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The spatial distribution of the action and energy in the color fields of flux tubes is studied in lattice SU~2!
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I. INTRODUCTION

Nonperturbative phenomena of QCD such as confinement
can be explored using Monte Carlo simulations of lattice
gauge theory. The potentialV(R) between two static quarks
at separationR in quenched QCD is one of the simplest
manifestations of confinement and has been studied inten-
sively. At largeR the potential rises linearly as predicted by
the hadronic string model. One can also measure the spatial
distribution of the color fields around such static quarks in
order to get a detailed picture of the confining flux tube. In
Ref. @1#, which contains references to earlier work, this was
done for the ground state and the first excited state of the
two-quark potential, having the symmetries of theA1g and
Eu representations, respectively, of the lattice symmetry
groupD4h . Transverse and longitudinal profiles of chromo-
electric and -magnetic fields were compared with vibrating
string and dual QCD models for the flux tube, with the latter
model reproducing quite well the shape of the energy profile
measured on a lattice. Instead of SU~3!, the gauge group
used was SU~2!, which is more manageable with present-day
computer resources and is expected to have very similar fea-
tures of confinement. This is reflected in the fact that the
flux-tube models considered do not distinguish between
SU~2! and SU~3!.

The method used to study the color fields on a lattice is to

measure the correlation of a plaquetteh[ 1
2 Tr(12Uh)

with the Wilson loopW(R,T) that represents the static quark
and antiquark at separationR. When the plaquette is located
at t5T/2 in them-n plane, the following expression isolates,
in the limit T→`, the contribution of the color field at po-
sition r :

f R
mn~r !5F ^W~R,T!h r

mn&2^W~R,T!&^hmn&

^W~R,T!& G . ~1.1!

In the naive continuum limit these contributions are re-
lated to the mean squared fluctuation of the Minkowski color
fields by

f R
i j ~r !→

a4

b
Bk

2~r ! with i , j ,k cyclic,

f R
i4~r !→2

a4

b
Ei

2~r !. ~1.2!

When the interquark separation axis is chosen as the 1 axis
the squares of the longitudinal and transverse electric and
magnetic fields can be identified as

EL5 f 41, ET5 f 42,43, BT5 f 12,13, BL5 f 23,32.
~1.3!

These can then be combined naively to give the action den-
sity

S~r !52~EL12ET12BT1BL! ~1.4!

and the energy density

E~r !5EL~r !12ET~r !52~EL2BL!22~ET2BT!
~1.5!

of the gluon field.
Since in this work we use a plaquette to probe the color

flux, the spatial size of the probe will decrease as the lattice
spacinga→0. To define a continuum limit of the color flux
distributions, one would have to use a probe of a fixed physi-
cal size asa→0. In this work we wish to compare flux
distributions at different lattice spacing. One special tool that
is available, when a plaquette is used to probe the color flux
with the Wilson gauge action, is that exact identities can be
derived for the integrals over all space of the flux distribu-
tions. These sum rules@2–5# relate spatial sums of the color
fields measured using Eq.~1.1! to the static potentialV(R)
via generalizedb functions, which show how the bare cou-
plings of the theory vary with the generalized lattice spacings
am in four directions. One can think of these sum rules as
providing the appropriate anomalous dimension for the color
flux sums. This normalizes the color flux and provides a
guide for comparing color flux distributions measured at dif-
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ferent a values. The full set of sum rules@5# allows these
generalizedb functions to be determined at just oneb value
~see@6# and references therein!. Here we investigate this fur-
ther by comparing estimates at two differentb values. This
can also help to clear up some inconsistencies between the
b-function determination from the sum rules at oneb value
@6# and other methods@7,8#.

In Ref. @1# the simulations were carried out atb52.4 with
a 163332 lattice. Here results from similar computations at
b52.5 with a 243332 lattice are reported. Most of the simu-
lation and analysis techniques, such as use of a variational
basis with different fuzzing levels, are the same and can be
found from Ref.@1#. In addition to more accurate measure-
ments of flux-tube profiles, we also present estimates ofb
functions at bothb52.4 and 2.5.

In Sec. II static quark-quark potentialsV(R) are extracted
and in Sec. III the corresponding flux tube profiles are cal-
culated. In Sec. IV,V(R) and the profiles are related by sum
rules and various estimates of theb function are made. Some
conclusions are made in Sec. V.

II. STATIC POTENTIALS

Accurate estimates of the potential energy between two
static quarks are needed for the extraction ofb functions to
be presented in Sec. IV. In addition to small statistical errors,
‘‘accurate’’ means that the gluonic state measured has little
contamination from other states. This is achieved by diago-
nalizing a variational basis of different paths connecting the
same points on the lattice. Below we present estimates of the
remaining contamination in our observables. The fundamen-
tal question concerning the scale, i.e., the value of the lattice
spacinga in physical units, is also answered using the two-
body potentials.

We construct lattice operators to create and destroy states
with two static quarks at separationR joined by gluonic
paths that represent the color flux. The techniques we use to
make efficient operators with a large overlap with the ground
state are described in detail in Ref.@1#. In order to improve
the signal we applied ‘‘fuzzing,’’ where each spatial link is
replaced by a weighted sum of itself and its surrounding
spatial staples, before the correlations were measured. To
investigate gluonic excitations and minimize their contribu-
tion to the ground-state signal we need a variational basis,
which was obtained by performing the measurements on lat-
tices with different levels of fuzzing.

At b52.4,2.5 fuzzing levels 40,16,0 and 40,13,2, respec-
tively, formed the variational basis in the case of paths with
A1g symmetry. A three-state basis may be expected to give a
reasonable signal for theA1g8 excitation by reducing the con-
tamination from higher excitations with this symmetry. For
paths withEu symmetry the fuzzing levels 16,13 were used
for the two b’s with two different transverse extents of the
paths forming a variational basis. These transverse extents
were one and two lattice spacings for small longitudinal
lengths and one and four lattice spacings for largerR’s. In
order to set the scale, the lattice stepsa(2.4) anda(2.5) were
determined by fitting the two-body parametrization

V~R!52F e

RG
L

1bSR1V0 ~2.1!

to measured potentials at interquark separations
R52,3,4,6,8, R52,3,4,6,12 at b52.4, 2.5, respectively.
Here @1/R#L is the latticized form of the Coulomb potential
1/r due to one-gluon exchange. The above range ofR was
chosen to correspond to similar physical distance ranges. The
usual method for estimating the lattice spacing is to equate
the dimensionless value ofbS from the fit of Eq.~2.1! to an
experimental value. This is equivalent to utilizingV(R) in
the limit R→`. However, our experimental knowledge of
the two-quark potential comes from heavy mesons with rms
radii around 1 fm. An alternative method due to Sommer@9#
compares the force fromV(R) to experimental values at a
distance range more appropriate to these mesons, i.e.,
r'0.5 fm. In practice the equation (R0)2F(R0)5c is used
to findR0 , whereF(r ) is the force between two static quarks
at separationr . Various nonrelativistic continuum potential
models giveaR0'0.49 fm for c51.65 andaR0'0.66 fm
for c52.44 @8#. The resulting scales and ratios of lattice
spacingsr[a(2.4)/a(2.5) are shown in Table I. The values
of r from bS and Sommer’s scheme are seen to agree.

