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Analysis of diagonal and nondiagonal QCD sum rules for heavy baryons
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We consider diagonal and nondiagonal QCD sum rules for the ground state heavy baryons to leading order
in 1/mg and at next-to-leading order img. In the nondiagonal case we evaluate the eight different two-loop
diagrams which determine the perturbativecorrections to the Wilson coefficient of the quark condensate in
the operator product expansion. The QCD corrections to the nondiagonal sum rules are moderate compared to
the QCD corrections in the diagonal case. We also consider constituent-type sum rules using constituent-type
interpolating currents. The obtained results are in reasonable agreement with the corresponding results obtained
in the diagonal case. As central values for the bound state energies wm(fhg) —mg=760 MeV and
m(2g) —mo=940 MeV. The central values for the residues are given R g)=0.030 Ge\? and
F(2q)=0.038 Ge\?. [S0556-282(197)00119-1

PACS numbs(s): 11.55.Hx, 12.38.Bx, 12.39.Hg, 12.40.Yx

I. INTRODUCTION Shuryak[3] who studied heavy baryons in the static limit
given by the leading term in therhf expansion. The work
Knowledge of the nonperturbative properties of heavyof Shuryak[3] was revised and extended[ih,5]. An analy-
hadrons such as their binding energies or their weak transsis of heavy baryons containing large but finite quark masses
tion matrix elements is of fundamental importance for themg was undertaken if6—8].
determination of the fundamental parameters of the standard We have recently been embarking on a program to im-
model. Among these are the quark masses and the values pfove on previous analysis of heavy baryon sum rules by
the Cabibbo-Kobayashi-Maskawa matrix elements. A conveincluding first order radiative corrections in the analysis. In
nient access to the properties of heavy hadrons containin@] we determined the two-loop anomalous dimensions of
one heavy quark is given by the heavy quark effective theoryhe static heavy baryon currents. [Ilb0] we determined the
(HQET) which provides a systematic power series expansioerturbativeag corrections to the leading, dimension zero,
of physical matrix elements involving heavy hadrons interm in the operator product expansié@PE of the static
terms of the inverse of the heavy quark mé#sse, for ex- heavy baryon current correlator. Similar to the heavy meson
ample,[1]). While the case of heavy meson systems has beegase investigated, e.g., ii1,12 the radiative corrections to
analyzed in great detail, corresponding calculations fothe perturbative dimension zero term are quite large. The
heavy baryon systems have been lagging behind. This is umesults of{9,10] were used to construct and analyze so-called
fortunate since results from the analysis of heavy baryomliagonal QCD sum rules for heavy barydd®)].
systems are expected to provide important supplementary in- Here the term “diagonal” refers to a particular feature of
formation on the nonperturbative dynamics of QCD and orheavy baryon currents and their current products. For every
the fundamental parameters of the standard model. The inbaryonic state there are two independent interpolating cur-
portance of further theoretical studies on heavy baryon sysents even in the static lim[i3,4,9]. One can thus construct
tems is highlighted by the fact that there is now an abundiagonal sum rules from current correlators of the same
dance of new experimental data on heavy baryon decaysaryon current and nondiagonal sum rules from current cor-
sparked by recent advances in microvertexing techniqueselators of different baryon currents. The structure of the sum
These data need to be analyzed and interpreted theoreticallyles for the two cases is qualitatively quite different. Nev-
A convenient and well-trusted tool to investigate the non-ertheless, they must be considered on the same footing. In
perturbative properties of heavy hadrons is the QCD sumi10] we provided a detailed analysis of the diagonal sum
rule method[2]. The first application of the QCD sum rule rules. The main part of the present paper is devoted to an
method to heavy baryons was considered some time ago nalysis of the nondiagonal sum rules including radiative
corrections. We compare our results with those obtained
from the analysis of the diagonal sum rules. Using results
*Electronic address: Groote@dipmza.physik.uni-mainz.de from [10] we also analyze mixed sum rules where we use
"Electronic address: Koerner@dipmza.physik.uni-mainz.de constituent-type current combinations in the current correla-
*On leave from Budker Institute of Nuclear Physi&NP), pr. tors.
Lavrenteva 11, Novosibirsk, 630090, Russia. Electronic address: In order to provide a brief synopsis of the structural dif-
O_Yakovlev@physik.uni-wuerzburg.de ferences of the diagonal and nondiagonal sum rules let us
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briefly recapitulate the main features of the diagonal sumnterpolating currents for each of the heavy baryon states.
rule analysig3,4,10, namely Neglecting the flavor and color structure for the moment,
(1) QCD sum rules based on diagonal correlators featurghese are given By
a leading order spectral density which grows rapidly with T , T ,
energy as(w)~ w®°. This rapid growth introduces a strong J1=[q'Clqll"Q andJ,=[q'Cl',qll"Q, (2
dependence of the results on the assumed value of the cofere
tinuum threshold.
(2) The QCD radiative correction to the leading order I'h=I andI',=TI%. 3

spectral density amounts to about 100% at the renormaliza- L L
tion scaleu=1 GeV. To be more precise, it is clear that the multiplication of the

