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Where the electroweak phase transition ends
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We give a more precise characterization of the end of the electroweak phase transition in the framework of
the effective three-dimensional &2)-Higgs lattice model than has been given before. The model has now
been simulated at gauge couplingg= 12 and 16 for Higgs boson masdé$;, =70, 74, 76, and 80 GeV up to
lattices 98 and the data have been used for reweighting. The breakdown of finite volume scaling of the
Lee-Yang zeroes indicates the change from a first order transition to a crossmgégét: 0.102(2) in rough
agreement with results of Karsch, Neuhaus, Patkmd Rank aBg=9 and smaller lattices. The infinite
volume extrapolation of the discontinuity( ¢>*¢>/g§ turns out to be zero a\t3/g§=0.107(2) being an upper
limit. We comment on the limitations of the second metH@&@D556-282(197)02719-7

PACS numbgs): 11.15.Ha, 11.10.Wx, 14.80.Bn

[. INTRODUCTION The present paper belongs to the first group of studies.
We try to shed light on the question for which Higgs boson
During the last couple of years, much effort has beermmass the first order transition ceases to exist and what re-
invested to study the properties of the first order phase trarplaces it at slightly higher Higgs boson mass. Analytical
sition that the standard model was expected to undergo atork has already addressed this problem.[10] it was
high temperaturéfor reviews sed1]). The motivation was claimed that the transition between the broken and the sym-
to explore the phenomenological viability of the generationmetric phase can only be of first order or a smooth crossover.
of the baryon asymmetry of the univerd®AU) at this tran-  Within the same average action approach it was made more
sition. precise latef11] that the first order transition ends at a Higgs
The perturbative evaluation of the phase transition is preboson mass of about 80 GeV and the transition is replaced by
vented by infrared divergences in the so-called symmetri@ unique strongly interacting phase. A similar conclusion has
phase. Lattice Monte Carlo studies of the four-dimensionabeen drawn from a renormalization group study of the elec-
SU(2)-Higgs boson theory2,3] have been done so far for troweak phase transitiofl2]. Analyzing gap equations a
relatively large lattice spacingseglecting the 1) gauge similar critical Higgs boson mass has been pointed out in
group and the fermionic content of the theprmxnother ap- Ref.[13].
proach is based on the concept of dimensional redu¢tibn Recently, three-dimensiondBD) Monte Carlo studies
One maps the theorith or without fermiong onto a three- [14,8] have investigated the volume dependence of the sus-
dimensional SIR)-Higgs boson model containing all infra- ceptibility of the Higgs boson condensate. These studies
red problems of the full theory and can investigate this ef-gave support to the claim that the transition turns into a
fective theory by Monte Carlo simulatiof5—8] with much  smooth crossover for large Higgs boson masses. An attempt
less effort. Later, the (1) gauge group was included into to determine the value of the upper critical Higgs boson mass
this approach, to9]. has been performed [8]. It was based on an analysis of the
BAU generation at the phase transition of the standard/olume dependence of the Lee-Yang zefbS], but for a
model is ruled out already, and the primary interest hagelatively large lattice spacing. The exploration of critical
shifted to extensions of the standard model. Nevertheless, tHeehavior in lattice gauge theories using Lee-Yang zeroes has
standard variant remains interesting in or@igto understand become a frequently used tool nowadays. A good guide to
methods such as dimensional reduction, validity of perturbathe basic applications can be found[i6].
tion theory, etc., in the realm of extremely weakly first order The only 4D study to determine the critical Higgs boson
phase transitions an@i) to understand in general terms the mass region was presented it¥], however, with a temporal
physics in the strongly coupled high temperature phase ofxtent of onlyN;=2 and an exploratory scan of the Higgs
gauge-matter systems. boson self-couplingcorresponding to different Higgs boson
massep In our present study we use Monte Carlo simula-
tions of the three-dimensional theory in order to find the
*Electronic address: guertler@tph204.physik.uni-leipzig.de critical Higgs boson mass, employing two different types of
TElectronic address: ilgenfri@phal.physik.hu-berlin.de analysis. The first is simply to look for the Higgs boson mass
*Electronic address: schiller@tph204.physik.uni-leipzig.de where the jump of the scalar condensatsich is propor-
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tional to the latent heatvanishes. The second method is TABLE |. Statistics.
based on an analysis of the Lee-Yang zeroes of the partitior
function, whose finite volume behavior changes with theMf Bs L By sweeps M}; Bg L By sweeps

