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We consider diagonal and nondiagonal QCD sum rules for the ground state heavy baryons to leading order
in 1/mQ and at next-to-leading order inaS . In the nondiagonal case we evaluate the eight different two-loop
diagrams which determine the perturbativeaS corrections to the Wilson coefficient of the quark condensate in
the operator product expansion. The QCD corrections to the nondiagonal sum rules are moderate compared to
the QCD corrections in the diagonal case. We also consider constituent-type sum rules using constituent-type
interpolating currents. The obtained results are in reasonable agreement with the corresponding results obtained
in the diagonal case. As central values for the bound state energies we findm(LQ)2mQ.760 MeV and
m(SQ)2mQ.940 MeV. The central values for the residues are given byF(LQ).0.030 GeV3 and
F(SQ).0.038 GeV3. @S0556-2821~97!00119-7#

PACS number~s!: 11.55.Hx, 12.38.Bx, 12.39.Hg, 12.40.Yx

I. INTRODUCTION

Knowledge of the nonperturbative properties of heavy
hadrons such as their binding energies or their weak transi-
tion matrix elements is of fundamental importance for the
determination of the fundamental parameters of the standard
model. Among these are the quark masses and the values of
the Cabibbo-Kobayashi-Maskawa matrix elements. A conve-
nient access to the properties of heavy hadrons containing
one heavy quark is given by the heavy quark effective theory
~HQET! which provides a systematic power series expansion
of physical matrix elements involving heavy hadrons in
terms of the inverse of the heavy quark mass~see, for ex-
ample,@1#!. While the case of heavy meson systems has been
analyzed in great detail, corresponding calculations for
heavy baryon systems have been lagging behind. This is un-
fortunate since results from the analysis of heavy baryon
systems are expected to provide important supplementary in-
formation on the nonperturbative dynamics of QCD and on
the fundamental parameters of the standard model. The im-
portance of further theoretical studies on heavy baryon sys-
tems is highlighted by the fact that there is now an abun-
dance of new experimental data on heavy baryon decays
sparked by recent advances in microvertexing techniques.
These data need to be analyzed and interpreted theoretically.

A convenient and well-trusted tool to investigate the non-
perturbative properties of heavy hadrons is the QCD sum
rule method@2#. The first application of the QCD sum rule
method to heavy baryons was considered some time ago by

Shuryak @3# who studied heavy baryons in the static limit
given by the leading term in the 1/mQ expansion. The work
of Shuryak@3# was revised and extended in@4,5#. An analy-
sis of heavy baryons containing large but finite quark masses
mQ was undertaken in@6–8#.

We have recently been embarking on a program to im-
prove on previous analysis of heavy baryon sum rules by
including first order radiative corrections in the analysis. In
@9# we determined the two-loop anomalous dimensions of
the static heavy baryon currents. In@10# we determined the
perturbativeaS corrections to the leading, dimension zero,
term in the operator product expansion~OPE! of the static
heavy baryon current correlator. Similar to the heavy meson
case investigated, e.g., in@11,12# the radiative corrections to
the perturbative dimension zero term are quite large. The
results of@9,10# were used to construct and analyze so-called
diagonal QCD sum rules for heavy baryons@10#.

Here the term ‘‘diagonal’’ refers to a particular feature of
heavy baryon currents and their current products. For every
baryonic state there are two independent interpolating cur-
rents even in the static limit@3,4,9#. One can thus construct
diagonal sum rules from current correlators of the same
baryon current and nondiagonal sum rules from current cor-
relators of different baryon currents. The structure of the sum
rules for the two cases is qualitatively quite different. Nev-
ertheless, they must be considered on the same footing. In
@10# we provided a detailed analysis of the diagonal sum
rules. The main part of the present paper is devoted to an
analysis of the nondiagonal sum rules including radiative
corrections. We compare our results with those obtained
from the analysis of the diagonal sum rules. Using results
from @10# we also analyze mixed sum rules where we use
constituent-type current combinations in the current correla-
tors.

In order to provide a brief synopsis of the structural dif-
ferences of the diagonal and nondiagonal sum rules let us
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briefly recapitulate the main features of the diagonal sum
rule analysis@3,4,10#, namely

~1! QCD sum rules based on diagonal correlators feature
a leading order spectral density which grows rapidly with
energy asr(v);v5. This rapid growth introduces a strong
dependence of the results on the assumed value of the con-
tinuum threshold.

~2! The QCD radiative correction to the leading order
spectral density amounts to about 100% at the renormaliza-
tion scalem51 GeV.

~3! Despite the large QCD corrections to the Wilson co-
efficients in the OPE, the lowest order sum rules and the
radiatively corrected sum rules predict nearly the same val-
ues for the masses and the residues, while the stability region
of the sum rule results appears at slightly shifted values of
the continuum threshold.

It is clear that one also needs to analyze the nondiagonal
sum rules in addition to the diagonal sum rules if only for
reasons of consistency. A welcome property of the nondiago-
nal correlator is the quite ‘‘normal’’ behaviorr(v);v2 of
the spectral density and the fact that the QCD corrections are
moderate.