(3) Despite the large QCD corrections to the Wilson CO_Iight-side Dirac structur&' with ¥ does not change the quan-

efficients in the OPE, the lowest order sum rules and thdum numbers of the interpolating current but does change the

e . structure of the current. Multiplying the heavy-side structure

radiatively corrected sum rules predict nearly the same valz,, "~

ues for the masses and the residues, while the stability regiorn with é however, c_ioes not c_hange thg s'Fru_cture of the
' terpolating current sincéQ=Q in the static limit.

of the sum rule results appears at slightly shifted values of' In the static limit one has two types of heavy ground state
the cpntmuum threshold. . baryons depending on whether the light diquark system is in
It is clear that one also needs to analyze the nondiagonal spin 0 or in a spin 1 state. We shall employ a generic

sum rules in addition to the diagonal sum rules if only for , iaiion and refer to the first typéspin 0 diquark as

reasons of consistency. A welcome property of the nondiagoAQ_type heavy baryons. The Dirac structure of the interpo-

nal correlator is the quite “normal” behavigi(w)~w? of  |afing current is given by = ys andT"' =1 in this case. In
the spectral density and the fact that the QCD corrections arge second casspin 1 diquarkone has a doublet of degen-
moderate. . . _ erate o-type states with overall spin 1/2 and 3/2. For the
The paper is organized as follows. In Sec. Il we introducespin-1/23,-type state the interpolating current is given by
our notation and construct the correlator of two heavy baryor = y“= y~—§y# andI'' = y/ys. The explicit form of the

currents. We also recall the form of the known QCD correc-spin 3/2 interpolating currenti(g-type statg can be found,
tions to the dimension zero term of the OPE. In Sec. Il Wee. g., in[10].

present our results on the QCD corrections to the dimension For a genera] ana]ysis it proves convenient to represent
three contribution in the OPE, which is proportional to thethe general light-side Dirac structure of the currents in Eq.
vacuum expectation value of the product of the quark and the2) by an antisymmetrized product af Dirac matrices
antiquark field. We also construct generalized QCD sunT = yl#1...y#nl When calculating the one- and two-loop
rules which incorporate both the diagonal and the nondiagovertex corrections to the baryon currents in E2). one en-

nal case. Section IV contains the results of our numericatountersy contractions of the forry, I y* andéI'¢. They,
analysis, our final numbers, and a discussion of the results. loontraction leads to an dependence according to

the Appendix we collect our results on the evaluation of the

radiative two-loop corrections to the dimension three con- Yol 7*=(=1)"(D-2n)T, 4
densate contribution. The results are given for
D-dimensional space-time using the most general baryo
current structure.

whereD denotes the space-time dimension. ¥heontrac-
Hon depends in addition on the paramederhich takes the
value (s=+1) and = —1) for an even or odd number of
¢’s in I', respectively. Th& contraction reads

Il. CORRELATOR OF TWO BARYONIC CURRENTS dTd=(—1)"sl". (5)

A. Basic notions Some of our results in the next sections are given in terms of
In this section we briefly recapitulate the basic notionsthe most general Dirac structure of heavy baryon currents
involved in the construction of QCD sum rules for heavy involving the parametens ands whose definitions should be
baryons. This also serves to introduce our notation whictk€pt in mind. For the convenience of the reader we list the
closely follows the one used §i®,10]. The starting point is relevant (,s) values for the cases studied in this paper in
given by the correlator of two baryonic currenisjE& 1,2): Table I.

Hij(w=k~v)=if d4xeikX<O|T{Ji(x),J_j(O)}|0), ) B. Anomalous dimensions of heavy-ban-/on currents -

One-loop and two-loop renormalizations of the static
heavy baryon currents and their anomalous dimensions were
considered if4] and[9], respectively. Note that the anoma-
wherek,, is the residual momentum of the heavy quark andious dimensions of the currents differ in general from those
v, is the four-velocity of the heavy baryon, the product of

both being denoted bw. The residual momentum and the

four-velocity are related by, =mqv,+k,, wherep,, de- IHere we use a rather symbolic notation. The Dirac stringmsd
notes the momentum of the heavy quark amglis its mass. TI'' can carry Lorentz indices. A contraction on the Lorentz indices
As was mentioned before, there are two possible choices @ always implied when writing the currents in the form of E2).
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TABLE |. Specific values of the parameter pair,§) for par-  turbative effects are taken into account by employing an
ticular cases of the light-side Dirac structdre OPE for the time-ordered product of the currents in @9.
One then has

r n S Particles

Y6 0 +1 Ay (T{I(x),3(0)}) =2, Cy(x?)Og=Co(x?)Og+C3(x?) O3
Y5Y0 1 -1 Az ’

; 1 +1 3,31 +C4(x3)0,+Cyg(X?)05+---, (12
Yoy 2 -1 2.3

where theO4 are vacuum expectation values of local opera-
tors whose dimensions are labeled by their subscripts

in conventional QCD. We define the anomalous dimension%ozi corresponds to the so-called perturbative term

in terms of the expansion= 3, (ag/4m)"y,. The one-loop ) o
anomalous dimension for the general current case depen@s=(0dd) is a quark condensate term,=as(G®) is a
only on the parametar which specifies the light-side Dirac gluon condensate termQs=g<(qo,,G*"q) is a mixed
structure. The one-loop anomalous dimension is given byuark-gluon condensate, and so on. The expansion coeffi-
[4,9] cientsC4(x?) are the associated coefficient functions or Wil-
. 5 son coefficients of the OPE.
y1=—3[(n=2)"+2]. (6) A straightforward dimensional analysis shows that the

