PHYSICAL REVIEW D VOLUME 56, NUMBER 7 1 OCTOBER 1997

Wavelet analysis in multiplicity fluctuations

Ding-wei Huang
Department of Physics, Chung Yuan Christian University, Chung-li, Taiwan
(Received 15 January 1997

A wavelet analysis is applied to the study of correlations in multiplicity fluctuations. Both the usual corre-
lation functions as well as the wavelet transformed functions are calculated and compared with three different
models: therRITIOF, random cascade, and Ising models. The large off-diagonal bin correlations are effectively
suppressed by the wavelets. The correlations from different scales nearly decouple. The wavelet analysis
provides a useful tool for studying the self-similarity of multiparticle production in high-energy collisions.
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PACS numbs(s): 11.80.La, 13.85.Hd

I. INTRODUCTION II. MULTIRESOLUTION ANALYSIS

In this section the basic ingredients of wavelet analysis
are briefly summarized for application in multiparticle fluc-

. . _ TaN85tions. A more detailed introduction to wavelets can be
tions. Generally, a powerlike behavior of the correlation¢, q elsewheré1—4].

function is expected: Analy.ses of such qu_ctua}tions by means ~gnsider an arbitrary distribution(x) within the interval
of wavelets have gained widespread applications, most not&-e[o,l]. With the resolution of 2 bins, the distribution

bly in signal processing and data compressitr4]. Re- ; ; )
cently, wavelets have also been proposed to study the pog-(x) can be approximated by a histogrant?’(x) as

sible fractal structure in multiparticle production processes

Self-similar fluctuations are observed in many different

[5]. A similar analysis has been applied to analyze the pseu- 2I_q
dorapidity distributions of high multiplicity JACEE events () —
[6]. The formation of a disoriented chiral condensate in high- NGO~ kzo N3P 3iX), @

energy collisions, which is related to the chiral phase transi-
tion, can also be studied by wavel¢f. And most recently,
the wavelets have also been used for pattern recognition iwhere®,,(x) are simple box functions defined as
high multiplicity events of heavy ion collisior$].
The central property of wavelet analysis is the expansion

with respect to a self-similar set of orthogonal basis func- Kk K+ 1

tions, so-called wavelets. The entire basis is constructed 1 for SSX<—/;

from dilations and translations of one single function. It pro- D 5 (x) = 2 2 2
vides a convenient representation for studying the self- 0 otherwise.

similar processes, in which an arbitrary distribution can be

resolved simultaneously in many scales. Wavelet analysis

has been successfully applied in studying the random ca¥otice that the 2 box functions®,,(x) are orthogonal to
cadep model[5]. Along the same line, in this study wavelet one another. In this respect the coefficiemjg can be inter-
analysis is applied to a more realistic model of multiparticlepreted as amplitudes of the orthogonal expansion‘8{x)
production: therRITIOF model [9], which has been widely in terms of the basis function® ().

adopted as Monte Carlo simulations to experimental results. At the rougher resolution scalel¢ 1), i.e., with 21
The observed fluctuations are also compared with two ideakjns, one has the following expansion,

ized models: the random cascade mdd«l] and the Ising

model[11]. In the former the self-similar pattern is built-in;

in the latter only the nearest-neighbor interactions are pre- 20-D_1
s_ented. The ran_dom_ cascade r_node_l has been use_d asa simple nID(x)~ >, Ny- 1, ® - 14(X). 3
discrete approximation to multiparticle processes in high en- k=0

ergy e"e” and hadron-hadron collisions, the so-called

model[12,13. With the lattice-gas interpretation the Ising

model has also been used recently to describe multiprodudotice that the 21 box functions®,_, (x) are again or-

tion processefl4]. thogonal to one another, but not orthogonal to the box func-
In Sec. Il the concept of wavelet analysis is briefly re-tions ®,,(x) at scaleJ. As the resolution is rougher, obvi-

viewed. In Sec. Il the conventional bin correlations and theously some detail is lost compared to the expansion at scale

wavelet correlations are calculated in three different modelsd, Eq. (1). The lost detail is the difference between the ex-

the FRITIOF, random cascade, and Ising models. Discussionpansions at scalesandJ—1, which can be represented by