The paper is organized as follows. In Sec. II we introduce
our notation and construct the correlator of two heavy baryon
currents. We also recall the form of the known QCD correc-
tions to the dimension zero term of the OPE. In Sec. III we
present our results on the QCD corrections to the dimension
three contribution in the OPE, which is proportional to the
vacuum expectation value of the product of the quark and the
antiquark field. We also construct generalized QCD sum
rules which incorporate both the diagonal and the nondiago-
nal case. Section IV contains the results of our numerical
analysis, our final numbers, and a discussion of the results. In
the Appendix we collect our results on the evaluation of the
radiative two-loop corrections to the dimension three con-
densate contribution. The results are given for
D-dimensional space-time using the most general baryon
current structure.

II. CORRELATOR OF TWO BARYONIC CURRENTS

A. Basic notions

In this section we briefly recapitulate the basic notions
involved in the construction of QCD sum rules for heavy
baryons. This also serves to introduce our notation which
closely follows the one used in@9,10#. The starting point is
given by the correlator of two baryonic currents (i , j 51,2):

P i j ~v5k•v !5 i E d4xeikx^0uT$Ji~x!, J̄ j~0!%u0&, ~1!

wherekm is the residual momentum of the heavy quark and
vm is the four-velocity of the heavy baryon, the product of
both being denoted byv. The residual momentum and the
four-velocity are related bypm5mQvm1km , wherepm de-
notes the momentum of the heavy quark andmQ is its mass.
As was mentioned before, there are two possible choices of

interpolating currents for each of the heavy baryon states.
Neglecting the flavor and color structure for the moment,
these are given by1

J15@qTCG1q#G8Q andJ25@qTCG2q#G8Q, ~2!

where

G15G andG25Gv” . ~3!

To be more precise, it is clear that the multiplication of the
light-side Dirac structureG with v” does not change the quan-
tum numbers of the interpolating current but does change the
structure of the current. Multiplying the heavy-side structure
G8 with v” , however, does not change the structure of the
interpolating current sincev” Q5Q in the static limit.

In the static limit one has two types of heavy ground state
baryons depending on whether the light diquark system is in
a spin 0 or in a spin 1 state. We shall employ a generic
notation and refer to the first type~spin 0 diquark! as
LQ-type heavy baryons. The Dirac structure of the interpo-
lating current is given byG5g5 andG851 in this case. In
the second case~spin 1 diquark! one has a doublet of degen-
erateSQ-type states with overall spin 1/2 and 3/2. For the
spin-1/2SQ-type state the interpolating current is given by
G5g'

m[gm2v” vm and G85g'
mg5. The explicit form of the

spin 3/2 interpolating current (SQ* -type state! can be found,
e.g., in@10#.

For a general analysis it proves convenient to represent
the general light-side Dirac structure of the currents in Eq.
~2! by an antisymmetrized product ofn Dirac matrices
G5g [m1

•••gmn] . When calculating the one- and two-loop
vertex corrections to the baryon currents in Eq.~2! one en-
countersg contractions of the formgaGga andv” Gv” . Thega
contraction leads to ann dependence according to

gaGga5~21!n~D22n!G, ~4!

whereD denotes the space-time dimension. Thev” contrac-
tion depends in addition on the parameters which takes the
value (s511) and (s521) for an even or odd number of
v” ’s in G, respectively. Thev” contraction reads

v” Gv” 5~21!nsG. ~5!

Some of our results in the next sections are given in terms of
the most general Dirac structure of heavy baryon currents
involving the parametersn ands whose definitions should be
kept in mind. For the convenience of the reader we list the
relevant (n,s) values for the cases studied in this paper in
Table I.

B. Anomalous dimensions of heavy baryon currents

One-loop and two-loop renormalizations of the static
heavy baryon currents and their anomalous dimensions were
considered in@4# and@9#, respectively. Note that the anoma-
lous dimensions of the currents differ in general from those

1Here we use a rather symbolic notation. The Dirac stringsG and
G8 can carry Lorentz indices. A contraction on the Lorentz indices
is always implied when writing the currents in the form of Eq.~2!.
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in conventional QCD. We define the anomalous dimensions
in terms of the expansiong5(k(aS/4p)kgk . The one-loop
anomalous dimension for the general current case depends
only on the parametern which specifies the light-side Dirac
structure. The one-loop anomalous dimension is given by
@4,9#

g152 4
3 @~n22!212#. ~6!

The general (n,s)-dependent formula for the two-loop
anomalous dimension case is rather lengthy and will there-
fore not be listed here. The general formula can be found in
@9#. Here we specify to the case of the heavy ground state
baryons and give the expansion to two-loop order using the
modified minimal subtraction (MS̄) scheme and a naively
anticommutingg5. One has

~7!

~8!

~9!

~10!

where the numerical values are given for the case of three
light flavors (Nf53).