OPE of the diagonal correlato¢d; J,) and(J,J,) contains

The general 1f,s)-dependent formula for the two-loop X . . .
anomalous dimension case is rather lengthy and will there2"lY even-dimensional terms, while the OPE of the nondi-

fore not be listed here. The general formula can be found iI5'f1gonal correlators contains only odd-dimensional terms. This

[9]. Here we specify to the case of the heavy ground statg:ﬁzz'gnggzr:qsinpretﬁgrﬁegtWEZ?krsa?c;a;'gem;%réleeC;'sonvsvgrz 'nl'
baryons and give the expansion to two-loop order using th§ ’ 9 gntq ' pply

o ) i i radiative corrections only to the leading terms in the OPE
modnﬁed mllnlmal subtraction (MSscheme and a naively pacause the nonleading contributions are small.
anticommutingys. One has

The diagonal case was studied in detail[iD]. It was
shown that the QCD corrections to the spectral density of the

v o= 8% 4 Litece) + a0, — 196) (23 7 correlator functiorP(w) are quite large. It is quite intriguing
" ( 7r> gUEc() + 404, 6)( w) ’ @ that the contributions of the four different three-loop dia-
ey, T , grams that contribute to the perturbative dimension zero
M = —4 (—:>+§(16<(2)+20Nf—322) a—:) ) (8) piece shown in Fig. 1 can be collected into one compact
~—26.19 formula [10]
Yo o= —4 (O‘—:) +%(16((2)+20Nf—290) j—;)z ©) 0 40 o
po (@,u @
5 ) ~—22.63 ) (10) OBT:].—F 4—8 |n(2L)§(n2_4n+6)
m o= -3 (a—f>+ﬁ(48((2)+8N,+324) (a—:) , po (@) m @
~15.81 8
where the numerical values are given for the case of three + E[60§(2)+38nz—137n+273] :

light flavors (N;=3).
(12
I1l. DIAGONAL, NONDIAGONAL,

AND MIXED CORRELATORS The numbem specifies the light-side Dirac structure of the

baryon currents as before. Note that the coefficient of the
As mentioned before, the two independent currents givdogarithmic term coincides with the one-loop anomalous di-
rise to two independent types of correlators, namely, the dimension of the diagonal correlator which in this case is equal

agonal correlator¢J; J;) and(J,J,) and the nondiagonal 0 two times the anomalous dimension of the baryon current

correlators(J; J,) and(J,J,). In the general case, one may itself.

even consider correlators built from a linear combination

J=aJ;+(1—a)J, of currents with an arbitrary coefficieat A. Nondiagonal correlators

(O=a=<1). We shall, however, not discuss the most general The nondiagonal correlator of the two heavy baryon cur-

linear combination of currents in this paper. Later on werents reads

investigate the casa=1/2. The choicel=(J;+J,)/2 cor-

responds to a constituent quark model current which has

maximal overlap with the ground state baryons in the con-

stituent quark model picture. 1hg1
Following the standard QCD sum rule methgd, the _ T 2

correlator is calculated in the Euclidean regieno~1-2 =l Tl )Prl@). (13

GeV including perturbative and nonperturbative contribu-

tions. In the Euclidean region the nonperturbative contribuWe have suppressed the flavor and color labels in(E8).

tions are expected to form a convergent series. The nonpefthe OPE for the nondiagonal correlator contains a term

le(w)=if d*xe (0| T{J1(x) J(0)}/0)
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FIG. 2. Radiative corrections to the nondiagonal correlator
given by the dimension three condensate contribut{Oh.lowest
order one-loop contributior{;l)—(8) O(«ag) two-loop contributions.
condensate contributions, the lowest order spectral density of

(3) (4) the first two contributions is given by,5]
FIG. 1. Radiative corrections to the diagonal correlai@. (ﬁ) c <ﬁ>m§
Lowest order two-loop contributioril)—(4) O(«ag) three-loop con- pa3(w)=— —2w2 andps(w)= 2( 1— —) >
tributions. m 2] 16w

(16)

O3(n)=(qa) proportional to the quark condensate, a mixed Next we compute the radiative corrections to the quark

qua;k-gluon condensate termOs(u) =0s(q0,,G*"d)  condensate termy(w). There are altogether eight different
=mxqq), a term Os(u)=(qg){asG?), and a term contributing diagrams which are shown in Fig. 2. Their con-
Oq(u) = ag(qq)3. Taking into account these four conden- tributions were evaluated with the help of the algorithm de-

sate contributions, the Fourier transform of the scalar corrveloped in[15]. As a check on the calculation we used a
elator functionP(w) is given by general covariant gauge for the gluon. The gauge depen-

dence was found to drop out in the sum of the contributions.
Collecting together the one- and two-loop contributions to