character of the transition and is able to characterize th%
change of first order into crossover.

12 30 0.343480 30000 74 12 64 0.343848 20000
70 12 30 0.343540 50000 74 12 64 0.343850 25000
70 12 30 0.343600 40000 74 12 64 0.343852 30000
70 12 40 0.343540 20000 74 12 80 0.3438486 40000

The lattice 3D S(2)-Higgs boson model is defined by the 70 12 40 0.343560 20000 74 12 96 0.3438486 40000
action 70 12 48 0.343440 75000 76 12 30 0.343980 20000
70 12 48 0.343520 40000 76 12 30 0.344000 80000
70 12 48 0.343540 80000 76 12 30 0.344040 20000
70 12 48 0.343544 120000 76 12 40 0.343990 20000
70 12 48 0.343546 20000 76 12 40 0.344000 30 000
+ S [p2 Ba(p2-1)2], (2.) 70 12 48 0343548 120000 76 12 40 0.344020 20000

X 70 12 48 0.343560 40000 76 12 48 0.343994 25000
70 12 48 0.343580 110000 76 12 48 0.344000 35000
70 12 64 0.343546 90000 76 12 48 0.344006 35000
70 12 64 0.343548 120000 76 12 48 0.344012 10000
70 12 64 0.343549 20000 76 12 64 0.344000 40000
(Summed over plaquettﬂﬁ SiteSX, and directionSa), with 70 12 64 0.343550 100000 76 12 64 0.344006 40 000
the gauge COUplin@G,the lattice nggS boson Self-COUpling 70 12 80 0.343546 40000 76 12 80 0.344002 20 000
Br and the hopping paramet@y . The gauge fields are 7o 16 32 0.340780 40000 76 12 80 0.344002 40000
represented by unitary 22 link matrices Uy, and the 7o 16 35 0.340800 40000 76 12 80 0.344006 25000
Higgs b°~°+’°” fields —are written asd,=p,Vx. 79 16 32 0340820 40000 76 16 32 0.341100 20000
px=1/2tr(®, @,) is the Higgs boson modulus squarkdan 7o 16 49 0340780 40000 76 16 32 0.341120 40000
element of the group SU), U,, denotes the SQ) plaquette 745 15 40 0.340800 100000 76 16 32 0.341140 20 000
matrix. For shortness, we characterize aq1hthe Higgs 70 16 40 0.340820 40000 76 16 40 0.341120 30000
self-coupling by an approximate Higgs boson ms de- 75 15 45 0340700 45000 76 16 40 0.341124 30000

fined through 70 16 48 0.340780 45000 76 16 40 0.341130 20000
o B2 1] ME\282 70 16 48 0.340800 90000 76 16 48 0.341124 35000
R:_3_H:_(_H> o (2.3 70 16 48 0.340820 45000 76 16 48 0.341128 20000

g5 Be 8180 GeV| Bg 70 16 64 0.340796 40000 76 16 64 0.341124 40000

70 16 64 0.340800 80000 76 16 64 0.341128 20000

where A3 and gz are the dimensionful quartic and gauge 7o 16 g4 0340804 40000 76 16 80 0.341126 20000
couplings of the correspondingDC3 continuum model, re- 70 16 80 0.340802 30000 76 16 80 0.341130 30000

spectively. Both couplings are renormalization group invari-74 12 48 0.343850 40000 80 16 80 0341360 40000
ants. The 3D continuum model is furthermore characterized ' i

by the renormalized mass,(g3) taken at the scalg;=g3.

