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A wavelet analysis is applied to the study of correlations in multiplicity fluctuations. Both the usual corre-
lation functions as well as the wavelet transformed functions are calculated and compared with three different
models: theFRITIOF, random cascade, and Ising models. The large off-diagonal bin correlations are effectively
suppressed by the wavelets. The correlations from different scales nearly decouple. The wavelet analysis
provides a useful tool for studying the self-similarity of multiparticle production in high-energy collisions.
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PACS number~s!: 11.80.La, 13.85.Hd

I. INTRODUCTION

Self-similar fluctuations are observed in many different
stochastic processes, such as turbulence and phase transi-
tions. Generally, a powerlike behavior of the correlation
function is expected. Analyses of such fluctuations by means
of wavelets have gained widespread applications, most nota-
bly in signal processing and data compression@1–4#. Re-
cently, wavelets have also been proposed to study the pos-
sible fractal structure in multiparticle production processes
@5#. A similar analysis has been applied to analyze the pseu-
dorapidity distributions of high multiplicity JACEE events
@6#. The formation of a disoriented chiral condensate in high-
energy collisions, which is related to the chiral phase transi-
tion, can also be studied by wavelets@7#. And most recently,
the wavelets have also been used for pattern recognition in
high multiplicity events of heavy ion collisions@8#.

The central property of wavelet analysis is the expansion
with respect to a self-similar set of orthogonal basis func-
tions, so-called wavelets. The entire basis is constructed
from dilations and translations of one single function. It pro-
vides a convenient representation for studying the self-
similar processes, in which an arbitrary distribution can be
resolved simultaneously in many scales. Wavelet analysis
has been successfully applied in studying the random cas-
cadep model@5#. Along the same line, in this study wavelet
analysis is applied to a more realistic model of multiparticle
production: theFRITIOF model @9#, which has been widely
adopted as Monte Carlo simulations to experimental results.
The observed fluctuations are also compared with two ideal-
ized models: the random cascade model@10# and the Ising
model @11#. In the former the self-similar pattern is built-in;
in the latter only the nearest-neighbor interactions are pre-
sented. The random cascade model has been used as a simple
discrete approximation to multiparticle processes in high en-
ergy e1e2 and hadron-hadron collisions, the so-calleda
model @12,13#. With the lattice-gas interpretation the Ising
model has also been used recently to describe multiproduc-
tion processes@14#.

In Sec. II the concept of wavelet analysis is briefly re-
viewed. In Sec. III the conventional bin correlations and the
wavelet correlations are calculated in three different models:
the FRITIOF, random cascade, and Ising models. Discussions
and conclusions are presented in Sec. IV.

II. MULTIRESOLUTION ANALYSIS

In this section the basic ingredients of wavelet analysis
are briefly summarized for application in multiparticle fluc-
tuations. A more detailed introduction to wavelets can be
found elsewhere@1–4#.

Consider an arbitrary distributionn(x) within the interval
xP@0,1#. With the resolution of 2J bins, the distribution
n(x) can be approximated by a histogramn(J)(x) as

n~x!;n~J!~x!5 (
k50

2J21

nJkFJk~x!, ~1!

whereFJk(x) are simple box functions defined as

FJk~x!5H 1 for
k

2J
<x,

k11

2J

0 otherwise.

~2!

Notice that the 2J box functionsFJk(x) are orthogonal to
one another. In this respect the coefficientsnJk can be inter-
preted as amplitudes of the orthogonal expansion ofn(J)(x)
in terms of the basis functionsFJk(x).

At the rougher resolution scale (J21), i.e., with 2J21

bins, one has the following expansion,

n~J!~x!; (
k50

2~J21!21

nJ21,kFJ21,k~x!. ~3!

Notice that the 2J21 box functionsFJ21,k(x) are again or-
thogonal to one another, but not orthogonal to the box func-
tions FJk(x) at scaleJ. As the resolution is rougher, obvi-
ously some detail is lost compared to the expansion at scale
J, Eq. ~1!. The lost detail is the difference between the ex-
pansions at scalesJ andJ21, which can be represented by
the difference functionsCJ21,k(x) defined as
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CJ21,k~x!52 FJ,2k~x!2FJ21,k~x!

55
1 for

k

2J21
<x,

k10.5

2J21

21 for
k10.5

2J21
<x,

k11

2J21

0 otherwise,

~4!

or, equivalently,

FJ,2k~x!5 1
2 @FJ21,k~x!1CJ21,k~x!#, ~5!

FJ,2k11~x!5 1
2 @FJ21,k~x!2CJ21,k~x!#. ~6!