26(t) t? c : . . .
- =i —|1=-= the dimension three scalar correlation function one has
e D-4
at? c w38 = __{aw , (—Zw
b P L 3(w)=— o’l|—] CoDo
+ 288( 1 2) S e Og(u)}, (14 2 72
; . gZ —2p\2D-8 8
where c is a Clebsch-Gordan-type factor which takes the S _) > cD;l, (17)
valuesc=1 for the Ao-type andc=—1/3 for the o-type (47)P2\ =1
doublet{q,%5} ground state baryons. The correlator func-
tion Popd w) satisfies the dispersion relation whereD=4-2¢ is the space-time dimension. There are a

number of color factors in Eq17), the values of which are
o p(w’)dw’ given by COZ NC!' C1202:C3:.C4:C5: - NCI CB y and
pOPE(w):p(w):f — " +subtraction, (15) Cg=C;=Cg=N_!'Cg, whereN; is the number of colors,
0w —w—i0 Ce=(N2-1)/2N,, and Cg=(N.+1)/2N.. Explicit forms
of the scalar coefficient®; defined in Eq(17) are listed in
wherep(w)=Im[P(w)]/ 7 is the spectral density of the sca- the Appendix. When Eq(17) is expanded in terms of a
lar correlation function. Taking into account the above fourpower series in ¥, one obtains
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2¢ 4e
—p\ (1 as | —u
(Z) <z+2)+@(z)

1
+ ;[1212—44n+51+(121—22)s+ 8£(2)]+56n2— 20+ 260+ (56n— 100)s

(qa)

Piy(w)=— 22 0}
T

1
—[2n?~8n+7+2(n-2)s]
€

+[18n%—72n+87+ 188(n—2)]§(2)—32§(3))

|
where we have now substituted explicit values for the color m 2
factors withN.=3. The spectral density;(w) is given by Fa(w/p)=4in| 5=+ 2[23+8((2)] (24
the absorptive part oP;(w). In renormalizing the spectral
density p3(w) one has to take into account both the renor- nd
malization factor of the baryon currentd] and the renor-
malization factor of the quark condensate, 4 [ u 2
_ rz(w/,u)=——In(—)+—[11+8§(2)]. (25
p3(w)=ZleJZZq*qlprgen(w)' (19) 3 2(1) 3
with [10,12 The radiative corrections can be seen to amount to about
40-60 % at the renormalization scale=1 GeV. Because of
asCr the Hermiticity of the current correlatdl;; , the coefficients
Zga=1+3,—, r, andr, do not depend on which of the two nondiagonal
current productd; J, or J,J; are taken.
7, =1+ 258 2 _gnie 20
i A1re (n"=4n+6), (20 B. Nondiagonal sum rules

c As usual we construct QCD sum rules by invoking
asLp arton-hadron duality; i.e., we equate the theoretical contri-
2y, =1+ A7e [(n-2+s)%+2]. Eution to the scalar )éorrelation f?mctid?(w) given in Eq.

(13) with the dispersion integral over the contributions of
After multiplication with theZ factors the leading & con-  hadron states. These consist of the lowest-lying ground state
tribution in p3(w) is canceled. The renormalized spectralwith bound state energi plus the excited states and the
density is given by continuum contributions. To leading order innty the
bound state energy of the ground state is defined by

re _ Bom, as
P3 rkw)—Ps ((1)) 1+ 4Wr((1)/,LL) ’ (21) mbaryon: mQ+A, (26)
where wheremg, is the pole mass of the heavy quark. We assume
_ that the contribution of the excited states and the continuum
Born (aq)" , M contribution sets in above some effective threshold energy
Pz (@)=— 2 ¢ andr (o/p)=ryln| 5|+ 13, Ec and can be approximated by the OPE expresg2hnFor
(22) the hadron-side contributiopys to the spectral density we
thus write
with
PHs(®) = pes( @) + peon( @), (27)
ri:=3[2n?2-8n+7+2(n—2)s],
where the contribution of the lowest-lying ground state
r,:= 2[8n2— 280+ 37+ 8ns— 145+ 8£(2)]. (23 baryon is denoted bysg and is given by
Note that the coefficient; of the logarithmic term in Eq. pog ®)= 1|:1|:25(w_A_)_ (28)
(22) coincides with the sum of the one-loop anomalous di- 2

mension of]; andJ, minus the anomalous dimension of the

quark condensate. The reason is that the same coefficient Tée residue§; (i =1,2) appearing in E28) are defined by

involved in the cancellations of theelpole in Eq.(19). the matrix elements of the heavy baryon currents according
Explicit values for the correction to the spectral densityto

for the cases of the\o- and X o-type ground state baryons

are given by (0]JilAg)=Firu, (0]Ji|Zo)=Fisu,
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Fi(ua)Falma) =F1(m)Fa(m)U(uq,u2), (39
O128) = Fiu @9
with

whereu andu” are the usual spin-1/2 and spin-3/2 spinors.
Note thatF;s+ coincides withF;y to lowest order of the U(M11M2)=<
heavy quark mass expansion which we are working in.