To study the continuum limit of the lattice model at given yaie we used the same algorithm as describddfinhich

MY (along the line of constants physics of the 3D continuuMcompines Gaussian heat bath updates for the gauge and

theory) one has to keep the coupling ratios/g3 and  Higgs boson fields with several reflections for the fields to

ma(us=03)/05 fixed. reduce the autocorrelations. All thermodynamical bulk quan-
Letting increase the gauge couplifgs at fixed )\3/g§ tities are measured after each such combined sweep. One

along the critical line dividing the high temperature andcombined sweep with bulk measurements takes 3.5 sec on a

Higgs boson phasgm,(g3)/g3 fixed and near to zelgper-  96° lattice on the QH2 parallel computer.

mits us to perform the continuum limit according to the re- In the search for the phase transition the space averaged

lation square of the Higgs boson modulus

Il. THE MODEL AND NUMERICAL TECHNIQUES
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We study the phase transition driven by the hopping pa-
rameterB, . The Monte Carlo simulations were performed is used;{p?) denotes averaging over the Monte Carlo mea-
at Bg= 12 andBg= 16 for differentM}; , ranging from 70 to  surements.
80 GeV at several values ¢, on cubic lattices of the size  In our analysis we used the Ferrenberg-Swendsen method
L3 (see Table | for parameters and statisticEhe simula- [18]. Note that at fixedM}; (andBg) the Higgs self-coupling
tions were performed at the DFG Quadrics computer QH2 inBg is quadratic in8y [see Eq(2.3)]. The reweighting has to
Bielefeld and on the CRAY-T90 of the HLRZ lich; some  be performed by histogramming in two parts of the action.
data were collected on a Q4 Quadrics iichu For the up-  The partition function is represented as
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where the density of statd3, (S;,S;) is approximated by '
the histogram produced by multihistogram reweighting of all Co
available data for giverBs andL® (see Table)l Having a 0’005—__ !
good estimator of the density of statBg (S;,S,) from a Cood
sufficient number of simulation points we are able to inter- - i
polate in By at fixed M}; to localize the phase transition, Cood LS

interpolate inM}, in order to find the critical Higgs boson Ottt o
mass, and extrapolate to complgy to study Lee-Yang ze- 3.2 3.4 3~26 3.8 4.0
ros. Ie}
Finally, all considered quantities are translated into physi- FIG. 1. Histograms ofp? for different M¥ at the respective
cal units. This allows us to combine results obtained for dif- — ) L H .
. . pseudocriticay (defined by the minimum of the Binder cumulant
ferent B¢ and gives a check to what extent the continuum . _
A : o . for a 8¢ lattice, Bg=12.
limit is reached. The size of the lattice in continuum length
units (i.e., the inverse 3D gauge coupligd) is given by the 4o chosen to define pseudocritical values of the hopping
expression parameterB,;. The jumps inA(p?) are extracted from the
2 . peaks of the histograms reweighted to these valueg of
lg3=Lagz=4L/Ac (28 The p? histograms at the respective pseudocritical couplings
. . o show how the discontinuity decreases with increasi.
and the jump of the quadratic scalar condensate is in thri\.he gap between the pealzs is more and more filled. and the

corresponding mass units distance between them becomes smadlfég. 1).
+ At any Higgs boson magdl}, we attempt to perform the
Mote) 1 3 e | ot
———==BsBuA{pd). (2.9  thermodynamical limit oA(p“) by assuming the finite size
g§ 8 corrections to follow an inverse cross sectional l&sug-

gested by the behavior of the Potts model in two dimensions

HereA(p?)=(p2)—(p2) denotes the difference of the lattice [19]):

guadratic scalar condensates measured at the pseudocritical

hopping parameter between the brokép2f) and symmet- |A(PT B)— AT ) | 102,
ric (<p§>) phases, respectively.