III. DIAGONAL, NONDIAGONAL,
AND MIXED CORRELATORS

As mentioned before, the two independent currents give
rise to two independent types of correlators, namely, the di-
agonal correlatorŝJ1 J̄ 1& and ^J2 J̄ 2& and the nondiagonal
correlatorŝ J1 J̄ 2& and^J2 J̄ 1&. In the general case, one may
even consider correlators built from a linear combination
J5aJ11(12a)J2 of currents with an arbitrary coefficienta
(0<a<1). We shall, however, not discuss the most general
linear combination of currents in this paper. Later on we
investigate the casea51/2. The choiceJ5(J11J2)/2 cor-
responds to a constituent quark model current which has
maximal overlap with the ground state baryons in the con-
stituent quark model picture.

Following the standard QCD sum rule method@2#, the
correlator is calculated in the Euclidean region2v'1 –2
GeV including perturbative and nonperturbative contribu-
tions. In the Euclidean region the nonperturbative contribu-
tions are expected to form a convergent series. The nonper-

turbative effects are taken into account by employing an
OPE for the time-ordered product of the currents in Eq.~1!.
One then has

^T$J~x!, J̄ ~0!%&5(
d

Cd~x2!Od5C0~x2!O01C3~x2!O3

1C4~x2!O41C5~x2!O51•••, ~11!

where theOd are vacuum expectation values of local opera-
tors whose dimensions are labeled by their subscriptsd.
O051̂ corresponds to the so-called perturbative term,

O35^ q̄q& is a quark condensate term,O45aS^G
2& is a

gluon condensate term,O55gS^ q̄smnGmnq& is a mixed
quark-gluon condensate, and so on. The expansion coeffi-
cientsCd(x2) are the associated coefficient functions or Wil-
son coefficients of the OPE.

A straightforward dimensional analysis shows that the
OPE of the diagonal correlators^J1 J̄ 1& and^J2 J̄ 2& contains
only even-dimensional terms, while the OPE of the nondi-
agonal correlators contains only odd-dimensional terms. This
classification is preserved when radiative corrections are in-
cluded, assuming the light quarks to be massless. We apply
radiative corrections only to the leading terms in the OPE
because the nonleading contributions are small.

The diagonal case was studied in detail in@10#. It was
shown that the QCD corrections to the spectral density of the
correlator functionP(v) are quite large. It is quite intriguing
that the contributions of the four different three-loop dia-
grams that contribute to the perturbative dimension zero
piece shown in Fig. 1 can be collected into one compact
formula @10#

r0
QCD~v,m!

r0
Born~v!

511
aS

4pF lnS m

2v D8

3
~n224n16!

1
8

45
@60z~2!138n22137n1273#G .

~12!

The numbern specifies the light-side Dirac structure of the
baryon currents as before. Note that the coefficient of the
logarithmic term coincides with the one-loop anomalous di-
mension of the diagonal correlator which in this case is equal
to two times the anomalous dimension of the baryon current
itself.

A. Nondiagonal correlators

The nondiagonal correlator of the two heavy baryon cur-
rents reads

P12~v!5 i E d4xeikx^0uT$J1~x! J̄ 2~0!%u0&

5G18
11v”

2
Ḡ28

1

4
Tr~G1Ḡ2!P12~v!. ~13!

We have suppressed the flavor and color labels in Eq.~13!.
The OPE for the nondiagonal correlator contains a term

TABLE I. Specific values of the parameter pair (n,s) for par-
ticular cases of the light-side Dirac structureG.

G n s Particles

g5 0 11 L1

g5g0 1 21 L2

gW 1 11 S1 ,S1*

g0gW 2 21 S2 ,S2*
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O3(m)5^ q̄q& proportional to the quark condensate, a mixed

quark-gluon condensate termO5(m)5gS^ q̄smnGmnq&
[m0

2^qq&, a term O7(m)5^qq&^aSG2&, and a term

O9(m)5aS^ q̄q&3. Taking into account these four conden-
sate contributions, the Fourier transform of the scalar corr-
elator functionP(v) is given by

P~ t !5POPE~ t !52 i
2u~ t !

p2t3 FO3~m!1
t2

16S 12
c

2DO5~m!

1
pt4

288S 12
c

2DO7~m!2
p3t6

972
O9~m!G , ~14!

where c is a Clebsch-Gordan-type factor which takes the
valuesc51 for the LQ-type andc521/3 for theSQ-type
doublet$SQ ,SQ* % ground state baryons. The correlator func-
tion POPE(v) satisfies the dispersion relation

POPE~v!5P~v!5E
0

` r~v8!dv8

v82v2 i0
1subtraction, ~15!

wherer(v)5Im@P(v)#/p is the spectral density of the sca-
lar correlation function. Taking into account the above four

condensate contributions, the lowest order spectral density of
the first two contributions is given by@4,5#

r3~v!52
^ q̄q&

p2
v2 andr5~v!52S 12

c

2D ^ q̄q&m0
2

16p2
.

~16!

Next we compute the radiative corrections to the quark
condensate termr3(v). There are altogether eight different
contributing diagrams which are shown in Fig. 2. Their con-
tributions were evaluated with the help of the algorithm de-
veloped in@15#. As a check on the calculation we used a
general covariant gauge for the gluon. The gauge depen-
dence was found to drop out in the sum of the contributions.