The b52.5 potentials above have the accurate interpola-
tions

V~R!A1g
50.55510.0343R20.280/R, ~2.2!

V~R!Eu
2V~R!A1g

53.8/R212.6/R2124.6/R3218.8/R4,
~2.3!

V~R!A
1g8

2V~R!A1g
55.94/R223.6/R2149.2/R3238.8/R4.

~2.4!

The relations are valid for 2<R<12, with no physical inter-
pretation intended for theV(R)Eu

andV(R)A
1g8

expressions.

Thex2 values per degree of freedom are 0.09, 1.35, and 0.22
for the A1g , Eu , and A1g8 states, respectively. The corre-
sponding potential fits forb52.4 are given in Ref.@1#.

Our variational basis is constructed from fuzzed link op-
erators that represent creation or annihilation of two quarks
at separationR, with the color field in a specific state of
lattice symmetry. These operators can be expanded in terms
of the eigenstates of the transfer matrix

uR&5c0uV0&1c1uV1&1••• , ~2.5!

with the measured correlation of a generalized Wilson loop
given by

W~R,T!5^R0uRT&5c0
2e2V0T@11uh~T/2!u21•••#,

~2.6!

where

TABLE I. Lattice spacinga determined using different meth-
ods.

b c51.65 c52.44 AbS5440 MeV

2.4 0.1098~5! 0.1183~5! 0.1190~5!

2.5 0.0778~4! 0.0839~4! 0.0846~4!

r[a(2.4)/a(2.5) 1.412~14! 1.410~13! 1.406~11!
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h~ t !5
c1

c0
e2~V12V0!t. ~2.7!

To minimize excited-state contamination we needh!1.
As plaquettes in the middle of the generalized Wilson

loop in the time direction are used to probe the color fields,
the relevant estimate of contamination is taken att5T/2.
The measured correlation is^R0uh tuRT& instead of Eq.~2.6!.
This produces off-diagonal terms such as^V1uh tuV0& that
increase the coefficient of excited-state contribution fromh
to 2h for T52, t51. From the generalized Wilson loop ra-
tios at eachR value, we defineV(T)52 ln@W(T)/W(T21)#
since its rate of approach to a plateau asT→` enables us to
estimate the excited-state contamination to the ground state.
We calculateh from

uh~ t5T/2!u'
l

l21
AV~T21!2V~T!

5l
V~T21!2V~T→`!

AV~T21!2V~T!
. ~2.8!

Here theT→` extrapolated potential is defined as

V~T→`![V~T!2l
V~T21!2V~T!

12l
, l[e2~V12V0!.

In practicel was calculated from potentials atT51. Table II
shows the excited-state contamination for states of the two-
body potential atb52.5. It is seen that theA1g states are
reasonably pure with theEu and A1g8 states containing in-
creasing amounts of contamination. Note that the method
used to extract the higher-excited-state contaminationh to
the first excitedA1g8 state is unreliable since ground-state
contributions can dominate in principle.

III. COLOR FIELD DISTRIBUTIONS

Color field distributions measured on a lattice are ex-
pected to be related to the physical continuum distributions.
However, the finite spacing and changing physical size of the
elementary square used to probe the fields introduce various
artifacts, which will be discussed below. Our study of the
field distribution around two static quarks consists of three
types of observables. Three-dimensional sums over the spa-
tial lattice to be presented in Sec. III A are used to extractb
functions. Two-dimensional sums over the planes perpen-
dicular to the interquark axis presented in Sec. III B show the
longitudinal profile of the flux tube. This allows us to see the
lattice self-energies and look for stringlike features in the
remaining part. Our most microscopic observables are the
transverse profiles of the flux tubes at the midpoint between
the quarks, presented in Sec. III C. These show the clearest
differences between ground and excited states and can be
compared with models.

An important topic in this section is to check the quality
of the input data for the sum rules by looking at their scaling
properties betweenb52.4 and 2.5. Essentially the input data
are of two distinct forms: the two-quark potentialV and the
spatial sums of the color fields. In the past the scaling prop-
erties ofV have been confirmed many times and will not be
repeated here. However, scaling of the different color field
combinations is less clear since the color fields are measured
using a plaquette, whose physical size changes withb. This
is relevant because only observables with the same physical
size at different values of the coupling have a continuum
limit. In the case of the three-dimensional sums over the
color fields, the lattice sum rules provide the appropriate nor-
malization asa→0. Even in this case, the scaling behavior is
only known after the divergent self-energies are subtracted.
However, other observables, such as the two-dimensional
sums over transverse planes or the transverse profiles of the
flux tube, do not have a well-defined scaling behavior, but it
is still of interest to explore how similar the profiles are at
the two values of coupling used.

From the relations in Eq.~1.2! and sum rules to be pre-
sented in Eqs.~4.1!–~4.3! we can see that the measured ac-
tion sums must be multiplied by the anomalous dimension
b/b to get the physical value, while the energy sums have a
correctionf that goes to one in the continuum limit. Hereb, f
are generalizedb functions to be discussed later. As will be
seen in Sec. IV below, the differences in the values ofb and
f betweenb52.4 and 2.5 are sufficiently small to neglect
them in the following plots; e.g.,b(2.4)/b(2.5)50.97(7).
Thus the normalization of the overall three-dimensional sum
over color flux can be treated as almost constant in ourb
range. In turn this implies that we should compare more
differential distributions using this scale.

A. Spatial sums

In Figs. 1–3 the three-dimensional spatial sums of the
actionS and longitudinal and transverse energiesEL ,ET in-
volved in the sum rules are plotted as a function ofR andT
for the flux-tube ground stateA1g and the two excited states
Eu and A1g8 for b52.5 and the scaled data atb52.4. The
basic data~E,B! are dimensionless and require the factor
b/a4 to give energy and action densities in GeV/fm3. Since

TABLE II. Excited-state contamination atb52.5 as measured
by uhu.

