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Nucleons in a hot pion gas are studied within the framework of chiral soliton models which contain pions
and also baryons as solitons of the same chiral action. The semiclassical treatment of the soliton solutions must
be augmented by pionic fluctuations which requires renormalization to one loop, and finite temperatures do not
introduce new ultraviolet divergencies and may easily be considered. Alternatively, a renormalization scheme
based on the renormalization group equation at finite temperature comprises and extends the rigorous results of
chiral perturbation theory and renders the low-energy constants temperature dependent, which allows the
construction of temperature-dependent solitons below the critical temperature. The temperature dependence of
the baryon energy and the pion-nucleon coupling is studied. There is no simple scaling law for the temperature
dependence of these quantities.@S0556-2821~97!05519-7#

PACS number~s!: 11.10.Wx, 12.39.Dc, 12.39.Fe

I. INTRODUCTION

It is generally believed that with increasing temperature
hadronic matter undergoes a phase transition to a quark
gluon plasma which hopefully might be produced in heavy-
ion collisions. Already below the critical temperature we ex-
pect the baryon properties to change; of particular interest
are variations in the nucleon massM and the pion-nucleon
coupling constantgpNN , which determine the behavior of
hot nucleonic matter.

Eletsky and Kogan@1# use chiral perturbation theory
~ChPT! to show that the temperature dependence of the
axial-vector coupling constantgA turns out to be the same as
for the pion decay constantf p . With the assumption that the
baryon mass is temperature-independent and with the
Goldberger-Treiman relationf pgpNN5MgA they obtain

M;1, gA; f p , gpNN;1, ~1.1!

a pion-nucleon coupling which remains essentially un-
changed.

Bernard and Meissner@2# use a chiral soliton model with
explicit vector mesons together with a temperature-
dependentf p lent from ChPT@3# or from the Nambu–Jona-
Lasinio ~NJL! model @4#. Qualitatively their results may be
understood by the simple scaling

M; f p , gA;gpNN;1, ~1.2!

which in tree approximation becomes exact in a pure Skyrme
model ~without pion mass term! and which is at variance
with Eq. ~1.1! although with the same result of a
temperature-independent pion-nucleon coupling.

The simple relations~1.2! applied to the density depen-
dence of these quantities have nowadays come to be known
as Brown-Rho scaling@5#. We do not want to discuss here
what happens if the density is varied, but concerning the
temperature there are definitely no reasons that these rela-
tions should hold. Namely, the temperature dependence is
carried by the one-loop contribution which does not scale as
the tree approximation~Sec. II!. Even if the renormalization
is performed at finite temperature such that the low-energy

constants~LEC’s! in the effective action~in particular the
pion decay constant! and hence also the tree approximation
become temperature dependent, the remaining one-loop con-
tribution, which cannot be omitted, destroys these simple
scaling relations~Sec. III!.

II. ONE-LOOP AT FINITE TEMPERATURE

The starting point of our investigation is the standard chi-
ral Lagrangian as given by Gasser and Leutwyler@6#:

L~U !5
f 2

2
@amam22m2u#1l 2~am3an!2

2~ l 11l 2!~amam!21l 4m2~amam!u

2~ l 31l 4!m4u21•••

5
f 2

2
amam2 f 2m2u1(

i

4

l iLi
~4!1•••, ~2.1!

with the abbreviations

U†DmU[ i t•am , 1
4 tr~U1U†![u, UPSU~2!.

The first term in Eq.~2.1! represents the nonlinears model
~NLSM! which is of chiral order 2@ChO(2)] followed by
the relevant ChO(4) terms. For the time being the LEC’s
take their standard values at scalem5mr in order to guar-
antee that the Lagrangian be leading order in the number of
colorsNC . In the following we intend to use the same effec-
tive action in the vacuum sector and in the soliton sector; the
necessary modifications will be discussed immediately. For
the description of one-loop effects fluctuationsh,

U5AAU0exp~ i th / f !AU0 A†, ~2.2!

are introduced around the classical solutionU0:

U051, vacuum sector,

U05exp@ i t r̂F~r !#, soliton sector ~2.3!
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which, in the soliton sector, is of the familiar hedgehog type.
Rotational degrees of freedom are considered in the Euler
angle-dependent SU~2! rotation matrix A; translations are
unimportant in this context. The different classical solutions
in the two sectors lead to decisive implications for the proper
one-loop treatment: while in the vacuum sector perturbation
theory ~ChPT! applies as far as the external momenta are
kept small; the soliton sector’s Casimir energy has to be
evaluated via the phase shifts generated by the scattering
equations for the fluctuations which sum the one-loop con-
tribution to all chiral orders. This complication is caused by
the gradients of the chiral profile in Eq.~2.3! which are of
the ordermr and not small.