Again, the 2J21 difference functionsCJ21,k(x) are orthogo-
nal to one another; they are also orthogonal to the box func-
tions FJ21,k(x) at scale (J21), but not orthogonal to the
box functionsFJk(x) at scaleJ.

To recover the lost detail, the 2J orthogonal basis func-
tions are chosen as$FJ21,k(x),CJ21,k(x)% to obtain the ex-
pansion

n~J!~x!5 (
k50

2~J21!21

@nJ21,k FJ21,k~x!1 ñJ21,kCJ21,k~x!#.

~7!

Notice that unlike the box functionsFJk(x), the difference
functionsCJk(x) from different scalesJ are orthogonal to
one another and can be taken as the orthogonal basis func-
tions for expansion. In practice, the procedure is as follows:
At first, the orthogonal basis functions are the set$FJk(x)%.
Down to the scale (J21), the set$FJ21,k(x),CJ21,k(x)% is
taken. The information lost by the rougher resolution of the
box functionsFJ21,k(x) is recovered by the difference func-
tions CJ21,k(x). Down to the next lower scale (J22), the
set becomes$FJ22,k(x), CJ22,k(x),CJ21,k(x)%. Again, the
information lost by the box functionsFJ22,k(x) is recovered
by the difference functionsCJ22,k(x). Then, the set
$FJ23,k(x),CJ23,k(x),CJ22,k(x),CJ21,k(x)% is taken. Fi-
nally, one has the set$F00(x),C00(x),C1k(x),C2k(x),
. . . ,CJ21,k(x)%. Notice that the number of the basis func-
tions is always 2J. The final expansion is given as

n~J!~x!5n00F00~x!1 (
j 50

J21

(
k50

2 j 21

ñ jkC jk~x!, ~8!

where the coefficientsñ jk are called the wavelet amplitudes
and the indicesj ,k are referred to as the scale indexj and the
position indexk. As F00(x)51, the coefficientn00 is merely
the average of the distributionn(J)(x):

n005E
0

1

dx n~J!~x!. ~9!

Compared to the regular expansion in the box functions in
Eq. ~1!, which is implemented at a fixed scaleJ, the expan-
sion in difference functions in Eq.~8! involves many scales.
Going from one scalej to the next lower scale (j 21), only
the difference between the two resolutions is memorized in
the wavelet amplitudes.

In general, the difference functionC jk(x) is called a
wavelet and the box functionF jk(x) the corresponding scal-
ing function, both of which can be constructed from two
functions by a discrete dilation factor 2j and a translation
governed by the integerk,

C jk~x!5C~2 j x2k!, ~10!

F jk~x!5F~2 j x2k!, ~11!

whereC(x)[C00(x) andF(x)[F00(x) are defined at the
roughest scale. Furthermore, these two functions can be re-
lated through the fundamental dilation equations as

C~x!5(
m

~21!mc12mF~2x2m!, ~12!

F~x!5(
m

cmF~2x2m!, ~13!

where the coefficientscm specify the functionsF(x) and
C(x) @1#. In practice, a finite set of the coefficients$cm% is
given. The functionF(x) is then solved from Eq.~13! by
self-consistent iterations. The functionC(x) is obtained with
Eq. ~12!. Then, the entire family of wavelets and scaling
functions can be found with Eqs.~10! and ~11!. Obviously,
the values of the coefficientscm are not arbitrarily chosen.
Various constraints must be satisfied@1#. For example, the
integration on both sides of Eq.~13! implies

(
m

cm52. ~14!

The special case of box functions and difference functions
in Eqs.~2! and~4! represents the simplest example known as
Haar wavelet; moreover, there are only two nonvanishing
coefficients:c05c151. Since the discrete counting problem,
i.e., the multiplicity fluctuations, is the main concern, the
discontinuity of Haar wavelets is not a serious drawback, as
it appears to be in some other fields.

III. MULTIPLICITY FLUCTUATIONS

In this section wavelet analysis is used to study and com-
pare the multiplicity fluctuations in three different models:
the FRITIOF, random cascade, and Ising models. The proce-
dure is as follows: a number of particle configurations is
generated via the Monte Carlo method with the mechanism
specified by each model. For each configuration, the particle
distribution is expanded and the amplitudesnJk and ñ jk are
obtained with Eqs.~1! and ~8!, respectively. Then the bin
correlation ^nJk•nJk8& and the wavelet correlation

^ ñ jk• ñ j 8k8& are calculated, where angular brackets denote
the ensemble average. Notice that at the finest resolution
scaleJ, the indicesk,k850,1,2, . . . ,(2J21) in the bin cor-
relation and the indices j , j 850,1,2, . . . ,(J21) and
k,k850,1,2, . . . ,(2j21) in the wavelet correlation.