R State t51 t52 t53

2 A1g 0.012 0.005
3 A1g 0.027 0.012 0.009
4 A1g 0.036 0.016 0.008
6 A1g 0.073 0.034 0.016
12 A1g 0.162 0.075 0.006
2 Eu 0.282 0.152 0.105
3 Eu 0.253 0.131 0.105
4 Eu 0.250 0.126 0.076
6 Eu 0.255 0.123 0.045
12 Eu 0.427 0.263 0.189
2 A1g8 0.201 0.080 0.076
3 A1g8 0.228 0.098 0.070
4 A1g8 0.261 0.116 0.122
6 A1g8 0.333 0.155 0.157
12 A1g8 0.518 0.241 0.204
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Figs. 1–3 show the volume integrals of the basic data with
b52.5, for a scaling comparison, the volume integrals of the
basic data forb52.4 are multiplied by 2.4/2.5r, wherer is
the ratio of lattice spacings given in Table I. The resulting
two sets of data@b52.4(scaled),2.5# should not be ex-
pected to lie on top of each other since they have self-
energies and self-actions that diverge asg2/a from one-
gluon exchange in leading-order perturbation theory.
However, the two sets of data should be parallel to each
other since the self-energies are independent ofR. In the
following extraction of theb function, it is the extent to
which theslopesof these lines arenonzerothat is relevant.

In Figs. 1–3, for clarity, only the data for one or twoT
values are drawn. The data for higherT have larger errors,
but in most cases they are consistent with the data shown,
indicating that the plateau inT is achieved. In Fig. 1, for the
action, theA1g andEu states show scaling and with distinct
nonzero slopes. This is best seen for theA1g state and dete-
riorates progressively in going to theEu andA1g8 states. Scal-

ing is questionable for the latter. Even so, the action and its
R dependence are comparable in all three cases. A very ap-
proximate estimate of the differenceDS0 in the b52.5 and
b52.4(scaled) self-actions is given by the vertical differ-
ence between the two sets of data. The result given by linear
fits for theA1g ground state,DS0'0.12(2), is notinconsis-
tent with theEu case, whereas theA1g8 excitation has a posi-
tive self-action difference only for the smallestR’s. This
curious feature of theA1g8 data is perhaps not surprising since
already Table II shows that this state has considerable con-
tamination from other states. However, in spite of this, we
thought it useful to include such data in this paper to illus-
trate where the data need to be improved.

In Fig. 2, for the longitudinal energy, the data are an order
of magnitude smaller than for the action. Here the depen-
dence onb is less clear and the presence of a nonzero slope
much less distinct for theEu andA1g8 cases. The difference
DE0 in the b52.5 andb52.4(scaled) self-energies is now
best taken visually at the lowestR’s, giving DE0'0.020(5)

FIG. 1. Scaling of action (S) summed over the spatial lattice for paths withA1g , Eu , andA1g8 symmetries.

FIG. 2. Scaling of longitudinal energy (EL) summed over the spatial lattice for paths withA1g , Eu , andA1g8 symmetries.
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for the A1g state. The data for the gluonic excitations are
consistent with this estimate. ForA1g the curves cross at
R56 and at higherR’s the b52.4 curve lies higher.

In Fig. 3, for the transverse energy, only theA1g state
shows a slope that is slightly nonzero, with both theEu and
A1g8 cases having slopes consistent with zero. However, there
is a distinct self-energy effect withDE0'0.04(1) for the
A1g state, again consistent with the gluonic excitations. Since
it is the presence of nonzero slopes that is relevant for ex-
tracting theb function, Figs. 2 and 3 already indicate that
problems will arise when attempting to utilize theEL,T data.

B. Transverse sums

The self-energy differences in the above spatial sums can
be seen much more clearly in the transverse sums shown in
Figs. 4–6, where the longitudinal dependence of the sum
over RL is presented for paths withA1g , Eu , andA1g8 sym-
metries and interquark separationR58,12 atb52.4,2.5, re-
spectively. In these figures,RL50 corresponds to the mid-
point of the interquark separation, whileRL5R/2
corresponds to the position of the static quark sources. TheR
values were chosen to correspond to approximately the same
physical distance at these two couplings, namely, 0.946(4)
and 1.007(5) fm. The plotted data are taken atT53, where
we have a good signal-to-noise ratio. Unfortunately, this
means that the excited-state contamination is relevant at
T51,2, whereh is largest, as can be seen from Table II.
Furthermore, we are also using the largestR’s, where the
excited-state contamination becomes quite significant espe-
cially for the Eu andA1g8 cases.

These transverse sums do not, strictly speaking, have a
continuum limit. However, in string models the transverse
sums near the center of long strings should be independent of
R so that, to the extent that string models are applicable and
that R is sufficiently large, scaling would be expected. This
is the assumption made in presenting the data in earlier
works @10#. In the figures, the basicb52.5 data are com-
pared with the basicb52.4 data, which have been multi-
plied by 2.4/2.5r2. The longitudinal energy is plotted at half-

integer lattice spacings~i.e., averaging over neighbouring
values ofET ,BL instead ofEL ,BT! to get a better determina-
tion of the self-energy peak. In this case these peaks are
expected to diverge asg2/a2 in physical units.

Figure 4 shows for theA1g state that, within error bars, all
three field combinations~action,EL , andET! scale well near
the center of the flux tube (RL50). However, near the
quarks~RL'6 in this case! the b52.4 and 2.5 curves differ
considerably. This is mainly the effect of the self-energies
being seen. These data nearRL56 shows some interesting
features.

~a! Except for theb52.4 action, all the data exhibit a
distinct peak nearRL56 and theDS0 ,DE0 extracted from
Figs. 1–3 are qualitatively consistent with the corresponding

FIG. 3. Scaling of transverse energy (ET) summed over the spatial lattice for paths withA1g , Eu , andA1g8 symmetries.

FIG. 4. Dependence on longitudinal position (RL) of the sum
over the transverse plane of the color flux contributions correspond-
ing to the action, longitudinal (EL), and transverse energy (ET)
sum rules of Eqs.~4.1!–~4.3!. HereRL is measured from the mid-
point for separationR58,12 atb52.4,2.5, respectively. The data
are in units ofa(2.5) for the symmetric ground state~A1g represen-
tation! at T53.
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values estimated from the areas under these peaks. We can
estimate the self-energy peak height by subtracting the value
at RL50 from the value atRL'6. For the action sums at 2.4
we cannot see any self-energy peak, while forEL the ratio of
self-energy peak heights atb52.4 and 2.5 is 0.59. ForET
the peak height ratio is somewhat lower at 0.49; this will be
discussed below.

~b! The transverse energyET is completely dominated by
the self-energy with the latter being at least an order of mag-
nitude larger than the non-self-energy terms, which are ex-
pected to be essentially independent ofRL between the two
quarks. This immediately explains the small slope of theA1g
curve in Fig. 3. It also shows that any volume integral of the
self-energy contribution cannot be accurately evaluated on
the present lattice since, in theb52.5 case, theRL56 con-
tribution is an order of magnitude larger than those from
RL55,7 i.e., the whole volume integral is given by contri-

butions~each with'10% errors! from only threevalues of
RL . Therefore, when the volume integrals from different val-
ues ofR are subtracted, it will be hard to get a meaningful
signal for theR dependence of interest.

