nc terms.
Contributions~II ! and ~III ! could have been further decom-
posed by analogy to Eq.~9!, but in view of their small over-
all contribution they were each integrated as a single expres-
sion.

As in any NLO QCD computation, the real and virtual
corrections to the cross section are separately divergent, but
have a finite sum. In dimensional regularization with
D5422e, the singularities of the virtual part manifest
themselves as poles ine in the one-loop amplitudes, whereas
the real singularities are obtained upon phase-space integra-
tion of the squared tree amplitudes. We use a general version
of the subtraction method@20# to extract the singular parts of
the real cross section and combine them with the virtual
poles. This method leaves a finite integral over five-parton
phase space, and another over four-parton phase space,
which are performed by adaptive Monte Carlo integration
using VEGAS @22#. The particular form of the subtraction
method used here is essentially that described in@23#, to
which we refer the reader for more details. No approximation
of the matrix elements or the phase space has to be made in
this method.

The subtraction method relies on the fact that the integral
over the tree cross section is rendered finite by subtracting all
soft and collinear limits. This means that for a phase-space
point that lies very close to a singular point, the integrand is
the square of the difference of two large numbers, namely
the tree amplitude and its soft or collinear limit. In order to
obtain the desired cancellation it is crucial to compute this
difference in a numerically stable way, even if a certain in-
variant mass becomes very small. Thus, if the phase-space
point is so close to a singular point that a straightforward
evaluation of the amplitude becomes unstable, the amplitude
is replaced by its~more stable! soft or collinear limit. We
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checked that the error introduced by this treatment is com-
pletely negligible. We also checked that our results are inde-
pendent of the arbitrary parametersd andjcut which have to
be introduced in the subtraction method@23#.

Another potential numerical problem is related to spuri-
ous singularities in the one-loop amplitudes. Besides the ex-
pected poles in the soft and collinear limits~which are
avoided by the program since they lie in the three-jet region!,
the one-loop amplitudes have unphysical poles, i.e., poles
with zero residue. Unfortunately, it is not possible to elimi-
nate all these poles analytically, as long as the amplitude is
expressed in terms of logarithms and dilogarithms multiplied
by kinematic coefficients@10#; this elimination is only pos-
sible if the amplitude is rewritten in terms of more general
functions@24#. However, in the helicity formalism, one can
simplify the ~di!logarithmic coefficients to greatly alleviate
the spurious poles@10#. We checked that the numerical
evaluation of the matrix elements as given in@9,10# is stable,
even for points that are quite close to a spurious pole, and
that the probability for hitting an unstable point in the Monte
Carlo integration is very small. Indeed, we had to evaluate
close to a million points in a test run~corresponding to sub-
percent statistical accuracy on the integral! in order to find
one point that was ‘‘close’’ to a particular spurious pole; at
that one point the value of the vanishing denominator was
still about an order of magnitude larger than where the nu-
merical evaluation of the cross section typically becomes un-
stable.

III. FIXED-ORDER RESULTS

We now present results for the four-jet fractionR4 at
next-to-leading order inas . We useNc53 colors,Nf55
massless quarks, a strong coupling constant of
as(MZ)50.118, a top mass ofmt5175 GeV, aZ0 mass and
width of MZ591.187 GeV andGZ52.490 GeV, and a weak
mixing angle of sin2uW50.230 @25#. The numerical results
given here are forAs5MZ , but to the extent that contribu-
tions ~II ! and ~III ! can be neglected,R4 depends essentially
only on Nc , Nf , andas(As). We consider the E0, Durham
@26,11# , and Geneva@18# jet algorithms. These cluster algo-
rithms begin with a set of final-state particles~partons in the
QCD calculation! and cluster the pair$ i , j % with the smallest
value of a dimensionless measureyi j into a single ‘‘proto-
jet.’’ The procedure is repeated until all theyi j exceed the
value of the jet resolution parameterycut, at which point the
protojets are declared to be jets. The algorithms differ in the
measureyi j used and/or in the rule used to assign a four-
momentumpi j to two clustered momentapi , pj . The same
value ofycut in different schemes may sample quite different
classes of events. For the reader’s convenience, we collect
the definitions of the E0, Durham, and Geneva schemes in
Table I.