3.3

Figure 2 shows the different infinite volume extrapolation
of A(¢™ ¢)/g5 at Mf;=70 and 76 GeV. We have used two

Ill. THE BEHAVIOR OF THE LATENT HEAT N /7 . .
criteria (minimum of the Binder cumulant and maximum of

WITH INCREASING HIGGS BOSON MASS

A nonvanishing latent heal e is one of the characteris- A R AR AR RN MR
tics for a first order phase transition. In our model the latent F ]
heat is proportional to the jump of the quadratic scalar con- - ? ]
densateA (4" @) [5]. The proper identification of the scalar ; # ]
condensate discontinuity becomes increasingly demanding 0.3F ? g
near to the end of the first order transition. The correlation :
length grows beyond the size of the system under study, in 3 #
particular if the end point is a critical point. There can be an 3
apparent metastability on a finite torus which delays the C /,él ]
approach to the thermodynamical limit. In this section we L { ]
identify the end of the phase transition with the point in the . %{ Be=12, 6% cumulant ]

A <dTe> /g3
o
N
e

0.1F

Be=16, % cumulant

o]
Bu—MY, plane where the discontinuity vanishes. .
The minimum of the Binder cumulant r % O e=12, p* susceptibility
:_ m B;=16, po? susceptibility E
<(p2)4> O:|I|I|I|I|||I|I|I|I|||I|I|I|I|||I|I|I|:
BPZ(L,,BH)Zl—ﬁ (3.1) 0 0.005 0.010 0.015
3((p9)*) (199~
and the maximum of the susceptibility pf FIG. 2. Quadratic Higgs boson condensate jul{j* ¢)/g3 as

function of inverse physical length squared, upper data correspond
C,2(L,Br)=((pH?)—(p*)? (3.2  toM}=70 GeV, lower toM}=76 GeV.
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0.1 E ® B=16 o7 cumulant E i ]
O Be=12 p? susceptibility 1 O +—
r m B.=16 p? susceptibility
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0 0.005 0.010 0.015 0.095 0.100 0.105 0.110
(1g)™? s/ G5
FIG. 3. Quadratic Higgs boson condensate juli{p* ¢)/g3 as FIG. 4. Infinite volume discontinuityA{¢* ¢)/g5 shown vs
function of inverse physical length squared\af,=74 GeV. 7\3/95. Filled symbols mark the Higgs boson masté§=70, 74,

and 76 GeV where data have been taken, open symbols denote
results from FS interpolation. The isolated lower data point at
"M} =74 GeV refers to an infinite volume extrapolation including
only 8C° and 96 lattices as described in the text.

the susceptibility for the lattice quadratic Higgs boson con
densatg to determine the pseudocriticg, . One observes
that the data for differenBg cluster along one curve within
their errors and do not show a significant dependence on the

lattice spacinga. Therefore, we conclude that the quadratic 3 ¢it/95<0.107. (3.9
Higgs boson condensate jump at the measytgdralues is

already sufficiently near to the continuum limit. Obviously _ - _
the latent heat aM¥ =76 GeV has a vanishing thermody- This bound is somewhat larger than the critical coupling
namical limit. At the larger Higgs boson mass the assumediven in[8]. It could be tempting to explain this difference to
1/12 scaling compatible with the vanishing limit of the con- the somewhat smallg8z=9 in their paper. _ o
densate sets in only for the largest considered volumes. In this section we have assumed an early continuum limit

This feature becomes even more pronounced at intermd plotting data from differenBg as a function of the physi-
diate Higgs boson madd} =74 GeV. Figure 3 shows the cal lattice volume. The data were compatible with each other

within the errors. The account for finite corrections of ex-
ectation values in the thermodynamical limit could be per-
ormed (if necessaryalong the line of Ref[20].

volume dependence of the condensate jump Nij=74
GeV. This picture includes, besides reweighted data, origin
simulations at that Higgs boson mass for lattices up tbe6
Bs=12. The onset of the 1 scaling is delayed to lattices
not smaller than 80 (for Bg=12). If only those data are
considered the latent heat is consistent with zero.