Collecting together the one- and two-loop contributions to
the dimension three scalar correlation function one has

P3~v!52
^ q̄q&

2p2
v2F S 22v

m D D24

C0D0

1
gS

2

~4p!D/2S 22v

m D 2D28

(
i 51

8

CiDi G , ~17!

whereD5422e is the space-time dimension. There are a
number of color factors in Eq.~17!, the values of which are
given by C05Nc!, C15C25C35C45C552Nc!CB , and
C65C75C85Nc!CF , where Nc is the number of colors,
CF5(Nc

221)/2Nc , and CB5(Nc11)/2Nc . Explicit forms
of the scalar coefficientsDi defined in Eq.~17! are listed in
the Appendix. When Eq.~17! is expanded in terms of a
power series in 1/e, one obtains

FIG. 1. Radiative corrections to the diagonal correlator.~0!
Lowest order two-loop contribution,~1!–~4! O(aS) three-loop con-
tributions.

FIG. 2. Radiative corrections to the nondiagonal correlator
given by the dimension three condensate contribution.~0! lowest
order one-loop contribution,~1!–~8! O(aS) two-loop contributions.
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P3~v!52
^ q̄q&

2p2
v2F S 2m

2v D 2eS 1

e
12D1

aS

12pS 2m

2v D 4eS 1

e2
@2n228n1712~n22!s#

1
1

e
@12n2244n1511~12n222!s18z~2!#156n22200n12601~56n2100!s

1@18n2272n187118s~n22!#z~2!232z~3!D G , ~18!

where we have now substituted explicit values for the color
factors withNc53. The spectral densityr3(v) is given by
the absorptive part ofP3(v). In renormalizing the spectral
densityr3(v) one has to take into account both the renor-
malization factor of the baryon currents@4# and the renor-
malization factor of the quark condensate,

r3~v!5ZJ1
ZJ2

Zq̄q
21

r3
ren~v!, ~19!

with @10,12#

Zq̄q5113
aSCF

4pe
,

ZJ1
511

aSCB

4pe
~n224n16!, ~20!

ZJ2
511

aSCB

4pe
@~n221s!212#.

After multiplication with theZ factors the leading 1/e con-
tribution in r3(v) is canceled. The renormalized spectral
density is given by

r3
ren~v!5r3

Born~v!F11
aS

4p
r ~v/m!G , ~21!

where

r3
Born~v!52

^ q̄q& ren

p2
v2 and r ~v/m!5r 1lnS m

2v D1r 2 ,

~22!

with

r 1 :5 4
3 @2n228n1712~n22!s#,

r 2 :5 2
3 @8n2228n13718ns214s18z~2!#. ~23!

Note that the coefficientr 1 of the logarithmic term in Eq.
~22! coincides with the sum of the one-loop anomalous di-
mension ofJ1 andJ2 minus the anomalous dimension of the
quark condensate. The reason is that the same coefficient is
involved in the cancellations of the 1/e pole in Eq.~19!.

Explicit values for the correction to the spectral density
for the cases of theLQ- and SQ-type ground state baryons
are given by

r L~v/m!54lnS m

2v D1
2

3
@2318z~2!# ~24!

and

r S~v/m!52
4

3
lnS m

2v D1
2

3
@1118z~2!#. ~25!

The radiative corrections can be seen to amount to about
40–60 % at the renormalization scalem51 GeV. Because of
the Hermiticity of the current correlatorP i j , the coefficients
r 1 and r 2 do not depend on which of the two nondiagonal
current productsJ1 J̄ 2 or J2 J̄ 1 are taken.

B. Nondiagonal sum rules

As usual we construct QCD sum rules by invoking
parton-hadron duality; i.e., we equate the theoretical contri-
bution to the scalar correlation functionP(v) given in Eq.
~13! with the dispersion integral over the contributions of
hadron states. These consist of the lowest-lying ground state
with bound state energyL̄ plus the excited states and the
continuum contributions. To leading order in 1/mQ the
bound state energy of the ground state is defined by

mbaryon5mQ1L̄, ~26!

wheremQ is the pole mass of the heavy quark. We assume
that the contribution of the excited states and the continuum
contribution sets in above some effective threshold energy
EC and can be approximated by the OPE expression@2#. For
the hadron-side contributionrHS to the spectral density we
thus write

rHS~v!5rGS~v!1rcont~v!, ~27!

where the contribution of the lowest-lying ground state
baryon is denoted byrGS and is given by

rGS~v!5
1

2
F1F2d~v2L̄ !. ~28!

The residuesFi ( i 51,2) appearing in Eq.~28! are defined by
the matrix elements of the heavy baryon currents according
to

^0uJi uLQ&5FiLu, ^0uJi uSQ&5FiSu,
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^0uJi
nuSQ* &5

1

A3
FiS* un, ~29!

whereu andun are the usual spin-1/2 and spin-3/2 spinors.
Note thatFiS* coincides withFiS to lowest order of the
heavy quark mass expansion which we are working in.

As is usual we assume hadron-parton duality for the con-
tributions of excited states and the continuum contributions.
As mentioned before we subsum these contributions by de-
fining an effective energy thresholdEC and write
rcont(v)5u(v2EC)r(v), wherer is the result of the OPE
calculations given in Eqs.~16! and~21!. With these assump-
tions we arrive at the sum rule

POPE~v!5

1
2 F1F2

L̄2v2 i0
1E

EC

` r~v8!dv8

v82v2 i0
~30!

or

1
2 F1F2

L̄2v2 i0
5E

0

EC r~v8!dv8

v82v2 i0
1PPC~v!. ~31!

