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Flux-tube structure and B functions in SU(2)
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The spatial distribution of the action and energy in the color fields of flux tubes is studied in lattige SU
field theory for static quarks at separations up to 1 fi3at2.4,2.5. The ground and excited states of the color
fields are considered. Sum rules are used to get estimates of genegdizedions.[S0556-282197)06619-9
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[. INTRODUCTION In the naive continuum limit these contributions are re-
lated to the mean squared fluctuation of the Minkowski color
Nonperturbative phenomena of QCD such as confinemerfields by

can be explored using Monte Carlo simulations of lattice 4

gauge theory. The potentisl(R) between two static quarks fl(r)— a B2(r) with i,j,k cyclic

at separatiorR in quenched QCD is one of the simplest R B K v ’
manifestations of confinement and has been studied inten- 4

sively. At largeR the potential rises linearly as predicted by Fi4(r)— — a—E-z(r) 1.2
the hadronic string model. One can also measure the spatial R B '

distribution of the color fields around such static quarks in
order to get a detailed picture of the confining flux tube. InWhen the interquark separation axis is chosen as the 1 axis
Ref. [1], which contains references to earlier work, this wasthe squares of the Iongltudlln.al and transverse electric and
done for the ground state and the first excited state of th@1agnetic fields can be identified as
two-quark potential, having the symmetries of thg, and £ —f4 g 4243 p _§1213 p _2332
E, representations, respectively, of the lattice symmetry L b T CT bk ' 1.3
groupDy,y,. Transverse and longitudinal profiles of chromo- '
electric and -magnetic fields were compared with vibratingThese can then be combined naively to give the action den-
string and dual QCD models for the flux tube, with the lattersity
model reproducing quite well the shape of the energy profile
measured on a lattice. Instead of @Y the gauge group S(r)=— (& +2&6+2Br+BL) (1.9
used was SI2), which is more manageable with present-day )
. L and the energy density

computer resources and is expected to have very similar fea-
tures of confinement. 'I_'his is reflected i_n fche fact that the E(r)=E_(r)+2E1(r)=— (& — BL) — 2(&— By)
flux-tube models considered do not distinguish between (1.5
SU(2) and SU3).

The method used to study the color fields on a lattice is t@f the gluon field.
measure the correlation of a plaquefie=2 Tr(1—Up) Since in this work we use a plaquette to probe the color

with the Wilson loopW(R, T) that represents the static quark flux, the spatial size of the probe will decrease as the lattice

and antiquark at separatiéh When the plaquette is located SPa‘?'”g"?HO- To define a continuum limit of the c_oIor flux .
a . . T distributions, one would have to use a probe of a fixed physi-
att=T/2 in the u-v plane, the following expression isolates,

. - o . cal size asa—0. In this work we wish to compare flux
n 'the I.|m|t T—e, the contribution of the color field at po- distributions at different lattice spacing. One special tool that
siion r: is available, when a plaquette is used to probe the color flux
with the Wilson gauge action, is that exact identities can be
Y derived for the integrals over all space of the flux distribu-
(W(R,T)TF") —(W(R,T){D*") tions. These sum rulg2-5] relate spatial sums of the color

v —
fr'(n)= (W(R,T)) @D fields measured using E@l.1) to the static potential/(R)
via generalized3 functions, which show how the bare cou-
plings of the theory vary with the generalized lattice spacings
*Electronic address: petrus.pennanen@helsinki.fi a, in four directions. One can think of these sum rules as
TAlso at Department of Physics, University of Helsinki, Helsinki, providing the appropriate anomalous dimension for the color
Finland. Electronic address: green@phcu.helsinki.fi flux sums. This normalizes the color flux and provides a
*Electronic address: cmi@liv.ac.uk guide for comparing color flux distributions measured at dif-
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ferenta values. The full set of sum ruld$] allows these TABLE |. Lattice spacinga determined using different meth-
generalized3 functions to be determined at just ofevalue ~ ods.
(seg[6] and references thergirHere we investigate this fur-

ther by comparing estimates at two differgdwvalues. This 8 c=165 c=244  bs=440 MeV
can also help to clear up some inconsistencies between t

. - ; 1 A1 11
B-function determination from the sum rules at gg&alue o5 8 0(7)32‘51; 8 08?3451; 8 08322
[6] and other methodk7,8]. ' ' : :

In Ref.[1] the simulations were carried out@t=2.4 with  p=a(2.4)/a(2.5) 1.41214)  1.41013 1.40611)

a 16°x 32 lattice. Here results from similar computations at
B=2.5 with a 24x 32 lattice are reported. Most of the simu-
lation and analysis techniques, such as use of a variation# measured potentials at interquark separations
basis with different fuzzing levels, are the same and can b&=2,3,4,6,8, R=2,3,4,6,12 atp=2.4,2.5, respectively.
found from Ref.[1]. In addition to more accurate measure- Here[ 1/R], is the latticized form of the Coulomb potential
ments of flux-tube profiles, we also present estimateg of 1/r due to one-gluon exchange. The above rang® efas
functions at both3=2.4 and 2.5. chosen to correspond to similar physical distance ranges. The
In Sec. Il static quark-quark potentialR) are extracted usual method for estimating the lattice spacing is to equate
and in Sec. Il the corresponding flux tube profiles are calthe dimensionless value o from the fit of Eq.(2.1) to an
culated. In Sec. IVV(R) and the profiles are related by sum experimental value. This is equivalent to utilizindR) in
rules and various estimates of tBéunction are made. Some the limit R—c. However, our experimental knowledge of

conclusions are made in Sec. V. the two-quark potential comes from heavy mesons with rms
radii around 1 fm. An alternative method due to Somh&dr
Il. STATIC POTENTIALS compares the force fror/(R) to experimental values at a

distance range more appropriate to these mesons, i.e.,

Accurate estimates of the potential energy between tw@~0.5 fm. In practice the equatiorRf)>F(R,)=c is used
static quarks are needed for the extractiongdtinctions to o find R, whereF(r) is the force between two static quarks
be presented in Sec. IV. In addition to smalll statistical errorsat separatiom. Various nonrelativistic continuum potential
“accurate” means that the gluonic state measured has littlenodels giveaR,~0.49 fm for c=1.65 andaR,~0.66 fm
contamination from other states. This is achieved by diagofor ¢=2.44 [8]. The resulting scales and ratios of lattice
nalizing a variational basis of different paths connecting thespacings;)za(z.4)/a(2.5) are shown in Table I. The values
same points on the lattice. Below we present estimates of thgs p from bg and Sommer’s scheme are seen to agree.

remaining contamination in our observables. The fundamen- The g=2 5 potentials above have the accurate interpola-
tal question concerning the scale, i.e., the value of the latticgyng

spacinga in physical units, is also answered using the two-

body potentials. V(R),, =0.555+0.034R—0.280R, (2.2
We construct lattice operators to create and destroy states ¢

with two static quarks at separatidR joined _by gluonic V(R)g —V(R), =3.8R—12.6R?+24.6R°—18.8R%,

paths that represent the color flux. The techniques we use to u 19 2.3

make efficient operators with a large overlap with the ground :

state'are descrlbeq |n‘fjeta|] in ’I’?EI_]. In order to improve V(R)x' —V(R)a. =5.94R— 23.6R2+49.2R%— 38.8R",

the signal we applied “fuzzing,” where each spatial link is 1g 1g

replaced by a weighted sum of itself and its surrounding 2.4

spatial staples, before the correlations were measured. T. . . . L

investigate gluonic excitations and minimize their contribu—-ﬁhe rglatlgns are valid for2R<12, with no physical |_nter-

tion to the ground-state signal we need a variational basisp,reu"t'On intended for thlﬁ/(R)Eu andV(R)Aig expressions.