The summary of the extrapolations to the thermodynami-
cal limit is collected in Fig. 4. For the extrapolation accord-  |n this section we will determine the critical Higgs boson
ing to Eq.(3.3) we have used the results for the discontinuity mass by analyzing the position of the Lee-Yang zeroes in the
at (Ig5) 2<0.003 which correspond to lattices64® for  complex 8, plane and their motion with increasing size of
Be=12 and 88 for Bg=16. For)\3/g§%0.107 M}=74 the finite lattice system. Phase transitions correspond to
GeV) a different extrapolation is shown, lying below the nonanalytical behavior of the infinite volume free energy
general trend, which is compatible with zero at that Higgsdensity as function of couplings which normally are real val-
boson mass. This extrapolation takes into account only thaeed. This is signalled by zeroes in the complex plétwe
two largest volumes gBs=12. The uncertainty reflects the which the relevant coupling constant is extendefithe par-
scattering of slopes of the straight line interpolation. tition function of finite systems. If there exists a phase tran-

Concerning the two-parameter multihistogram extrapolasition driven by this coupling some of these zeroes cluster, in
tion we can report that the purely interpolated histograms athe thermodynamical limit, along lines that pinch the real
My =74 GeV near to the end point are in reasonable agreeaxis. This prevents the analytic continuation along the real
ment with histograms at that mass supported by actual simwaxis corresponding to that coupling.
lations. However, at that mass we are too near to the end- We sketch here the motion of the most important zeros
point, such that simulations at still larger lattices arewith increasing volume. Neglecting interface tension effects
necessary in order to estimate the correct thermodynamic#he partition function at the transition point is given by the
limit. contributions of the two phases

We conclude that the critical coupling, if defined by van-
ishing latent heafvanishing jump of the quadratic scalar . s
condensate is bounded from above as Z2=72+Zy=e fs+e b, 4.2

IV. LEE-YANG ZEROES NEAR THE CRITICAL
HIGGS BOSON MASS
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where fy,) denotes the lattice free energy per site of the L0
so-called symmetri¢broken phase. The free energy density
can be expanded around the real-valued pseudocritical cou

pling Bic Zoom |
fs6(BH) = F(Brc) +{Esb(Brc)) (B = Brc)
+O[(Bu— Brc)’]- (4.2
0.00001 0.00002
To obtain(E) we use the action in the form Im By
S=Sy—3BuL3Ejinc+ BaL3(p*—2p?), 4.3 FIG. 5. 3D view of|Z,, near to the first zeroes #s=12,

80° andM},=70 GeV.
with p? defined in Eq.(2.5 and
of the leading zeros in the complex hopping parameter plane

1 ith indexn) and the Higgs boson condensate discontinuit
Ei=—3 > Exar 0= pl. (44 (Withindexn) 99 SCOmiINUIY
3L° xa L° x
o _ o 27 Buc [ 1
Taking into account that the Higgs boson self-coupling is |mB<n> n—=|. (4.12
(for given M};) quadratic ing we find L3(1+2B8rdA(p2)| 2
(E(Bhc))=—3(Ejni) +2 BRC((p“) 2(p?)), (4.5 Since A(p?) itself depends on the size of the lattitas

discussed in Sec. Nithe simple 1L* behavior for Im By is
modified and can be expected only asymptotically.
An analysis of the first Lee-Yang zero in the crossover
region of the 3D S(R)-Higgs boson model has been carried
1 out recently in Ref[8]. Here we are interested to discuss in
(Es(b)>=<E>I§A<E>, (4.6)  more detail the change from first order transition to a cross-
over behavior at the critical Higgs boson mass.