We start the presentation of the results with the E0
scheme. Figure 2~a! shows the absolute value of the contri-
butions of the different electroweak/color pieces to the four-
jet fraction atAs5MZ , as a function ofycut, setting the
renormalization scale tom5MZ . Note ~from Table II! that
C4

(b)1C4
(c) , C4

(d)1C4
( f ) andC4

(III) are negative. These curves
are compared to preliminary SLAC Large Detector~SLD!
data points@19# which have been corrected for detector ef-

fects and hadronization. Obviously the comparison would
benefit from a reanalysis using the full currentZ0 pole data
samples. As expected, the subleading-color pieces are
roughly 10% of the corresponding leading-color contribu-
tions, reflecting the 1/Nc

2 suppression. This feature holds
separately for the terms lacking and having anNf factor. The
contributions~II ! and~III ! are so small that we multiply them
by a factor of 1000 and 10, respectively, in the figure. Table
II presents the same results, forycutP$0.005,0.01,0.03%,
namely the coefficients (as/2p)3C4

(x)/(11as /p) at
As5MZ , including the statistical uncertainties from Monte
Carlo integration. The ‘‘Born’’ line gives the tree-level result
(as/2p)2B4 /(11as /p).

Observable quantities calculated in QCD should be inde-
pendent of the arbitrary renormalization scalem. However,
the perturbative expansion is invariably truncated at a finite
order, leading to a residual dependence of the result onm.
The tree-levelm dependence is much stronger for the four-jet
rate than for the three-jet rate, because the former is propor-
tional to as

2 instead ofas . The full m dependence of the
NLO four-jet rate is given by

TABLE I. Jet algorithm definitions.

Algorithm yi j pi j

E0 (pi1pj )
2

s
~Ei1Ej!S1 ,

pW i1pW j

upW i1pW j u
D

Durham 2 min(Ei
2 ,Ej

2)
12cosuij

s
pi1pj

Geneva
8
9

EiEj

12cosuij

(Ei1Ej)
2

pi1pj

FIG. 2. ~a! Absolute value of the contributions of the differ-
ent electroweak-color pieces to the four-jet fraction atAs5MZ

for the E0 scheme, i.e., (as/2p)3uC4
(x)u/(11as /p) with

xP$a,b,c,d,e, f ,II,III %. We also show the Born and full one-loop
prediction, and data from@19#. ~b! Dependence of the tree-level
~dashed line! and one-loop~solid line! prediction on the renormal-
ization scalem for ycut50.015.
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s4~m!5S as~m!

2p D 2

B41S as~m!

2p D 3FC412b0lnS m2

s DB4G ,
~11!

whereas(m) is the two-loop running coupling,

as~m!5
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w S 12
as~MZ!
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w D ,

w512b0

as~MZ!

p
lnS MZ

m D , ~12!

with b05 1
2 ( 11

3 CA2 2
3 Nf), b15 1

4 @ 17
3 CA

22( 5
3 CA1CF)Nf #,

CA5Nc , CF5(Nc
221)/(2Nc). As expected, the strong

renormalization-scale dependence of the tree-level result is
reduced by the inclusion of the next-to-leading order contri-
bution. Figure 2~b! plots them dependence ofR4 at tree level
and at one loop for the E0 scheme, atycut50.015.

The results for the Durham scheme are presented in Table
III, for the same values ofycut as in the E0 scheme. Again,
the subleading-color terms are of the expected size.