For the same reason, in the soliton sector the higher chiral
order terms in the Lagrangian~2.1! are important and may
not simply be neglected. The most elegant way to add higher
chiral orders to the effective action proceeds through the
coupling of vector mesons which leave the Lagrangian to
ChO(4) untouched. However, unfortunately vector mesons
come along with numerous technical difficulties~many more
degrees of freedom, induced components, etc.! whose proper
treatment becomes very complicated. The most simple alter-
native is to use aneffectiveLEC l 251/4e2 in front of the
Skyrme term. The choicee54.25~instead ofe57.24) simu-
lates the higher chiral order terms generated by vector me-
sons@7#. Tree contributions to soliton mass and radius of the
standard ChO(4) lagrangian with and without effective
Skyrme parameter are compared with typical vector meson
results in Table I. Fore57.24 the tree mass of 940 MeV is
reduced to 385 MeV if one-loop corrections are included.
This soliton is just too small. With the effective Skyrme
parametere54.25 the tree values are of the typical magni-
tude obtained also from vector meson models. For a more
detailed justification of this choice see Ref.@7#.

Observables other than the mass may be calculated by
coupling to the corresponding external fields. External elec-
tromagnetic and axial fields couple through the covariant de-
rivative Dm and the external scalar field, relevant for quark
condensate ands term, couples to the quark mass contained
in the parameterm2. In general the external fieldj with
strength« adds to the Lagrangian in the form

L~«!5L~ l i ,U !2« j •J~ l i ,U !, ~2.4!

where J(l i ,U) denotes the corresponding current density.
The external field has to be chosen suitably so as to give the
desired quantity, for details see Ref.@7#. Matrix elements of

j •J are then obtained as a derivative of the soliton mass~tree
1 one loop! in the presence of the external field with respect
to its strength.

Later on all thermodynamical quantities of the vacuum
and soliton sector, respectively, such as thermodynamical
potentials, entropy, and so on are derived from the partition
functions (b5T21)

lnZvac5bVF f 2m21
3

2
g0~m,T!G ,

lnZ5 lnZvac2bM2bFCas. ~2.5!

The vacuum partition function comprises the tree contribu-
tion f 2m2 of the Lagrangian~2.1! with U051 and the famil-
iar one-loop contribution for free massive pions3

2 g0(m,T)
~2.16!. Analogously, in the soliton sector there appears the
soliton massM in tree approximation and the temperature
dependence resides for the time being in the free Casimir
energyFCas ~one-loop contribution! which is generated by
the fluctuations off the soliton background. The correspond-
ing equations of motion for the fluctuatons~2.2! are solved
for the phase shifts in the intrinsic frame. Because these
equations decouple into partial waves characterized by pho-
non spinL and parity the phase shifts may be calculated
individually and summed up over the various channels (Lc):

d~p!5(
Lc

~2L11!dLc~p!. ~2.6!

Technically, this calculation is quite involved and the reader
is refered to@7# for details. With the phase shifts~2.6! the
Casimir energy may be evaluated by means of the formula
@9#

FCas5
1

pE0

`

dpd8~p!Fv2 1
1

b
ln~12e2bv!G

52
1

pE0

`

dp
p

v
d~p!F1

2
1

1

ebv21
G

2
d~0!

p Fm

2
1

1

b
ln~12e2bm!G . ~2.7!

This expression is ultraviolet divergent and requires renor-
malization. It should be noticed here that the divergence is
located in the temperature-independent part, the temperature-
dependent part is perfectly finite and does not introduce new
infinities @see Eq.~2.15! below#. The divergencies are related
to the high momentum behavior of the phase shifts:

d~p! ;
p→`

a0p31a1p1
a2

p
1••• ~2.8!