which was obtained by performing the measurements on laffhe x* values per degree of freedom are 0.09, 1.35, and 0.22

tices with different levels of fuzzing. for the Ay, E,, and Aig states, respectively. The corre-
At B=2.4,2.5 fuzzing levels 40,16,0 and 40,13,2, respecsponding potential fits foB=2.4 are given in Ref1].

tively, formed the variational basis in the case of paths with Our variational basis is constructed from fuzzed link op-

A,4 symmetry. A three-state basis may be expected to give arators that represent creation or annihilation of two quarks

reasonable signal for th@ig excitation by reducing the con- at separatiorR, with the color field in a specific state of

tamination from higher excitations with this symmetry. For lattice symmetry. These operators can be expanded in terms

paths withE,, symmetry the fuzzing levels 16,13 were usedOf the eigenstates of the transfer matrix

for the two 8's with two different transverse extents of the

paths forming a variational basis. These transverse extents [R)=co|Vo)+Ca[Vi)+--, (2.9

were one and two lattice spacings for small longitudinal ) ) i

lengths and one and four lattice spacings for lafg. In vv_|th the measured correlation of a generalized Wilson loop

order to set the scale, the lattice ste8.4) anda(2.5) were ~ 9ven by

determined by fitting the two-body parametrization W(R,T)=(RO|RT):c3e‘V0T[1+|h(T/2)|2+ .l

(2.6
+bgR+V, (2.2)

RJ, where

e
V(R)z—[—
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TABLE Il. Excited-state contamination g8=2.5 as measured

by |h|.
R State t=1 t=2 t=3
2 Aqg 0.012 0.005
3 Aqg 0.027 0.012 0.009
4 Aqg 0.036 0.016 0.008
6 Agg 0.073 0.034 0.016
12 Asg 0.162 0.075 0.006
2 E, 0.282 0.152 0.105
3 E, 0.253 0.131 0.105
4 E, 0.250 0.126 0.076
6 E, 0.255 0.123 0.045
12 E, 0.427 0.263 0.189
2 Aig 0.201 0.080 0.076
3 Aig 0.228 0.098 0.070
4 Aig 0.261 0.116 0.122
6 Aig 0.333 0.155 0.157
12 Aig 0.518 0.241 0.204
C1 _v._
h(t)=— e~ V1~Volt, 2.7
Co

To minimize excited-state contamination we ndedl.

As plaquettes in the middle of the generalized Wilson
loop in the time direction are used to probe the color fields
the relevant estimate of contamination is takentaff/2.
The measured correlation{&,|J;|Ry) instead of Eq(2.6).
This produces off-diagonal terms such @#;|(J,|V,) that
increase the coefficient of excited-state contribution flom
to 2h for T=2, t=1. From the generalized Wilson loop ra-
tios at eachR value, we define/(T)= —In[W(T)/W(T—1)]
since its rate of approach to a plateaurlasc enables us to
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[lI. COLOR FIELD DISTRIBUTIONS

Color field distributions measured on a lattice are ex-
pected to be related to the physical continuum distributions.
However, the finite spacing and changing physical size of the
elementary square used to probe the fields introduce various
artifacts, which will be discussed below. Our study of the
field distribution around two static quarks consists of three
types of observables. Three-dimensional sums over the spa-
tial lattice to be presented in Sec. Il A are used to extfact
functions. Two-dimensional sums over the planes perpen-
dicular to the interquark axis presented in Sec. Il B show the
longitudinal profile of the flux tube. This allows us to see the
lattice self-energies and look for stringlike features in the
remaining part. Our most microscopic observables are the
transverse profiles of the flux tubes at the midpoint between
the quarks, presented in Sec. Il C. These show the clearest
differences between ground and excited states and can be
compared with models.

An important topic in this section is to check the quality
of the input data for the sum rules by looking at their scaling
properties betweef=2.4 and 2.5. Essentially the input data
are of two distinct forms: the two-quark potentidland the
spatial sums of the color fields. In the past the scaling prop-
erties ofV have been confirmed many times and will not be
repeated here. However, scaling of the different color field
combinations is less clear since the color fields are measured
using a plaquette, whose physical size changes g@ithhis
is relevant because only observables with the same physical
size at different values of the coupling have a continuum
limit. In the case of the three-dimensional sums over the
color fields, the lattice sum rules provide the appropriate nor-
malization asa— 0. Even in this case, the scaling behavior is
only known after the divergent self-energies are subtracted.
However, other observables, such as the two-dimensional
sums over transverse planes or the transverse profiles of the
flux tube, do not have a well-defined scaling behavior, but it

estimate the excited-state contamination to the ground statg; «iill of interest to explore how similar the profiles are at

We calculaten from

[h(t=T/2)|~ )\i—l W=D V(T)

V(T—1)—V(T—x)

W(T-1)-v(T)

(2.8

Here theT —« extrapolated potential is defined as

V(T—)=V(T) =\ T

In practicex was calculated from potentials &= 1. Table Il

V(T—1)—V(T)

A=e V17Vo),

the two values of coupling used.

From the relations in Eq.1.2) and sum rules to be pre-
sented in Eqs(4.1)—(4.3) we can see that the measured ac-
tion sums must be multiplied by the anomalous dimension
b/ B to get the physical value, while the energy sums have a
correctionf that goes to one in the continuum limit. Hdygf
are generalizeg functions to be discussed later. As will be
seen in Sec. IV below, the differences in the valueb ahd
f betweenB=2.4 and 2.5 are sufficiently small to neglect
them in the following plots; e.g.b(2.4)/b(2.5)=0.917).
Thus the normalization of the overall three-dimensional sum
over color flux can be treated as almost constant in @ur
range. In turn this implies that we should compare more
differential distributions using this scale.

A. Spatial sums

shows the excited-state contamination for states of the two- In Figs. 1-3 the three-dimensional spatial sums of the
body potential atg=2.5. It is seen that thé,, states are actionS and longitudinal and transverse energigs E+ in-

reasonably pure with th&, and Aig states containing in-

volved in the sum rules are plotted as a functiorRoind T

creasing amounts of contamination. Note that the methofbr the flux-tube ground stat&;; and the two excited states

used to extract the higher-excited-state contaminahticio

E, andAig for B=2.5 and the scaled data gt=2.4. The

the first excitedAig state is unreliable since ground-state basic data(£,8) are dimensionless and require the factor
contributions can dominate in principle.

Bla* to give energy and action densities in GeVifnSince
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+2B.)

X(E +2E+B,

2 4 6 8 10 12°2 4 6.8 10 12°2 4 6 & 10 12
FIG. 1. Scaling of actiong) summed over the spatial lattice for paths wihy, E,, andAig symmetries.