The Geneva algorithm has the feature that the leading-
order results, evaluated atm5As, give a reasonable descrip-
tion of the data for large values ofycut, although the shape of
the prediction is not quite correct, especially at smallycut.
Also, the renormalization-scale dependence is quite flat at
moderateycut. Finally, the dependence of the prediction on
the number of light flavorsNf is reasonably large, at least in
comparison with other algorithms~see Table IV!. There is

some interest in experimentally constrainingNf , in particu-
lar because a massless gluino would effectively shift the
value of Nf by DNf513 in O(as

2) four-jet distributions
@13,14#. @At O(as

3) the effect is not simply given by
DNf513, as is illustrated by the structure of theO(as

3)
results for the totale1e2 hadronic cross section@27#.# Vari-
ous authors have suggested that the existence of a light
gluino is already in doubt@14,28,16#. Nevertheless, we
would like to ask whether one can determineNf with suffi-
cient accuracy solely from the overall four-jet rate in the
Geneva algorithm. In Fig. 3 we plot the NLO Geneva pre-
diction as a function ofycut for Nf55 (u,d,s,c, and b
quarks! andNf58 (u,d,s,c, andb quarks, plus a massless
gluino!, where the bands represent the variation ofm over

the interval@ 1
2 As,2As# and @ 1

3 As,3As#, respectively. These
bands are compared to preliminary SLD data@19#. The huge
uncertainty for small values ofycut reflects the fact that the
fixed-order prediction is not converging well forycut<0.02,
presumably due to large logarithms of 1/ycut. This break-
down happens at largerycut for Nf58, since in this particular
caseC4

(b) is the dominant contribution to the one-loop cor-
rection, and it is further enhanced ifNf is increased from 5 to
8.

As can be seen in Fig. 3 the data tend to favorNf55, at
least for 0.03<ycut<0.04, however, the uncertainties coming
from uncalculated higher-order terms are still too large to
permit excluding light gluinos using this observable alone.

Various angular distributions in four-jet events have been
proposed to help separate the relatively small contributions

TABLE III. Durham algorithm.

Contribution toR4 ycut50.005 ycut50.01 ycut50.03

Born (6.7860.02)31022 (2.8760.01)31022 (4.1160.01)31023

a (6.6060.13)31022 (3.0360.06)31022 (4.2360.07)31023

b 2(2.6860.02)31022 2(1.0360.01)31022 2(1.2460.02)31023

c 2(1.2760.01)31023 2(5.1660.02)31024 2(6.9460.02)31025

d1 f 2(4.5460.41)31023 2(2.5060.09)31023 2(3.6760.45)31024

e (2.9360.02)31023 (1.1460.01)31023 (1.4360.01)31024

II (2.2860.20)31027 (2.2260.12)31027 (9.0660.39)31028

III 2(5.5760.03)31025 2(3.1660.02)31025 2(7.8260.07)31026

Full[R4 (1.0460.02)31021 (4.7060.06)31022 (6.8260.08)31023

TABLE II. E0 algorithm.

Contribution toR4 ycut50.005 ycut50.01 ycut50.03

Born (2.6060.02)31021 (1.1660.01)31021 (1.7960.01)31022

a (2.4360.08)31021 (1.2760.03)31021 (2.4260.05)31022

b 2(1.2360.02)31021 2(4.7560.04)31022 2(5.5760.06)31023

c 2(4.0660.02)31023 2(1.8360.01)31023 2(2.9360.01)31024

d1 f 2(1.1360.18)31022 2(1.0160.08)31022 2(2.4260.10)31023

e (1.4260.01)31022 (5.4560.04)31023 (6.6960.06)31024

II (1.6660.28)31027 (2.4360.32)31027 (1.8860.18)31027

III 2(1.1860.01)31024 2(7.5360.03)31025 2(2.3760.02)31025

Full[R4 (3.7960.08)31021 (1.8860.03)31021 (3.4660.05)31022
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of four-quark final states from the dominant two-quark two-
gluon final states@12#. These distributions have been studied
at leading order inas in order to constrainNf as well as the
other color factorsCA and CF @29,15,16#. The next-to-
leading-order corrections to the distributions will be dis-
cussed elsewhere@17#, but they are remarkably small, given
the size of the corrections to the overall four-jet rate. Unfor-
tunately, in many cases the dependence onNf is not that
strong, such that a precise determination ofNf is difficult in
the face of hadronization uncertainties.

