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We give a more precise characterization of the end of the electroweak phase transition in the framework of
the effective three-dimensional SU~2!-Higgs lattice model than has been given before. The model has now
been simulated at gauge couplingsbG512 and 16 for Higgs boson massesMH* 570, 74, 76, and 80 GeV up to
lattices 963 and the data have been used for reweighting. The breakdown of finite volume scaling of the
Lee-Yang zeroes indicates the change from a first order transition to a crossover atl3 /g3

250.102(2) in rough
agreement with results of Karsch, Neuhaus, Patko´s, and Rank atbG59 and smaller lattices. The infinite
volume extrapolation of the discontinuityD^f1f&/g3

2 turns out to be zero atl3 /g3
250.107(2) being an upper

limit. We comment on the limitations of the second method.@S0556-2821~97!02719-7#

PACS number~s!: 11.15.Ha, 11.10.Wx, 14.80.Bn

I. INTRODUCTION

During the last couple of years, much effort has been
invested to study the properties of the first order phase tran-
sition that the standard model was expected to undergo at
high temperature~for reviews see@1#!. The motivation was
to explore the phenomenological viability of the generation
of the baryon asymmetry of the universe~BAU! at this tran-
sition.

The perturbative evaluation of the phase transition is pre-
vented by infrared divergences in the so-called symmetric
phase. Lattice Monte Carlo studies of the four-dimensional
SU~2!-Higgs boson theory@2,3# have been done so far for
relatively large lattice spacings@neglecting the U~1! gauge
group and the fermionic content of the theory#. Another ap-
proach is based on the concept of dimensional reduction@4#.
One maps the theory~with or without fermions! onto a three-
dimensional SU~2!-Higgs boson model containing all infra-
red problems of the full theory and can investigate this ef-
fective theory by Monte Carlo simulations@5–8# with much
less effort. Later, the U~1! gauge group was included into
this approach, too@9#.

BAU generation at the phase transition of the standard
model is ruled out already, and the primary interest has
shifted to extensions of the standard model. Nevertheless, the
standard variant remains interesting in order~i! to understand
methods such as dimensional reduction, validity of perturba-
tion theory, etc., in the realm of extremely weakly first order
phase transitions and~ii ! to understand in general terms the
physics in the strongly coupled high temperature phase of
gauge-matter systems.

The present paper belongs to the first group of studies.
We try to shed light on the question for which Higgs boson
mass the first order transition ceases to exist and what re-
places it at slightly higher Higgs boson mass. Analytical
work has already addressed this problem. In@10# it was
claimed that the transition between the broken and the sym-
metric phase can only be of first order or a smooth crossover.
Within the same average action approach it was made more
precise later@11# that the first order transition ends at a Higgs
boson mass of about 80 GeV and the transition is replaced by
a unique strongly interacting phase. A similar conclusion has
been drawn from a renormalization group study of the elec-
troweak phase transition@12#. Analyzing gap equations a
similar critical Higgs boson mass has been pointed out in
Ref. @13#.

Recently, three-dimensional~3D! Monte Carlo studies
@14,8# have investigated the volume dependence of the sus-
ceptibility of the Higgs boson condensate. These studies
gave support to the claim that the transition turns into a
smooth crossover for large Higgs boson masses. An attempt
to determine the value of the upper critical Higgs boson mass
has been performed in@8#. It was based on an analysis of the
volume dependence of the Lee-Yang zeros@15#, but for a
relatively large lattice spacing. The exploration of critical
behavior in lattice gauge theories using Lee-Yang zeroes has
become a frequently used tool nowadays. A good guide to
the basic applications can be found in@16#.

The only 4D study to determine the critical Higgs boson
mass region was presented in@17#, however, with a temporal
extent of onlyNt52 and an exploratory scan of the Higgs
boson self-coupling~corresponding to different Higgs boson
masses!. In our present study we use Monte Carlo simula-
tions of the three-dimensional theory in order to find the
critical Higgs boson mass, employing two different types of
analysis. The first is simply to look for the Higgs boson mass
where the jump of the scalar condensate~which is propor-
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tional to the latent heat! vanishes. The second method is
based on an analysis of the Lee-Yang zeroes of the partition
function, whose finite volume behavior changes with the
character of the transition and is able to characterize the
change of first order into crossover.