and conclusions are presented in Sec. IV. the difference function®;_,,(x) defined as
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Vi 1 (X)=2 Dy u(X)—Dj_14(X) In general, the difference functioW;(x) is called a
wavelet and the box functio®(x) the corresponding scal-
( 1 k k+0.5 ing function, both of which can be constructed from two
for 23_1$X< 2J-1 functions by a discrete dilation factor 2nd a translation
governed by the integek,
=4 k+0. k+1 4 i
1o KPOE KL @ 0 =¥ (2x k), (10
27" 27" .
) D (x)=D(2'x—k), (11
L 0 otherwise,
) whereWV (x) =V yo(x) and®(x)=dy(x) are defined at the
or, equivalently, roughest scale. Furthermore, these two functions can be re-
Dy x(X)=3[ Py 1x(X)+ ¥ ;1 (X)], (5) lated through the fundamental dilation equations as
®J,2k+l(x):%[(DJfl,k(X)_\I’Jfl,k(X)]- (6) \I’(X)IE (—1)Mc,_ @ (2x—m), (12)
m

Again, the 2! difference functions?V';_;,(x) are orthogo-

r)al to one another; they are also orthogonal to the box func- P(x)= 2 ¢ ®(2x—m), (13)
tions ®;_;,(x) at scale §—1), but not orthogonal to the m

box functions®;,(x) at scalel.

To recover the lost detail, the’ 2rthogonal basis func- where the coefficients,,, specify the functionsb(x) and
tions are chosen g3bP;_1,(x),¥;_1x(X)} to obtain the ex- W(x) [1]. In practice, a finite set of the coefficierfls,,} is
pansion given. The functiond(x) is then solved from Eq(13) by

S0-1_q self-consistent iterations. The functidf(x) is obtained with
~ Eqg. (12). Then, the entire family of wavelets and scalin
(0= ,ZO [My-1k Po—ak)+ N34 ¥ - 14(X) 1. fu?mtions can be found with Eq(ZlO) and (11). Obviously, ’
(7)  the values of the coefficients,, are not arbitrarily chosen.
Various constraints must be satisfigl. For example, the
Notice that unlike the box function®;,(x), the difference integration on both sides of E¢L3) implies
functions ¥ ;,(x) from different scales) are orthogonal to
one another and can be taken as the orthogonal basis func- > cn=2. (14
tions for expansion. In practice, the procedure is as follows: m

At first, the orthogonal basis functions are the {8k, (x)}. ) , ) .
Down to the scaled—1), the sef®;_; (), W ;_1(X)} is The special case of box functions and difference functions

taken. The information lost by the rougher resolution of thel? Egs.(2) and.(4) represents the simplest example known as
box functionsd;_; (x) is recovered by the difference func- Haar wavelet; moreover, there are only two nonvanishing
tions W,_,,(x). Down to the next lower scalel¢2), the coefficientsico=c,;=1. Since the discrete counting problem,
set becom’e$<DJ,2k(x) W, 50 (X), ¥, 1.(X)}. Again, the i.e., the multiplicity fluctuations, is the main concern, the
information lost by the box fuhctio’n®J_2'k(x) is recovered  discontinuity of Haar wavelets is not a serious drawback, as
by the difference functions¥, ,,(x). Then, the set It @PPears to be in some other fields.

(@5 3x(X), W5 3x(X), W3 2x(X), W5 1x(X)} is taken. Fi-

nally, one has the se{®yy(x), Voo(X), ¥ 1x(X),¥rr(X), ll. MULTIPLICITY FLUCTUATIONS

...,W3_1k(X)}. Notice that the number of the basis func-

: ) ' o In this section wavelet analysis is used to study and com-
tions is always 2. The final expansion is given as

_ pare the multiplicity fluctuations in three different models:
J-12-1 the FRITIOF, random cascade, and Ising models. The proce-
n<3)(x)=noo¢00(x)+2 > ﬁjkquk(x), (8) dure is as follows: a number of particle configurations is
=0 k=0 generated via the Monte Carlo method with the mechanism
. _ specified by each model. For each configuration, the particle
where the goeff|C|entejk are called the Wavelgt amplitudes yistribution is expanded and the amplitudeg andﬁjk are
and the indiceg, k are referred to as the scale indeand the  ;htained with Eqs(1) and (8), respectively. Then the bin
position indexk. As ®y(x) =1, the coefficientyy is merely 5 relation (Nyenye) and the wavelet correlation

istributian® (x) - ~
the average of the distributiant™(x): (njx-nj) are calculated, where angular brackets denote