Figs. 1-3 show the volume integrals of the basic data withing is questionable for the latter. Even so, the action and its
B=2.5, for a scaling comparison, the volume integrals of theR dependence are comparable in all three cases. A very ap-
basic data fo3=2.4 are multiplied by 2.4/2/& wherepis  proximate estimate of the differendeS, in the 8=2.5 and
the ratio of lattice spacings given in Table |. The resulting8=2.4(scaled) self-actions is given by the vertical differ-
two sets of datd B=2.4(scaled),2.b should not be ex- ence between the two sets of data. The result given by linear
pected to lie on top of each other since they have selffits for theA;, ground stateA S;~0.122), is notinconsis-
energies and self-actions that diverge gféa from one- tent with theE, case, whereas thi], excitation has a posi-
gluon exchange in leading-order perturbation theorytive self-action difference only for the smalleRs. This
However, the two sets of data should be parallel to eaclourious feature of thé\ig data is perhaps not surprising since
other since the self-energies are independenRofn the already Table Il shows that this state has considerable con-
following extraction of theg function, it is the extent to tamination from other states. However, in spite of this, we
which theslopesof these lines araonzerothat is relevant.  thought it useful to include such data in this paper to illus-
In Figs. 1-3, for clarity, only the data for one or tWlo  trate where the data need to be improved.
values are drawn. The data for highErhave larger errors, In Fig. 2, for the longitudinal energy, the data are an order
but in most cases they are consistent with the data showmf magnitude smaller than for the action. Here the depen-
indicating that the plateau ih is achieved. In Fig. 1, for the dence ongB is less clear and the presence of a nonzero slope
action, theA;; andE, states show scaling and with distinct much less distinct for th&, and A}, cases. The difference
nonzero slopes. This is best seen for &g state and dete- AE, in the 8=2.5 andB=2.4(scaled) self-energies is now
riorates progressively in going to tfi, andA;, states. Scal-  best taken visually at the loweBts, giving AE,~0.020(5)

0.25 T T 0.40 T
0.35
0.30
0.25
0.20'|
0.15
G—Op-24T-3
*—8p-25T-3
*—9p-25T1-3 *—9p-25T-3
*—@p-25T-4 0.05 + o—ep-251=4 1 0.10 -
0.05 1 1 1 1 0.00 i 1 1 1 0.05 1 1 1 ]
2 4 6 8 10 12 246R81012 2 4 6 8 10 12

FIG. 2. Scaling of longitudinal energye() summed over the spatial lattice for paths withy,, E,, andAj, symmetries.
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0.20 T 0.6 T T

G—Op=24T=3 02 o 5 B=2.4T=3
@—Op=24T=4 @ 2.4 T=4
& 9p-25T-3 *—@p-25T-4
O—@p-25T=4 *—8p-25T-5
0.05 1 1 1 1 0.1 1 1 1 L 0'1 1 1 1 1
2 4 6 8 10 12 246R81012 2 4 6 8 10 12

FIG. 3. Scaling of transverse energg) summed over the spatial lattice for paths Wik, E,, andAig symmetries.

for the A4 state. The data for the gluonic excitations areinteger lattice spacingé.e., averaging over neighbouring
consistent with this estimate. Fd¥,4 the curves cross at values ofr, B, instead of€, ,By) to get a better determina-

R=6 and at higheR’s the 8=2.4 curve lies higher. tion of the self-energy peak. In this case these peaks are
In Fig. 3, for the transverse energy, only tAg, state expected to diverge ag’/a? in physical units.
shows a slope that is slightly nonzero, with both Eyeand Figure 4 shows for thé 4 state that, within error bars, all

A}, cases having slopes consistent with zero. However, therdree field combination&ction,E, , andE;) scale well near
is a distinct self-energy effect withE,~0.04(1) for the the center of the flux tubeR =0). However, near the
Ay, state, again consistent with the gluonic excitations. Sincgluarks(R_~6 in this casgthe §=2.4 and 2.5 curves differ
it is the presence of nonzero slopes that is relevant for exconsiderably. This is mainly the effect of the self-energies
tracting the function, Figs. 2 and 3 already indicate that being seen. These data nddr=6 shows some interesting
problems will arise when attempting to utilize tBg r data.  features.
(a) Except for theB=2.4 action, all the data exhibit a
B. Transverse sums distinct peak neaR, =6 and theASy,AE, extracted from

Figs. 1-3 are qualitatively consistent with the correspondin
The self-energy differences in the above spatial sums can g a y P g

be seen much more clearly in the transverse sums shown in

Figs. 4—-6, where the longitudinal dependence of the surr 6o B=2.4 Action
overR, is presented for paths with, 4, E,, andAig sym- 5—a B=2.4 E x10
metries and interquark separatiB=8,12 atg=2.4,2.5, re- 08 1 : e p=24Ex10 7

—e [=2.5 Action
—a §=2.5E, x10
+—+ p=25Ex10

spectively. In these figure®, =0 corresponds to the mid-
point of the interquark separation, whileR =R/2
corresponds to the position of the static quark sourcesRThe
values were chosen to correspond to approximately the sam
physical distance at these two couplings, namely, 0.946(4)
and 1.007(5) fm. The plotted data are take &t3, where
we have a good signal-to-noise ratio. Unfortunately, this
means that the excited-state contamination is relevant a
T=1,2, whereh is largest, as can be seen from Table II.
Furthermore, we are also using the largB&, where the
excited-state contamination becomes quite significant espe 0.0
cially for the E, andAig cases. : : : : w
These transverse sums do not, strictly speaking, have 0 2 4 R6 8 10 12
continuum limit. However, in string models the transverse L
sums near the center of long strings should be independent of £~ 4 Dependence on longitudinal positioR, ) of the sum

R so that, to the extent that string models are applicable anger the transverse plane of the color flux contributions correspond-
f[hatR IS suff|C|e_ntIy large, _scallng WO_U|d be expect_ed. Th'_sing to the action, longitudinalH ), and transverse energ¥<{)

is the assumption made in presenting the data in earlie§um rules of Eqs(4.1)—(4.9. HereR, is measured from the mid-
works [10]. In the figures, the basi@=2.5 data are com- point for separatiorR=28,12 at3=2.4,2.5, respectively. The data
pared with the basigd=2.4 data, which have been multi- are in units ofa(2.5) for the symmetric ground statd,, represen-
plied by 2.4/2.%2. The longitudinal energy is plotted at half- tation) at T=3.