II. THE MODEL AND NUMERICAL TECHNIQUES

The lattice 3D SU~2!-Higgs boson model is defined by the
action
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~summed over plaquettesp, sitesx, and directionsa), with
the gauge couplingbG , the lattice Higgs boson self-coupling
bR and the hopping parameterbH . The gauge fields are
represented by unitary 232 link matrices Ux,a and the
Higgs boson fields are written asFx5rxVx .
rx

251/2tr(Fx
1Fx) is the Higgs boson modulus squared,Vx an

element of the group SU~2!, Up denotes the SU~2! plaquette
matrix. For shortness, we characterize as in@7# the Higgs
self-coupling by an approximate Higgs boson massMH* de-
fined through
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where l3 and g3 are the dimensionful quartic and gauge
couplings of the corresponding 3D continuum model, re-
spectively. Both couplings are renormalization group invari-
ants. The 3D continuum model is furthermore characterized
by the renormalized massm3(g3

2) taken at the scalem35g3
2.

To study the continuum limit of the lattice model at given
MH* ~along the line of constants physics of the 3D continuum
theory! one has to keep the coupling ratiosl3 /g3

2 and
m3(m35g3

2)/g3
2 fixed.

Letting increase the gauge couplingbG at fixed l3 /g3
2

along the critical line dividing the high temperature and
Higgs boson phase@m3(g3

2)/g3
2 fixed and near to zero# per-

mits us to perform the continuum limit according to the re-
lation

bG5
4
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2

. ~2.4!

We study the phase transition driven by the hopping pa-
rameterbH . The Monte Carlo simulations were performed
at bG512 andbG516 for differentMH* , ranging from 70 to
80 GeV at several values ofbH on cubic lattices of the size
L3 ~see Table I for parameters and statistics!. The simula-
tions were performed at the DFG Quadrics computer QH2 in
Bielefeld and on the CRAY-T90 of the HLRZ Ju¨lich; some
data were collected on a Q4 Quadrics in Ju¨lich. For the up-

date we used the same algorithm as described in@7# which
combines Gaussian heat bath updates for the gauge and
Higgs boson fields with several reflections for the fields to
reduce the autocorrelations. All thermodynamical bulk quan-
tities are measured after each such combined sweep. One
combined sweep with bulk measurements takes 3.5 sec on a
963 lattice on the QH2 parallel computer.

In the search for the phase transition the space averaged
square of the Higgs boson modulus

r25
1

L3(x
rx

2 ~2.5!

is used;^r2& denotes averaging over the Monte Carlo mea-
surements.

In our analysis we used the Ferrenberg-Swendsen method
@18#. Note that at fixedMH* ~andbG) the Higgs self-coupling
bR is quadratic inbH @see Eq.~2.3!#. The reweighting has to
be performed by histogramming in two parts of the action.
The partition function is represented as

TABLE I. Statistics.