The moment spectrum̂M j& and wavelet spectrum̂Ej&
are also calculated and defined as

M j[
1

2J22J2 j11
(
i 50

2J22J2 j S 1

2J2 j (
k50

2J2 j 21

nJ,k1 i D 2

, ~15!
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Ej[
1

2 j (
k50

2 j 21

~ ñ jk!2, ~16!

where the indexj 50,1,2, . . . ,(J21). Notice that the mo-
ment spectrum̂M j& can be identified with the conventional
second-order moment at scalej . The entire interval of 2J

bins is divided into 2j parts, i.e., the resolution is set to a
coarse bin consisting of 2(J2 j ) bins. The summation overk
gives the particle number within one of the coarse bins; and
the summation overi returns the average over different
coarse bins. For the wavelet spectrum^Ej&, the summation

overk is simply the average over the amplitudes obtained at
scalej . The wavelet spectrumEj is also known as the power
spectrum, which is then the power of fluctuations, with re-
spect to the wavelet basis at scalej . Similar to the Fourier
analysis, a Parseval theorem for wavelets can be established
utilizing the complete and orthonormal properties of the
wavelets:

E
0

1

@n~x!#2dx5 (
j 50

J21
1

2 j (
k50

2 j 21

~ ñ jk!2. ~17!

FIG. 1. Multiplicity fluctuations in theFRITIOF model atAs5540 GeV.~a! Bin correlation^nJk•nJ8k8&. The indices (Jk) are understood

ask and range from 0 to 127.~b! Wavelet correlation̂ ñ jk• ñ j 8k8&. The indices (jk) are understood as (2j1k21) and range from 0 to 126.
~c! Moment spectrum̂M j& and wavelet spectrum̂Ej&. The indexj ranges from 0 to 6.
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A. FRITIOF model

The QCD-inspiredFRITIOF model is a widely used Monte
Carlo simulation in studies of the high-energy multiparticle
production process@9#. The model is based on semiclassical
considerations of string dynamics. The basic idea is that a
hadron behaves like a relativistic string with a confined color
field similar to the vortex line in a type II superconductor.
The field of such a vortex line can be depicted as a chain of
dipoles lined up along the vortex line. These dipole links
behave exactly like partons. During the collisions many
small transverse momenta are exchanged between the dipole-
links and result in two longitudinally excited strings. Distur-
bance of the color field will initialize gluonic radiation ac-

cording to the QCD, which can then be naturally
incorporated in this picture by the color dipole approxima-
tion. The final state particles are obtained by fragmenting the
string, precisely like the usual strings in ane1e2 annihila-
tion described by the Lund model.

In this study 50 000 minimum-biased events ofp̄p colli-
sions at CERN Super Proton Synchrotron energyAs5 540
GeV are generated with the default parameters. The final
charged pions are recorded within the one-dimensional inter-
val hP@25,5#, whereh is the pseudorapidity defined as

h5
1

2
lnS uPW u1Pi

uPW u2Pi
D 5arccoshS 1

sinu D , ~18!

FIG. 2. Same as Fig. 1 for thep model with parametersp50.5 andn0530.
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whereu is the angle between the particle momentumPW and
the beam axis. To implement the wavelet analysis, the pseu-
dorapidity interval@25,5# is divided into 128 bins, i.e., the
resolution scale J57. The resulting bin correlation

^nJk•nJ8k8& and wavelet correlation̂ñ jk• ñ j 8k8& are shown
in Figs. 1~a! and 1~b!, respectively. As the figures show, the
bin correlation^nJk•nJ8k8& reveals large correlations in both
diagonal and off-diagonal portions; while the off-diagonal
contributions are suppressed in the wavelet correlation

^ ñ jk• ñ j 8k8&. The implication is clear that the observed fluc-
tuations are hierarchical and self-similar in nature, and the
wavelets provide a good representation for studying the fluc-
tuations.

The moment spectrum̂M j& and the wavelet spectrum
^Ej& are shown in Fig. 1~c!. The values of the moment spec-

trum ^M j& increase with an increase in scalesj , i.e., an in-
crease in resolution. This feature has been interpreted as re-
sulting from the underlying fractal structure and named
intermittency@12#. As shown in the figure, the wavelet spec-
trum ^Ej& conveys the same information as the moment
spectrum^M j& does. The power-like behavior observed in
the wavelet spectrum, i.e., ln^Ej&}j, indicates that the fluc-
tuations are present in many scales. Similar features have
been observed in two high-multiplicity JACEE events in a
recent study@6#.