In principle, the self-energy contribution can stretch out to
the midpoint between the two quarks. According to our data,
for the largest interquark separations as shown here, any such
contribution seems negligible. This is seen by looking at the
data nearRL'10– 12, which should be dominated by any
self-energy tail. However, for the smallerR’s the transverse
sums at the midpoint can well have significant self-energy
contributions, which is seen in later in Sec. IV C when these
data are used to determineb functions.

~c! The trend is that, for the action, the peak is about a 5%
effect compared to the plateau contribution fromRL50,...,6,
for EL the peak is about 50% of the plateau contribution, and
for ET the peak completely dominates. Therefore, it should
be expected that any predictions that depend on canceling the
self-energies are most reliable for the action and least for
ET .

In Fig. 5 the corresponding transverse sums are shown for
the Eu state. The most notable features are the following.

~a! The action andEL both scale within error bars for
RL'0.

~b! As expected, theb52.4 data show, forRL'0, an
enhancement ofET over its A1g counterpart, whereas the
action andEL are comparable to theA1g data. However, this
enhancement inET is not seen forb52.5, but this could be
due to the relatively large errors for this case.

~c! Again the action forb52.4 does not exhibit a distinct
peak nearRL56. Instead it simply shows a monotonic in-
crease asRL goes from 0 to 6. The ratio of self-energy peak
heights is 0.61,0.59 for the action andEL , respectively, the
latter being the same as in theA1g case. ForET the ratio is
0.46, lower than forEL by an amount similar to that ob-
served forA1g .

~d! Compared withS andEL , ET has a self-energy that is
comparable to or larger than the plateau contribution from
RL50,...,6.

In Fig. 6 the data for theA1g8 state is shown with the
following features.

~a! The action andET are approximately scaling within
the rather large error bars. However, forEL ~not shown! it is
not possible to make this claim since the error bars are too
large.

~b! The ET data, unlike that in theEu case, now exhibit
some enhancement, compared to theA1g state, for both
b52.4 and 2.5. For example, atb52.4 and RL50,
ET(A1g)'0.01(1), ET(Eu)'0.04(1), and ET(A1g8 )
'0.09(5). Even so, the plateau terms are still, at most, only
comparable to the self-energies. Therefore, as for theA1g
and Eu cases, those predictions that require a delicate can-
cellation of the self-energies are possibly not reliable.

We observed faster divergence of the transverse compo-
nent of the self-energy than the longitudinal one for the
A1g ,Eu states in Figs. 4 and 5. As the self-energies should be
isotropic, the difference in the peak height ratios at the two
b’s is worth exploring further.

This difference is caused by the different discretization of
longitudinal and transverse plaquettes. The electric field is

FIG. 5. Same as in Fig. 4, but for the first gluonic excitation~Eu

representation!. For each data set one error bar is shown; others are
similar.

FIG. 6. Same as in Fig. 4, but for the second gluonic excitation
~A1g8 representation!. For each data set one error bar is shown; oth-
ers are similar.
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dominant, soET is mainly composed of plaquettes lying in
the transverse plane, whereasEL is mainly a planar sum of
plaquettes with a perpendicular orientation. A simple way to
investigate their diverging behavior is to consider a scalar
field f5e2bur u with b'10/fm and the integrals over it
analogous to our sums. The~normalized! integral over the
transverse two-dimensional plane, where the source lies, is
found to change faster when the lattice spacing is varied than
the integral over a three-dimensional ‘‘slice’’ of widtha,
analogous toEL . For our a(2.4) and a(2.5) the ratio
@plane~2.4!/plane~2.5!#/@slice~2.4!/slice~2.5!#'0.8 ~also for
f5e2b2ur u2!, which agrees with the corresponding ratio ob-
served for theET andEL for paths withA1g andEu symme-
tries. The lower-peak-height ratios forET and the high(ET
peaks observed in Figs. 4–6 are also due to this effect.

The diverging of the transverse sums over color sources is
quite consistent with the expectation from leading order per-
turbation theory;@2.5a(2.5)2#/@2.4a(2.4)2#50.52(1) is in
the middle of the values observed. This suggests that the
peaks are dominated by lattice self-energy effects.EL di-
verges slower than the perturbative expectation, as expected,
because of the transverse extent of the dominant electric
field. On the other hand, forET we would expectg2/a2

behavior, while the observed peak height ratios diverge
slightly faster than this.

C. Transverse profiles

In Figs. 1–6 the scaling properties of the three-
dimensional~3D! volume and, assuming the flux tubes have
stringlike features, of the 2D transverse integrals are demon-
strated, with some combinations of the color fields being
more successful than others in satisfying this property. It is
therefore of interest to proceed finally to the ‘‘scaling’’ prop-
erties of the individual flux-tube profiles. The transverse de-
pendence of the action (S) and longitudinal and transverse
energies (EL,T), measured at the midpoint~RL50 in our
convention! with the separationsR58,12 atb52.4,2.5, re-
spectively, is presented in Figs. 7–9. The correlations shown
were measured atT53 for the Wilson loop. As we are again
using a smallT and largeR, excited-state contamination is
significant in theEu andA1g8 cases. Here theb52.4 data are
compared with theb52.5 data by multiplying the former by
2.4/2.5r4.

Aside from any intrinsic nonscaling arising from the dif-
ferent scale of the plaquette used to probe the flux distribu-
tions, we should also be aware that effects can arise from the
discretization versusRT of the distribution and possibly from
self-energy effects. We have found earlier that the self-
energy effects are negligible at the midpoint (RL50) in the
integrated distributions. We here assume that this applies to
the differential distributions so this contribution can be ne-
glected. The effect of the discretization inRT is that a
sharply peaked distribution will be suppressed at coarser lat-
tice spacing. There is some sign of this latter effect in our
data: The smaller plaquette atb52.5 should increase the
observed height of peaks~such as the center of the flux tube
RT50 in the A1g case!, whereas at the smoother regions
~away from the center in theA1g case! the shapes at the two
b’s should be more similar to each other. This is indeed
observed; in theEu case, the largest differences are atRT'2

or 3 instead ofRT50 as for theA1g symmetry because the
distributions peak at these values. This effect has not been
mentioned in earlier works@10,11#.

Assuming some function describing the continuum den-
sity, we could apply a discretization procedure, e.g., simply
averaging over cubes of volumea3, that simulates the flat-
tening of the peaks in our finite-a simulations. The latticized
continuum function could then be fitted to measured points.
When this procedure is applied at both simulated values of
the lattice spacing, we would get two corrected parametriza-
tions. If these two agree, this then would suggest that this
transverse distribution would apply in the continuum limit.
This would be the way to compare with continuum models
of the flux tube. Previously, we have found qualitative agree-
ment @1# with the dual QCD model of Refs.@12, 13# for the
A1g profiles.