~the denoted terms give rise to at least logarithmically diver-
gent expressions!. The constantsa0, a1, anda2 are related to
the corresponding heat kernels and are known analytically
for the NLS model@first term in Eq.~2.1!#:

TABLE I. Tree contribution to the soliton mass and the baryon
radius for the ChO(4) Lagrangian with LEC’s at scalem5mr

(e57.24) and for the same Lagrangian with an effective Skyrme
parametere54.25, compared with typical vector meson results~see
e.g.,@8#!.

Soliton mass Baryon radius
M @MeV# ^r 2&B @fm2]

ChO~4! Lagrangian (e57.24) 940 0.09
Effective Skyrme terme54.25 1630 0.24
Vector meson Lagrangian . 1500–1600 . 0.2–0.3
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a050,

a15
1

4pE d3r @2amam23m2~u21!#, ~2.9!

a25
1

8pE d3r @ 1
3 ~amam!21 2

3 ~aman!2

22m2~amam!~u21!1 3
2 m4~u21!2#.

Values for the full model~2.1! a050.1mp
23 , a153.6mp

21 ,
anda2515.2mp have to be determined numerically and the
phase shifts are needed with great precision up to
pmax.25mp whereLmax.100 partial waves are needed@7#.
The strategy is now to subtract the troublesome terms in the
phase shift integral and add them separately using dimen-
sional regularization which involves a scalem hidden in
l,G0 ,G1, andG2:

FCas52
1

pE0

`

dp
p

vFd~p!2a0p32a1p2
a2

p GF1

2
1

1

ebv21
G

2
d~0!

p Fm

2
1

1

b
ln~12e2bm!G

1l@3pm4a024pm2a118pa2#

23pa0G022pa1G124pa2G2 . ~2.10!

The pole contributions (d→4) located in

l5
md24

16p2F 1

d24
2

1

2
@G8~1!1 ln~4p!11#G ~2.11!

may be renormalized

3pm4a024pm2a118pa25(
i

g iE d3rLi
~4!1•••

~2.12!

into the ChO(>4) terms of the Lagrangian. In ChO(4) the
coefficientsg i @6# are simple numerical factors and the pole
contributions are absorbed in the renormalized LEC’s
l i→l i1g il just as in standard ChPT. The remaining ex-
pression for the Casimir energy

FCas52
1

pE0

`

dp
p

vFd~p!2a0p32a1p2
a2

p GF1

2
1

1

ebv21
G

2
d~0!

p Fm

2
1

1

b
ln~12e2bm!G

23pa0G022pa1G124pa2G2 ~2.13!

is finite: it is the central formula of our formulation. The
explicit temperature and scale-dependence is contained in the
contributions

G05g0~m,T!2
m4

32p2S 1

6
1 ln

m2

m2D ,

G15g1~m,T!1
m2

16p2
ln

m2

m2
, ~2.14!

G25g2~m,T!2
1

16p2S 11 ln
m2

m2D .

Let us postpone the discussion of the temperature depen-
dence together with the definition of the heat functions
gn(m,T) for a moment. The explicit scale dependence in Eq.
~2.14! should be compensated for by the scale dependent
LEC’s. This is actually the case also in the soliton sector: at
T50 the LEC’s introduce a scale dependence to the soliton
in tree approximation. This scale dependence is compensated
for by the one-loop contribution such that the mass and other
baryon properties remain independent from the scalem over
a wide region ~Figs. 3.2 and 3.3 in Ref.@7#!. Towards
smaller values then (m.420 MeV! the symmetric ChO(4)
term (amam)2 in the Lagrangian~2.1! becomes too strong
and finally destroys the soliton. The renormalization scheme
relies on the premises of the existence of such a scale region
with almost constant baryon properties which therefore sup-
ports the reasonable choice for the effective Skyrme param-
eter e54.25. For the standard ChPT valuee57.24 there
appears a severe scale dependence. Typical tree and one-loop
values for several observables~massM , sigma terms, axial-
vector couplinggA , isovector magnetic momentmV , and
electric polarizabilitya) are given in Table II. The one-loop
contributions generally improve the tree values towards the
experimental data except for the axial-vector quantities. Be-
cause of the Adler-Weissberger relationgA