MH* bG L bH sweeps MH* bG L bH sweeps

70 12 30 0.343480 30 000 74 12 64 0.343848 20 000
70 12 30 0.343540 50 000 74 12 64 0.343850 25 000
70 12 30 0.343600 40 000 74 12 64 0.343852 30 000
70 12 40 0.343540 20 000 74 12 80 0.3438486 40 000
70 12 40 0.343560 20 000 74 12 96 0.3438486 40 000
70 12 48 0.343440 75 000 76 12 30 0.343980 20 000
70 12 48 0.343520 40 000 76 12 30 0.344000 80 000
70 12 48 0.343540 80 000 76 12 30 0.344040 20 000
70 12 48 0.343544 120 000 76 12 40 0.343990 20 000
70 12 48 0.343546 20 000 76 12 40 0.344000 30 000
70 12 48 0.343548 120 000 76 12 40 0.344020 20 000
70 12 48 0.343560 40 000 76 12 48 0.343994 25 000
70 12 48 0.343580 110 000 76 12 48 0.344000 35 000
70 12 64 0.343546 90 000 76 12 48 0.344006 35 000
70 12 64 0.343548 120 000 76 12 48 0.344012 10 000
70 12 64 0.343549 20 000 76 12 64 0.344000 40 000
70 12 64 0.343550 100 000 76 12 64 0.344006 40 000
70 12 80 0.343546 40 000 76 12 80 0.344002 20 000
70 16 32 0.340780 40 000 76 12 80 0.344002 40 000
70 16 32 0.340800 40 000 76 12 80 0.344006 25 000
70 16 32 0.340820 40 000 76 16 32 0.341100 20 000
70 16 40 0.340780 40 000 76 16 32 0.341120 40 000
70 16 40 0.340800 100 000 76 16 32 0.341140 20 000
70 16 40 0.340820 40 000 76 16 40 0.341120 30 000
70 16 48 0.340700 45 000 76 16 40 0.341124 30 000
70 16 48 0.340780 45 000 76 16 40 0.341130 20 000
70 16 48 0.340800 90 000 76 16 48 0.341124 35 000
70 16 48 0.340820 45 000 76 16 48 0.341128 20 000
70 16 64 0.340796 40 000 76 16 64 0.341124 40 000
70 16 64 0.340800 80 000 76 16 64 0.341128 20 000
70 16 64 0.340804 40 000 76 16 80 0.341126 20 000
70 16 80 0.340802 30 000 76 16 80 0.341130 30 000
74 12 48 0.343850 40 000 80 16 80 0.341360 40 000
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where the density of statesDL(S1 ,S2) is approximated by
the histogram produced by multihistogram reweighting of all
available data for givenbG and L3 ~see Table I!. Having a
good estimator of the density of statesDL(S1 ,S2) from a
sufficient number of simulation points we are able to inter-
polate in bH at fixed MH* to localize the phase transition,
interpolate inMH* in order to find the critical Higgs boson
mass, and extrapolate to complexbH to study Lee-Yang ze-
ros.

Finally, all considered quantities are translated into physi-
cal units. This allows us to combine results obtained for dif-
ferent bG and gives a check to what extent the continuum
limit is reached. The size of the lattice in continuum length
units ~i.e., the inverse 3D gauge couplingg3

2) is given by the
expression

lg3
25Lag3

254L/bG ~2.8!

and the jump of the quadratic scalar condensate is in the
corresponding mass units

D^f1f&

g3
2

5
1

8
bGbHD^r2&. ~2.9!

HereD^r2&5^rb
2&2^rs

2& denotes the difference of the lattice
quadratic scalar condensates measured at the pseudocritical
hopping parameter between the broken (^rb

2&) and symmet-
ric (^rs

2&) phases, respectively.

III. THE BEHAVIOR OF THE LATENT HEAT
WITH INCREASING HIGGS BOSON MASS

A nonvanishing latent heatDe is one of the characteris-
tics for a first order phase transition. In our model the latent
heat is proportional to the jump of the quadratic scalar con-
densateD^f1f& @5#. The proper identification of the scalar
condensate discontinuity becomes increasingly demanding
near to the end of the first order transition. The correlation
length grows beyond the size of the system under study, in
particular if the end point is a critical point. There can be an
apparent metastability on a finite torus which delays the
approach to the thermodynamical limit. In this section we
identify the end of the phase transition with the point in the
bH –MH* plane where the discontinuity vanishes.

The minimum of the Binder cumulant

Br2~L,bH!512
^~r2!4&

3^~r2!2&2
~3.1!

and the maximum of the susceptibility ofr2

Cr2~L,bH!5^~r2!2&2^r2&2 ~3.2!

are chosen to define pseudocritical values of the hopping
parameterbH . The jumps inD^r2& are extracted from the
peaks of the histograms reweighted to these values ofbH .
The r2 histograms at the respective pseudocritical couplings
show how the discontinuity decreases with increasingMH* .
The gap between the peaks is more and more filled, and the
distance between them becomes smaller~Fig. 1!.

At any Higgs boson massMH* we attempt to perform the
thermodynamical limit ofD^r2& by assuming the finite size
corrections to follow an inverse cross sectional law~sug-
gested by the behavior of the Potts model in two dimensions
@19#!:

uD^f1f&`2D^f1f& l u}1/l 2. ~3.3!

Figure 2 shows the different infinite volume extrapolation
of D^f1f&/g3

2 at MH* 570 and 76 GeV. We have used two
criteria ~minimum of the Binder cumulant and maximum of

FIG. 1. Histograms ofr2 for different MH* at the respective
pseudocriticalbH ~defined by the minimum of the Binder cumulant!
for a 803 lattice,bG512.