In the present case, it appears at first sight that the only
cases where the results for the twob’s are consistent are

FIG. 7. Color flux contributions corresponding to the action (S),
longitudinal (EL), and transverse energy (ET) sum rules of Eqs.
~4.1!–~4.3! for the static quark potential. These are shown in units
of a(2.5) versus transverse distanceRT at the midpoint (RL5R/2)
for separationR58,12 atb52.4,2.5. The data are for the symmet-
ric ground state~A1g representation!.

FIG. 8. Same as Fig. 7, but for the first gluonic excitation~Eu

representation!.
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S(A1g) andEL(A1g), whereas in the 2D sums of Figs. 4–6
other cases, such asS(Eu),EL(Eu) and even
S(A1g8 ),ET(A1g8 ), seem to show reasonable scaling. The pos-
sible reasons for this are twofold.

~i! Figures 7–9 only show the profile in a single direction,
along a lattice axis, whereas Figs. 4–6 are an average over
all directions in a plane. In particular, this could have an
effect on small values ofRT , where rotational invariance is
most violated.

~ii ! The curves depicted in Figs. 7–9 must be multiplied
by a phase space factor 2pRTdRT when their contributions
to any 2D sum rule are estimated. Therefore, the values near
RT'0 get drastically reduced and, in theA1g andA1g8 cases,
it is this region ofRT that is varying the most withb.

An interesting feature in theA1g8 profiles is a local mini-
mum~a dip! outside the center of the tube as predicted by the
N51 Isgur-Paton model@14# for the energy density. In Fig.
9 the action can be seen to have a plateau at 3<RT<5
unlike in theA1g case. ForEL no evidence of a dip is found,
whereas forET the data withb52.4 hint at a minimum for
RT'3 with the 4<RT<7 values being above zero unlike
the A1g case, which is consistent with zero forRT>4.

A better statistical accuracy is achieved in the transverse
profiles of flux tubes with interquark separationR54,6 at
b52.4,2.5, respectively, corresponding to interquark dis-
tances of 0.473~5! and 0.503~7! fm. These are shown in Fig.
10 with the longitudinal and transverse components of the
action plotted separately. There is now a clear dip in the
transverse action profile, again atRT'3, with a correspond-
ing maximum atRT'5. A similar dip and maximum are
seen in the longitudinal action atb52.5, whereas theb52.4
data have a plateau at 3<RT<6. As in Fig. 9, no evidence
for a dip is found forEL , whereas theET data show a clear
dip at b52.5 with a minimum atRT54. At b52.4 there is
no minimum, but the decay as a function ofRT is slow, the
value atRT'6 being an order of magnitude higher than in
the correspondingA1g case. However, again it should be
emphasized that Table II indicates for theA1g8 state consid-
erable contamination from neighboring states. Therefore, any
nodal structure possibly present in a pureA1g8 state could
well be smoothed out by interference effects. Also, it should

be added that the Isgur-Paton model, which suggests such
dips, is less applicable for these smaller values ofR.

IV. DETERMINATION OF b FUNCTIONS
FROM SUM RULES

After presenting the results from our simulations in the
previous two sections we are now ready to embark on the
extraction of the latticeb functions using these data. This
will be done in three ways, which have different sources of
systematic and statistical errors. Method 1 in Sec. IV A is the
most straightforward, while method 2 in Sec. IV B attempts
to eliminate systematic errors from a discrete derivative. The
limit of large quark separation to be studied in Sec. IV C is
connected with string models. Finally, a brief review of the
best estimates ofb functions in SU~2! lattice gauge theory is
given in Sec. IV D.

In Ref. @5#, by imposing the condition on the interquark
potential V that ]V(R)/]auR50, the following three sum
rules were derived relatingV to spatial sums of the electric
and magnetic color:

21

b S V1R
]V

]RD1S05( S

52( ~EL12ET12BT1BL!,

~4.1!

1

4b f S V1R
]V

]RD1E05( EL5( ~2EL1BL!,

~4.2!

1

4b f S V2R
]V

]RD1E05( ET5( ~2ET1BT!.

~4.3!

Here the generalizedb functions are defined considering an
asymmetric lattice as in Ref.@15#. In the notation of Ref.@5#,
they areb[]b/] lna52(S1U) and f [(U2S)/2b. In Eqs.

FIG. 9. Same as Fig. 7, but for the second gluonic excitation
~A1g8 representation!. FIG. 10. Same as Fig. 9, but with longitudinal and transverse

components of the action presented separately and for interquark
separationR54,6 atb52.4,2.5, respectively.
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~4.1!–~4.3!, S0 andE0 are the self-action and -energy asso-
ciated with the quarks and are therefore independent ofR.
The same self-energyE0 is expected for both orientations~L
andT! of the color electric field.

The three-loop perturbative expression forb in terms of
a5g2/4p51/pb is b520.371 51(110.491 93a
20.9795a21•••). On the other hand, forf we have
f 5120.456pa20.25pab1••• , where we can insert the
expression forb giving f 5121.1408a1••• .

The aim is to now extract estimates ofb and f in the
nonperturbative situation encountered in practice. This will
be carried out in various ways, each of which has its own
advantages and disadvantages. However, their common fea-
ture is that, on the left-hand side of each sum rule, the po-
tential V is measured on the lattice using Wilson loops
W(R,T) and, on the right-hand side as discussed in the in-
troduction, the color fieldsE andB at a pointr are measured
using Eq.~1.1! involving the same loops. Unfortunately, this
strategy is complicated by two features in Eqs.~4.1!–~4.3!.
First, the self-energies are unknown and so their effect must
be removed by considering differences between the equa-
tions for different values ofR, or for different gluonic states
A1g ,Eu ,... with the sameR, a possibility not considered
here. Second, each equation contains]V/]R. Even though
the potentialV itself can be readily determined as a by-
product of theE,B measurement on a lattice, the determina-
tion of ]V/]R introduces some uncertainty. All of the esti-
mates in this section are made using theA1g ground state,
where we have the best signal. The other gluonic states have
such large errors that sensible values ofb, f cannot be ex-
tracted.

A. Method 1: Fitting the sum rules

The most direct approach is to measureE andB over all
space and to then perform the spatial sum giving the right-
hand side of Eqs.~4.1!–~4.3!. In practice, ‘‘spatial sum’’
means a sum over a lattice that has a linear size twice that of
the maximumR considered, i.e., forb52.4 ~2.5! up toR58
~12! on lattices with spatial size 163 (243). With V known
numerically from Eq.~2.1!, the derivative can also be esti-
mated. The functionb is then obtained using Eq.~4.1! by
plotting ((EL12ET1BL12BT) vs V(R)1R@]V(R)/]R#
and performing a linear fit, as shown in Fig. 11. TheR51
points were not included in the fits due to the artifacts they
contain, while theR512 point atb52.5 was excluded be-
cause of its significant excited-state contamination~see Table
II !. There are four sets of data for eachb corresponding to
the correlation of the sum over electric and magnetic fields
taken at time intervalsT53,...,6. Theb52.4 data were
scaled by multiplying with 2.4/2.5r to have the same units as
theb52.5 plots. The results of the fit in Fig. 11 can be read
from the second column of Table III.