As usual, the partition function has to be analytically con-
tinued into the complex plane as function of the complex
hopping parameteBy near to the real pseudocritical cou-

(4.7 pling Byc- This can be done by reweighting using E2.6).
Since By is complex, the actior$ and consequently be-
come complex, too. The zeroes dfare found numerically
pusing the Newton-Raphson method for solving simulta-
neously RE=0 and InZ=0. To estimate the accuracy of
the position of the zeroes in the complex plane we have

where(- - -) denotes the Monte Carlo average as before.
Using the decomposition g

the partition sum behaves as

Z“COSV{ E) L3(Bu—Brc) |-

For the complex couplin@,=ReBy+i ImB, we obtain in
this approximation that the zeroes of the complex partitio
function Z are located atr{ are integers

20 1 calculated them using only the half data sample.
<H“>:—<n_ ) 4.9 In Fig. 5 the modulus of the complex partition function
L3|A(E)] 2 |Zoornl in the neighborhood of the pseudocritical hopping

parametep,,. is shown.Z, ., has been used for clarity. This
RE&BH= Bhc - (4.9  means thaZ(By) is divided, for each compleg,, by its

_ i . (real) value at R@,,, Z(ReBy). The figure represents a lat-
For a volume independet(E) the imaginary part of the t|ce of size 88 at Bo=12 for a Higgs boson madd % =70
hopping parameter at the position of the zeroes would Sca@‘-ev where the transition is still clearly first ord[@r] The

with the inverse volume. For infinite volume the zeroes be-, ormalized|Z,,,] approaches zero in the clearly distinct
come dense and prevent analytic continuatiorz dfieyond minima.

Bre: . . . The difference in the pattern of the leading complex ze-
Taking into account Eq(4.5) and using the identity for roes is demonstrated in Figs. 6 and 7 referringvifj =70

the condensate jumyis] and 76 GeV for the same lattice size®8nd lattice gauge
_ _ _ 2 a _ coupling Bz=12. Each figure shows a part of the strip
3B A(Bind +(1-2BrdA(p%) +2Bre A(p)=0 0<ImBy=<3x10* along the real axis where the leading
Lee-Yang zeroes are located at the respective Higgs boson
one easily finds mass. For the larger Higgs boson mass the normalized modu-
lus decreases much faster with increasing|m less zeroes
'BRCA 2 are localized inside the strip and the funnels which form the
Bhc (p?). (4.1 |Z.oml landscape at the locations of the Lee-Yang zeros be-
come less steep. The zeros move away from the real axis
Therefore, for the phase transition still being first order onewith increasing Higgs boson mass. Notice that only for the
expects the approximate relation between the imaginary patbwer Higgs boson mass the pattern approximately follows

—A(E)—



56 WHERE THE ELECTROWEAK PHASE TRANSITION ENDS 3893

0.343554 L L L L L I A L L L L B B B
0.34360F , =
F o 30 E
F o 40° E
E o 48° =
g 73
E = 80° ]
0.34358F =
Re By 0343548 & __ __
. & . ]
0.34356 % s =
-~ o _;
R E
0.343542 E 3
0.34354F —
0 0.00003 Eo v by by vy 1 10 4
Im By 0 0.5X10™ 1.0X10™ 1.5x10™
FIG. 6. Contour plot of Z,o| below 0.2 atBg=12, 8¢ and Im g

. . . :
Mii=70 GeV with height differences of 0.02. FIG. 8. First two zeroes g8z=12 andM};=70 GeV for dif-

the n dependence given in E¢4.12. This is a hint for an ferent lattice sizes.
inherently different behavior of the model at these selected . - . . i
namical limit(as required for a phase transitjaand our first

Higgs boson masses. To answer the question whether thbsrder transition has turned into a crossover.