IV. RESUMMED RESULTS

The four-jet fraction declines rapidly at largeycut, and
there are little data publicly available with which to compare
our predictions forycut.0.07. On the other hand, at the ki-
nematic limit ycut→0 the QCD expansion parameter be-
comesasL

2, whereL5 ln(1/ycut), and the NLO prediction
would be improved if these large logarithms could be re-
summed. This is possible at leading order~LL ! and next-to-
leading order~NLL ! in L in the Durham clustering algorithm
because the phase space factorizes appropriately@11#. The
NLL four-jet rate is then given by@11#

R4
NLL52@Dq~Q!#2F S E

Q0

Q

dqGq~Q,q!Dg~q! D 2

1E
Q0

Q

dqGq~Q,q!Dg~q!E
Q0

q

dq8@Gg~q,q8!Dg~q8!

1G f~q8!D f~q8!#G . ~13!

The NLL emission probabilities are

Gq~Q,q!5
2CF

p

as~q!

q S ln
Q

q
2

3

4D ,

Gg~Q,q!5
2CA

p

as~q!

q S ln
Q

q
2

11

12D ,

G f~q!5
Nf

3p

as~q!

q
, ~14!

and the Sudakov factors~probability of no emission! are

FIG. 3. NLO prediction for the four-jet rate using the Geneva
algorithm for Nf55 andNf58. The theoretical bands have been
obtained by varying the renormalization scale from1

2As,m,2As
and from 1

3As,m,3As. The data are from@19#.

FIG. 4. The four-jet fraction for the Durham algorithm at
As5MZ , illustrating the improvements to the Born term from add-
ing successively the leading-color loop corrections, the subleading-
color corrections, and the resummed corrections after matching.
The data are from@19#.

TABLE IV. Geneva algorithm.

Contribution toR4 ycut50.02 ycut50.03 ycut50.05

Born (2.6360.02)31021 (1.5060.01)31021 (6.3360.02)31022

a (1.1660.05)31021 (8.9160.25)31022 (4.9060.14)31022

b 2(1.3760.02)31021 2(6.9960.09)31022 2(2.5160.03)31022

c 2(7.7860.12)31023 2(4.3260.04)31023 2(1.6860.02)31023

d1 f (6.9061.07)31023 2(1.1061.88)31023 2(2.5560.78)31023

e (1.4460.02)31022 (7.5860.08)31023 (2.8360.03)31023

II (1.7260.52)31027 (2.8960.47)31027 (2.5360.35)31027

III 2(1.0660.02)31024 2(7.8660.06)31025 2(4.9160.04)31025

Full[R4 (2.5660.06)31021 (1.7160.03)31021 (8.5860.15)31022
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Dq~Q!5expS 2E
Q0

Q

dqGq~Q,q! D ,

Dg~Q!5expS 2E
Q0

Q

dq@Gq~Q,q!1G f~q!# D ,

D f~Q!5
@Dq~Q!#2

Dg~Q!
. ~15!

The Durham four-jet rate is an example of a quantity that
can be resummed at leading and next-to-leading logarithmic
order, but which does not exponentiate. The NLL results for
such quantities do not include the proper renormalization-
scale dependence of even the leading-log terms@30#: Under a
change of renormalization scale, a leading termas

nL2n varies
by ;as

n11L2n5as
n11L2(n11)22, which is not contained in

the NLL approximation. This is reflected in a relatively large
‘‘scale uncertainty.’’ Thus one should not rely on the re-

summedR4 alone for a determination ofas
MS̄ .