For b52.4 the functionb has reached a plateau atT55,
giving a best estimate of20.312(15), whereas forb52.5 a
plateau has been reached only atT56 with 20.323(9) be-
ing our best estimate. The self-energy estimatesS0 are also
seen to reach plateaus at21.2(1) and 21.5(1) for
b52.4,2.5, respectively.

Even though theb52.4 and 2.5 lines in Fig. 11 are al-
most parallel as in Fig. 1, they are separated by the differ-

ence in their self-energies. The strategy of fitting the data
with a straight line is effectively taking differences of Eq.
~4.1! evaluated for different values ofR and so avoids the
need to knowS0 explicitly.

In principle, the functionf can be extracted from either of
the two sum rules in Eqs.~4.2! and~4.3!. However, as shown
in the fourth and sixth columns of Table III, these predictions
exhibit much more variation and have much greater errors
than those forb. The main reason for this is due to the larger
variation of the sums of thedifferencesof electric and mag-
netic fields. In particular, the values off (I ) at b52.4,
T55,6 andb52.5, T54,5,6 are essentially undetermined.

The self-energiesE0 are not consistent with zero forf (I )
at b52.5 as they are forf (I ,II ) at b52.4 and f (II ) at
b52.5. AsE0 is the difference of~i! V0 /4b f coming from
the two-body potentials in Eq.~2.1! and ~ii ! the self-energy
in EL ,ET for f (I ,II ), respectively, we can see that these two
cancel for all cases exceptf (I ) at b52.5. As the self-
energies should be isotropic, this is probably caused by in-
accuracies in determining(EL .

This inaccuracy in determiningf can be greatly reduced if
the sum rules in Eqs.~4.2! and ~4.3! are fit together. At
b52.4,2.5 data for the former sum rule are taken atT53,4
and T53, respectively, while for the latter the data can be
taken at anyT from 3 to 6. The functionf obtained in this
manner is presented in Fig. 12 and Table IV and can be seen
to lead to a much more accurate estimate off . Our best
estimates are 0.65~1! and 0.68~1! at b52.4,2.5, respectively.
Also the values of self-energy are now more stable at
E0'0.01(1), a number that is about two orders of magni-
tude smaller than the self-actionsS0 .

In the above, the parameterr has been extracted and
found to be 1.411~13!. This then suggests as a direct estimate
of b, averaged over theb range of 2.4–2.5, the value

b5
Db

D ln@a#
52

2.522.4

ln@a~2.5!#2 ln@a~2.4!#
520.290~8!.

Even though this is admittedly a very crude estimate, it
should represent the average value ofb over this range ofb.
However, it appears to be slightly smaller in magnitude than

FIG. 11. Data corresponding to Eq.~4.1! with best linear fits.
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the average of the above estimates20.312(15) atb(2.4)
and20.323(9) atb(2.5). The origin of this two-sigma dif-
ference is not clear.

B. Method 2: Combining the sum rules

As shown in Ref. @6#, one way to avoid estimating
]V(R)/]R andS0 ,E0 is to explicitly eliminate them by writ-
ing down Eqs.~4.1!–~4.3! for two different values ofR. In
this way

b5

2@V~R1!2V~R2!#S 11
(~ET!R1

2(~ET!R2

(~EL!R1
2(~EL!R2

D 21

(SR1
2(SR2

,

~4.4!

f 5
V~R1!2V~R2!

2b@(~ET!R1
2(~ET!R2

1(~EL!R1
2(~EL!R2

#
.

~4.5!

At first sight this appears to be what is needed, expressions
that involve quantities that can be measured directly. How-
ever, in practice, there is a problem:b becomes dependent

on the differences ((EL)R1
2((EL)R2

and ((ET)R1

2((ET)R2
from Eqs.~4.2! and~4.3! and, as seen above, the

values of these differences are less accurate than
(SR1

2(SR2
. The outcome of this strategy is given in Fig.

13. There it is seen that theb(2.4) results are consistent with
those given by method 1, but have much larger error bars.
However, theb(2.5) results are essentially inconsistent with
method 1. A similar problem arises with the values off from
Eq. ~4.5!. Again f (2.4) is consistent with the earlier esti-
mates of method 1 in Ref.@6#, but with much larger error
bars. For example, with R1 ,R252,6 we get
f (T54,5)50.64(7),0.64(15). However, compared to
method 1,f (2.5) is too large, rising to'0.9(2) atT'4,5. It
should be added that this is not a problem of the measure-
ments being poorly distributed, since plotting the bootstrap
values ofb shows that the errors are not underestimates due
to asymmetric non-Gaussian bootstrap distributions.

This difference between the two estimates ofb for b52.5
but not 2.4 is caused by the inaccurate determination of the
longitudinal energy sums((EL)R1

2((EL)R2
in Eq. ~4.4!.

As can be seen in Fig. 2, for the(EL curves atb52.5 the
slope is rather erratic and indicates a much smaller value

TABLE III. Estimates forb and f at b52.4, 2.5 at differentT values.

b T b S0 f ~I! E0 f ~II ! E0

2.4 3 20.357(3) 21.04(2) 0.63~3! 0.004~4! 0.63~5! 0.005~3!

4 20.336(5) 21.11(3) 0.71~6! 0.010~7! 0.74~10! 0.007~4!

5 20.312(15) 21.24(10) 1.5~1.3! 0.06~2! 0.84~28! 0.01~1!

6 20.317(21) 21.21(14) 4.5~7.0! 0.09~4! 1.4~8! 0.02~2!

2.5 3 20.389(4) 21.17(2) 0.89~7! 0.033~7! 0.59~3! 0.002~3!

4 20.354(5) 21.32(3) 1.41~23! 0.059~10! 0.64~5! 0.003~5!

5 20.333(7) 21.44(4) 1.49~38! 0.063~16! 0.75~11! 0.011~8!

6 20.323(9) 21.49(7) 6~11! 0.10~3! 0.74~16! 0.009~12!

FIG. 12. Determination off (I 1II ) by combining two sum rules.
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than atb52.4. This is also reflected in Table III, where the
f (I ) value obtained using the(EL values is already atT53
unrealistically high forb52.5, getting worse with increasing
T. This means that the((EL)R1

2((EL)R2
are underesti-

mated. For(ET the situation is more consistent, which can
be seen in the larger slope in Fig. 3 and the reasonable be-
havior for the f (II ) in Table III at b52.5. Thus
((EL)R1

2((EL)R2
is too small and((ET)R1

2((ET)R2
re-

alistic, leading to underestimates ofb(2.5) using Eq.~4.4!
and an overestimate off (2.5) from Eq. ~4.5!. The signal
being worse forEL thanET is somewhat surprising since it is
ET where the self-energy completely dominates. Therefore,
one would have expected it to be harder to get a signal forET
because it requires a more delicate cancellation of the self-
energy.