-

}J.AI

0.1

1g SUMover r
o

A

| gl
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0.4 : : ' : ‘ butions(each with~10% error$ from only threevalues of
&—=o6 B=2.4 Action . .
58 B=2.4 E,x10 R, . Therefore, when the volume integrals from different val-
oo p=24Ex10 ues ofR are subtracted, it will be hard to get a meaningful
03 r ¢ p=25 Action | signal for theR dependence of interest.
—a =25 E x10 . oo
Ny ——+B=25EXI0 In principle, the self-energy contribution can stretch out to
o the midpoint between the two quarks. According to our data,
> for the largest interquark separations as shown here, any such
= contribution seems negligible. This is seen by looking at the
S data neaR ~10-12, which should be dominated by any
"’D self-energy tail. However, for the small®’s the transverse
L sums at the midpoint can well have significant self-energy
contributions, which is seen in later in Sec. IV C when these
data are used to determigefunctions.
(c) The trend is that, for the action, the peak is about a 5%

effect compared to the plateau contribution fr&n=0,...,6,

for E, the peak is about 50% of the plateau contribution, and
for E the peak completely dominates. Therefore, it should
FIG. 5. Same as in Fig. 4, but for the first gluonic excitatisy € €xpected that any predictions that depend on canceling the

representation For each data set one error bar is shown: others aré€lf-energies are most reliable for the action and least for
similar. Er

In Fig. 5 the corresponding transverse sums are shown for

values estimated from the areas under these peaks. We cHi¢ Eu State. The most notable features are the following.
estimate the self-energy peak height by subtracting the value (& The action andg_ both scale within error bars for
atR, =0 from the value aR| ~ 6. For the action sums at 2.4 R.~0.
we cannot see any self-energy peak, whileBprthe ratio of (b) As expected, the8=2.4 data show, folR ~0, an
self-energy peak heights @=2.4 and 2.5 is 0.59. FOE; enhancement oE; over its A4 counterpart, whereas t_he
the peak height ratio is somewhat lower at 0.49; this will beaction ande, are comparable to th&;, data. However, this
discussed below. enhancement it is not seen foB= 2.5, but this could be
(b) The transverse enerdy; is completely dominated by due to the relatively large errors for this case.
the self-energy with the latter being at least an order of mag- (€) Again the action foi3= 2.4 does not exhibit a distinct
nitude larger than the non-self-energy terms, which are exPeak neaR =6. Instead it simply shows a monotonic in-
pected to be essentially independeniRpfbetween the two ~ Crease a®, goes from 0 to 6. The ratio of self-energy peak
quarks. This immediately explains the small slope ofahg ~ heights is 0.61,0.59 for the action a&gl, respectively, the
curve in Fig. 3. It also shows that any volume integral of thelatter being the same as in thgy case. FoiEy the ratio is
self-energy contribution cannot be accurately evaluated oR-46, lower than forE, by an amount similar to that ob-
the present lattice since, in th®=2.5 case, th&® =6 con-  served forA,q.
tribution is an order of magnitude larger than those from (d) Compared wittS andE, , Et has a self-energy that is
R_=5,7 i.e., the whole volume integral is given by contri- comparable to or larger than the plateau contribution from

RLZO,...,6.
0.4 . . . . : In Fig. 6 the data for theAj, state is shown with the
©——0 p=2.4 Action following features.
50 p=24 Ex10 (@) The action ancE; are approximately scaling within

o—o =2.5 Action

"~ wp=25EXI0 the rather large error bars. However, fr (not shown it is

,_0-3 i | not possible to make this claim since the error bars are too
= large.
0>J (b) The E; data, unlike that in th&, case, now exhibit
O 45 i some enhancement, compared to thg, state, forboth
£ B=2.4 and 2.5. For example, gB=2.4 and R =0,
8 Et(A;)~0.011), Eq(E,)~0.041), and Et(Aj,)

= ~0.095). Even so, the plateau terms are still, at most, only
< 01 ! ] comparable to the self-energies. Therefore, as forAQg

and E, cases, those predictions that require a delicate can-
cellation of the self-energies are possibly not reliable.
We observed faster divergence of the transverse compo-
nent of the self-energy than the longitudinal one for the
RL Aqq.E, states in Figs. 4 and 5. As the self-energies should be
isotropic, the difference in the peak height ratios at the two
FIG. 6. Same as in Fig. 4, but for the second gluonic excitation8's is worth exploring further.
(A1, representation For each data set one error bar is shown; oth- This difference is caused by the different discretization of
ers are similar. longitudinal and transverse plaquettes. The electric field is

0.0
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dominant, soEt is mainly composed of plaquettes lying in 0.006
the transverse plane, whereas is mainly a planar sum of 0.0044
plaquettes with a perpendicular orientation. A simple way to
investigate their diverging behavior is to consider a scalar
field p=e °I'l with b~10/fm and the integrals over it
analogous to our sums. Thaormalized integral over the
transverse two-dimensional plane, where the source lies, it
found to change faster when the lattice spacing is varied thanz
the integral over a three-dimensional “slice” of width,
analogous toE, . For our a(2.4) and a(2.5) the ratio
[pland2.4)/pland2.5)]/[slice2.4)/slice(2.5)]~0.8 (also for
=e"I") which agrees with the corresponding ratio ob-
served for theEr andE, for paths withA,4 andE, symme-
tries. The lower-peak-height ratios f&r and the high>E+
peaks observed in Figs. 4—6 are also due to this effect.
The diverging of the transverse sums over color sources is
quite consistent with the expectation from leading order per- FiG. 7. Color flux contributions corresponding to the actiG, (
turbation theory;[2.5a(2.5)]/[2.4a(2.4)*]=0.52(1) is in  ongitudinal €,), and transverse energf{) sum rules of Egs.
the middle of the values observed. This suggests that th@.1)—(4.3) for the static quark potential. These are shown in units
peaks are dominated by lattice self-energy effeBis.di-  of a(2.5) versus transverse distariRe at the midpoint R, =R/2)
verges slower than the perturbative expectation, as expecteidy separatiorR=8,12 atg=2.4,2.5. The data are for the symmet-
because of the transverse extent of the dominant electridc ground statdA, 4 representation
field. On the other hand, foE; we would expectg?/a?
behavior, while the observed peak height ratios diverger 3 instead olR;=0 as for theA;; symmetry because the

=
%)

2E,(r,)

slightly faster than this. distributions peak at these values. This effect has not been
mentioned in earlier workg10,11].
C. Transverse profiles Assuming some function describing the continuum den-

In Figs. 1-6 the scaling properties of the three_sity, we could apply a discretization procedure, e.g., simply

dimensionak3D) volume and, assuming the flux tubes have@veraging over cubes of volune®, that simulates the flat-

stringlike features, of the 2D transverse integrals are demor{€NNg of the peqks In our f|n|ta-5|mglat|ons. The Iatt|C|zeq
continuum function could then be fitted to measured points.

strated, with some combinations of the color fields being&Nh thi q ) lied at both simulated val f
more successful than others in satisfying this property. It is €n this procedure Is applied at both simulated values o

therefore of interest to proceed finally to the “scaling’ prop- the lattice spacing, we would get two corrected parametriza-

erties of the individual flux-tube profiles. The transverse delions. If these two agree, this then would suggest that this

pendence of the actionSf and longitudinal and transverse trapsverse distribution would apply in. the continuum limit.
energies E, 1), measured at the midpoifR =0 in our This would be the way to compare with continuum models
L, T/ L™

convention with the separation®=8,12 at3=2.4,2.5, re- of the flux _tube. Previously, we have found qualitative agree-
spectively, is presented in Figs. 7—9. The correlations show ent[l]f_;/wth the dual QCD model of Ref$12, 13 for the
were measured dt=3 for the Wilson loop. As we are again l?np':ﬁel eSr.esent case, it appears at first sight that the onl
using a smalll and largeR, excited-state contamination is cases wh%re the resuits foprpthe &S are c%nsistent are y
significant in theE, andA,, cases. Here th=2.4 data are

compared with thg8=2.5 data by multiplying the former by

2.412. 9%, ' ' o oB-24E,
Aside from any intrinsic nonscaling arising from the dif- ~_ 0002 ¢ S—*B-25E,

ferent scale of the plaquette used to probe the flux distribu- & m

tions, we should also be aware that effects can arise from thi

discretization versuB of the distribution and possibly from 0.000F : ! + 1

self-energy effects. We have found earlier that the self- 00004

energy effects are negligible at the midpoif & 0) in the 2 00000E - -

integrated distributions. We here assume that this applies t™ =+ o

the differential distributions so this contribution can be ne-  o.0000 - . ‘ .