2511••• a large
1/NC contribution togA is expected@7#. This unpleasent fea-

TABLE II. Tree and tree1 one-loop values for some typical observables considered for the model with
effective Skyrme parametere54.25. For the axial coupling constant a 1/NC piece estimated from current
algebra is added.

tree tree1 one-loop tree1 one-loop experiment
O(NC) O(NC)1O(1) 1 CA correction

M @MeV# 1630 946 938
s @MeV# 54 33 456 7
gA 0.91 0.66 1.20 1.26
mV 1.62 2.24 2.35
a @1024 fm3] 17.8 9.8 9.56 5
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ture caused by the algebra of the axial currents which mixes
different NC orders is common to all models relying on the
1/NC expansion.

The temperature dependence of the free Casimir energy
~2.13! and of the internal Casimir energy is made explicit by
writing

FCas~T!5FCas~0!1
1

pbE0

`

dpd8~p!ln~12e2bv!,

UCas~T!5FCas~T!2T
]FCas~T!

]T

5UCas~0!1
1

pE0

`

dp
vd8~p!

ebv21
. ~2.15!

As already mentioned the temperature-dependent part is fi-
nite and requires no extra renormalization. The important
contributions come from the terms proportional to the heat
functions contained in the termsG0 ,G1 ,G2 @last column in
Eq. ~2.13!#

g0~m,T!5
2

3~2p!3E d3p
p2

v

1

ebv21

5
T@mp2

45
T42

m2T2

12
1

m3T

6p
1•••, ~2.16!

g1~m,T!5
1

~2p!3E d3p
1

v

1

ebv21
5

T@mT2

12
2

mT

4p
1•••,

g2~m,T!5
1

2~2p!3E d3p
1

p2v

1

ebv21
5

T@m T

8pm
1•••,

which are of ChO(4), ChO(2), and ChO(0), respectively.
Although we could have integrated~2.15! directly, we use
Eqs.~2.13!, ~2.14! with the heat functions~2.16! to make the
connection to the renormalization at finite temperature~next
section! more transparent.

The temperature-independent tree and the temperature-
dependent one-loop contributions to the free and internal
soliton energies

Fsol[2
lnZ/Zvac

b
5M1FCas,

Usol[2
] lnZ/Zvac

]b
5M1UCas, ~2.17!

are plotted in Fig. 3~dashed lines!. By construction this en-
ergy definition yields a thermal mass shift that is always real.
Since at finite temperature the Poincare´ symmetry is violated
alternative definitions of the mass shift via the recoil mass or
through the thermal propagator@10# do not necessarily lead
to the same result. For instance the latter definition generally
leads to a complex pole mass which reflects particle absorp-
tion and the nucleon’s damping. The choice is process de-
pendent and the energy mass definition used here captures
the essentials of the bulk state properties and is also suitable

to calculate other baryon properties. The issue is discussed in
@11# for (111)-dimensional models.

Both energiesFsol and Usol remain almost constant over
the low-temperature region. Towards the critical temperature
Fsol decreases andUsol increases as expected, but there we
cannot trust the one-loop approximation~next section!. The
different behavior of free and internal energies is not surpris-
ing: this is observed already for massless bosons in the
vacuum@compare also Eq.~3.7!#. The behavior of the axial
couplinggA shown in Fig. 4~dashed line! is more sensitive:
it decreases with increasing temperature already at relatively
low temperatures.

In the chiral limit m→0 the soliton-meson interaction
vanishes at low momentad8(p)5b0p21O(p4) and the Ca-
simir energy~2.15! remains perfectly well defined. In this
limit we obtain for low temperatures a mass shift
Usol(T)5Usol(0)1b0(p3/15)T4 in accordance with a gen-
eral theorem which states that there is no contribution of
orderT2.

The temperature dependence by expection of Eq.~2.15! is
nontrivial. Therefore in the following section we perform the
renormalization at finite temperature in order to obtain a
temperature-dependent soliton~tree approximation!. Because
the scaling~1.2! of the tree approximation is simple one
might expect a similar behavior for the total temperature-
dependent contribution. This expection will prove wrong.