Why does this not happen atb52.4? From Figs. 2 and 3
we can see that the(EL slope is larger and the(ET slope
slightly smaller than atb52.5. This is again reflected in
Table III, wheref (I ) again gets larger with increasingT, but
not as much as forb52.5 and with larger errors making the
estimates consistent with a realistic value. At the same time,
unlike for b52.5, f (II ) also increases. This fortuitously
leads to a realistic ratio of the differences of the sums in Eq.
~4.4! and a value ofb consistent with method 1.

C. Method 3: The large-R limit

In the above, the derivatives ofV are calculated numeri-
cally from the lattice form of the interquark potential in Eq.
~2.1!. However, for sufficiently largeR(R>2), the con-
tinuum form ofV ~i.e., with @1/R#L replaced with 1/R! is a
good approximation. When, in addition to this, the effect of
the self-energies is removed by evaluating the sum rules at
two values ofR, Eqs.~4.1!–~4.3! reduce to

b5
22bS~R12R2!

(SR1
2(SR2

, ~4.6!

f ~ I !5
bS~R12R2!

2b@(~EL!R1
2(~EL!R2

#
, ~4.7!

f ~ II !5
2e~1/R121/R2!

2b@(~ET!R1
2(~ET!R2

#
. ~4.8!

As seen in Fig. 14~a! for b52.5, Eq.~4.6! gives estimates
in agreement with the fits in Table III forR1 ,R252,...,12.
However, this is not surprising since there the results are an
average over a range ofR values, whereas Eqs.~4.6!–~4.8!
can be considered as an average using simply two values of
R. A similar situation holds forb52.4.

TABLE IV. Combined fits of f at b52.4,2.5 at differentT
values. The firstT value refers to the data used for Eq.~4.2!, the
other to the data used for Eq.~4.3!.

b T f(I 1II ) E0

2.4 3,3 0.647~7! 0.006~1!

3,4 0.616~8! 0.0008~10!

3,5 0.627~17! 0.003~3!

3,6 0.612~18! 0.013~4!

4,3 0.705~13! 0.009~1!

4,4 0.671~13! 0.004~1!

4,5 0.684~23! 0.040~5!

4,6 0.659~27! 0.030~6!

2.5 3,3 0.694~11! 0.010~1!

3,4 0.667~11! 0.005~1!

3,5 0.682~16! 0.008~2!

3,6 0.688~21! 0.009~3!

FIG. 13. Estimates ofb from Eq. ~4.4! for ~a! b52.4 and~b! b52.5.
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Of more interest is the large-R limit, where it is expected
from string models that both the action and energy flux tubes
should have a form that is essentially constant for allRL in
the range2R/2<RL<R/2 with R-independent self-action or
-energy terms concentrated atRL'6R/2. As can be seen in
Fig. 4, the sums over the transverse plane in the middle of
the quarks agree atb52.4 and 2.5, supporting the accuracy
of our estimates in this region. Therefore, the action differ-
ence in Eq.~4.6!, D(S5((SR1

2(SR2
), should be well ap-

proximated byD(S5@R1SR1
(RL50)2R2SR2

(RL50)# and

similarly for D(EL andD(ET in Eqs.~4.7! and ~4.8!.
In practice, sinceR1,2 are not very large, it is probably

more realistic to include a correction for the ‘‘overshoot’’ of
the plateau term atRL'6R/2, i.e.,

D( S→D( S85@R1~eff!SR1
~RL50!

2R2~eff!SR2
~RL50!#, ~4.9!

whereRi(eff)5Ri12e. Heree is the overshoot at each end of
the plateau. From Figs. 4–6 it is seen thate must be approxi-
mately one-half of a lattice spacing.

The results atb52.5 withe50.5 are shown in Fig. 14~b!.
The values ofb approach those given by method 1 asR1,2
increases, agreeing whenR1,256,12. The disagreement at
the smallerR’s is mainly due to significant self-energy con-
tributions at the midpoint, which do not cancel as they vary
with R. The good results fromR56 thus show that the self-
energy contributions at the midpoint are negligible at these
interquark separations. The same approximation can be used
in the spatial sums of method 1. WithR52,3 excluded from
the fit of Eq.~4.1! we getb520.35(4) atT56 andb52.5.

The extracted value ofb is only weakly dependent one
even for the rather small values ofR1,2 used here. This situ-

ation will only improve asR1,2 increases. In principle, this
method has two advantages over the earlier ways of extract-
ing b and f .

~i! It avoids the need for any delicate numerical cancella-
tions of self-energies since they are assumed to have can-
celed exactly in theD’s.

~ii ! Only the single two-dimensional sum over theRL50
plane is necessary. This avoids the full three-dimensional
sum of Eqs.~4.1!–~4.3!. This estimate can be further im-
proved by averaging the two-dimensional integrals over the
smallest values ofRL . However, in practice this would not
lead to savings in computer time since averaging over all
positions and orientations of the Wilson loops would, in any
case, mean using all possible planes in the lattice.

It has one disadvantage, however, in that it assumes a
stringlike longitudinal dependence of the color flux distribu-
tion.

For largeR one would expect that the string tension is
given by the longitudinal energy density in the transverse
plane at the midpoint:

bS52b f EL~RL50!.

Taking the values ofEL(RL50) from Fig. 4 and using our
best estimates of f gives AbS(2.4)5483(15),
AbS(2.5)5477(24) MeV. These are close to the values
given by fits to experimental spectra.

D. Comparison with other approaches

There are two main ways to extractb functions in lattice
gauge theories. First, one can measure observables at differ-
ent values of some parameter~such as a coupling or a quark
mass! and then try to estimate the response of the observable
to a change in that parameter. This can be carried out using
either finite differences or an interpolating function. Both of

FIG. 14. Estimates ofb at b52.5 using~a! the continuum form ofV(R) @Eq. ~4.6!# and, additionally,~b! a constant longitudinal profile
approximation for the flux tube withe50.5 @Eq. ~4.9!#.
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these introduce a systematic error either from the use of a
finite interval or from the choice of the interpolating func-
tion. In the second method, one can use the fact that response
functions are related to correlation functions via lattice sum
rules. This method has less systematic errors, but often leads
to large statistical errors because the observables involve
delicate cancellations.