The polynomial contributionPPC(v) is defined as the Fou-
rier transform of that part of the correlator functionP(t)
which contains non-negative powers (t2)n (n>0). Finally
we apply the Borel transformation

B̂T5 lim
vn

G~n!S 2
d

dv D n

, n,2v→` ~T52v/n fixed!,

~32!

to the sum rule in Eq. ~31!. Using B̂T@1/(v2v8)#
5exp(2v8/T)/T we obtain the Borel sum rule

1
2 F1~m!F2~m!e2L̄/T5E

0

EC
r~v8,m!e2v8/Tdv81B̂PPC~T!

5:K~EC ,T,m!, ~33!

where we have reintroduced them dependence of the spec-
tral density which in turn gives rise to am dependence of the
residue. The Borel-transformed polynomial contribution
B̂PPC(T) can be obtained directly fromPPC(t) by the sub-
stitution t→2 i /T ~see the discussion in@4#!. Note that the
bound state energyL̄ can be obtained from the sum rule in
Eq. ~33! by taking the logarithmic derivative with respect to
the inverse Borel parameter according to

L̄52
dln@K~EC ,T,m!#

dT21
. ~34!

Before turning to the numerical analysis of the nondiago-
nal sum rules we want to briefly comment on the scale de-
pendence of the residues. The numerical values given below
are taken at the specific normalization pointm51 GeV,
while the general dependence on the scalem is controlled by
the renormalization group equation. At one-loop order the
product of the residues at one renormalization pointm2 can
be expressed by the product at another renormalization point
m1 via

F1~m2!F2~m2!5F1~m1!F2~m1!U~m1 ,m2!, ~35!

with

U~m1 ,m2!5S aS~m!

aS~m0! D
g1 /b1

, ~36!

whereU(m1 ,m2) is the evolution function which takes one
from the scale m2 to the scale m1. The coefficients
b151122/3Nc andg1 are the usual first order terms in the
expansion of the QCDb function and the anomalous dimen-
siongP5gJ1

1gJ2
2g q̄q of the nondiagonal scalar correlator

function P. The two-loop extension of Eq.~36! is given by

U~m1 ,m2!5expS E
aS~m2!

aS~m1!da

a

g~a!

b~a! D 5S aS~m1!

aS~m2! D
g1 /b1

3F11
aS~m1!2aS~m2!

4p

g1

b1
S g2

g1
2

b2

b1
D G ,

~37!

wherebn is thenth order term in theb-function expansion
andgn denotes the anomalous dimension of the nondiagonal
scalar correlator functionP at nth-loop order. The two-loop
evolution function in Eq.~37! is obtained as a solution to the
renormalization group equation including next-to-leading or-
der perturbative terms inaS ~see also the discussion in@11–
14#!.

It is evident that we can only extract the value of the
product of residuesF1F2 from our sum rule analysis. In
order to make further progress, we adopt the working hy-
pothesis that the residues of the two current options in each
case are equal. This assumption is corraborated by the results
of the diagonal sum rule analysis@10#. This means we re-
placeF1F2 by F2 in the above formulas when performing
the numerical analysis. We note, however, that the currents
J1 andJ2 have different anomalous dimensions and therefore
F1 andF2 do not coincide at another renormalization scale
m2 even if they coincide at the scalem1. Returning to the
sum rule in Eq.~33!, one then has

1

2
F2~m!e2L̄/T5

2Nc!

p4 FEQ
3 T3S f 2~xC!1

aS

4pH F lnS m

2TD f 2~xC!

2 f 2
l ~xC!G r 11 f 2~xC!r 2J D

2EQ
3 E0

2TS 12
c

2D f 0~xC!1
2

3S 12
c

2DEQ
3 EG

4

T

1
aSCF

36p

EQ
9

T3 G , ~38!

where the (n,s)-dependent coefficient functionsr 1 and r 2

are defined in Eq.~23! and the functionsf n and f n
l are given

by

f n~x!:5E
0

xx8n

n!
e2x8dx8512e2x (

m50

n
xm

m!
,
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f n
l ~x!:5E

0

xx8n

n!
lnx8e2x8dx8. ~39!

In order to simplify the notation we have introduced the
abbreviations

xC :5
EC

T
, E0 :5

m0

4
, ~EQ!3:52

p2

2Nc
^ q̄q&

and

~EG!4:5
paS^G

2&
32Nc~Nc21!

. ~40!