glected. The effect of the discretization Ry is that a 0.0004 ' ' '

sharply peaked distribution will be suppressed at coarser lat. 000022:

tice spacing. There is some sign of this latter effect in ourg i

data: The smaller plaguette @=2.5 should increase the 0.0000 |

observed height of peaKsuch as the center of the flux tube 5 5 : . s

Ry=0 in the A,y casg, whereas at the smoother regions RT

(away from the center in th&;, case the shapes at the two
B's should be more similar to each other. This is indeed FIG. 8. Same as Fig. 7, but for the first gluonic excitati@
observed; in thé&,, case, the largest differences ardat=2 representation
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FIG. 9. Same as Fig. 7, but for the second gluonic excitation
(Aig representation FIG. 10. Same as Fig. 9, but with longitudinal and transverse
components of the action presented separately and for interquark
S(Alg) and EL(Alg), whereas in the 2D sums of Figs. 4—6 separatiorR=4,6 at3=2.4,2.5, respectively.
other cases, such asS(E,),E (E,) and even _
S(A1g) Er(Al,), seem to show reasonable scaling. The posbe added that the Isgur-Paton model, which suggests such

sible reasons for this are twofold. dips, is less applicable for these smaller valuefRof
(i) Figures 7-9 only show the profile in a single direction,

along a lattice axis, whereas Figs. 4—6 are an average over IV. DETERMINATION OF B FUNCTIONS

all directions in a plane. In particular, this could have an FROM SUM RULES

effect on small values dRy, where rotational invariance is
most violated.

(ii) The curves depicted in Figs. 7—9 must be multiplied
by a phase space factorrR;dR; when their contributions
to any 2D sum rule are estimated. Therefore, the values ne

After presenting the results from our simulations in the
previous two sections we are now ready to embark on the
extraction of the lattice8 functions using these data. This
will be done in three ways, which have different sources of
. : ) %E/stematic and statistical errors. Method 1 in Sec. IV Ais the
Rr~0 get drastically reduced and, in thgq andA,, cases, o straightforward, while method 2 in Sec. IV B attempts
itis this region ofRy that is varying the most witl. =~ 4 gliminate systematic errors from a discrete derivative. The

An interesting feature in thé,, profiles is a local mini- it of large quark separation to be studied in Sec. IV C is
mum (a dip) outside the center of the tube as predicted by thgonnected with string models. Finally, a brief review of the
N=1 Isgur-Paton modd14] for the energy density. In Fig. pest estimates g8 functions in SU2) lattice gauge theory is
9 the action can be seen to have a plateau €R3<5 given in Sec. IV D.
unlike in theA4 case. FOE, no evidence of a dip is found, ~ |n Ref.[5], by imposing the condition on the interquark
whereas folEy the data with3=2.4 hint at a minimum for  potential vV that 9V(R)/da|g=0, the following three sum
Rr~3 with the 4<R;<7 values being above zero unlike ryles were derived relatiny to spatial sums of the electric

the A,4 case, which is consistent with zero fag=4. and magnetic color:

A better statistical accuracy is achieved in the transverse
profiles of flux tubes with interquark separati®+4,6 at -1 Vv B
B=2.4,2.5, respectively, corresponding to interquark dis- T V+R IR +5=2'S

tances of 0.47(%) and 0.5087) fm. These are shown in Fig.
10 with the longitudinal and transverse components of the
action plotted separately. There is now a clear dip in the
transverse action profile, again Rt~ 3, with a correspond-

=— >, (E,+2&+2Br+By),

ing maximum atR;~5. A similar dip and maximum are @
seen in the longitudinal action At=2.5, whereas thg=2.4 1 N
data have a plateau atsR;<6. As in Fig. 9, no evidence — (V+R — +E0=2 E,_=2 (=& +B),
for a dip is found forg, , whereas th&; data show a clear 4Bt IR
: ; Lo T . 4.2
dip at 8= 2.5 with a minimum aR=4. At B=2.4 there is
no minimum, but the decay as a function®f is slow, the 1 N
value atR=~6 being an order of magnitude higher than in m (V—R R +E0=E ET=2 (= &+ By).
the correspondingd,4 case. However, again it should be 4.3

emphasized that Table Il indicates for thg, state consid-
erable contamination from neighboring states. Therefore, anidere the generalizeg functions are defined considering an
nodal structure possibly present in a pukg, state could asymmetric lattice as in Reff15]. In the notation of Ref5],
well be smoothed out by interference effects. Also, it shouldhey areb=98/9 Ina=2(S+U) and f=(U - S)/283. In Eqs.
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(4.)-(4.3), Sy andEg are the self-action and -energy asso- 3.0 '
ciated with the quarks and are therefore independerR.of Op=24T=3
The same self-enerdy, is expected for both orientatioris 0 B=2.4 T=4

andT) of the color electric field. 25 1 OPB=24T=5 7 ]
The three-loop perturbative expression foin terms of & * p=24T=6 /ji"
a=g¥4r=1Unp  is  b=-037151(1+0.49193% & ity el
—0.979%%+---). On the other hand, fof we have +.20[ p351=s sl 1
f=1-0.456ra—0.25rab+--- , where we can insert the M * p=2.5T=6 /,'%"
expression fob giving f=1—-1.1408+--- . 1. ,,;,:','/
The aim is to now extract estimates bfand f in the ﬁ 15y ,;,’z,’/ B -2 ’
nonperturbative situation encountered in practice. This will + w o
be carried out in various ways, each of which has its own(d ol o ij',"' |
advantages and disadvantages. However, their common feg ,g 2%
ture is that, on the left-hand side of each sum rule, the po- Wl ‘3/
tential V is measured on the lattice using Wilson loops 05 | ¥ + i