Indeed at finite values ofycut one should match the re-
summed results with the fixed-order results. For observables
that exponentiate, a number of matching schemes have been
defined @31,3#—R matching, lnR matching, modifiedR
matching, and modified lnR matching. ForR4, the following
matching scheme corresponds toR matching:

R4
R match5R4

NLL1F S as

2p D 2

~B42B4
NLL !1S as

2p D 3

~C42C4
NLL !G

3S 11
as

p D 21

, ~16!

where the ‘‘overlap’’ termsB4
NLL and C4

NLL are defined by
expandingR4

NLL out in powers ofas , in analogy to Eq.~7!.
A modified R-matching scheme could be defined by replac-
ing L5 ln(1/ycut) by ln(ycut

212ymax
21 11) in R4

NLL , whereymax

is the maximum kinematic value ofycut. This scheme would
switch the resummed prediction over to the fixed-order pre-
diction more quickly asycut increases, and might therefore be
more reliable at largeycut, but we have not yet implemented
it. One could try to define an analog of lnR matching by

R4
lnR match5R4

NLL B4

B4
NLL

expF as

2pS 221
C4

B4
2

C4
NLL

B4
NLL D G ,

~17!

but B4
NLL vanishes forycut;0.01, so this approach fails.

We evaluate the resummedR4
NLL using the two-loop for-

mula ~12! for the running coupling appearing in Eq.~14!. To
evaluate the renormalization-scale dependence ofR4

NLL we
make the substitutionas→as1b0ln(m2/s)as

2/2p. In Fig. 4
we show the resummed and matched predictionR4

R match for
the Durham algorithm, together with the tree-level and one-
loop fixed-order predictions. In order to illustrate once more
that the subleading-color terms are small we also show the
leading-color one-loop result in Fig. 4.

The agreement between theory and data is spectacularly
good for the resummed and matched prediction. On the other
hand, the ‘‘scale uncertainty’’ in the prediction is still siz-
able. This is illustrated in Fig. 5 where the full one-loop and
the resummed and matched results are shown as bands.
These bands have been obtained by varying the renormaliza-
tion scale from 1

2 MZ,m,2MZ and 1
3 MZ,m,3MZ , re-

spectively.~The large scale dependence at largeycut in the
resummed and matched prediction might be improved by a
modified matching scheme.!

V. CONCLUSIONS

In this work we presented the completeO(as
3) results for

four-jet production in electron-positron annihilation. Gener-
ally, the NLO corrections are large and improve the agree-
ment between theory and experiment considerably. The
1/Nc

2-suppressed correction terms are indeed smaller than the
leading-color terms by the naive factor of 10 or so. For the
Durham algorithm, after the large logarithms of 1/ycut have
been resummed and the result is matched to the fixed-order
prediction, and evaluated at the renormalization scale
m5As, theory agrees remarkably well withZ0 data. Because
the NLO corrections to the overall rate are so large, signifi-
cant renormalization-scale dependence remains for both the
fixed-order and resummed predictions, suggesting that there
are still ;10–20 % uncertainties from uncalculated higher-
order corrections. More precise NLO predictions are possible
for normalized four-jet distributions, for example the angles
defined in@12#, and will be reported elsewhere@17#.

Note added in proof. After we submitted this manuscript,
Campbell, Glover, and Miller reported on an independent
calculation of the type~I! contributions to the one-loop vir-
tual matrix elements fore1e2→qq̄gg @32#. We have subse-
quently compared the virtual matrix elements used in this
paper@9,10# to the results of@32,8# and we find agreement
for both the four-quark and the two-quark–two-gluon final
states. We thank J. M. Campbell and E. W. N. Glover for
providing us with numerical results from@32,8#. Also, Nagy

FIG. 5. Dependence on the renormalization scale of~a! the full
one-loop prediction and~b! the resummed and matched result, for
the Durham algorithm atAs5MZ .
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and Trócsányi @33# have recently repeated our NLO calcula-
tion of R4 for the Durham, Geneva, and E0 algorithms, using
the matrix elements of@32,8#. They obtain general agreement
with our results, within statistical uncertainties. However, a
relatively large difference~compared to the statistical errors!
occurring at largeycut for the Geneva algorithm needs further
investigation.
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