FIG. 2. Quadratic Higgs boson condensate jumpD^f1f&/g3
2 as

function of inverse physical length squared, upper data correspond
to MH* 570 GeV, lower toMH* 576 GeV.
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the susceptibility for the lattice quadratic Higgs boson con-
densate! to determine the pseudocriticalbH . One observes
that the data for differentbG cluster along one curve within
their errors and do not show a significant dependence on the
lattice spacinga. Therefore, we conclude that the quadratic
Higgs boson condensate jump at the measuredbG values is
already sufficiently near to the continuum limit. Obviously
the latent heat atMH* 576 GeV has a vanishing thermody-
namical limit. At the larger Higgs boson mass the assumed
1/l 2 scaling compatible with the vanishing limit of the con-
densate sets in only for the largest considered volumes.

This feature becomes even more pronounced at interme-
diate Higgs boson massMH* 574 GeV. Figure 3 shows the
volume dependence of the condensate jump forMH* 574
GeV. This picture includes, besides reweighted data, original
simulations at that Higgs boson mass for lattices up to 963 at
bG512. The onset of the 1/l 2 scaling is delayed to lattices
not smaller than 803 ~for bG512). If only those data are
considered the latent heat is consistent with zero.

The summary of the extrapolations to the thermodynami-
cal limit is collected in Fig. 4. For the extrapolation accord-
ing to Eq.~3.3! we have used the results for the discontinuity
at (lg3

2)22,0.003 which correspond to lattices>643 for
bG512 and 803 for bG516. For l3 /g3

2'0.107 (MH* 574
GeV! a different extrapolation is shown, lying below the
general trend, which is compatible with zero at that Higgs
boson mass. This extrapolation takes into account only the
two largest volumes atbG512. The uncertainty reflects the
scattering of slopes of the straight line interpolation.

Concerning the two-parameter multihistogram extrapola-
tion we can report that the purely interpolated histograms at
MH574 GeV near to the end point are in reasonable agree-
ment with histograms at that mass supported by actual simu-
lations. However, at that mass we are too near to the end-
point, such that simulations at still larger lattices are
necessary in order to estimate the correct thermodynamical
limit.

We conclude that the critical coupling, if defined by van-
ishing latent heat~vanishing jump of the quadratic scalar
condensate!, is bounded from above as

l3 crit /g3
2,0.107. ~3.4!

This bound is somewhat larger than the critical coupling
given in@8#. It could be tempting to explain this difference to
the somewhat smallerbG59 in their paper.

In this section we have assumed an early continuum limit
by plotting data from differentbG as a function of the physi-
cal lattice volume. The data were compatible with each other
within the errors. The account for finitea corrections of ex-
pectation values in the thermodynamical limit could be per-
formed ~if necessary! along the line of Ref.@20#.

IV. LEE-YANG ZEROES NEAR THE CRITICAL
HIGGS BOSON MASS

In this section we will determine the critical Higgs boson
mass by analyzing the position of the Lee-Yang zeroes in the
complexbH plane and their motion with increasing size of
the finite lattice system. Phase transitions correspond to
nonanalytical behavior of the infinite volume free energy
density as function of couplings which normally are real val-
ued. This is signalled by zeroes in the complex plane~to
which the relevant coupling constant is extended! of the par-
tition function of finite systems. If there exists a phase tran-
sition driven by this coupling some of these zeroes cluster, in
the thermodynamical limit, along lines that pinch the real
axis. This prevents the analytic continuation along the real
axis corresponding to that coupling.

We sketch here the motion of the most important zeros
with increasing volume. Neglecting interface tension effects
the partition function at the transition point is given by the
contributions of the two phases

Z5Zs1Zb5e2L3f s1e2L3f b, ~4.1!

FIG. 3. Quadratic Higgs boson condensate jumpD^f1f&/g3
2 as

function of inverse physical length squared atMH* 574 GeV.
FIG. 4. Infinite volume discontinuityD^f1f&/g3

2 shown vs
l3 /g3

2. Filled symbols mark the Higgs boson massesMH* 570, 74,
and 76 GeV where data have been taken, open symbols denote
results from FS interpolation. The isolated lower data point at
MH* 574 GeV refers to an infinite volume extrapolation including
only 803 and 963 lattices as described in the text.