([t ) the ensemble average. Notice that at the finest resolution
Noo™ Jo dx n(x). ©) scaleJ, the indicesk,k’=0,1,2 . ..,(2’—1) in the bin cor-
relation and the indicesj,j’=0,1,2...,J—1) and
Compared to the regular expansion in the box functions if.k’=0,1,2...,(2—1) in the wavelet correlation.
Eq. (1), which is implemented at a fixed scalethe expan- ~ The moment spectruiM;) and wavelet spectrur(,)
sion in difference functions in Eq8) involves many scales. are also calculated and defined as
Going from one scalg to the next lower scalej1), only 1 29 23-I 297i-1 2
the difference between the two resolutions is memorized in \pj=— — <_ n, k+i) . (15
the wavelet amplitudes. Popipi-ipy =0 |\ 297 '
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FIG. 1. Multiplicity fluctuations in the=RITIOF model at\/s=540 GeV.(a) Bin correlation(ny-ny. ). The indices Jk) are understood

ask and range from 0 to 127b) Wavelet correlatiom'ﬁjk-ﬁj,k,). The indices k) are understood as {2 k—1) and range from O to 126.
(c) Moment spectrun{M ;) and wavelet spectrugE;). The index] ranges from 0 to 6.

1 2i-1 overk is simply the average over the amplitudes obtained at
Ei=— 2 ("n'jk)Z, (16) scalej. The wavelet spectrurg; is also known as the power
2/ k=0 spectrum, which is then the power of fluctuations, with re-
spect to the wavelet basis at scg@leSimilar to the Fourier
where the inde=0,1,2...,(J—1). Notice that the mo- analysis, a Parseval theorem for wavelets can be established

ment spectrun{M;) can be identified with the conventional utilizing the complete and orthonormal properties of the
second-order moment at scgle The entire interval of % wavelets:

bins is divided into 2 parts, i.e., the resolution is set to a

coarse bin consisting of(Z ) bins. The summation ove¢

gives the particle number within one of the coarse bins; and N J-1 , 2i-1

he summation ovei returns the average over different 29y = n..)2

t . . [NC0Pdx= 2 — > (). 17
coarse bins. For the wavelet spectrgg), the summation 0 j=0 2l k=0
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FIG. 2. Same as Fig. 1 for the model with parameterp=0.5 andny=30.

A. FRITIOF model cording to the QCD, which can then be naturally

incorporated in this picture by the color dipole approxima-

Carlo simulation in studies of the high-energy multiparticlegginn'gTh;é'ggglsﬁgiep?rzgcbe;:Ir iﬁﬁ}tgénﬁ]d:ggagnmnﬁmgg the
production procesE9d]. The model is based on semiclassical ion described by the Lund model.

considerations of string dynamics. The basic idea is that a i o ) — ,
In this study 50 000 minimum-biased eventspyb colli-

hadron behaves like a relativistic string with a confined color
field similar to the vortex line in a type Il superconductor. SIONS at CERN Super Proton Synchrotron energy- 540

The field of such a vortex line can be depicted as a chain of€V aré generated with the default parameters. The final

dipoles lined up along the vortex line. These dipole Iinkscharged pions are recorded within the one-dimensional inter-

behave exactly like partons. During the collisions manyV@ 7€l =551, wheren is the pseudorapidity defined as

The QCD-inspiredRITIOF model is a widely used Monte

small transverse momenta are exchanged between the dipole- 1 ||3| +P 1

links and result in two longitudinally excited strings. Distur- =—1n %—” =arccosh—— (18
! AR . T . 7 2 sing/’

bance of the color field will initialize gluonic radiation ac- |P|—Py
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FIG. 3. Same as Fig. 1 for the model with parameterp=0.3 andny=30.

where ¢ is the angle between the particle momentBrand  trum (M) increase with an increase in scales.e., an in-

the beam axis. To implement the wavelet analysis, the pserease in resolution. This feature has been interpreted as re-
dorapidity intervall —5,5] is divided into 128 bins, i.e., the sulting from the underlying fractal structure and named
resolution scale J=7. The resulting bin correlation intermittency[12]. As shown in the figure, the wavelet spec-

(Ny- Ny ) and wavelet correlationﬁﬁjk-ﬁj,k,> are shown trum (E;) conveys the same mf_ormanon as the moment
in Figs. Xa) and Xb), respectively. As the figures show, the spectrum(M;) does. The power-like behavior observed in
bin correlation(n;,-ny) reveals large correlations in both the wavelet spectrum, i.e., ()=j, indicates that the fluc-
diagonal and off-diagonal portions; while the off-diagonaltuations are present in many scales. Similar features have
contributions are suppressed in the wavelet correlatioeen observed in two high-multiplicity JACEE events in a

(M- Nj10). The implication is clear that the observed fluc- "€CeNt study6].
tuations are hierarchical and self-similar in nature, and the
wavelets provide a good representation for studying the fluc-
tuations.