.0 1.2

W(R,T) and, on the right-hand side as discussed in the in- ' 04 05 0‘8 ]
troduction, the color field§ andB at a pointr are measured ' ‘ V+R-8V/8R
using Eq.(1.1) involving the same loops. Unfortunately, this
strategy is complicated by two features in EGs1D)—(4.3). FIG. 11. Data corresponding to E@.1) with best linear fits.
First, the self-energies are unknown and so their effect must
be removed by considering differences between the equance in their self-energies. The strategy of fitting the data
tions for different values oR, or for different gluonic states with a straight line is effectively taking differences of Eq.
Ayg,Ey,... with the sameR, a possibility not considered (4.1) evaluated for different values @& and so avoids the
here. Second, each equation contaivgdR. Even though need to knows, explicitly.
the potentialV itself can be readily determined as a by- In principle, the functiorf can be extracted from either of
product of theg,B measurement on a lattice, the determina-the two sum rules in Eq$4.2) and(4.3). However, as shown
tion of 9V/4R introduces some uncertainty. All of the esti- in the fourth and sixth columns of Table I, these predictions
mates in this section are made using g ground state, exhibit much more variation and have much greater errors
where we have the best signal. The other gluonic states hawban those fob. The main reason for this is due to the larger
such large errors that sensible valuesbof cannot be ex- variation of the sums of thdifferencesof electric and mag-
tracted. netic fields. In particular, the values df(l) at B=2.4,
T=5,6 andB=2.5, T=4,5,6 are essentially undetermined.
The self-energieg are not consistent with zero fdé(l1)
at B=2.5 as they are forf(1,11) at 8=2.4 andf(ll) at
The most direct approach is to measdrandB over all  3=25. AsE, is the difference ofi) V,/43f coming from
space and to then perform the spatial sum giving the rightthe two-body potentials in E¢2.1) and (i) the self-energy
hand side of Eqs(4.1)—(4.3). In practice, “spatial sum” in E_,E; for f(l,11), respectively, we can see that these two
means a sum over a lattice that has a linear size twice that @ancel for all cases exceil) at 3=2.5. As the self-
the maximunmR considered, i.e., fof=2.4(2.5 up toR=8  energies should be isotropic, this is probably caused by in-
(12) on lattices with spatial size ?Lq243). With V known accuracies in determining E, .
numerically from Eq.(2.1), the derivative can also be esti-  This inaccuracy in determininfjcan be greatly reduced if
mated. The functiorb is then obtained using Eq4.1) by  the sum rules in Eqs(4.2) and (4.3) are fit together. At
plotting (& +2&+B.+2B81) vs V(R)+R[dV(R)/JR]  p=2.4,2.5 data for the former sum rule are takef at3,4
and performing a linear fit, as shown in Fig. 11. TRe1  and T=3, respectively, while for the latter the data can be
points were not included in the fits due to the artifacts theytaken at anyT from 3 to 6. The functiorf obtained in this
contain, while theR=12 point at3=2.5 was excluded be- manner is presented in Fig. 12 and Table IV and can be seen
cause of its significant excited-state contaminatgee Table to lead to a much more accurate estimatefofOur best
I1). There are four sets of data for egghcorresponding to  estimates are 0.65) and 0.681) at 3=2.4,2.5, respectively.
the correlation of the sum over electric and magnetic fieldsso the values of self-energy are now more stable at
taken at time intervalsi=3,...,6. Thef=2.4 data were [ ~0.01(1), anumber that is about two orders of magni-
scaled by multiplying with 2.4/2/5to have the same units as tude smaller than the self-actioSs.
the 8=2.5 plots. The results of the fit in Fig. 11 can be read |n the above, the parameter has been extracted and
from the second column of Table III. found to be 1.41@1.3). This then suggests as a direct estimate

For 8=2.4 the functiorb has reached a plateau®t5,  of b, averaged over thg range of 2.4—2.5, the value
giving a best estimate of 0.312(15), whereas fg8=2.5 a

plateau has been reached onlyTat 6 with —0.323(9) be- Ap 25-24
in i i b= =- =-0.2908).
g our best estimate. The self-energy estim&gsare also A In[a] In[a(2.5)]—In[a(2.4)]
seen to reach plateaus at1.2(1) and —1.5(1) for
B=2.4,2.5, respectively. Even though this is admittedly a very crude estimate, it
Even though thg8=2.4 and 2.5 lines in Fig. 11 are al- should represent the average valudaiver this range of.
most parallel as in Fig. 1, they are separated by the differHowever, it appears to be slightly smaller in magnitude than

A. Method 1: Fitting the sum rules
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TABLE lll. Estimates forb andf at 3=2.4, 2.5 at differenT values.

8 T b S f (1) E, f (1) E,

2.4 3 —0.357(3) —1.04(2) 0.683) 0.0044) 0.635) 0.0053)
4 —0.336(5) —~1.11(3) 0.716) 0.01Q7) 0.74100  0.0074)
5 —-0.312(15)  —1.24(10) 1.61.3) 0.062) 0.8428  0.011)
6 -0.317(21)  —1.21(14) 4.57.0) 0.094) 1.48) 0.022)

2.5 3 —0.389(4) -1.17(2) 0.897) 0.0337) 0.593) 0.0023)
4 —0.354(5) -1.32(3) 1.4123)  0.05910)  0.645) 0.0035)
5 —0.333(7) —1.44(4) 1.4938)  0.06316)  0.7511)  0.0118)
6 —0.323(9) —1.49(7) 11) 0.103) 0.7416)  0.00912)

the average of the above estimate$.312(15) atB(2.4)
and —0.323(9) atB(2.5). The origin of this two-sigma dif-

ference is not clear.

B. Method 2: Combining the sum rules

As shown in Ref.[6], one way to avoid estimating
IV(R)/ IR andSy, E is to explicitly eliminate them by writ-
ing down Eqgs.(4.1)—(4.3 for two different values oR. In

this way
Z(ET)Rl_E(ET)Rz o
2[V(R;)—V(Ry)]| 1+ S(EDr —2(EDR
b= 1 —

Sk, —SSq,
(4.4
(o V(R1) —V(Rp)
2B[Z(Er)r,~ 2(Er)r, T Z(E)R, ~ Z(ER,]
(4.9

on the differences E(EL)Rl—E(EL)Rz and E(ET)Rl
—E(ET)R2 from Egs.(4.2) and(4.3) and, as seen above, the

values of these differences are less accurate than
2SR, 7 2SR, The outcome of this strategy is given in Fig.

13. There it is seen that th 2.4) results are consistent with
those given by method 1, but have much larger error bars.
However, theb(2.5) results are essentially inconsistent with
method 1. A similar problem arises with the values dfom
Eqg. (4.5. Again f(2.4) is consistent with the earlier esti-
mates of method 1 in Ref6], but with much larger error
bars. For example, with R;,R,=2,6 we get
f(T=4,5)=0.647),0.64(15). However, compared to
method 1,f(2.5) is too large, rising te=0.9(2) atT~4,5. It
should be added that this is not a problem of the measure-
ments being poorly distributed, since plotting the bootstrap
values ofb shows that the errors are not underestimates due
to asymmetric non-Gaussian bootstrap distributions.

This difference between the two estimatevdbr 3=2.5
but not 2.4 is caused by the inaccurate determination of the

At first sight this appears to be what is needed, expressior§ngitudinal energy sum&(E )g,—2(E\)g, in Eq. (4.4).
that involve quantities that can be measured directly. HowAs can be seen in Fig. 2, for tReE, curves at3=2.5 the
ever, in practice, there is a problemb becomes dependent slope is rather erratic and indicates a much smaller value

. .B=.2'4. 0.20 : B=.2'5 :
OT=3
OT=4
OT=5
0.15 |
0.10 |
0.05 |
T S 0.00 : ' -
01 03 05 07 09 1.1 04 06 _ 08 10
V+R.-0V/9R ViR-dV/0R

FIG. 12. Determination of (1 +11) by combining two sum rules.
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TABLE IV. Combined fits off at §=2.4,2.5 at differentT
values. The firsfT value refers to the data used for E¢.2), the
other to the data used for E(.3).