56 3891WHERE THE ELECTROWEAK PHASE TRANSITION ENDS



where f s(b) denotes the lattice free energy per site of the
so-called symmetric~broken! phase. The free energy density
can be expanded around the real-valued pseudocritical cou-
pling bHc

f s,b~bH!5 f ~bHc!1^Es,b~bHc!&~bH2bHc!

1O@~bH2bHc!
2#. ~4.2!

To obtain^E& we use the action in the form

S5S023bHL3Elink1bR
2L3~r422r2!, ~4.3!

with r2 defined in Eq.~2.5! and
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rx
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Taking into account that the Higgs boson self-coupling is
~for given MH* ) quadratic inbH we find

^E~bHc!&523^Elink&12
bRc

bHc
~^r4&22^r2&!, ~4.5!

where^•••& denotes the Monte Carlo average as before.
Using the decomposition atbHc

^Es~b!&5^E&7
1

2
D^E&, ~4.6!

the partition sum behaves as

Z}coshFD^E&
2

L3~bH2bHc!G . ~4.7!

For the complex couplingbH5RebH1 i ImbH we obtain in
this approximation that the zeroes of the complex partition
function Z are located at (n are integers!

ImbH
~n!5

2p

L3uD^E&u
S n2

1

2D , ~4.8!

RebH5bHc . ~4.9!

For a volume independentD^E& the imaginary part of the
hopping parameter at the position of the zeroes would scale
with the inverse volume. For infinite volume the zeroes be-
come dense and prevent analytic continuation ofZ beyond
bHc .

Taking into account Eq.~4.5! and using the identity for
the condensate jumps@7#

23bHc D^Elink&1~122bRc!D^r2&12bRc D^r4&50
~4.10!

one easily finds

2D^E&5
112bRc

bHc
D^r2&. ~4.11!

Therefore, for the phase transition still being first order one
expects the approximate relation between the imaginary part

of the leading zeros in the complex hopping parameter plane
~with indexn) and the Higgs boson condensate discontinuity

ImbH
~n!5

2pbHc

L3~112bRc!D^r2&
S n2

1

2D . ~4.12!

SinceD^r2& itself depends on the size of the lattice~as
discussed in Sec. III! the simple 1/L3 behavior for Im bH is
modified and can be expected only asymptotically.

An analysis of the first Lee-Yang zero in the crossover
region of the 3D SU~2!-Higgs boson model has been carried
out recently in Ref.@8#. Here we are interested to discuss in
more detail the change from first order transition to a cross-
over behavior at the critical Higgs boson mass.

As usual, the partition function has to be analytically con-
tinued into the complex plane as function of the complex
hopping parameterbH near to the real pseudocritical cou-
pling bHc . This can be done by reweighting using Eq.~2.6!.
SincebH is complex, the actionS and consequentlyZ be-
come complex, too. The zeroes ofZ are found numerically
using the Newton-Raphson method for solving simulta-
neously ReZ50 and ImZ50. To estimate the accuracy of
the position of the zeroes in the complex plane we have
calculated them using only the half data sample.

In Fig. 5 the modulus of the complex partition function
uZnormu in the neighborhood of the pseudocritical hopping
parameterbHc is shown.Znorm has been used for clarity. This
means thatZ(bH) is divided, for each complexbH , by its
~real! value at RebH , Z(RebH). The figure represents a lat-
tice of size 803 at bG512 for a Higgs boson massMH* 570
GeV, where the transition is still clearly first order@7#. The
normalized uZnormu approaches zero in the clearly distinct
minima.

The difference in the pattern of the leading complex ze-
roes is demonstrated in Figs. 6 and 7 referring toMH* 570
and 76 GeV for the same lattice size 803 and lattice gauge
coupling bG512. Each figure shows a part of the strip
0<ImbH<331024 along the real axis where the leading
Lee-Yang zeroes are located at the respective Higgs boson
mass. For the larger Higgs boson mass the normalized modu-
lus decreases much faster with increasing ImbH , less zeroes
are localized inside the strip and the funnels which form the
uZnormu landscape at the locations of the Lee-Yang zeros be-
come less steep. The zeros move away from the real axis
with increasing Higgs boson mass. Notice that only for the
lower Higgs boson mass the pattern approximately follows

FIG. 5. 3D view of uZnormu near to the first zeroes atbG512,
803 andMH* 570 GeV.
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the n dependence given in Eq.~4.12!. This is a hint for an
inherently different behavior of the model at these selected
Higgs boson masses. To answer the question whether this
difference shows the vanishing of the phase transition we
investigate the zeroes in the thermodynamical limit.