The moment spectruniM;) and the wavelet spectrum The p model is a self-similar random cascade model
(E;) are shown in Fig. (c). The values of the moment spec- which successfully describes the multifractal spectrum of en-

B. Random cascade model
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FIG. 4. Same as Fig. 1 for the model with parameterp=0 andny=30.

ergy dissipation in a turbulent flop10]. Consider the nor- tency studie$12], the continuous energy;, is replaced by a
malized energ\E distributed within the interval0,1]. This  discrete multiplicityn;,. Each discrete random numbey,
interval is then split into two equal parts with energiesis tossed, independently from any other bin, according to a
E,=pE andE,=(1-p)E, whereE, goes randomly to the Poisson distribution

left or right subinterval with equal probability anis a free N

parameter. The left subinterval, assuming it accompanies the P(ny) = (No€3) Jke_(nof.]k) (19)
energyE,, is then split again into two parts with correspond- K k! '

ing energie€; =pE,; andE,;=(1—p)E,, where, againE;

goes randomly to the new left or right subinterval. For the

right subinterval one proceeds in the same manner. Thehereng is a free parameter denoting the average number of
whole procedure is repeated many times. Afterilmascade patrticles. In all, there are three parameters in the model: cas-
steps, the energy distributed within tik¢h subinterval is cade step$, splitting ratiop, and average multiplicityg. A
denoted ase;,, where the indexk=0,1,2...,(2—1). symmetry is observed between the splitting ragoand
With the Poisson transformation introduced into intermit-(1—p). To compare with the fluctuations observed in the
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FIG. 5. Same as Fig. 1 for the Ising model on a lattice of 128 sites. The parameters arénset2@ andD = 15.

FRITIOF model, the parametet, is set at 30, which is the while the off-diagonal contributions are suppressed in the

average multiplicity observed in the previous subsection. avelet correlationn;-nj ). These fluctuations can be

Without the Poisson transformation, the Haar wavelet§nterpreted as resulting from the Poisson noises; in the case
have been shown to provide adequate normal coordinates fgj p=0.5, the self-similar cascade is irrelevant.

the p model[5]. As the self-similarity in thgp model is an

intrinsic feature of the cascade splitting, introducing thetuations increase. In Fig. 3, the results are showmpfe0.3
Poisson transformation does not change the pattern qualita-_7 andn _30' In thé I'imiting case op=0, ie t.h,e
-, 0o— . — VY, LT,

tively; the only exception is in the special case pf 3. largest fluctuations, the results are shown in Fig. 4.
Without the Poisson transformation there is no fluctuation, Eqor the bin correlation(ny- ny..), the Poisson noises

and the energy distributes uniformly wher=3, i.e., alle;,  present a uniform off-diagonal contribution, as in Figa)2

are equal. After the Poisson transformation the fluctuationé\s p deviates from 0.5, the self-similar cascade introduces a
can be seen clearly in Fig. 2, where 10000 Monte Carlacorrelation which declines along the off-diagonal direction
events have been generated with paramelerg, p=0.5, and is uniformly enhanced along the diagonal direction, as in
and ny=30. Again, the bin correlatiofny,-ny.) reveals Fig. 3@). In the limiting case ofp=0, the diagonal contri-
correlations in both diagonal and off-diagonal portions;butions are further enhanced and the off-diagonal contribu-

As the value of parametgy deviates from 0.5, the fluc-
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FIG. 6. Same as Fig. 1 for the Ising model on a lattice of 1280 sites. The parameters arén$et3Q andD = 15.

tions become negligible, as in Fig(ad. As for the moment C. Ising model
spectrum(M;), the dependence on the splitting rapoin-
creases with an increase jn The values of M) are inde- The Ising model is a classical spin model with the Hamil-

pendent of the values @, while the values ofMg) increase  tonian[11]
significantly as the values qf vary from 0.5 to 0.