Why does this not happen gt=2.4? From Figs. 2 and 3
we can see that thEE_ slope is larger and thEE; slope
slightly smaller than ai3=2.5. This is again reflected in
Table 1lI, wheref (1) again gets larger with increasifig but

B T f(I+11) Eo not as much as fo8=2.5 and with larger errors making the
24 3.3 0.6477) 0.0061) estimates consistent with a realistic value. At the same time,
34 0.6168) 0.000810) unlike for ,8:_2.5, f(I.I) also inpreases. This fortuitogsly
35 0.62717) 0.0033) leads to a realistic ratio of'the d|ﬁgrences of the sums in Eq.
36 0.61218) 0.0134) (4.4) and a value ob consistent with method 1.
4,3 0.70%13) 0.0091) o
4.4 0.67113) 0.0041) C. Method 3: The largeR limit
45 0.68423) 0.040Q5) In the above, the derivatives & are calculated numeri-
4,6 0.65927) 0.0306) cally from the lattice form of the interquark potential in Eq.
(2.1). However, for sufficiently largeR(R=2), the con-
2:5 ;f g:ggg ggégig tinuum form _ofV_(i.e., with [1_/R]L r_e_placed vyith R)is a
’ ' ' good approximation. When, in addition to this, the effect of
3.5 0.68216) 0.0082) the self-energies is removed by evaluating the sum rules at
3.6 0.68821) 0.0093) two values ofR, Egs.(4.1)—(4.3) reduce to
than atB=2.4. This is also reflected in Table Ill, where the b= M (4.6
f(1) value obtained using thBE, values is already af=3 ISR, 7%,
unrealistically high forB8= 2.5, getting worse with increasing
T. This means that thé(EL)Rl—E(EL)R2 are underesti- f(1)= bs(Ri—Rp) @.7

mated. ForS E; the situation is more consistent, which can  2B[(EL)r,— =(Ep)R,]’
be seen in the larger slope in Fig. 3 and the reasonable be-

havior for the f(Il) in Table Il at B=2.5. Thus —e(1/R;—1/Ry)

Z(EL)r,~ Z(EL)R, is too small and=(E+)r, — Z(E7)R, re-
alistic, leading to underestimates b{2.5) using Eq.(4.4)
and an overestimate df(2.5) from Eq.(4.5. The signal
being worse folE; thanEy is somewhat surprising since itis in agreement with the fits in Table Il fdR;,R,=2,...,12.

E;+ where the self-energy completely dominates. ThereforelHowever, this is not surprising since there the results are an
one would have expected it to be harder to get a signdtfor
because it requires a more delicate cancellation of the selan be considered as an average using simply two values of

f(ll)= (4.9

2B[(Eng,— 2(Enr,]”

As seen in Fig. 1é) for 8=2.5, Eq.(4.6) gives estimates

average over a range & values, whereas Eq#§4.6)—(4.8)

energy. R. A similar situation holds foB=2.4.
o—¢R=2,3 >—0R=2,3
LA R=2,4 A--AR=2,4
E——a R=2,6 -0 R=2,6
@—@® Method 1 GC—6OR=3,6
—@ Method 1
0.4 T .
QO
03 T 1
0.2 1 1 1 i

(a)

FIG. 13. Estimates db from Eqg. (4.4) for (a) =2.4 and(b) 8=2.5.
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no appr. €=0.5
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@—@ Method 1
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(a) T

FIG. 14. Estimates db at 8= 2.5 using(a) the continuum form o¥(R) [Eq. (4.6)] and, additionally(b) a constant longitudinal profile
approximation for the flux tube wite=0.5[Eq. (4.9)].

Of more interest is the large-limit, where it is expected ation will only improve asR; , increases. In principle, this
from string models that both the action and energy flux tubesnethod has two advantages over the earlier ways of extract-
should have a form that is essentially constant forRgllin -~ ing b andf.
the range—- R/2< R, <R/2 with R-independent self-action or (i) It avoids the need for any delicate numerical cancella-
-energy terms concentratedRt~ *+ R/2. As can be seen in tions of self-energies since they are assumed to have can-
Fig. 4, the sums over the transverse plane in the middle ofeled exactly in the\’s.
the quarks agree @=2.4 and 2.5, supporting the accuracy (ii) Only the single two-dimensional sum over tRe=0
of our estimates in this region. Therefore, the action differ-plane is necessary. This avoids the full three-dimensional
ence in Eq(4.6), AES=(ESR1—ESR2), should be well ap- sum of Eqgs.(4.1)—(4.3). This estimate can be further im-
proximated byA=S=[R;Sg (R, =0)—R,Sg (R.=0)] and proved by averaging the two-dimensional integrals over the
similarly for ASE, andASE; in Egs.(4.7) and (4.8). smallest val_ues qRL. However_, in practice this would not

In practice, sinceR; , are not very large, it is probably Iead_ _to savings in cqmputer time sSince averaging over all
more realistic to include a correction for the “overshoot” of positions and o_nentat|ons pf the W|Iso.n loops W.OUId' In-any

. case, mean using all possible planes in the lattice.

the plateau term &R ~*=R/2, i.e., : . .

It has one disadvantage, however, in that it assumes a
stringlike longitudinal dependence of the color flux distribu-

A S—AY S =[Ry(eff)Sg (R.=0) tion.
For largeR one would expect that the string tension is
—Rz(eff)SRz(R,_=0)], (4.9 given by the longitudinal energy density in the transverse
plane at the midpoint:

whereR;(eff)=R +2e. Heree is the overshoot at each end of
the plateau. From Figs. 4—6 it is seen thatust be approxi-
mately one-half of a lattice spacing.

The results ag=2.5 with e=0.5 are shown in Fig. 18).
The values otb approach those given by method 1Rs,
increases, agreeing whe®, ,=6,12. The disagreement at
the smallelR’s is mainly due to significant self-energy con-
tributions at the midpoint, which do not cancel as they vary _ )
with R. The good results froR=6 thus show that the self- D. Comparison with other approaches
energy contributions at the midpoint are negligible at these There are two main ways to extrg8tfunctions in lattice
interquark separations. The same approximation can be usegduge theories. First, one can measure observables at differ-
in the spatial sums of method 1. Wi~ 2,3 excluded from ent values of some parametsuch as a coupling or a quark
the fit of Eq.(4.1) we getb=—0.35(4) atfT=6 andB=2.5. mas$ and then try to estimate the response of the observable

The extracted value db is only weakly dependent oa  to a change in that parameter. This can be carried out using
even for the rather small values Bf , used here. This situ- either finite differences or an interpolating function. Both of

bS: ZBfEL(RL: O)

Taking the values oE (R =0) from Fig. 4 and using our
best estimates of f gives bg(2.4)=483(15),
Vbg(2.5)=477(24) MeV. These are close to the values
given by fits to experimental spectra.
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TABLE V. Comparison between values b&dB/d In a.