III. RENORMALIZATION GROUP
AT FINITE TEMPERATURE

Because the temperature-dependent contribution to the
Casimir energy is finite there is of course some ambiguity in
setting up the renormalization scheme. Among the three rele-
vant terms in the Casimir energy~2.13!, the first one propor-
tional to a0 is of higher chiral order@at least ChO(6)# and
numerically small. For the remaining terms proportional to
a1 anda2 there are several possibilities

~i! No renormalization: both terms are kept in the one-
loop contribution, the renormalized LEC’s take their values
at T50. This was the choice made in Sec. II.

~ii ! Minimal renormalization: thea1 term is renormalized
into the NLS model@first term in Eq.~2.1!# and renders the
parametersf and m temperature dependent. Thea2 term is
kept in the one-loop contribution, the ChO(4) LEC’s l i(m)
are untouched and remain at theirT50 values. The resulting
temperature dependence off andm will prove to be in ac-
cordance with the expectations of ChPT.

~iii ! Maximal renormalization: both thea1 and thea2
term are renormalized into the NLS model and the ChO(4)
piece of the Lagrangian, respectively. Because in the original
Lagrangian there are no other terms this corresponds to a
maximal renormalization of the temperature-dependent one-
loop. Now thel i ’s also become temperature dependent:

l i~m,T!5l i~m!1
g i

2
g2~m,T!

through the heat functiong2(m,T). Unfortunately this func-
tion diverges in the chiral limitm→0 @compare Eq.~2.16!#
and hence also the renormalizedl i ’s, leading to an ill-
defined Lagrangian. Thus, in this renormalization scheme the
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total finite temperature-dependent contribution~2.15! is arti-
ficially split into infinite tree and one-loop contributions for
vanishing pion mass, which is very unpleasant.

There is another unpleasant feature of the maximal renor-
malization scheme: because the coefficientl 11l 2 in front
of the symmetric ChO(4) term grows rapidly with increas-
ing temperature the soliton becomes unstable already at rela-
tively low temperatures below 100 MeV. This unphysical
phenomenon is due to the Lagrangian~2.1! restricted to
ChO(<4); with explicit s mesons there appears no such
difficulty.

For our further discussion we will therefore choose the
minimal renormalization scheme~ii ! with temperature-
independentl i ’s. The corresponding renormalization group
~RG! equations@12–14# for the parametersf and m of the
NLS model are written in differential form

d f2522
]g1

]T
dT522~dg11g2dm2!,

~3.1!

d~ f 2m2!52 3
2 m2

]g1

]T
dT52 3

2 m2~dg11g2dm2!.

These equations, augmented by the corresponding expression
for the vacuum partition function~2.5!,

dS lnZvac

bV D5
3

2

]g0

]T
dT ~3.2!

5d~ f 2m2!1 3
2 d~g01m2g1!1 3

2 m2g2dm2

are solved numerically. In order to obtain an analytical solu-
tion which can be compared to ChPT the terms proportional
to dm2 may be neglected. Becausedm2 is at least ChO(4)
@see Eq.~3.3! below# these terms contribute to the action
only at ChO(>6) where many other contributions are also
omitted. On the other hand by solving the RG equations in
this way we sum up a class of diagrams toall chiral orders:
these are just the chain, daisy, and superdaisy graphs@15# as
will be noticed immediately. The solution, where quantities
evaluated atT50 are marked by the subscript zero, is

f 25 f 0
222g1~m,T!,

m25m0
2F12

2g1~m,T!

f 0
2 G21/4

, ~3.3!

lnZvac

bV
5 f 2m21

3

2
@g0~m,T!1m2g1~m,T!#.

These expressions, exact in the chiral limit, were checked
against the numerical solution of the RG equations~3.1!,
~3.2!: there are only marginal deviations at higher tempera-
tures. The parametersf and m are plotted in Fig. 1. If Eq.
~3.3! is systematically expanded to ChO(8)

lnZvac

bV
5 f 0

2m0
21 3

2 g0~m0 ,T!1
3m0

2g1
2~m0 ,T!

8 f 0
2

1
m0

2g1
2~m0 ,T!

