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Diffractive production ofJ/c particles by virtual photons on a proton target is studied with a view towards
understanding two important corrections to the leading order result. First, the effect of Fermi motion of the
heavy quarks is studied by performing a systematic expansion in the relative velocity, and a simple correction
factor is derived. This is considerably less than estimated previously. Second, since the kinematics necessarily
requires that nonzero momentum be transferred to the proton, off-forward gluon distributions are probed by the
scattering process. To estimate the importance of the off-forwardness, we compute, in leading order perturba-
tion theory, the extent of deviation from the usual forward gluon distribution in a quark.
@S0556-2821~97!03013-0#
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I. INTRODUCTION

There is considerable interest in diffractive electroproduc-
tion of J/c mesons off protons at high energies because this
process is important for studying the gluon density in a pro-
ton at low values of the Bjorkenx. This interest stems from
the simplicity of the leading order QCD expression for lon-
gitudinally polarized photons which was first derived by
Ryskin @1,2#:

ds

dt
~g*1P→J/c1P!5

16p3MGee

3Q6 as~Q̄
2!@jg~j,Q̄2!#2,

~1!

whereQ̄251/4(Q21M2), M is theJ/c mass, andGee is the
decay width into leptons. The above equation was derived
under the assumption ofs@Q2@M2@t, and that Fermi mo-
tion of the quarks in the meson can be entirely neglected. It
was further supposed that the gluon density appearing in Eq.
~1! is that which would be measured in some inclusive hard
process, i.e., that it corresponds to the matrix element of
gluon operators between states of equal momentum.

In this paper we shall examine the effect of relaxing two
assumptions which go into Eq.~1!. The first is to take into
account the correction arising from the Fermi motion of the
c c̄ pair. In the work of Brodskyet al. @4# this motion is
contained in the vector-meson light-cone wave function
cv(k' ,x), a quantity which is in principle calculable from
lattice QCD but whose presently unknown form is an impor-
tant source of ambiguity. For example, Frankfurtet al. @3#
conclude that wave function effects suppressJ/c production
by a factor of 3 or more. However, Ryskinet al. @2# estimate
a suppression factor of 0.4<F2<0.6. The detailed shape of
the wave function appears to be an important source of the
difference.

The method of treating the diffractive process, as well as
Fermi motion corrections, used in this paper differs from
previously used methods in an essential way. Rather than
work in the infinite momentum frame and in theA150
gauge, we shall choose the rest frame of theJ/c and the

Coulomb gauge for the soft gluons in the meson wave func-
tion. This is the natural choice for heavy-quark systems be-
cause one can then use systematic procedures, such as non-
relativistic quantum chromodynamics@5# ~NRQCD! or the
method developed in Refs.@6–8#, in order to evaluate
quarkonium observables of interest to any desired level of
accuracy. However, for the gluons in the fast-moving proton
we shall continue to use theA150 gauge because this is the
natural gauge to use for parton distributions. The two kinds
of gluons have very different momenta and hence are effec-
tively distinguishable, justifying the use of two different
gauges in two different parts of the same Feynman diagram.
It turns out that a gauge-invariant correction factor, derived
in this paper, multiplies Eq.~1!:

S 11
8

9

¹2f

M2f D .
The second derivative of the wave function is understood to
be evaluated at the origin. It is a nonperturbative quantity
whose value has to be inferred from some other quarkonium
processes, such as decays or production, involving large mo-
mentum transfer. In previous work@6,7# its value was esti-
mated:

¹2f

M2f
'20.07.

The correction factor due to Fermi motion is therefore
around 0.96, a value considerably below the other estimates
@2,3#. Hence, the ambiguity in extracting the normalization
of the gluon distribution may be under better control than
anticipated so far.