In Fig. 8 the first two zeros of different lattice volumes are
collected. There is a tendency of the zeros to move to larger
RebH with decreasing lattice volume and increasing index of
the zero~for low n). The first tendency corresponds with the
fact that the maximum of the link susceptibility gives a
pseudocriticalbH which approaches the infinite volume limit
bHc from above@7#.

To extract information about the end point of the transi-
tion we fit the imaginary part of the first zero for each avail-
able physical lengthl @Eq. ~2.8!# according to

ImbH
~1!5C~ lg3

2!2n1R. ~4.13!

A positive R in Eq. ~4.13! should indicate that the first zero
does not approach anymore the real axis in the thermody-

namical limit ~as required for a phase transition! and our first
order transition has turned into a crossover.

We assume that for equal physical volume the imaginary
part of the Lee-Yang zeros shows a universal behavior. The
values of lnImbH

(1) are shifted to

ln ImbH
~1!→ ln ImbH

~1!2 ln~c1c2! ~4.14!

in order to use the results of both gauge couplings for the fit
~Fig. 9!. The main shift lnc1 is derived from Eq.~4.12! as-
suming that the continuum condensate jump is already inde-
pendent ofa:

c15
bHc

2

bG
2 ~112bRc!

. ~4.15!

In the logarithmic shift we have used the real-valued finite
volume couplings RebH

(1) and bR(RebH
(1)). A small extra

shift lnc2 ~with c2 between 1.028 and 1.095 in the used range
of l3 /g3

2) has been added to correct the eventual imprecision
of the used equation. It has been adjusted in a way to provide
a minimalx2 for all ~reweighted! data at givenl3 /g3

2 in the
fit of Eq. ~4.13!. The three right-most data points in Fig. 9
arises from 963 data atMH* 574 GeV which are reweighted
to MH* 572 and 76 GeV, too.

The values of the fit constantR using all lattice sizes and
both gauge couplings at fixedl3 /g3

2 are given in Fig. 10.
Near to the end point thex2 of the fits deteriorate. For
smaller lattice sizes the asymptotic behavior}1/l 3 of ImbH

(1)

is still not reached. Hence the constantR is found negative as
long as the phase transition is of first order. We localize the
end point of the transition whereR as a function ofl3 /g3

2

crosses zero. This gives the critical value

l3 crit /g3
250.102~2!, ~4.16!

which translates intoMH crit* 572.2(6) GeV.

FIG. 6. Contour plot ofuZnormu below 0.2 atbG512, 803 and
MH* 570 GeV with height differences of 0.02.

FIG. 7. Same as Fig. 6 atbG512, 803 andMH* 576 GeV.

FIG. 8. First two zeroes atbG512 andMH* 570 GeV for dif-
ferent lattice sizes.

56 3893WHERE THE ELECTROWEAK PHASE TRANSITION ENDS



Restricting the fit of Eq.~4.13! only to larger volumes the
expected powern53 for the first order transition is repro-
duced. This is shown in Fig. 11 where only six~seven! data
points above ln(lg3

2)52.55~see Fig. 9! are included in the fit.
For l3 /g3

2.0.102 the fit yields a power which strongly de-
creases. This again indicates the change to the crossover.
This critical Higgs boson coupling is only slightly below the
upper bound obtained in Sec. III from the argument of van-
ishing latent heat.

V. DISCUSSION AND CONCLUSIONS

We have compared two methods which promised to give
estimates for the critical Higgs boson mass. We have used on
one hand a criterion based on the thermodynamical limit of

Lee-Yang zeros, requiring that the leading zero approach the
real axis in the infinite volume limit. This has led to the
critical coupling ratio of Eq.~4.16!. For this purpose we had
to rescale results obtained with different values of the lattice
gauge coupling, in our workbG512 andbG516.