B Our estimate Ref.7] Ref.[8] Ref.[11] Three-loop PT
2.4 —0.312(15) —0.3018 —0.305(6) —0.330(4) —0.3893
25 -0.323(9) -0.3115 -0.312(2) —0.340(4) —0.3889

these introduce a systematic error either from the use of b agree with each other, except for the one from Ret],
finite interval or from the choice of the interpolating func- which has a significant systematic error. Averaging the three
tion. In the second method, one can use the fact that respongensistent estimates givesb(2.4)=—0.306(6) and
functions are related to correlation functions via lattice Sump(2.5)= —0.31§4), which are 78% and 81%, respectively,
rules. This method has less systematic errors, but often leag the three-loop predictions. Fdrour estimates are not far
to large statistical errors because the observables involvgom those in Ref[7], with ratios of the nonperturbative and

delicate cancellations. _ perturbative estimates similar to those for
In the case of S{2) gauge theory, the first method has

been used recently in Reff7], whereb was estimated by
measuring the critical temperature at six values of the cou-
pling and using an exponential ansatz or a spline interpola- |n this paper the spatial distribution and nature of the
tion for the g dependence od. In the same work, nonper- electric and magnetic color fields between two quarks are
turbative derivatives of couplings in the time and spacemeasured fos=2.4 and 2.5. We discuss carefully the the-
directions with respect to the asymmetry facHras/a;  oretical expectations for scaling versgsof these distribu-
were estimated frorb and measurement of the free energy.tjons and compare with our results. For the observables with
In Ref.[11] lattice spacings were determined from the string, \yell-controlled continuum limitthree-dimensional sums
tension at seven couplings in the range<2/8<2.85 and  gpjing is investigated and found to be good in most cases of
fitted with an ansatz of a linea dependence oA ,. The interest. For more differential observablgsansverse sums
fhd profile$ the changes seen between the two valueg of

from _the use of a Imea_r approxmatlon. In_ RE] the Ifatuce can be explained qualitatively from the discretization: The
spacing was determined at six couplings ranging from

2.3< =255 through Sommer's equaticnSF(ro)=c dis- plateaus stay the same, while the peaks get higher for smaller

cussed after Eq2.1). Fitting of the three-loop relationship \all.erSgIfi-ner;errgfsr,];ssrgea:tr:g Ey It;z?j?xe_rgredep:angril liLnaStloil
betweena and B, with extra terms and systematic errors 9 99 Y g b

estimated using different values ofand forms of the fitted ::giosrg’o\;vlttr?etroen dilt\(J ?jri?](;rll(;itxltngf ft?]sgerlén utggecsasrfeg(sal;rin
function lead to results consistent with RET]. 9 plaq 9

The sum rule method was explored in RET6], where the dominant electric field. By comparing various combina-

X . tions of the spatial sums of th&5 fields with the interquark

dV(R)/ 9B was fitted from the time dependence of Ef).1 . ;
anc(zlb)thelf; extracted through a secondpfitpN(R)/&ﬁ 555]3 R? potenthl V(R)i&V.(R)/‘?R’ estimates can be made of the
Optimistically also potentials @&&=1 were included in the geqigézzﬁf?xgtlorjaeﬂg ft,hzie Ee(\l/?e(:t.lt)r:e(éld?réct use of
fits. As this was only a feasibility study, the estimate of : P . P S
b= —0.25(2) atB=2.5 should be considered as preliminary these equat|on§. First, since the whole 'calculatlon is per-
A direc;t formula forb Eq. (4.4), involving differences of "“formed on a latticeV(R) is only known at discrete values qf
two-body potentials at two values Bf and their action sums R, SIO that the Valuf\? QfV(R)/aE cannqtlbe meahsured d:f
was derived in Ref[6]. An average over pairs d® values re(;t y. Second, bot (tng ?nd ¢ .IEE spatial sums a\/_g tshe §

. a o action or -energy contributions. To minimize or avoid these
gave the estimatd=—0.35(2) atB=2.4. The values at

someR pairs were outside this estimate and doubts about th roblems the extraction db and f can be carried out in
P . . . ifferent ways, each of which has its own advantages and
convergence ifT remained, as the correlations were calcu-

lated onl T =4 for laraerR’ disadvantages concerning statistical and systematic errors.
a?ratg)ley\ypcoollegts t%e an?oest rséliable estimates Iof at The most direct approach, method 1 of Sec. IV A, is to

) : arametrizeV(R) so thatdV(R)/JR can be readily calcu-
B=2.4 and 2.5, whereas the available estimated @fre b (R) (R) y

shown in Table VI. Here it should be noted that an effectivelated' This overcomes th#/(R)/JR problem at the expense

coupling larger than the bare coupling moves the perturba(-)]c some systematic error introduced by the form of param-

tive estimates off closer to the nonperturbative values etrization of V(R) used. By plotting, as a function d,
. P i " V(R) = 0V(R)/JR versus the various spatial sums, the slopes
whereas the opposite happens lforA perturbative evalua-

. . ; . : ive immediately b and f. This resulted in b(2.4)
tion of b is thus unreliable. The nonperturbative estimates o& —0.312(15) and(2.5)= —0.3239). However, the value

of f was much more uncertain when the two sum rules, one
involving 2E, and the othelXE;, were used separately.
When these two sum rules were fitted simultaneously, a bet-

V. CONCLUSIONS

TABLE VI. Comparison between values 6&(U—S)/(28).

A Our estimate Ret.7] il ter result emergedf(2.4)=0.65(1) andf(2.5)=0.691).
2.4 0.651) 0.72 0.85 Already at this stage, it could be seen that the data causing
2.5 0.681) 0.74 0.86 most of these uncertainties are those involving the longitudi-

nal energy=E, especially for3=2.5.
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One way to avoid thedV(R)/9dR and self-action and importantly the finite-temperature approach of R@f]. It
-energy problems is to combine the original three sum ruleshus seems safe to conclude that ordéreffects in the ex-
in such a way as to eliminate the problems; see E4<) traction of theg function are small at thg8 values studied
and (4.5 for method 2. However, in spite of the ideal form ysing the methods described. Thus we have a unique nonper-
of these equations they result in poor estimates of bahd  turbative 8 function that describes the deviations from
f. For p=2.4,b andf agree with method 1, but with large asymptotic scaling at these values of the coupling.
statistical errors; see Fig. (3. But_ for,8=2.5_the values of For the state Withig symmetry, our data show the exis-
b tend to be too low and of too high, both with large eror  once of a dip in the action and transverse energy distribu-
bars. These differences can be directly attributed to the inag;yng away from the center of the flux tube in the transverse
curacy of the data foEE, . _ plane between the quarks. This qualitatively confirms the
The third method for extracting andf exploits the form e giction of the Isgur-Paton flux-tube model for the energy
expected ofV(R) and the flux-tube profiles in the limit gistripution. No such node is seen for the longitudinal en-
R—ce from string models. When a continuum parametriza-grgy. and for the action it is more pronounced in the trans-
tion of V(R) is used and twdR values are subtracted, the \grge component.
sum rules reduce to those in E¢4.6-(4.8) and these yield In the future we plan to study four-body flux distributions
results consistent with those of method 1, but with largerang their relationship to two-body flux tubes. Sum rules will

statistical errors. In the large-imit, a further approximation  pe ysed verify the correctness of the measured distributions.
is to replace the flux-tube profile by one that is constant

between the quarks(R/2<R, < R/2) and dropping to zero

rapidly for R, =R/2 andR < — R/2. At the largesR’s the ACKNOWLEDGMENTS
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