difference shows the vanishing of the phase transition we We assume that for equal physical volume the imaginary

investigate the zeroes in the thermodynamical limit. art of the Lee-Yang zeros shows a universal behavior. The
In Fig. 8 the first two zeros of different lattice volumes are P 1) g zer '
alues of InlmBy;”’ are shifted to

collected. There is a tendency of the zeros to move to Iarge\f
ReBy, with decreasing lattice volume and increasing index of
the zero(for low n). The first tendency corresponds with the
fact that the maximum of the link susceptibility gives a |

pseudocriticaj3, which approaches the infinite volume limit In Order to use the results of both gauge couplings for the fit
By from above[7]. (Fig. 9. The main shift I, is derived from Eq(4.12 as-

To extract information about the end point of the transi-SUMing that the continuum condensate jump is already inde-

In ImB"—1In ImBY —In(c;c,) (4.14

tion we fit the imaginary part of the first zero for each avail- Pendent ofa:
able physical length [Eq. (2.8)] according to 5
Bhic
— Ci=—. 4.1
ImaP=C(1g2)~"+R. (4.13 B (14 2800 (4.19

A positive R in Eq. (4.13 should indicate that the first zero | the |ogarithmic shift we have used the real-valued finite
does not approach anymore the real axis in the thermody;o; me couplings R,é,(}) and ,BR(RQBE})). A small extra
shift Inc, (with ¢, between 1.028 and 1.095 in the used range
of )\3/g§) has been added to correct the eventual imprecision
of the used equation. It has been adjusted in a way to provide
a minimal y? for all (reweighted data at giverhg/g% in the

fit of Eq. (4.13. The three right-most data points in Fig. 9
arises from 98 data atM}, =74 GeV which are reweighted

to M;=72 and 76 GeV, too.

The values of the fit constaR using all lattice sizes and
both gauge couplings at fixex;/g2 are given in Fig. 10.
Near to the end point the? of the fits deteriorate. For
smaller lattice sizes the asymptotic behavidi/ ® of ImB{H)
is still not reached. Hence the consta&his found negative as
long as the phase transition is of first order. We localize the
end point of the transition wher@ as a function ot)\algg
crosses zero. This gives the critical value

m 0.344010

Re By 0.344005

0.344000

’ Im B 0.00003 A3 o/ 02=0.1022), (4.16

FIG. 7. Same as Fig. 6 ##;=12, 8¢ andM};=76 GeV. which translates intd1}; .;;=72.2(6) GeV.




3894 M. GURTLER, E.-M. ILGENFRITZ, AND A. SCHILLER 56

_I | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | I_ F I|v|vl|v||v||v T T ||| e
[ ] 3.0F + 3
5 5 M + i + :
- E 25 3
[ ] g E + E
S . Tk E
C . £ 20F + .
s ] 2 E
S [ @ Be=12,2/g%=.095703 ] 3 E
TC L O Be=16, As/q2= .095703 ] 1.5 E
51'4__ ® Bo=12,\s/g5=.101250 ] | I Loy o I Lod oo
? C O fo=16, hs/gi= .101250 ] 0.09 0.10 0.11 0.12
= [ @ Be=12 2s/g2= .106953 ] A3/ g5
£ I o Bc=16, As/q2= .106953 ] ) ) )
5: ® Bo=12,hy/gi= 112812 ] FIG. 11. Fitted powew as function ofA3/g3.
L 0 Be=16,As/gi=.112812 ]
[ @ B=12,7y/gi=.118828 ] Lee-Yang zeros, requiring that the leading zero approach the
- O fo=16,hs/g5= 118828 . real axis in the infinite volume limit. This has led to the
L @ Bc=12,)/g3= 121895 . critical coupling ratio of Eq(4.16). For this purpose we had
B 2 7 . . . .
sf © &=T6 As/g5= 121895 = to rescale results obtained with different values of the lattice
C ] gauge coupling, in our worl8;=12 andB;=16.
T T T The criterion based on a vanishing scalar condensate
2.0 25 30 35 tends to predict a too high critical Higgs boson mass in ac-

In(l g2) cordance with the multihistogram interpolation. Very near to
the end point a two-state signal persists which is not related

FIG. 9. Logarithm of the imaginary part of first zeroes at differ- to a first order phase transition. One has to use essentially
ent\3/g3 vs logarithm of the physical length lg§) together with larger lattices in order to get a reliable infinite volume ex-
the fit described in the text. trapolation. By this technique we have identified the upper

bound of Eq.(3.9).