As is usual we assume hadron-parton duality for the con-
tributions of excited states and the continuum contributions

As mentioned before we subsum these contributions by de from _1 ihez /;ﬁalg r':sz tc;réhtieSL?;IJZIlufirst-I(—)r;gerCt?eermg?r?tfhe
fining an effective energy thresholdE: and write B 1 71

Peon{ @) = B(w—Ec) p(w), wherep is the result of the OPE e'xpansmn of the QCIB function anq the anomalous dimen-
calculations given in Eq€16) and(21). With these assump- S 7P~ 73, % 73,~ Yag of the nondiagonal scalar correlator

as(um) )71/.31, 36

as( o)

whereU (uq,u,) is the evolution function which takes one

tions we arrive at the sum rule function P. The two-loop extension of E¢36) is given by
1 B ’ ' ag(p )da (a) a (M ) n/h
2 FiF2 » p(o')dw U eXI{J slkda vy ( sy
Pore @)= A_—w—i0+J’Ecw’—w—i0 (30 )= wa) @ Bl)] \as(p)
or <14 ag(pmg) —as(ur) ﬁ(ﬁ_ @”
4 Bi\lry1 B1
:F,F Ecp(w')dw’
e =f cple)do’ o ). @D 37
A—w—i0 0 w' —w—i

where B, is thenth order term in the3-function expansion
The polynomial contributiorPpd(w) is defined as the Fou- and vy, denotes the anomalous dimension of the nondiagonal

rier transform of that part of the correlator functigi(t)  Scalar correlator functio® at nth-loop order. The two-loop
which contains non-negative power)" (n=0). Finally evolution function in Eq(37) is obtained as a solution to the

we apply the Borel transformation renormalizatipn group gquation including next-tq—leading or-
der perturbative terms ing (see also the discussion|[ibl—
o" d\" ) 14]).
By= F(n) T e MO (T=—w/n fixed), It is evident that we can only extract the value of the

(32) product of residued-;F, from our sum rule analysis. In
order to make further progress, we adopt the working hy-
to the sum rule in Eq.(31). Using E;T[ Uw—w')] pothesis that the residues of the two current options in each
=exp(—w'/T)/T we obtain the Borel sum rule case are equal. This assumption is corraborated by the results
of the diagonal 2§um rule analysj40]. This means we re-
1 _ , " , A placeF.F, by F< in the above formulas when performing
s Fa(wFa(pe M= fo plo'we " de’+BPedT)  ihe tumerical analysis. We note, however, that the currents
J; andJ, have different anomalous dimensions and therefore
=:K(Ec,T,n), (33 F, andF, do not coincide at another renormalization scale
mo even if they coincide at the scaje;. Returning to the

where we have reintroduced the dependence of the spec- ¢ \m rule in Eq(33), one then has

tral density which in turn gives rise tog dependence of the
residue. The Borel-transformed polynomial contribution

BPp(T) can be obtained directly frorfRp(t) by the sub- EFZ(,LL)e’ﬁT EQT (xc)+ ln(ZT) fo(xc)
stitutiont— —i/T (see the discussion i#]). Note that the
bound state energi can be obtained from the sum rule in |
Eq. (33) by taking the logarithmic derivative with respect to —fa(Xe) [ratfa(Xc)ra )
the inverse Borel parameter according to
E3E2T| 1- o |f 2[4 °| Eqfe
—  din[K(Ec,T,)] a0 ~E3ERT 1- 5| o)+ 5 1- 5]
Tt .
Ct’sCF EQ
Before turning to the numerical analysis of the nondiago- * 36r T3 (39

nal sum rules we want to briefly comment on the scale de-
pendence of the residues. The numerical values given below
are taken at the specific normalization pojat=1 GeV,
while the general dependence on the sgals controlled by
the renormalization group equation. At one-loop order the y

where the (,s)-dependent coefficient functlorrq andr,
are defined in E¢(23) and the functions andfn are given

product of the residues at one renormalization pgiptcan ! noom
be expressed by the product at another renormalization point f(X): :J X—e‘x’dx’zl—e"‘ X
M1 via " ! m=0 m!’
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xx/ M , rules which is independent of specific input values, we adopt
f'n(x):= —Inx'e * dx’. (39 d ; ye
o n! a second strategy, namely, to determine batrand F by
finding simultaneous stability values for them with respect to
In order to simplify the notation we have introduced thethe Borel parameteF.

abbreviations The first step in carrying out the numerical analysis of the
e m 2 sum rules is to find a sum rule “window” for the allowed
C o T — i
Xci= = Eoi=, (Eq)?:=— mmq) values of the Borel paramet&t The parameter range 6fis

constrained by two different physical requirements. The first
is that the convergence of the OPE expansion must be se-

and cured. We therefore demand that the subleading term in the
magG2) OPE does not contribute more than 30% of the leading order
(Eg)* = 3NAN—1)° (40)  term. This gives a lower limit for the Borel parameter. The
C c

upper limit is determined by the requirement that the contri-
) ] butions from the excited states plus the physical continuum
C. Mixed sum rules of constituent type (even after Borel transformatipnshould not exceed the