B. Random cascade model

The p model is a self-similar random cascade model
which successfully describes the multifractal spectrum of en-

FIG. 3. Same as Fig. 1 for thep model with parametersp50.3 andn0530.
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ergy dissipation in a turbulent flow@10#. Consider the nor-
malized energyE distributed within the interval@0,1#. This
interval is then split into two equal parts with energies
E15pE andE25(12p)E, whereE1 goes randomly to the
left or right subinterval with equal probability andp is a free
parameter. The left subinterval, assuming it accompanies the
energyE1, is then split again into two parts with correspond-
ing energiesE185pE1 andE285(12p)E1, where, again,E18
goes randomly to the new left or right subinterval. For the
right subinterval one proceeds in the same manner. The
whole procedure is repeated many times. After theJ cascade
steps, the energy distributed within thekth subinterval is
denoted aseJk , where the indexk50,1,2, . . . ,(2J21).
With the Poisson transformation introduced into intermit-

tency studies@12#, the continuous energyeJk is replaced by a
discrete multiplicitynJk . Each discrete random numbernJk
is tossed, independently from any other bin, according to a
Poisson distribution

P~nJk!5
~n0eJk!

nJk

nJk!
e2~n0eJk!, ~19!

wheren0 is a free parameter denoting the average number of
particles. In all, there are three parameters in the model: cas-
cade stepsJ, splitting ratiop, and average multiplicityn0. A
symmetry is observed between the splitting ratiop and
(12p). To compare with the fluctuations observed in the

FIG. 4. Same as Fig. 1 for thep model with parametersp50 andn0530.
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FRITIOF model, the parametern0 is set at 30, which is the
average multiplicity observed in the previous subsection.

Without the Poisson transformation, the Haar wavelets
have been shown to provide adequate normal coordinates for
the p model @5#. As the self-similarity in thep model is an
intrinsic feature of the cascade splitting, introducing the
Poisson transformation does not change the pattern qualita-

tively; the only exception is in the special case ofp5 1
2.

Without the Poisson transformation there is no fluctuation,

and the energy distributes uniformly whenp5 1
2, i.e., all eJk

are equal. After the Poisson transformation the fluctuations
can be seen clearly in Fig. 2, where 10 000 Monte Carlo
events have been generated with parametersJ57, p50.5,
and n0530. Again, the bin correlation̂nJk•nJ8k8& reveals
correlations in both diagonal and off-diagonal portions;

while the off-diagonal contributions are suppressed in the

wavelet correlation̂ ñ jk• ñ j 8k8&. These fluctuations can be
interpreted as resulting from the Poisson noises; in the case
of p50.5, the self-similar cascade is irrelevant.

As the value of parameterp deviates from 0.5, the fluc-
tuations increase. In Fig. 3, the results are shown forp50.3,
J57, and n0530. In the limiting case ofp50, i.e., the
largest fluctuations, the results are shown in Fig. 4.

For the bin correlation̂ nJk•nJ8k8&, the Poisson noises
present a uniform off-diagonal contribution, as in Fig. 2~a!.
As p deviates from 0.5, the self-similar cascade introduces a
correlation which declines along the off-diagonal direction
and is uniformly enhanced along the diagonal direction, as in
Fig. 3~a!. In the limiting case ofp50, the diagonal contri-
butions are further enhanced and the off-diagonal contribu-

FIG. 5. Same as Fig. 1 for the Ising model on a lattice of 128 sites. The parameters are set at^n&530 andD515.
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tions become negligible, as in Fig. 4~a!. As for the moment
spectrum^M j&, the dependence on the splitting ratiop in-
creases with an increase inj . The values of̂ M0& are inde-
pendent of the values ofp, while the values of̂M6& increase
significantly as the values ofp vary from 0.5 to 0.

As shown in Figs. 2~b!, 3~b!, and 4~b!, the observed fluc-
tuations in the wavelet correlation^ ñ jk• ñ j 8k8& are similar to
those of Poisson noises with enhanced amplitudes. The
variation in the splitting ratiop can be seen clearly in the
wavelet spectrum̂Ej&. As the values ofp deviate from 0.5,
the enhancement of^Ej& is first observed in the smaller val-
ues of j , i.e., the rougher resolution. As the values ofp
further decrease, the enhancement of^Ej& becomes domi-
nated by the larger values ofj , i.e., the finer resolution. In
the limiting case ofp50, a power law behavior is recovered,
as in Fig. 4~c!.