The second issue to be considered in this paper is the
gluon distribution which appears in Eq.~1!. Recently Ji@10#
identified certain twist-two ‘‘off-forward’’ quark distribu-
tions inside the proton which, when measured, will reveal the
orbital angular momentum content of the proton. Subse-
quently Radyushkin@11# extended the discussion to the off-
forward or ‘‘asymmetric’’ gluon distribution in the proton
and pointed out that diffractive vector meson electroproduc-
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tion necessarily measures this quantity. Here we have exam-
ined this issue further by considering gluon radiation from a
quark and explicitly computed the off-forward gluon distri-
bution in a quark to leading order inas . This enables an
estimate to be made of the extent to which the gluon distri-
bution measured inJ/c diffractive production differs from
that which would be measured in some inclusive process like
g1P→J/c1X.

II. FERMI MOTION

A. Kinematics

We consider a massless proton target and thet50 limit.
Define two null vectorspm and nm with p25n250 and
p•n51:

pm5
L

A2
~1,0,0,1!, nm5

1

A2L
~1,0,0,21!. ~2!

pm is also the proton’s momentum. Although we shall not
need to do so explicitly,L can be adjusted to bring the
producedJ/c to rest. The kinematic region of interest is
considered to bes@Q2@M2 . With the definitions

j52
q2

2p•q
, q252Q2, ~3!

the other momenta in Fig. 1 are

qm52jpm1
Q2

2j
nm,

P8m
5pm1Dm,

Dm52jpm,

Km5
jM2

Q2 pm1
Q2

2j
nm. ~4!

The polarization vectors of the longitudinally polarized pho-
ton andJ/c are, respectively,

«L
m5

j

Q
pm1

Q

2j
nm,

EL52j
M

Q2 p
m1

Q2

2Mj
nm. ~5!

These obey «L•«L51, «L•qL50, and EL•EL521,
EL•KL50, with K25M2. We have kept only leading terms
and setD''0.

B. Diagrams

The leading order contribution toJ/c diffractive produc-
tion is given by the sum of the diagrams shown in Fig. 2, to
which must be added the contribution of two other diagrams
that give the same numerical values because of time-reversal
symmetry. Consider, by way of example, the first of these
which has the expression

A15E d4k

~2p!4
d4l

~2p!4
Tr@Smn~k,D!H1

mn~k,l !M ~ l !#,

H1
mn~k,l !5eQg

2gmSF~k1q2K/21l !gn

3SF~q2K/21l !e” ~q!. ~6!

The perturbative partHmn(k,l ) is different for the other
diagram but the other factors in Eq.~6! remain unchanged.
We have not indicated color explicitly in the above; its in-
clusion will amount to a simple factor which will be inserted
at the end of the calculation. The nonperturbative informa-
tion of the vector meson is contained in the Bethe-Salpeter
wave functionM (l ):

M ~ l !5E d4xei l •x^K,EuT@c~x/2!c̄~2x/2!#u0&. ~7!

In the above,l m and xm are, respectively, the relative mo-
mentum and relative distance of thec c̄ pair. The nonpertur-
bative information of the gluons in the proton is contained in
Smn:

Smn~k,D!5E d4xei ~k1 D/2 !•x^P8uT@Am~2x/2!An~x/2!#uP&.

~8!

While the diagrams in Fig. 2 contain the leading order con-
tribution to the cross section, they also contain parts which
are next to leading order~NLO!. The sense in which these
are to be understood as ‘‘higher order’’ will be made precise

FIG. 1. Definition of kinematic variables forJ/c diffractive
production off a proton target by a virtual photon.

FIG. 2. Diagrams which give a nonzero contribution at order
Q21 andv0. The relative weight at this ordera:b is as 1:2. Two
other diagrams, which are numerically equal by time-reveral invari-
ance, are not shown. The complete expression is given in Eq.~16! .
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later. Other diagrams will have to be included~see Fig. 3! for
a complete calculation at the~NLO! level.

C. Expansion

The diffractive process considered here has two large
scales,Q2@M2@LQCD

2 . Since ac c̄ system is close to being
a nonrelativistic Coulombic bound state, it allows for an ex-
pansion in powers of the heavy quark relative velocity.
Hence it is useful to expand the inner integral in Eq.~6!:

V~k!5E d4l

~2p!4
Hmn~k,l !M ~ l !5 (

n50

`

Vn
mn

5 (
n50

`
1

n!