C. Mixed sum rules of constituent type

As mentioned before, we shall not investigate the most
general case of mixed sum rules but specify to the linear
combination of currentsJ5(J11J2)/2 in the sum rules. The
light-side Dirac structure of the currents can then seen to
appear in the form1

2 (11v” )G; i.e., one has the projector
factor P15(11v” )/2 which projects on the large compo-
nents of the light quark fields. In the rest system of the heavy
baryon, wherevm5(1;0,0,0), this is manifest since then
P15(0

1
0
0). We refer to this particular linear combination of

currents as the constituent-type current. This linear combina-
tion of currents is expected to have maximum overlap with
the heavy ground state baryons in the constituent quark
model, i.e., where the light diquark state in the heavy baryon
is taken to be composed of on-shell light quarks. We mention
that the constituent quark model picture emerges in the large-
Nc limit @16#. The tools needed for the sum rule analysis of
constituent-type heavy baryons have been assembled in this
paper and in@9#. The results of the constituent analysis are
presented in the next section together with the results of the
analysis of the diagonal and nondiagonal sum rules.

IV. NUMERICAL ANALYSIS

Having the neccessary formulas at hand we next describe
our numerical analysis of the sum rules and specify our
choice of the relevant input parameters. We use the follow-
ing numerical input values for the condensate contributions
@2,17#:

^ q̄q&52~0.23 GeV!3 ~quark condensate!,
~41!

aS^G
2&50.04 GeV4 ~gluon condensate!,

and

gS^ q̄smnGmnq&5m0
2^ q̄q&

with mixed quark-gluon condensate

m0
250.8 GeV2.

There are in general two strategies for the numerical analysis
of the QCD sum rules. The first strategy fixes the bound state
energyL̄ from the outset by choosing a specific value for the
pole mass of the heavy quark and then extracts a value for
the residueF. In order to obtain information from the sum

rules which is independent of specific input values, we adopt

a second strategy, namely, to determine bothL̄ and F by
finding simultaneous stability values for them with respect to
the Borel parameterT.

The first step in carrying out the numerical analysis of the
sum rules is to find a sum rule ‘‘window’’ for the allowed
values of the Borel parameterT. The parameter range ofT is
constrained by two different physical requirements. The first
is that the convergence of the OPE expansion must be se-
cured. We therefore demand that the subleading term in the
OPE does not contribute more than 30% of the leading order
term. This gives a lower limit for the Borel parameter. The
upper limit is determined by the requirement that the contri-
butions from the excited states plus the physical continuum
~even after Borel transformation! should not exceed the
bound state contribution. This requirement is neccessary in
order to guarantee that the sum rules are as independent as
possible of the model-dependent assumptions concerning the
profile of the theoretical spectral density, i.e., the model of
the continuum.

The lower limit ofEC is given by the requirement that the
indicated window should be kept open. For the rest,EC is a
free-floating variable which is only limited by the stability

requirements onL̄ andF.

A. Diagonal sum rules

Let us briefly recapitulate the results of the numerical
analysis of the diagonal sum rules presented in@10#. The
above two requirements limit the allowed range for the Borel
parameter to 250 MeV,T,400 MeV. The analysis pro-
ceeded in two steps. First we analyzed the uncorrected sum
rules varying both the continuum threshold and the bound
state energy. The criterion for the best choice of these two
energies is the stability of the sum rules with regard to the
variation of the Borel parameterT. In the second step we
included the radiative corrections and again varied both the
continuum threshold and the bound state energy to obtain the
best sum rules stability. The ratio of the continuum contribu-
tion and ground state contribution depends strongly on the
Borel parameterT and the continuum threshold energyEC .
Looking, e.g., at the sum rule analysis for theLQ-type bary-
ons with QCD corrections, the continuum contribution is
about 80% of the ground state contribution forEC51.1 GeV
andT5250 MeV and then increases withT.

Because of the new specification for the sum rule window
we have repeated the diagonal sum rule analysis of@10#,

allowing for slightly different values ofL̄ and F. The out-
come of the numerical analysis is practically unaltered. The
values for theLQ-type state can be read off from Fig. 3.
Figure 3~a! shows the dependence of the bound state energy
L̄ on the Borel parameterT and Fig. 3~b! shows the depen-
dence of the residue onT, both for the leading order sum
rule. Figures 3~c! and 3~d! show the same dependences for
the radiatively corrected sum rules. The same analysis is re-
peated for theSQ-type states in Fig. 4. The results of the
numerical analysis both without and with radiative correc-
tions are given in Table II.
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B. Nondiagonal sum rules

In the case of the nondiagonal sum rules, the ‘‘window’’
of permissible values for the Borel parameter is wider than in
the diagonal case and it is given by 250 MeV,T,600 MeV.
Proceeding in the same manner as in the case of the diagonal
sum rule analysis, we obtain best stability values when vary-
ing T. The values for theLQ-type state can be read off from
Fig. 5, and the values for theSQ-type state can be obtained
from Fig. 6. For theLQ-type baryons the stability appears at
values of T and EC where the continuum contribution is
about 100%. If we try to decrease this contribution relatively
by increasingEC , the stability inT becomes worse. As can
be seen from Fig. 5~a!, for, e.g.,EC51.3 GeV the contribu-
tion of the continuum is less than 40% on the left-hand side,
but stability is lost. These considerations show that the rela-
tive error of our estimate can be taken to be approximately
10%. The situation for theSQ-type baryons is much better.
For example, for the radiatively corrected sum rules the ratio
of the continuum and the ground state contribution is 50%

for the central valueEC51.2 GeV and 30% forEC51.5
GeV at the left end of the allowed range for the Borel pa-
rameterT.

