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Hot nucleons in chiral soliton models
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Nucleons in a hot pion gas are studied within the framework of chiral soliton models which contain pions
and also baryons as solitons of the same chiral action. The semiclassical treatment of the soliton solutions must
be augmented by pionic fluctuations which requires renormalization to one loop, and finite temperatures do not
introduce new ultraviolet divergencies and may easily be considered. Alternatively, a renormalization scheme
based on the renormalization group equation at finite temperature comprises and extends the rigorous results of
chiral perturbation theory and renders the low-energy constants temperature dependent, which allows the
construction of temperature-dependent solitons below the critical temperature. The temperature dependence of
the baryon energy and the pion-nucleon coupling is studied. There is no simple scaling law for the temperature
dependence of these quantitifS0556-282(97)05519-1

PACS numbedps): 11.10.Wx, 12.39.Dc, 12.39.Fe

I. INTRODUCTION constants(LEC’s) in the effective action(in particular the
pion decay constapand hence also the tree approximation

It is generally believed that with increasing temperaturebecome temperature dependent, the remaining one-loop con-
hadronic matter undergoes a phase transition to a quarkibution, which cannot be omitted, destroys these simple
gluon plasma which hopefully might be produced in heavy-scaling relationgSec. Ill).
ion collisions. Already below the critical temperature we ex-
pect the baryon properties to change; of particular interest Il. ONE-LOOP AT FINITE TEMPERATURE
are variations in the nucleon maks and the pion-nucleon _ _ _ o )
coupling constanty,y, Which determine the behavior of The start_mg pom; of our investigation is the standard chi-
hot nucleonic matter. ral Lagrangian as given by Gasser and Leutwj&r

Eletsky and Kogan[1] use chiral perturbation theory £2
(ChPT) to show that the temperature dependence of the LU)= =[a,a,—2mPu]+/( a, X a,)?
axial-vector coupling constagt, turns out to be the same as 27 mH .
for the pion decay constafif,. With the assumption that the
baryon mass is temperature-independent and with the
Goldberger-Treiman relatiof,.g.ny=Mg, they obtain — (/3 )miul+ ..

— (/1+/2)(aﬂaﬂ)2+/4m2( a,a,)u

M~1, ~f_, O.nn—~1, 1.1 2 4

I Imin D =%aﬂaﬂ—f2m2u+2 /‘i£§4)+~--, 2.1
a pion-nucleon coupling which remains essentially un- !
changed.

Bernard and Meissng@] use a chiral soliton model wit
explicit vector mesons together with a temperature-
dependent , lent from ChPT[3] or from the Nambu-Jona-
Lasinio (NJL) model[4]. Qualitatively their results may be

understood by the simple scaling

h with the abbreviations
uD U=ira,, itr(U+UN=u, UeSU?2).

The first term in Eq(2.1) represents the nonlinear model
(NLSM) which is of chiral order ZChO(2)] followed by
M~f_, da~9.nn~1, (1.20  the relevant CB(4) terms. For the time being the LEC’s
take their standard values at scale=m, in order to guar-
which in tree approximation becomes exact in a pure Skyrmentee that the Lagrangian be leading order in the number of
model (without pion mass terjnand which is at variance colorsN¢. In the following we intend to use the same effec-
with Eg. (1.1) although with the same result of a tive action in the vacuum sector and in the soliton sector; the
temperature-independent pion-nucleon coupling. necessary modifications will be discussed immediately. For

The simple relations1.2) applied to the density depen- the description of one-loop effects fluctuations
dence of these quantities have nowadays come to be known

as Brown-Rho scalin§5]. We do not want to discuss here U=AJUgexp(i mn/f) U, AT, (2.2
what happens if the density is varied, but concerning the

temperature there are definitely no reasons that these relare introduced around the classical solutidgt