The criterion based on a vanishing scalar condensate
tends to predict a too high critical Higgs boson mass in ac-
cordance with the multihistogram interpolation. Very near to
the end point a two-state signal persists which is not related
to a first order phase transition. One has to use essentially
larger lattices in order to get a reliable infinite volume ex-
trapolation. By this technique we have identified the upper
bound of Eq.~3.4!.

The critical temperatureTc and the actual Higgs boson
massmH of the underlying 4D theory corresponding to the
endpoint of the first order transition can be calculated using
the relations in Sec. II of@7#. These quantities are listed in
Table II using the lattice couplingsbG512 and
bHc50.3437161 at the critical continuum coupling ratio
@Eq. ~4.16!# as derived from the Lee-Yang zeroes analysis.
Additionally, the four-dimensionalMS running coupling
g2(mW) is given. All quantities are calculated for the two
cases of the 4D SU~2!-Higgs boson theory, without fermions
and including the top quark.

The apparent two-state signal forr2 near or at the end
point is misleading and cannot be an indicator of a first order
phase transition. The reason is that the correlation length
grows to the size of the system being simulated. AtMH* 570
GeV, for instance, these two scales can be safely separated
from each other@7#. When the transition becomes increas-
ingly weak the situation will change rapidly. In order to mea-
sure the correlation length of the competing phases one
would have to take some care. One should carefully monitor
the tunneling of the system in order to measure the correla-
tion functions of the pure phases, respectively. We have suc-
cessfully applied such a procedure atMH* 570 GeV. For the

FIG. 9. Logarithm of the imaginary part of first zeroes at differ-
ent l3 /g3

2 vs logarithm of the physical length ln(lg3
2) together with

the fit described in the text.

FIG. 10. Fitted distanceR as function ofl3 /g3
2.

FIG. 11. Fitted powern as function ofl3 /g3
2.

TABLE II. Some quantities atl3 crit /g3
250.102 (MHcrit* 572.2

GeV!; upper row without fermions, lower including top quarks.

mH /GeV Tc/GeV g2(mW)

67.0~8! 154.8~2.6! 0.423
72.4~9! 110.0~1.5! 0.429
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weaker transitions at higher Higgs boson mass this becomes
increasingly difficult. Therefore we have restricted our atten-
tion exclusively to bulk variables. At the critical endpoint
one expects the correlation length to diverge.

Our result forl3 crit /g3
2 is not so far from the result by

Karschet al. @8# who have obtained~in our notation!

l3 crit /g3
250.0951~16!, ~5.1!

at bG59 analyzing lattices with an extent ln(lg3
2)<3.06. The

remaining difference between Eqs.~5.1! and~4.16! can com-
fortably be explained by the fact that we come nearer to the
continuum limit.

It might be instructive to transform our results to a 4D
SU~2!-Higgs model at a larger MS̄running gauge coupling.
Usually in 4D simulations, the bare couplingg250.5 is used.
The measured renormalized 4D gauge coupling does not
seem to change significantly with the Higgs boson mass in
the so far reported region from 18 to 49 GeV@3,21# and
varies from 0.56 to 0.59. We expect that this coupling re-
mains within this range at larger Higgs boson mass, too.
Since a perturbative calculation is missing we assume here,
following Refs. @22,23#, that the measured renormalized
gauge coupling roughly corresponds to theMS running cou-
pling.

For definiteness we chooseg2(mW)50.58 and take
l3 /g3

250.102. We obtain the critical Higgs boson mass
mH565.2 GeV and the corresponding transition temperature
Tc5129.6 GeV. This is noticeably smaller than the critical
Higgs boson mass estimated in Ref.@17# which is the only
4D result so far available.

At weakly first order transitions, the 3D effective theory
seems to describe the transition parameters of the 4D model
reasonably well@22,23#. Concerning the apparent first order
nature of the transition atmH>67 GeV in the 4D approach,
there is reason for doubts because of the very coarse discreti-
zation withNt52 temporal steps.
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Jülich is acknowledged. Additionally, we thank the council
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@23# M. Gürtler, E.-M. Ilgenfritz, and A. Schiller, Z. Phys. C~to be

published!.

56 3895WHERE THE ELECTROWEAK PHASE TRANSITION ENDS