As mentioned before, we shall not investigate the mosbound state contribution. This requirement is neccessary in
general case of mixed sum rules but specify to the lineaorder to guarantee that the sum rules are as independent as
combination of current§=(J,+J,)/2 in the sum rules. The possible of the model-dependent assumptions concerning the
light-side Dirac structure of the currents can then seen trofile of the theoretical spectral density, i.e., the model of
appear in the formj(1+4)T; i.e., one has the projector the continuum.
factor P, =(1+4%)/2 which projects on the large compo-  The lower limit of E is given by the requirement that the
nents of the light quark fields. In the rest system of the heavyndicated window should be kept open. For the rést,is a

baryon, wherev,=(1;0,0,0), this is manifest since then free-floating variable which is only limited by the stability
P+=(g0)- We refer to this particular Ilnear_co_mb|nat|on Qf requirements om andF.

currents as the constituent-type current. This linear combina-
tion of currents is expected to have maximum overlap with
the heavy ground state baryons in the constituent quark
model, i.e., where the light diquark state in the heavy baryon
is taken to be composed of on-shell light quarks. We mention Let us briefly recapitulate the results of the numerical
that the constituent quark model picture emerges in the largeanalysis of the diagonal sum rules presentedl@]. The

N, limit [16]. The tools needed for the sum rule analysis ofabove two requirements limit the allowed range for the Borel
constituent-type heavy baryons have been assembled in thigrameter to 250 Me¥T<400 MeV. The analysis pro-
paper and if9]. The results of the constituent analysis areceeded in two steps. First we analyzed the uncorrected sum
presented in the next section together with the results of theules varying both the continuum threshold and the bound

A. Diagonal sum rules

analysis of the diagonal and nondiagonal sum rules. state energy. The criterion for the best choice of these two
energies is the stability of the sum rules with regard to the
IV. NUMERICAL ANALYSIS variation of the Borel parametér. In the second step we

. - included the radiative corrections and again varied both the
Having the neccessary formulas at hand we next Olescrlbeontinuum threshold and the bound state energy to obtain the
our numerical analysis of the sum rules and specify ouf 9y

choice of the relevant input parameters. We use the followPest sum rules stability. The ratio of the continuum contribu-

ing numerical input values for the condensate contributiond®" @nd ground state contribution depends strongly on the
[2,17]: Borel parametefl and the continuum threshold energy. .

Looking, e.g., at the sum rule analysis for thg-type bary-
<@>:_(0_23 GeV}® (quark condensate ons with QCD corrections, the continuum contribution is
(41)  about 80% of the ground state contribution Fay=1.1 GeV
as(G?)=0.04 Ge\} (gluon condensaje andT=250 MeV and then increases with
Because of the new specification for the sum rule window
and we have repeated the diagonal sum rule analysi§16f,

allowing for slightly different values of\ and F. The out-

_ v 2
9s(q0,.,G*"a)=mo(qa) come of the numerical analysis is practically unaltered. The

with mixed quark-gluon condensate values for theA-type state can be read off from Fig. 3.
Figure 3a) shows the dependence of the bound state energy
m3=0.8 Ge\’. A on the Borel parametéF and Fig. 3b) shows the depen-

dence of the residue om, both for the leading order sum
There are in general two strategies for the numerical analysigle. Figures &) and 3d) show the same dependences for
of the QCD sum rules. The first strategy fixes the bound statghe radiatively corrected sum rules. The same analysis is re-
energyA from the outset by choosing a specific value for thepeated for theX o-type states in Fig. 4. The results of the
pole mass of the heavy quark and then extracts a value farumerical analysis both without and with radiative correc-
the residug-. In order to obtain information from the sum tions are given in Table II.
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FIG. 3. Bound state energy and residue of thg as functions FIG. 4. Bound state energy and residue of B as functions

of the Borel parameteF (diagonal case Plotted are five curves for  of the Borel parameteT (diagonal case Plotted are five curves for
five different values of the threshold energy spaced by 100 MeV five different values of the threshold energy spaced by 100 MeV
around the central valuEc=EX. E. increases from bottom to around the central valuEc=EX™. E¢ increases from bottom to
top. (a) Lowest order sum rule results for the bound state energyiop. (&) Lowest order sum rule results for the bound state energy
A(A), (b) lowest order sum rule results for the resideg, (c) A(Z), (b) lowest order sum rule results for the residee, (c)
O(ag) sum rule results for the bound state energ@A) for the O(ag) sum rule results for the bound state energf>) for the
currentd,;, and(d) O(ag) sum rule results for the residie, for ~ currentJy,, and(d) O(as) sum rule results for the residug; for

the current], . the currentdy .