The numerical results are given in Table III. Assuming
relative errors of 10% for the bound state energy and 20%
for the residue, the obtained values are in agreement with the
results of the analysis of the diagonal sum rules, where the
values for theSQ-type baryon are the more reliable one.

C. Constituent-type mixed sum rules

The use of a constituent-type interpolating current
J5(J11J2)/2 combines the two sum rule formulas for the
diagonal and nondiagonal cases, taking one-half of each part.
The ‘‘window’’ of permissible values for the Borel param-
eter T is now given by 300 MeV,T,700 MeV. In Fig. 7
we show the results of the sum rule analysis for theLQ-type
baryons, and in Fig. 8 we show the results for theSQ-type
baryons.

The numerical results of the analysis are given in Table
IV. The constituent-type sum rules show an improved stabil-

FIG. 3. Bound state energy and residue of theLQ as functions
of the Borel parameterT ~diagonal case!. Plotted are five curves for
five different values of the threshold energyEC spaced by 100 MeV
around the central valueEC5EC

best. EC increases from bottom to
top. ~a! Lowest order sum rule results for the bound state energy

L̄(L), ~b! lowest order sum rule results for the residueFL , ~c!

O(aS) sum rule results for the bound state energyL̄(L) for the
currentJL1, and~d! O(aS) sum rule results for the residueFL for
the currentJL1.

FIG. 4. Bound state energy and residue of theSQ as functions
of the Borel parameterT ~diagonal case!. Plotted are five curves for
five different values of the threshold energyEC spaced by 100 MeV
around the central valueEC5EC

best. EC increases from bottom to
top. ~a! Lowest order sum rule results for the bound state energy

L̄(S), ~b! lowest order sum rule results for the residueFS , ~c!

O(aS) sum rule results for the bound state energyL̄(S) for the
currentJS1, and~d! O(aS) sum rule results for the residueFS for
the currentJS1.

3950 56S. GROOTE, J. G. KO¨ RNER, AND O. I. YAKOVLEV



ity on the Borel parameterT as compared to the nondiagonal
sum rules, but the stability is not as good as in the diagonal
case. Within the assumed errors the results are again in
agreement with both the diagonal and nondiagonal sum rule
analyses.

D. Comparison with experimental values

Finally we want to compare our results for the bound state
energy with the existing experimental values for the baryon
masses. For such a comparision we need to know the pole
mass of the heavy quarks which can be extracted from the
heavy quarkonium and heavy-light mesons@18–20#. The

TABLE II. Results of the diagonal sum rule analysis for the continuum threshold parameterEC , the

bound state energyL̄, and the residuumF for LQ-type andSQ-type currents, analyzed to leading order~LO!
as well as next-to-leading order~NLO!.

Baryon-type state EC ~GeV! L̄ ~GeV! F ~GeV3)

LQ ~LO! 1.260.1 0.7760.05 0.02260.001
LQ ~NLO! 1.160.1 0.7760.05 0.02760.002
SQ ~LO! 1.460.1 0.9660.05 0.03160.002
SQ ~NLO! 1.360.1 0.9460.05 0.03860.003

FIG. 5. Bound state energy and residue of theLQ as functions
of the Borel parameterT ~nondiagonal case!. Plotted are five curves
for five different values of the threshold energyEC spaced by 100
MeV around the central valueEC5EC

best. EC increases from bottom
to top. ~a! Lowest order sum rule results for the bound state energy

L̄(L), ~b! lowest order sum rule results for the residueFL , ~c!

O(aS) sum rule results for the bound state energyL̄(L) for the two
currentsJL1 andJL2, and~d! O(aS) sum rule results for the residue
FL for the two currentsJL1 andJL2.

FIG. 6. Bound state energy and residue of theSQ as functions
of the Borel parameterT ~nondiagonal case!. Plotted are five curves
for five different values of the threshold energyEC spaced by 100
MeV around the central valueEC5EC

best. EC increases from bottom
to top. ~a! Lowest order sum rule results for the bound state energy

L̄(S), ~b! lowest order sum rule results for the residueFS , ~c!

O(aS) sum rule results for the bound state energyL̄(S) for the two
currentsJS1 andJS2, and~d! O(aS) sum rule results for the residue
FS for the two currentsJS1 andJS2
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quoted value of the bottom quark pole mass varies from
mb54.5560.05 GeV@19# andmb54.6760.10 GeV@20# to
mb54.8060.03 GeV @18#. Assuming the range 4.6 GeV
,mb,4.9 GeV, the massm(Lb)55642650 MeV of the
baryonLb @21# results in a range 740 MeV,L̄(Lb),1040

MeV for the bound state energy. Our central value
L̄(LQ)5760 MeV for the bound state energy suggests a
pole mass ofmb54880 MeV for the bottom quark.