]

]l a1
•••

]

]l an
Hmnu l 50M

a1•••an, ~9!

where

Ma1•••an5E d4l

~2p!4
l a1

•••l anM ~ l !

5 i ]a1
••• i ]an^K,EuT@c~x/2!c̄~2x/2!#u0&ux50 .

~10!

The set of constantsMa1•••an provides a description
equivalent to that of the original Bethe-Salpeter~BS! wave
function in Eq.~7! . The expansion, Eq.~9!, is useful because
the quarks are nearly on mass shell: (1/2K1l )2'm2 im-
plies that all components ofl m are small relative to the
quark massm in the meson’s rest frame and, in particular,
l •n;(m/Q)2. In the largeQ2 limit this implies consider-
able simplification, giving a limit approximately independent
of l :

1

~k1q2K/21l !22m21 i«
'
2j

Q2

1

k•n2j1 i«
, ~11!

1

~q2K/21l !22m21 i«
'2

2

Q2 . ~12!

The inclusion of Fermi motion requires that we keep a suf-
ficient number of derivatives with respect tol in Eq. ~9!.
These may be computed using the simple Ward identity

]

]l a
SF52SFgaSF , ~13!

and theQ2→` limit should be taken after performing the
trace algebra. Stated in words, a differentiation of either
propagator in Eq.~6! with respect tol splits that propagator
into two. Since we shall work uptoO(v2), only two deriva-
tives ofHmn(k,l ) are needed.

D. Gauge invariance

It is obvious from the occurrence of the ordinary deriva-
tives in Eq.~10!, or the form of the BS wave function Eq.
~7!, that gauge invariance has been violated. In earlier work
on quarkonium processes@6–8# we have encountered an
identical situation — the diagrams in Fig. 2 yield expressions
which are not gauge invariant toO(v2) and one needs to
consider additional diagrams, which are higher order inas .
These are shown in Fig. 3. The gluon fields indicated in these
diagrams combine with the ordinary derivatives to yield co-
variant derivatives,]a→Da, thereby restoring gauge invari-
ance. In the Coulomb gauge, the contribution of explicit glu-
ons isO(v3) and so the reduction of the Bethe-Salpeter
equation performed in Ref.@9# without explicit gluons is
adequate up toO(v2). We therefore arrive at the following
gauge-invariant matrix elements:

^K,Eucc̄ u0&5
1

2
M1/2S f1

¹2f

M2 DE” * S 11
K”

M D
2
1

6
M1/2

¹2f

M2 E” * S 12
K”

M D ,
^K,Euc iDJ ac̄ u0&5

1

3
M3/2

¹2f

M2 E*
b

3S gab1 i eabmngmg5

Kn

M D ,
^K,Euc iDJ aiDJ bc̄ u0&5

1

6
M5/2

¹2f

M2

3S gab2
KaKb

M2 DE” * S 11
K”

M D .
~14!

In the above,f and¹2f are the nonrelativistic wave func-
tion and its second derivative evaluated at zero separation.
Inclusion of ¹2f amounts to taking the first step towards
inclusion of Fermi motion.

FIG. 3. Diagrams which give a nonzero contribution at order
Q21 and v2. The crosses denote connection to external gluons
originating from the proton. The relative weight at this order
a:b:c:d:e: f is as 21:1:22:2:2:24. Note that each internal
gluon zero-momentum gluon line, in the Coulomb gauge, is actu-
ally just a differentiation of the quark propagator. Six other dia-
grams, which are numerically equal by time-reversal invariance, are
not shown. The complete expression is given in Eq.~16!.
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E. Traces

All the ingredients are now in place for calculating the
trace of the quark loops. Because we shall need only the
leading twist piece, symmetric inm and n, it will be suffi-
cient to calculate

Vn5Tr (
i51,2

Vn
ii5~2gmn1pmnn1pnnm!Tr@Vn

mn#

~15!

for n50,1,2 (n is the order of differentiation with respect to
l ) and then keep only the leading order term inO(1/Q). We
record below the results of the calculation listing, for clarity,
the relative contribution of only those diagrams which give a
nonzero contribution:

V052
4eQg

2f~0!