_ for the central valueEc=1.2 GeV and 30% folE-=1.5
B. Nondiagonal sum rules GeV at the left end of the allowed range for the Borel pa-
In the case of the nondiagonal sum rules, the “window” rameterT.
of permissible values for the Borel parameter is wider thanin The numerical results are given in Table Ill. Assuming
the diagonal case and it is given by 250 MeV <600 MeV. relative errors of 10% for the bound state energy and 20%

Proceeding in the same manner as in the case of the diagorf@f the residue, the obtained values are in agreement with the

sum rule analysis, we obtain best stability values when vary €Sults of the analysis of the diagonal sum rules, where the

ing T. The values for the\ o-type state can be read off from values for theX 5-type baryon are the more reliable one.
Fig. 5, and the values for theq-type state can be obtained
from Fig. 6. For theA -type baryons the stability appears at
values of T and Ec where the continuum contribution is The use of a constituent-type interpolating current
about 100%. If we try to decrease this contribution relativelyd=(J;+J,)/2 combines the two sum rule formulas for the
by increasingec, the stability inT becomes worse. As can diagonal and nondiagonal cases, taking one-half of each part.
be seen from Fig. ®), for, e.g.,.Ec=1.3 GeV the contribu- The “window” of permissible values for the Borel param-
tion of the continuum is less than 40% on the left-hand sidegter T is now given by 300 Me¥.T<700 MeV. In Fig. 7

but stability is lost. These considerations show that the relawe show the results of the sum rule analysis for shgtype

tive error of our estimate can be taken to be approximatelyparyons, and in Fig. 8 we show the results for Hg-type
10%. The situation for th& o-type baryons is much better. baryons.

For example, for the radiatively corrected sum rules the ratio The numerical results of the analysis are given in Table
of the continuum and the ground state contribution is 50%V. The constituent-type sum rules show an improved stabil-

C. Constituent-type mixed sum rules
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TABLE Il. Results of the diagonal sum rule analysis for the continuum threshold parafgtethe

bound state energI and the residuurft for Ao-type and o-type currents, analyzed to leading ordie®)
as well as next-to-leading ord€@xLO).

Baryon-type state Ec (GeV) A (GeV) F (GeV®)
AQ (LO) 1.2+0.1 0.770.05 0.022-0.001
AQ (NLO) 1.1+0.1 0.770.05 0.0270.002
EQ (LO) 1.4+0.1 0.960.05 0.0310.002
EQ (NLO) 1.3+0.1 0.94+0.05 0.0380.003
ity on the Borel parametéfr as compared to the nondiagonal D. Comparison with experimental values

sum rules, but the stability is not as good as in the diagonal  gijna|ly we want to compare our results for the bound state
case. Within the assumed errors the results are again @hergy with the existing experimental values for the baryon
agreement with both the diagonal and nondiagonal sum rulghasses. For such a comparision we need to know the pole
analyses. mass of the heavy quarks which can be extracted from the
heavy quarkonium and heavy-light mesofis8—20. The
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FIG. 5. Bound state energy and residue of thg as functions FIG. 6. Bound state energy and residue of B as functions
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A(A), (b) lowest order sum rule results for the residkg, (c) A(2), (b) lowest order sum rule results for the residee, (c)
O(ag) sum rule results for the bound state enefgy\) for thetwo ~ O(as) sum rule results for the bound state enefgy®.) for the two
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TABLE lIl. Results of the nondiagonal sum rule analysis for the continuum threshold parafeténe

bound state energI and the residuurft for Ao-type and o-type currents, analyzed to leading ordie®)
as well as next-to-leading ord€@xLO).

Baryon-type state Ec (GeV) A (GeV) F (GeV)®

Aq (LO) 1.0£0.10 0.75:0.10 0.024-0.002
Aqg (NLO) 1.0£0.10 0.72:0.10 0.032:0.003
24 (LO) 1.5£0.10 1.16:0.10 0.045-0.003
24 (NLO) 1.2+0.10 0.94-0.10 0.03%0.004

guoted value of the bottom quark pole mass varies fronMeV for the bound state energy. Our central value
m,=4.55+0.05 GeV[19] andm,=4.67+0.10 GeV[20]to A (A,)=760 MeV for the bound state energy suggests a
m,=4.80+0.03 GeV[18]. Assuming the range 4.6 GeV pole mass ofm,=4880 MeV for the bottom quark.
<m,<4.9 GeV, the massn(A,)=5642-50 MeV of the Taking the experimental results for charm-quark baryons,
baryonAy, [21] results in a range 740 Me¥A(Ap)<1040  namely, m(A.)=2284.9-0.6 MeV and m(3_)=2453.5