As shown in Figs. @), 3(b), and 4b), the observed fluc-
tuations in the wavelet correlatiqn'ﬁjk"ﬁj,k,) are similar to H=- 62 S-S+ bzi S (20
those of Poisson noises with enhanced amplitudes. The @)
variation in the splitting ratigp can be seen clearly in the . . .
wavelet spectruniE;). As the values op deviate from 0.5, vyhere(u) dem_)tes the summation over nearest-neighbor
the enhancement ¢E;) is first observed in the smaller val- Sites and the spin§; assume values of 1. The ferromag-
ues ofj, i.e., the rougher resolution. As the values pf netic strengthe and the external magnetic field are two
further decrease, the enhancement(Bf) becomes domi- free parameters of the model. With lattice-gas interpretation,
nated by the larger values ¢f i.e., the finer resolution. In n;=1/2(S+1), the Ising model can be used to study the
the limiting case op=0, a power law behavior is recovered, multiplicity fluctuations[15]. For comparison with the fluc-
as in Fig. 4c). tuations presented in other models, the two parametarsl
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b are adjusted to reproduce the average multipliGity=30  pressed by the wavelets. The correlations from different

and dispersiomzx/<n2>—<n Z—15, which are the values scales are nearly decoupled, i.e., the wavelet-transformed

observed in therITIOF model in Sec. Il A. distribution takes a quasidiagonal form. Moreover, the diag-
To perform an analysis with a resolution scdle 7, the ~ ©nal contributions from different scales exhibit a scaling law,

lattice must contain at least 128 sites. The results on a lattice€» @ powerlike behavior is observed. Such features arise

of 128 sites are shown in Fig. 5, where 10 000 Monte carldraturally in the random cascade model, where self-similarity
events are recorded. The bin co,rrelat(cnrjwnyk,) presents is an intrinsic feature. It has been observed that the same

a feature similar to the Poisson noise in Figa)2 Uniform features can also result from the nearest-neighbor interac-

. — . . : tions of the Ising model.
off-dlagonal contnbuuons are supe_nmpqsed with a uniform The multiresglution feature of wavelet analysis is essen-
peak of diagonal contributions. It is noticed that the peaktia

alona the diagonal direction is not so sharb as in the Poissol | for identification of the structure of interest, since the
9 9 P wavelet transformation suppresses redundancy in the corre-

noise. A rapid decline along the off-diagonal direction is lation information, behaving like a mathematical microscope

observed. The increase on the off-diagonal corner is due t\(R/hich can zoom in or out to various scales at each location.

periodic boundary conditions. The features revealed b¥t was expected that data arising from hierarchically orga-

wavelet correlation(nc-nj.) are quite different from njzed random processes exhibit a uniquely simple correlation
those of the Poisson noise. Again, the off-diagonal contribustrycture once they are represented on an appropriate wavelet
tions are effectively suppressed. The remaining off-diagona}sis.

contributions rise in bands, which implies that the correla- Because of the completeness and orthogonality of the
tions between different scales can be interpreted as the resylyelet basis, there is no information loss. In the expansions

of self-similarity like the cascading in thp model. The . - . ~
. . gs.(1) and(8), the wavelet amplitudegn} carry ex-
downward curve observed in the wavelet specti(fy) is actly the same information as the bin amplitudes,} do.

obviously the effe(;t of the finite Igttlce. Specifically, the transformation between these two sets can
On a larger lattice the fluctuations are enhanced and beb'e easily obtained as

come similar to those observed in themodel. The results N
on the lattice of 1280 sites are shown in Fig. 6. To keep the Ny—1x=2(Ny = Ny21), (21)
constraintgn)= 30 andD = 15 in the simulations, the values

of e andb must increase with the number of lattice sites;
while in the conventional thermodynamic limit, the values of
e and b are kept fixed. As shown in the figures, uniform
off-diagonal contributions in bin correlatiofm - ny.,:) can 1
still be observed. The remaining off-diagonal contributions = :LE S (1)
in wavelet correlation(nj,- ;) still rise in bands. The Kis i K
downward curve in the wavelet spectryi;) disappears.

- 1
Ny_ok=2(Nyat Ny as1— Nyaks2— Nyak+3), (22

In general, one has

(23

where the index’ = (27" 'k+27" 171 +i) and{k'} denotes
V. CONCLUSIONS the summation over indexfrom 0 to (27171-1).
In conclusion, wavelet analysis is expected to serve as a
In this study wavelet analysis has been used to study theseful tool for studying the self-similar aspects of QCD par-
multiplicity fluctuations in three different models. Generally, ton cascades occurring i@*e~ and hadron-hadron colli-
the large off-diagonal bin correlations are effectively sup-sions.
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