M1/2Q
2~112!S 11

2

3

¹2f

M2f D1O~1/Q3!,

V15O~1/Q3!,

V25
4eQg

2f~0!

M1/2Q
2S 231

4

3
1
4

3
2
8

3D ¹2f

M2f
1O~1/Q3!.

~16!

The factor of 2 multiplying the brackets in the above equa-
tions comes from the diagrams which are permutations of the
ones shown. The sum over all diagrams is

V52
24eQg

2

M1/2Q
f~0!S 11

4

9

¹2f

M2f D1O~1/Q3!. ~17!

Note that this leading order contribution is in fact indepen-
dent of the gluon momentumk in theQ2→` limit. The term
in the brackets represents the correction due to the Fermi
motion of the heavy quarks and its square is precisely the
factor which modifies Eq.~1!.

III. GLUON DISTRIBUTION

A. Asymmetric distribution

Let us now return to the amplitude for diffractive scatter-
ing, a typical contribution to which is given by Eq.~6!. The
photon and proton both move along theẑ direction, and the
gluons in the proton have limitedk'

2 andk2. This means that
one can perform a systematic collinear expansion in these
quantities just as in the treatment of deep-inelastic scattering
@12#:

Hmn~k,l !5Hmn~k1,l !1~k2k1!a]a

3Hmn~k,l !uk5k11•••. ~18!

Keeping only the first, leading twist, term gives, in the
A150 gauge,

E d4k

~2p!4
Smn~k,D!Hmn~k,l !

5E dyE dl

2p
eil~y2 j/2 !

3 K P8UFAmS 2
l

2
nDAnS l

2
nD GUPLHmn~y,l !. ~19!

In the above we have setx25ln2 andk15yp1. The time-
ordering operation becomes irrelevant on the light cone.

The inner integral will now be analyzed following the
discussion given by Radyushkin@11#. Define the ‘‘asymmet-
ric distribution function’’Fj(X) as below:

K P8Un2G1 i S 2
l

2
nDn2G1 i S l

2
nD UPL

5
1

2
ū~p8!n”u~p!E

0

1

dX$eil~X2j/2!1e2 il~X2j/2!%Fj~X!.

~20!

A sum over transverse components (i51,2) is implied. The
proton spinor product isū (p8)n”u(p)52A12j, with the ini-
tial and final protons having the same helicity and
p85(12j)p. Making a Fourier transformation yields

u~y!Fj~y!1u~j2y!Fj~j2y!

5
1

A12j
E dl

2p
eil~y2j/2!

3 K P8Un2G1 i S 2
l

2
nDn2G1 i S l

2
nD UPL . ~21!

It is instructive to insert a complete set of states for
y.j.0:

Fj~y!5
y~y2j!

A12j
(
k

d~y211x!^P8uAi uk&^kuAi uP&.

~22!

Herex5k•n with 0,x,1 is the momentum fraction carried
by the intermediate state. Comparing with the usual~diago-
nal! gluon distribution function forj50 it immediately fol-
lows that

Fj50~y!5yg~y!,

g~y!5y(
k

d~y211x!^PuAi uk&^kuAi uP&. ~23!

We shall now relate the matrix element in Eq.~19! to
Fj(y). Inverting the relationG1 i5]1Ai gives

Ai~ln!5n2E
0

`

dsG1 i~ln1sn!. ~24!

Inserting the above into Eq.~19! and using the definition of
Fj(y) in Eq. ~20!,
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E dl

2p
eil~y2 j/2!K P8UAi S 2

l

2
nDAi S l

2
nD UPL

52A12jH Fj~y!

y~j2y2 i«!
1

Fj~j2y!