9 1 CrTrrrrrrrprrr) 1 [T T T T T ] /; 1 2 w 1 .2 L L L
K E ] C ] e ] ;Ecbes‘ = 1200 MeV ]
c 0.9 | - - — < 11p 1 1.1 =
S 1 I i
cos / o 1k 4 15—
[ () C i C T
< r ] C ] c N K ]
[ ke 2 i [\ C ] &///—:
@ 07 F N 0.7/ v 09 F ] 0,93\/1—
ot S~ ] r ] IS L ] A =
@ C i ] 5 r ] r 1
° 0.6 4 0.6 7 - 0.8 -4 0.8 - =
- B = - < es - I B
3 &= 1100 MeV A FES = 1100 MeV 1 > FES = 1300 MeV 1 . ]
_QO.5_|||||\|\|||||_ 0’5_||||\||\|||||_ _80-7_|||||\|\|||||_ 0.7_||||\||\|||||_
0.4 06 08 1 0.4 06 08 1 0.4 0.6 08 1 0.4 06 08 1
T (in GeV) T (in GeV) T (in GeV) T (in GeV)
(2) (c) (a) (c)
—~ 0.05 ey 0.05 e ~ 0.06 frrrrrprrrprry 0.06 prprrr e
> — ] i ] > - 1 rEc™" = 1200 MeVy
& i 7 : 1 © i i LA = 940 MeV 1
£ 0.04 / 0.04 / £005 L ——""" 005 .
L ] — o r ] [ =
o ] R @ i ] //
2003 L 4003 —_ S 0.04 F T = 004
o e ] ~__ 1 3 : ] I
o _ . - 3 T ] [ 1
L ] L 1 [ J e
0.02 - -4 0.02 - 0.03 - 0.03 =
[E™ = 1100 MeV] [E”™ = 1100 MeV] [ES = 1300 MeV] ]
A =770 MeV ] (A =770 MeV ] [A = 1030 MeV ] C ]
0‘01 P IR I AT N R OO’] el by ey 0.02 P I TR B 0.02 P R B SR
0.4 0.6 08 1 0.4 0.6 08 1 0.4 0.6 0.8 0.4 0.6 08 1
T (in GeV) T (in GeV) T (in GeV) T (in GeV)
(b) (d) (b) (d)
FIG. 7. Bound state energy and residue of thg as functions FIG. 8. Bound state energy and residue of B as functions

of the Borel paramet€eF (constituent-type mixed casePlotted are  of the Borel parameteF (constituent-type mixed cagePlotted are
five curves for five different values of the threshold enefyy  five curves for five different values of the threshold enekyy
spaced by 100 MeV around the central valig=EX*' E. in- spaced by 100 MeV around the central valig=E>*' E. in-
creases from bottom to tofa) Lowest order sum rule results for creases from bottom to toga) Lowest order sum rule results for
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TABLE IV. Results of the constituent-type mixed sum rule analysis for the continuum threshold param-

eter Ec, the bound state energY and the residuunir for Aqo-type andq-type currents, analyzed to
leading orderLO) as well as next-to-leading ord@XLO).

Baryon-type state Ec (GeV) A (GeV) F (GeV®)

Aq (LO) 1.1+0.10 0.720.10 0.034-0.004
Aqg (NLO) 1.1+0.10 0.720.10 0.032:0.004
24 (LO) 1.3+0.10 1.03:0.10 0.0450.004
24 (NLO) 1.2+0.10 0.94-0.10 0.036:0.004

+0.9 MeV [21], our central vaIuesT(AQ)=760 MeV and hal correlators of two heavy baryon currents. The contribut-

A( —940 MeV predict a mean pole mass mf.= 1520 ing diagrams are shown in Fig. 2 Int.roducing the abbrevia-
Mg/Qf)or the charmpquark P ot tion E,=T'(1—¢€)"T'(1+2n¢) (with integer numbersn
' =1,2,3...) weobtain

V. CONCLUSIONS

We have considered the operator product expansion of the
correlator of two static heavy baryon currents at small Eu- 4'1:0El 2(D—2)f0E2
clidian distances and determined thg radiative corrections Dfm, D;=D,= 2 ,
to the first and second Wilson coefficients in the expansion. (D-4)%(D—=3)(2D—7)
Based on the operator product expansion we have formulated (A1)
and analyzed heavy baryon sum rules for thg-type and
2 o-type heavy baryons using two different types of interpo-
lating fields for the baryons in each case. In this paper we - _
have constructed and analyzed the nondiagonal sum rules 8(D—2)FOE§ 4(D-2)(3D—-10T'(E,
buillt from the correlators of two Qifferent currents inclqding D= (D—4)%(D—3)2 - (D-4)%D—3)2(2D-7)’
radiative corrections. The nondiagonal sum rules bring in (A2)
some new features such as a more “normal” behavior of the

spectral density(w)~(qq)w? and moderate QCD correc-
tions to the spectral density as compared to the diagonal o
case. We have taken a second look at the diagonal sum rules. (D=4HI'1+T'5
We have also set up and analyzed constituent type heavy Dy= 2

; . (D—-4)4(D-3)(2D—-7)
baryon sum rules where we have used interpolating currents
that are expected to have a maximum overlap with the heavy
baryon’s light diquark system in the constituent quark model
picture. All three types of sum rules show acceptable stabil- T NT LT
ity in their dependence on the Borel parameter, where the o= 2(D=2)o= BT+ T
best stability was obtained for the diagonal sum rules. The (D-4)(D-3)(2D~-7)
results of the three types of sum rul@agonal, nondiago-
nal, and constituent typen the bound state energy and the
residues of the heavy ground state baryons were found to be ~
consistent with each other, where the values obtained for the _ 2D(D-2)I'oE;
2 o-type baryons are more reliable than the results for the 6_(D—4)2(D—3)(2D—7)’
Ag-type baryons.

2
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APPENDIX

In this appendix we collect our results on the evaluationVNere_ Io=Tr(I'4T4), Ty=Tr(I'y,I'y*), and Y

of the one-loop and two-loop contributions to the nondiago-=Tr(I'é y,y,I" y"y*¥).
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