Taking the experimental results for charm-quark baryons,
namely, m(Lc)52284.960.6 MeV and m(Sc

1)52453.5

FIG. 7. Bound state energy and residue of theLQ as functions
of the Borel parameterT ~constituent-type mixed case!. Plotted are
five curves for five different values of the threshold energyEC

spaced by 100 MeV around the central valueEC5EC
best. EC in-

creases from bottom to top.~a! Lowest order sum rule results for

the bound state energyL̄(L), ~b! lowest order sum rule results for
the residueFL , ~c! O(aS) sum rule results for the bound state

energyL̄(L) for the two currentsJL1 andJL2, and~d! O(aS) sum
rule results for the residueFL for the two currentsJL1 andJL2.

FIG. 8. Bound state energy and residue of theSQ as functions
of the Borel parameterT ~constituent-type mixed case!. Plotted are
five curves for five different values of the threshold energyEC

spaced by 100 MeV around the central valueEC5EC
best. EC in-

creases from bottom to top.~a! Lowest order sum rule results for

the bound state energyL̄(S), ~b! lowest order sum rule results for
the residueFS , ~c! O(aS) sum rule results for the bound state

energyL̄(S) for the two currentsJS1 andJS2, and~d! O(aS) sum
rule results for the residueFS for the two currentsJS1 andJS2.

TABLE III. Results of the nondiagonal sum rule analysis for the continuum threshold parameterEC , the

bound state energyL̄, and the residuumF for LQ-type andSQ-type currents, analyzed to leading order~LO!
as well as next-to-leading order~NLO!.

Baryon-type state EC ~GeV! L̄ ~GeV! F ~GeV!3

LQ ~LO! 1.060.10 0.7560.10 0.02460.002
LQ ~NLO! 1.060.10 0.7260.10 0.03260.003
SQ ~LO! 1.560.10 1.1660.10 0.04560.003
SQ ~NLO! 1.260.10 0.9460.10 0.03960.004
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60.9 MeV @21#, our central valuesL̄(LQ)5760 MeV and
L̄(SQ)5940 MeV predict a mean pole mass ofmc51520
MeV for the charm quark.

V. CONCLUSIONS

We have considered the operator product expansion of the
correlator of two static heavy baryon currents at small Eu-
clidian distances and determined theaS radiative corrections
to the first and second Wilson coefficients in the expansion.
Based on the operator product expansion we have formulated
and analyzed heavy baryon sum rules for theLQ-type and
SQ-type heavy baryons using two different types of interpo-
lating fields for the baryons in each case. In this paper we
have constructed and analyzed the nondiagonal sum rules
built from the correlators of two different currents including
radiative corrections. The nondiagonal sum rules bring in
some new features such as a more ‘‘normal’’ behavior of the

spectral densityr(v)'^ q̄q&v2 and moderate QCD correc-
tions to the spectral density as compared to the diagonal
case. We have taken a second look at the diagonal sum rules.

We have also set up and analyzed constituent type heavy
baryon sum rules where we have used interpolating currents
that are expected to have a maximum overlap with the heavy
baryon’s light diquark system in the constituent quark model
picture. All three types of sum rules show acceptable stabil-
ity in their dependence on the Borel parameter, where the
best stability was obtained for the diagonal sum rules. The
results of the three types of sum rules~diagonal, nondiago-
nal, and constituent type! on the bound state energy and the
residues of the heavy ground state baryons were found to be
consistent with each other, where the values obtained for the
SQ-type baryons are more reliable than the results for the
LQ-type baryons.
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APPENDIX

In this appendix we collect our results on the evaluation
of the one-loop and two-loop contributions to the nondiago-

nal correlators of two heavy baryon currents. The contribut-
ing diagrams are shown in Fig. 2. Introducing the abbrevia-
tion En5G(12e)nG(112ne) ~with integer numbersn
51,2,3, . . . ) weobtain

D05
4G̃0E1

~D24!~D23!
, D15D25

2~D22!G̃0E2

~D24!2~D23!~2D27!
,

~A1!

D35
8~D22!G̃0E1

2

~D24!3~D23!2
2

4~D22!~3D210!G̃0E2

~D24!3~D23!2~2D27!
,

~A2!

D45
~D24!G̃11G̃2

~D24!2~D23!~2D27!
E2 ,

D55
2~D22!G̃02DG̃11G̃2

~D24!2~D23!~2D27!
E2 , ~A3!

D65
2D~D22!G̃0E2

~D24!2~D23!~2D27!
,

D75
2~D22!G̃0E2

~D24!2~D23!~2D27!
, ~A4!

D85
24~D22!G̃0E2

~D24!2~D23!2~2D27!
, ~A5!

where G̃05Tr( Ḡv” Gv” ), G̃15Tr( ḠgmGgm), and G̃2

5Tr( Ḡv” gmgnGgngmv” ).

TABLE IV. Results of the constituent-type mixed sum rule analysis for the continuum threshold param-

eter EC , the bound state energyL̄, and the residuumF for LQ-type andSQ-type currents, analyzed to
leading order~LO! as well as next-to-leading order~NLO!.

Baryon-type state EC ~GeV! L̄ ~GeV! F ~GeV3)

LQ ~LO! 1.160.10 0.7760.10 0.03460.004
LQ ~NLO! 1.160.10 0.7760.10 0.03260.004
SQ ~LO! 1.360.10 1.0360.10 0.04560.004
SQ ~NLO! 1.260.10 0.9460.10 0.03660.004
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