16f 0
2 @5g1~m0 ,T!23m0

2g2~m0 ,T!#

1•••, ~3.4!

the ChPT result of@16# is reproduced except for part of one
diagram of ChO(8) which is not of the chain or daisy type.
Although the RG improvement is meant to extend the one-
loop results to higher temperatures and although the relations
~3.3! describe a second order chiral phase transition~subse-
quent subsection! we have to be cautious: because the model
does not explicitly include heavier mesons such as vector
mesons and especially the scalar meson which plays a crucial
role in chiral symmetry restoration the results may not be
trusted close to the phase transition, e.g., the critical tempera-
ture turns out to be much too high here.

A. Vacuum sector

All thermodynamical properties of the vacuum are de-
rived from the partition functionZvac ~3.3!. Examples are the
free and internal vacuum energy densities

Fvac/V[2
lnZvac

bV
52 3

2 @g0~m,T!1m2g1~m,T!#2 f 2m2,

Uvac/V[2
] lnZvac

V]b
51 3

2 @3g0~m,T!1m2g1~m,T!#

2 f 2m2, ~3.5!

and the quark condensate. The quark condensate is obtained
as a derivative with respect to the quark massmq;m0

2:

^ q̄q&[2
]

]mq
S lnZvac

bV D5
^ q̄q&0

f 0
2

]

]m0
2S lnZvac

bV D ,

FIG. 1. Temperature dependence of the pion decay constantf
and the pion massm as derived from the RG equation~full lines!.
In the chiral limit ~dashed lines! the pion decay constant vanishes
and the pion mass diverges at the critical temperature. All quantities
in this and the following figures are plotted relative to their values
at T50.

3870 56H. WALLISER



^ q̄q&5^ q̄q&0

f 2m2

f 0
2m0

2
5^ q̄q&0F12

2g1~m,T!

f 0
2 G 3/4

.

The relation̂ q̄q&; f 2m2, which should hold for a consistent
RG scheme at finite temperature, follows here from the defi-
nition after some nontrivial algebra using Eq.~3.3!. The
quark condensate is compared with one-, two-, and three-
loop ChPT results@16# in Fig. 2. The pion mass and the
quark condensate scale with the pion decay constant as

m; f 21/4, ^ q̄q&; f 3/2, ~3.6!

which, although rigorous at low temperatures, is not meant to
remain valid close to the phase transition for the reasons
already discussed.

Nevertheless we briefly comment on the chiral limit
m0→0 where the expressions~3.3!, ~3.5!, ~3.6! simplify
~dashed lines in Figs. 1 and 2! and on the chiral phase tran-
sition

f 2 ;
m0→0

f 0
2F12

T2

6 f 0
2G , m2 ;

m0→0
m0

2F12
T2

6 f 0
2G21/4

,

Fvac/V ;
m0→0

2
p2

30
T4, Uvac/V ;

m0→0
1

p2

10
T4, ~3.7!

^ q̄q& ;
m0→0

^ q̄q&0F12
T2

6 f 0
2G 3/4

.

Pion decay constantf , quark condensatêq̄q&, and the gluon
condensatef 4/8(l 11l 2) become zero at the same critical
temperatureTc5A6 f 0. The diverging pion mass and the too
large critical temperature are artifacts of the missing heavier
mesons, in particular, thes meson. Critical exponents ac-
cording to the standard definitions~specific heat
C[2Td2Fvac/dT2)

C ;
mq→0

uT2Tcua, ^ q̄q& ;
mq→0

uT2Tcub,

]^ q̄q&
]mq

;
mq→0

uT2Tcu2g, ^ q̄q& ;
T5Tc

mq
1/d ~3.8!

are readily read off:a50, b5 3
4 ,g5 3

8 ,d53. At least the
coefficientsa, b, andd agree with the leading terms of an«
expansion@17# @g5 3

8 instead ofg5 1
2 suffers from the ap-

proximation leading to Eq.~3.3!#. However, they deviate
substantially from those of theO(4) Heisenberg magnet ob-
tained in thelinear s model@18,19#. A smooth connection of
the low-temperature behavior of all these quantities as dis-
cussed here with the linears model results at the critical
temperatureTc is highly desirable. A simple Pade´ approxi-
mation @20,21# which connects the two temperature regions
cannot be the solution to this problem.