tions should hold. Namely, the temperature dependence is

carried by the one-loop contribution which does not scale as Uo=1, vacuum sector,
the tree approximatiofSec. ). Even if the renormalization A
is performed at finite temperature such that the low-energy Uo=exdirrF(r)], soliton sector 2.3
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which, in the soliton sector, is of the familiar hedgehog type.j - J are then obtained as a derivative of the soliton niase
Rotational degrees of freedom are considered in the Euler one loop in the presence of the external field with respect
angle-dependent SP) rotation matrixA; translations are to its strength.
unimportant in this context. The different classical solutions Later on all thermodynamical quantities of the vacuum
in the two sectors lead to decisive implications for the propemand soliton sector, respectively, such as thermodynamical
one-loop treatment: while in the vacuum sector perturbatiompotentials, entropy, and so on are derived from the partition
theory (ChPT) applies as far as the external momenta argunctions (3=T" 1)
kept small; the soliton sector's Casimir energy has to be
evaluated via the phase shifts generated by the scattering 3
equations for the fluctuations which sum the one-loop con- INZ o= BV/| £2m*+ 59(mT) |,
tribution to all chiral orders. This complication is caused by
the gradients of the chiral profile in E¢R.3) which are of
the orderm, and not small. INZ=INZy5c— SM — BF cas: 2.9

For the same reason, in the soliton sector the higher chiral
order terms in the Lagrangiaf®.1) are important and may The vacuum partition function comprises the tree contribu-
not simply be neglected. The most elegant way to add highdion f’m? of the Lagrangiari2.1) with Up=1 and the famil-
chiral orders to the effective action proceeds through thdar one-loop contribution for free massive piofigo(m,T)
coupling of vector mesons which leave the Lagrangian td2.16. Analogously, in the soliton sector there appears the
ChO(4) untouched. However, unfortunately vector mesonssoliton massM in tree approximation and the temperature
come along with numerous technical difficultigsany more ~ dependence resides for the time being in the free Casimir
degrees of freedom, induced components) ethose proper €nergyFc,s (one-loop contribution which is generated by
treatment becomes very complicated. The most simple altethe fluctuations off the soliton background. The correspond-
native is to use aeffectiveLEC /,=1/4e? in front of the  ing equations of motion for the fluctuatok®.2) are solved
Skyrme term. The choice=4.25(instead ofe=7.24) simu-  for the phase shifts in the intrinsic frame. Because these
lates the higher chiral order terms generated by vector me2quations decouple into partial waves characterized by pho-
sons[7]. Tree contributions to soliton mass and radius of thenon spinL and parity the phase shifts may be calculated
standard CB®(4) lagrangian with and without effective individually and summed up over the various channels)(
Skyrme parameter are compared with typical vector meson
results in Table |. Foe=7.24 the tree mass of 940 MeV is
reduced to 385 MeV if one-loop corrections are included. 5(p)=LZC (2L+1)6.c(p)- (2.6
This soliton is just too small. With the effective Skyrme

Fadram%tte'?:c?'z;s thfe tree va}[Iues are of th% t?/p'clfl magnl'Technically, this calculation is quite involved and the reader
ude obtain€d also irom Vector meson Models. For a Morfy qraraq to[ 7] for details. With the phase shift®.6) the

detailed justification of this choice see RET]. L
Obsefvables other than the mass may be calculated tTCaS|m|r energy may be evaluated by means of the formula

coupling to the corresponding external fields. External elec*
tromagnetic and axial fields couple through the covariant de- 1 (=
rivative D, and the external scalar field, relevant for quark F-=—1 dps'
M . Cas p (p)
condensate ana term, couples to the quark mass contained mJo
in the parametem?. In general the external fiel§l with

o 1 B
E+Eln(1—e )

strengthe adds to the Lagrangian in the form _ ifw P 1
2, PP 5t
L(e)=L(/;,U)—gj-I/;,U), 2.9 s0[m 1
B T — @ Bm
7T{ZJr/BIn(l e PMi, (2.7

where J(/;,U) denotes the corresponding current density.
The external field has to be chosen suitably so as to give t

desired quantity, for details see RET). Matrix elements of h‘1eh|s expression is ultraviolet divergent and requires renor-

malization. It should be noticed here that the divergence is
TABLE | T buti h i dthe b located in the temperature-independent part, the temperature-
- Tree contribution to the soliton mass and the baryon yenendent part is perfectly finite and does not introduce new

radius for the C(4) Lagrangian with LEC’s at scalge=m, Coa . )
(e=7.24) and for the same Lagrangian with an effective SI(yrmemfmmes; [see Eq(2.15 below]. The divergencies are related

parametee=4.25, compared with typical vector meson res(sse to the high momentum behavior of the phase shifts:

e.g.,[8)).
3 a2
Soliton mass ~ Baryon radius o(p) ~ &P +a1p+3+ o 28
M[MeV]  (r?)g[im?] P
ChO(4) Lagrangian é=7.24) 940 0.09 (the denoted terms give rise to at least logarithmically diver-
Effective Skyrme terne=4.25 1630 0.24 gent expressionsThe constantay, a;, anda, are related to
Vector meson Lagrangian ~ 1500-1600 = 0.2-0.3 the corresponding heat kernels and are known analytically

for the NLS modelfirst term in Eq.(2.D]:
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a0=0,