In the case of SU~2! gauge theory, the first method has
been used recently in Ref.@7#, whereb was estimated by
measuring the critical temperature at six values of the cou-
pling and using an exponential ansatz or a spline interpola-
tion for the b dependence ofa. In the same work, nonper-
turbative derivatives of couplings in the time and space
directions with respect to the asymmetry factorj5as /at
were estimated fromb and measurement of the free energy.
In Ref. @11# lattice spacings were determined from the string
tension at seven couplings in the range 2.3<b<2.85 and
fitted with an ansatz of a lineara dependence ofL lat . The
errors on these estimates do not include systematic effects
from the use of a linear approximation. In Ref.@8# the lattice
spacing was determined at six couplings ranging from
2.3<b<2.55 through Sommer’s equationr 0

2F(r 0)5c dis-
cussed after Eq.~2.1!. Fitting of the three-loop relationship
betweena and b, with extra terms and systematic errors
estimated using different values ofc and forms of the fitted
function lead to results consistent with Ref.@7#.

The sum rule method was explored in Ref.@16#, where
]V(R)/]b was fitted from the time dependence of Eq.~1.1!
andb then extracted through a second fit of]V(R)/]b vs R.
Optimistically also potentials atR51 were included in the
fits. As this was only a feasibility study, the estimate of
b520.25(2) atb52.5 should be considered as preliminary.
A direct formula forb, Eq. ~4.4!, involving differences of
two-body potentials at two values ofR and their action sums
was derived in Ref.@6#. An average over pairs ofR values
gave the estimateb520.35(2) atb52.4. The values at
someR pairs were outside this estimate and doubts about the
convergence inT remained, as the correlations were calcu-
lated only up toT54 for largerR’s.

Table V collects the most reliable estimates ofb at
b52.4 and 2.5, whereas the available estimates off are
shown in Table VI. Here it should be noted that an effective
coupling larger than the bare coupling moves the perturba-
tive estimates off closer to the nonperturbative values,
whereas the opposite happens forb. A perturbative evalua-
tion of b is thus unreliable. The nonperturbative estimates of

b agree with each other, except for the one from Ref.@11#,
which has a significant systematic error. Averaging the three
consistent estimates givesb(2.4)520.306(6) and
b(2.5)520.316(4), which are 78% and 81%, respectively,
of the three-loop predictions. Forf our estimates are not far
from those in Ref.@7#, with ratios of the nonperturbative and
perturbative estimates similar to those forb.

V. CONCLUSIONS

In this paper the spatial distribution and nature of the
electric and magnetic color fields between two quarks are
measured forb52.4 and 2.5. We discuss carefully the the-
oretical expectations for scaling versusb of these distribu-
tions and compare with our results. For the observables with
a well-controlled continuum limit~three-dimensional sums!,
scaling is investigated and found to be good in most cases of
interest. For more differential observables~transverse sums
and profiles! the changes seen between the two values ofb
can be explained qualitatively from the discretization: The
plateaus stay the same, while the peaks get higher for smaller
a. Self-energies, as measured by transverse plane sums, di-
verge in a manner suggested by leading-order perturbation
theory, with the divergence being faster in theEL case be-
cause of the longitudinal extent of the plaquettes measuring
the dominant electric field. By comparing various combina-
tions of the spatial sums of theE,B fields with the interquark
potential V(R)6]V(R)/]R, estimates can be made of the
generalizedb functionsb and f ; see Eqs.~4.1!–~4.3!.

There are two problems that prevent the direct use of
these equations. First, since the whole calculation is per-
formed on a lattice,V(R) is only known at discrete values of
R, so that the values of]V(R)/]R cannot be measured di-
rectly. Second, bothV(R) and the spatial sums have self-
action or -energy contributions. To minimize or avoid these
problems the extraction ofb and f can be carried out in
different ways, each of which has its own advantages and
disadvantages concerning statistical and systematic errors.

The most direct approach, method 1 of Sec. IV A, is to
parametrizeV(R) so that]V(R)/]R can be readily calcu-
lated. This overcomes the]V(R)/]R problem at the expense
of some systematic error introduced by the form of param-
etrization of V(R) used. By plotting, as a function ofR,
V(R)6]V(R)/]R versus the various spatial sums, the slopes
give immediately b and f . This resulted in b(2.4)
520.312(15) andb(2.5)520.323(9). However, the value
of f was much more uncertain when the two sum rules, one
involving (EL and the other(ET , were used separately.
When these two sum rules were fitted simultaneously, a bet-
ter result emerged,f (2.4)50.65(1) and f (2.5)50.68(1).
Already at this stage, it could be seen that the data causing
most of these uncertainties are those involving the longitudi-
nal energy(EL especially forb52.5.

TABLE V. Comparison between values ofb[]b/] ln a.

b Our estimate Ref.@7# Ref. @8# Ref. @11# Three-loop PT

2.4 20.312(15) 20.3018 20.305(6) 20.330(4) 20.3893
2.5 20.323(9) 20.3115 20.312(2) 20.340(4) 20.3889

TABLE VI. Comparison between values off [(U2S)/(2b).

b Our estimate Ref.@7# PT

2.4 0.65~1! 0.72 0.85
2.5 0.68~1! 0.74 0.86
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One way to avoid the]V(R)/]R and self-action and
-energy problems is to combine the original three sum rules
in such a way as to eliminate the problems; see Eqs.~4.4!
and ~4.5! for method 2. However, in spite of the ideal form
of these equations they result in poor estimates of bothb and
f . For b52.4, b and f agree with method 1, but with large
statistical errors; see Fig. 13~a!. But for b52.5 the values of
b tend to be too low and off too high, both with large error
bars. These differences can be directly attributed to the inac-
curacy of the data for(EL .

The third method for extractingb and f exploits the form
expected ofV(R) and the flux-tube profiles in the limit
R→` from string models. When a continuum parametriza-
tion of V(R) is used and twoR values are subtracted, the
sum rules reduce to those in Eqs.~4.6!–~4.8! and these yield
results consistent with those of method 1, but with larger
statistical errors. In the large-R limit, a further approximation
is to replace the flux-tube profile by one that is constant
between the quarks (2R/2<RL< R/2) and dropping to zero
rapidly for RL>R/2 andRL<2 R/2. At the largestR’s the
results are consistent with method 1, but with large statistical
errors. These results are only very weakly dependent on the
point where the profile drops to zero beyond the positions of
the quarks.

As seen in Tables V and VI, our best estimates forb and
f agree with other recent nonperturbative estimates, most

importantly the finite-temperature approach of Ref.@7#. It
thus seems safe to conclude that ordera2 effects in the ex-
traction of theb function are small at theb values studied
using the methods described. Thus we have a unique nonper-
turbative b function that describes the deviations from
asymptotic scaling at these values of the coupling.

For the state withA1g8 symmetry, our data show the exis-
tence of a dip in the action and transverse energy distribu-
tions away from the center of the flux tube in the transverse
plane between the quarks. This qualitatively confirms the
prediction of the Isgur-Paton flux-tube model for the energy
distribution. No such node is seen for the longitudinal en-
ergy, and for the action it is more pronounced in the trans-
verse component.

In the future we plan to study four-body flux distributions
and their relationship to two-body flux tubes. Sum rules will
be used verify the correctness of the measured distributions.
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