Restricting the fit of Eq(4.13 only to larger volumes the The critical temperaturd . and the actual Higgs boson
expected powew=3 for the first order transition is repro- massmy of the underlying £ theory corresponding to the
duced. This is shown in Fig. 11 where only ¢beven data  endpoint of the first order transition can be calculated using
points above IHg3)=2.55(see Fig. 9 are included in the fit. the relations in Sec. Il of7]. These quantities are listed in
For \3/g5>0.102 the fit yields a power which strongly de- Table Il using the lattice couplingsBs=12 and
creases. This again indicates the change to the crossovef.c=0.3437161 at the critical continuum coupling ratio
This critical Higgs boson coupling is only slightly below the [Eg. (4.16] as derived from the Lee-Yang zeroes analysis.
upper bound obtained in Sec. Il from the argument of van-Additionally, the four-dimensionaMS running coupling
ishing latent heat. g?(my) is given. All quantities are calculated for the two
cases of the 4D S(2)-Higgs boson theory, without fermions
and including the top quark.

V- DISCUSSION AND CONCLUSIONS The apparent two-state signal fpf near or at the end

We have compared two methods which promised to givePoint is misleading and cannot be an indicator of a first order
estimates for the critical Higgs boson mass. We have used dphase transition. The reason is that the correlation length
one hand a criterion based on the thermodynamical limit ofjrows to the size of the system being simulatedVi;= 70
GeV, for instance, these two scales can be safely separated
from each othef7]. When the transition becomes increas-
ingly weak the situation will change rapidly. In order to mea-
sure the correlation length of the competing phases one
would have to take some care. One should carefully monitor
the tunneling of the system in order to measure the correla-
tion functions of the pure phases, respectively. We have suc-
cessfully applied such a procedureMf;=70 GeV. For the

0.015¢

0.010F

0.005F

Fitted constant R

TABLE Il. Some quantities ah 5 Cm/g§=0.102 Mgi=72.2
GeV); upper row without fermions, lower including top quarks.

L L L L R L I R L N R R R
-e-
TN ST T A SRR R PN R

T T T T my /GeV T./GeV g?(my)

AR ' 67.08) 154.82.6) 0.423
72.49) 110.q1.5 0.429

FIG. 10. Fitted distanc® as function of\5/g3.
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weaker transitions at higher Higgs boson mass this becomes For definiteness we choosg?(m,,)=0.58 and take
increasingly difficult. Therefore we have restricted our atten-\ ;/g2=0.102. We obtain the critical Higgs boson mass

tion eXCIUSively to bulk variables. At the critical endeint mH:65_2 GeV and the Corresponding transition temperature

one expects the correlation length to diverge. T.=129.6 GeV. This is noticeably smaller than the critical
Our result forh; /g3 is not so far from the result by Higgs boson mass estimated in REE7] which is the only
Karschet al. [8] who have obtainedin our notation 4D result so far available.
At weakly first order transitions, the 3D effective theor
N3 it/ g2=0.095116), (5.1) y Y

seems to describe the transition parameters of the 4D model
at Bg=9 analyzing lattices with an extent Ig§)<3.06. The reasonably wel[22,23. Concerning the apparent first order
remaining difference between E¢5.1) and(4.16) can com-  hature of the transition an,;=67 GeV in the 4D approach,
fortably be explained by the fact that we come nearer to théhere is reason for doubts because of the very coarse discreti-
continuum limit. zation withN,;=2 temporal steps.

It might be instructive to transform our results to a 4D

SU(2)-Higgs model at a larger M8unning gauge coupling.

Usually in 4D simulations, the bare coupligg= 0.5 is used. ACKNOWLEDGMENTS
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