B. Soliton sector

Via the temperature dependence off andm the soliton in
tree approximation is now itself temperature dependent and
so are the fluctuations and the phase shifts. In the end
lnZ/Zvac ~2.5! is given by the temperature-dependent soliton
mass plus the Casimir energy~2.13!, but now without the
term 2pa1g1 which is already taken care of by the RG equa-
tion. The Casimir energy must not be forgotten: it destroys
the scaling behavior of the tree approximation and brings the
results back close to those of the one-loop calculation~Sec.
II !. The results for the free and internal soliton energies as
well as the axial-vector coupling constant and the pion-
nucleon coupling are shown in Figs. 3 and 4. The tempera-
ture dependence of the nucleon mass turns out to be modest
~compared to that of the pion decay constantf ). The cou-
pling constants tend to decrease with increasing temperature.
There are other quantities such as thes term and the electric
polarizability which show a much more pronounced
temperature-dependence. Thes term plotted in Fig. 5 melts
very quickly with increasing temperature. The RG result
starts to deviate from one-loop at relatively low tempera-

FIG. 2. Temperature dependence of the quark condensate as
derived from the RG equation~full line!. In the chiral limit~dashed
line! the quark condensate vanishes at the critical temperature. For
comparison the one-, two- and three-loop ChPT results are also
depicted~dotted lines!.

FIG. 3. Temperature dependence of the free soliton energyFsol

and the internal soliton energyUsol . The one-loop calculations
~dashed! are compared to the RG results~solid!.
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tures, obviously higher loops are much more important for
this quantity as compared to the soliton energies and coup-
ling constants already discussed. For the electric polarizabil-
ity ~not plotted! there is the opposite finding: it increases
rapidly with increasing temperature. However, it seems ques-
tionable whether these observables can be measured in a hot
environment.

IV. CONCLUSION

The chiral soliton model is quite suitable for the study of
the nucleon in the heat bath of hot pions because it contains
both ingredients which are necessary: the pions and the
nucleon as chiral soliton in one and the same model. The
temperature-dependence of baryon properties enters via the
one-loop contribution. For the most important quantities de-
termining the behavior of hot nucleonic matter this leads to
an almost constant mass and to a modestly decreasing pion-
nucleon coupling in the low-temperature regime.

In order to implement the temperature dependence al-
ready on the tree level~temperature-dependent soliton! the
finite temperature RG equations are studied. These comprise
and extend the well-established ChPT results for the
temperature-dependent pion decay constant, pion mass, and
chiral quark condensate. There is no need to lend these quan-
tities from other models. Via these temperature-dependent
parameters the soliton is now itself temperature dependent,
however, the remaining one-loop contribution cannot be dis-
regarded. If this contribution is taken properly into account,
the nucleon mass and the axial-vector coupling are again
back close to the naive one-loop result. For other quantities,

such as, e.g., thes term and the electric polarizability, which
show a much more pronounced temperature dependence, the
RG treatment deviates from the naive one-loop result with
increasing temperature indicating the importance of higher
loop effects. Unfortunately these quantities are hardly experi-
mentally accessible in a hot environment.

No simple scaling law was found in this investigation.
The scaling hypothesis relies on the tree approximation and
the one-loop contribution destroys this behavior. If we allow
for temperature-dependent ChO(4) LEC’s according to the
maximal renormalization scheme, in particular for a
temperature-dependent Skyrme parametere, the scaling be-
havior is improved but still far from being satisfactory. This
is caused by the higher chiral order terms contained in one-
loop which are important in the soliton sector.

The RG improvement presented here extends the rigorous
ChPT results to higher temperatures and leads to a second
order phase transition. Nevertheless, the validity of this in-
vestigation remains limited to the low temperature region
because of serious shortcomings of the underlying model. To
extend the procedure towards the phase transition a RG treat-
ment which includes heavier mesons, in particular thes me-
son, has to be developed. At present, there is not even a RG
scheme which connects the ChPT results in the low-
temperature region smoothly with theO(4) symmetry ex-
pected in the linears model at critical temperature. More
than that, quark degrees of freedom which cannot be treated
within the framework of effective Lagrangians may certainly
become important close to the phase transition@22#.
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