~j2y2 i«!~y2 i«!J .
~25!

The imaginary part of the above fory.0 is

2pA12j
Fj~j!

j
d~j2y!

and, hence,

ImE d4k

~2p!4
d4l

~2p!4
Tr@Smn~k,D!Hmn~k,l !M ~ l !#

52
1

2
pA12j

Fj~j!

j
V. ~26!

B. Cross section

All the ingredients are now in place for calculating the
cross section for the diffractive process under consideration:

ds

dt
5

1

16ps2
uAu2

5
1

16p~Q2/j!2S 2

3A3D
2S 12pA12j

Fj~j!

j
V D 2.

~27!

The factor 2/3A3 comes from summing over colors, andV is
the quantity calculated in the previous section, Eq.~17!, from
the expansion of the heavy quark loop integral. DefiningG to
be the leading order decay width into lepton pairs,

G5
16peQ

2ae
2

M2 , ~28!

yields the important result

ds

dt
5
16p3MG

3Q6 as~Q̄
2!@A12jFj~j!#2S 11

8

9

¹2f

M2f D .
~29!

Making the approximate identification

A12jFj~j!'jg~j!, ~30!

and setting the last factor to unity reproduces Eq.~1! once
again. This identification was motivated by Eq.~23! but the
exact relation betweenFj(j) andg(j) is far from clear.

C. Perturbative gluon distribution

Fj(j) andg(j) can be known only if the nonperturbative
structure of the proton state is known. However, it would be
highly desirable to have at least some partial knowledge of
their structure. To this end, consider the following simple
solvable problem: Imagine that the target proton is replaced
by a single quark which can radiate a gluon. Its light-cone

wave function can be computed order by order in perturba-
tion theory, and the leading order matrix element is

^P8s8uAi uks&5g
k1

p81

1

k'
2(

l
ū~p8s8!e” ~ ll!u~ps!«* i~ ll!,

~31!

wherel andl are the momenta and transverse polarizations
of the emitted gluon. Using

(
l

«m~ ll!«n* ~ ll!52gmn1
lmnn1 l nnm

l •n
, ~32!

and summing overi51,2 gives

^P8uAi uk&^kuAi uP&5g2
2x

A12j

1

k'
2

11x22j

~12x!~12x2j!
.

~33!

Inserting this into Eq.~22! yields

Fj~y!5g2
2y~y2j!

~12j!
E d2k

16p3k'
2 E dx

3d~y211x!
11x22j

~12x!~12x2j!
. ~34!

The last integral is both infrared and ultraviolet divergent. It
is regulated by inserting a low momentum scale cutoff
m5O(LQCD) and a high momentum cutoffk'5O(Q).
Multiplying by the color factorCF 54/3, we arrive at the
perturbativeasymmetricgluon distribution inside a quark:

Fj~y!5
2as

3p H 11
~12y!2

~12j! J lnQ2

m2 . ~35!

Note that

A12jFj~j!5
2as

3p
A12j$11~12j!% ln

Q2

m2

5
4as

3p S 12j1
1

8
j21••• D , ~36!

but that the usual perturbativesymmetricdistribution, which
can also be obtained by first puttingj50 in Eq. ~35! and
then settingy5j, is

jg~j!5
4as

3p S 12j1
1

2
j2D . ~37!

Comparison of the last two formulas gives an estimate of the
extent to which the asymmetric distribution departs from the
symmetric one asj becomes larger.

Finally, we remark that there exists some confusion in the
literature about various factors of 2 and 4. First, it is claimed
in the work of Brodskyet al. @4# that the cross section dis-
played in Eq.~1! must be multiplied by 1/4. We do not find
this to be the case; the result of Ryskin@1,2# appears to be
correct. This point has been corroborated in Ref.@3#. A sec-
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ond possible point of confusion concerning the relation be-
tweenFj(y) and the usual gluon distributiong(j) has also
now been resolved following the corrected definition~which
I have used in the final version of this paper! of Fj(y) in Ref.
@11#.
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