C. Ising model

The Ising model is a classical spin model with the Hamil-
tonian @11#

H52e(
^ i , j &

Si•Sj1b(
i

Si , ~20!

where ^ i , j & denotes the summation over nearest-neighbor
sites and the spinsSi assume values of61. The ferromag-
netic strengthe and the external magnetic fieldb are two
free parameters of the model. With lattice-gas interpretation,
ni[1/2(Si11), the Ising model can be used to study the
multiplicity fluctuations@15#. For comparison with the fluc-
tuations presented in other models, the two parameterse and

FIG. 6. Same as Fig. 1 for the Ising model on a lattice of 1280 sites. The parameters are set at^n&530 andD515.
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b are adjusted to reproduce the average multiplicity^n&530
and dispersionD[A^n2&2^n&2515, which are the values
observed in theFRITIOF model in Sec. III A.

To perform an analysis with a resolution scaleJ57, the
lattice must contain at least 128 sites. The results on a lattice
of 128 sites are shown in Fig. 5, where 10 000 Monte Carlo
events are recorded. The bin correlation^nJk•nJ8k8& presents
a feature similar to the Poisson noise in Fig. 2~a!. Uniform
off-diagonal contributions are superimposed with a uniform
peak of diagonal contributions. It is noticed that the peak
along the diagonal direction is not so sharp as in the Poisson
noise. A rapid decline along the off-diagonal direction is
observed. The increase on the off-diagonal corner is due to
periodic boundary conditions. The features revealed by
wavelet correlation^ ñ jk• ñ j 8k8& are quite different from
those of the Poisson noise. Again, the off-diagonal contribu-
tions are effectively suppressed. The remaining off-diagonal
contributions rise in bands, which implies that the correla-
tions between different scales can be interpreted as the result
of self-similarity like the cascading in thep model. The
downward curve observed in the wavelet spectrum^Ej& is
obviously the effect of the finite lattice.

On a larger lattice the fluctuations are enhanced and be-
come similar to those observed in thep model. The results
on the lattice of 1280 sites are shown in Fig. 6. To keep the
constraintŝ n&530 andD515 in the simulations, the values
of e and b must increase with the number of lattice sites;
while in the conventional thermodynamic limit, the values of
e and b are kept fixed. As shown in the figures, uniform
off-diagonal contributions in bin correlation̂nJk•nJ8k8& can
still be observed. The remaining off-diagonal contributions
in wavelet correlation̂ ñ jk• ñ j 8k8& still rise in bands. The
downward curve in the wavelet spectrum^Ej& disappears.

IV. CONCLUSIONS

In this study wavelet analysis has been used to study the
multiplicity fluctuations in three different models. Generally,
the large off-diagonal bin correlations are effectively sup-

pressed by the wavelets. The correlations from different
scales are nearly decoupled, i.e., the wavelet-transformed
distribution takes a quasidiagonal form. Moreover, the diag-
onal contributions from different scales exhibit a scaling law,
i.e., a powerlike behavior is observed. Such features arise
naturally in the random cascade model, where self-similarity
is an intrinsic feature. It has been observed that the same
features can also result from the nearest-neighbor interac-
tions of the Ising model.

The multiresolution feature of wavelet analysis is essen-
tial for identification of the structure of interest, since the
wavelet transformation suppresses redundancy in the corre-
lation information, behaving like a mathematical microscope
which can zoom in or out to various scales at each location.
It was expected that data arising from hierarchically orga-
nized random processes exhibit a uniquely simple correlation
structure once they are represented on an appropriate wavelet
basis.

Because of the completeness and orthogonality of the
wavelet basis, there is no information loss. In the expansions
in Eqs. ~1! and ~8!, the wavelet amplitudes$ ñ jk% carry ex-
actly the same information as the bin amplitudes$nJk% do.
Specifically, the transformation between these two sets can
be easily obtained as

ñJ21,k5 1
2 ~nJ,2k2nJ,2k11!, ~21!

ñJ22,k5 1
4 ~nJ,4k1nJ,4k112nJ,4k122nJ,4k13!, ~22!

A

In general, one has

ñ jk5
1

2J2 j (l 50

1

(
$k8%

~21! lnJk8, ~23!

where the indexk8[(2J2 j k12J2 j 21l 1 i ) and$k8% denotes
the summation over indexi from 0 to (2J2 j 2121).

In conclusion, wavelet analysis is expected to serve as a
useful tool for studying the self-similar aspects of QCD par-
ton cascades occurring ine1e2 and hadron-hadron colli-
sions.
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