1
aﬁ@f d*r[2a, @, —3Mm*(u—1)], (2.9

1
2= | T (a4 § (@)
—2m*(a,@,)(u—1)+ $ miu—1)2].

Values for the full model2.1) a,=0.1m_3, a;=3.6m_*,
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a

1(= p
Feas = ;fo dp;[ 3(p) —aop’~ayp— -

1+ 1
2 eﬁw_l

5(0)

T

m 1I _pm
§+En(l—e )

(2.13

is finite: it is the central formula of our formulation. The
explicit temperature and scale-dependence is contained in the
contributions

- 37TaoGo_ 27TalG1_ 47Taz(32

anda,=15.2m_ have to be determined numerically and the Go=go(m,T)— m* E+In—2
phase shifts are needed with great precision up to 0= GolM, 3272\ 6 u? '
Pmax=25m,. whereL ,,,=100 partial waves are needgd|.
The strategy is now to subtract the troublesome terms in the m  m2
phase shift integral and add them separately using dimen- Gi=g:(mT)+ In—, (2.19
sional regularization which involves a scale hidden in 167 u?
\,Gq,Gq, andGy:
1 m?

10= p a1 1 G,=0g,(Mm,T)— To7? 1+In; .

Feas — ;fo dp;[ 8(p)—aop®~asp— || 5+ 1]

5(0)

m 1I _Bm
E—FEn(l_e )

+\[37mm*ag—4mma,+8ma,]

_37Ta0G0_27Ta1G1_47Ta262. (21@

The pole contributionsd—4) located in
)\—'ud_A ! 11“’1+I 4m)+1 21
_16772(1—_4_5[ (D) +In(4m)+1]|  (2.1D

may be renormalized

3mmtay,—4mm?a; + 8mwa,= >, 'yif e+
I
2.12

into the CID(=4) terms of the Lagrangian. In Ci{4) the

Let us postpone the discussion of the temperature depen-
dence together with the definition of the heat functions
g,(m,T) for a moment. The explicit scale dependence in Eqg.
(2.14 should be compensated for by the scale dependent
LEC’s. This is actually the case also in the soliton sector: at
T=0 the LEC’s introduce a scale dependence to the soliton
in tree approximation. This scale dependence is compensated
for by the one-loop contribution such that the mass and other
baryon properties remain independent from the spatwrer
a wide region(Figs. 3.2 and 3.3 in Ref[7]). Towards
smaller values theny=420 MeV) the symmetric CB®(4)
term (aﬂaﬂ)2 in the Lagrangian2.1) becomes too strong
and finally destroys the soliton. The renormalization scheme
relies on the premises of the existence of such a scale region
with almost constant baryon properties which therefore sup-
ports the reasonable choice for the effective Skyrme param-
eter e=4.25. For the standard ChPT valee=7.24 there
appears a severe scale dependence. Typical tree and one-loop
values for several observabl@massM, sigma termo, axial-
vector couplingg,, isovector magnetic moment,,, and
electric polarizabilitya) are given in Table Il. The one-loop

coefficientsy; [6] are simple numerical factors and the pole contriputions generally improve the_tree values tovygrds the
contributions are absorbed in the renormalized LEC’sexperimental data except for the axial-vector quantities. Be-
/,—/+ y;\ just as in standard ChPT. The remaining ex-cause of the Adler-Weissberger relatigh=1+ - - - a large

pression for the Casimir energy

1/N¢ contribution tog, is expected?]. This unpleasent fea-

TABLE Il. Tree and treet+ one-loop values for some typical observables considered for the model with
effective Skyrme parameter=4.25. For the axial coupling constant aN}/ piece estimated from current

algebra is added.

tree tree+ one-loop treet one-loop experiment
O(Ng) O(Ng)+0(12) + CA correction
M [MeV] 1630 946 938
o [MeV] 54 33 45+ 7
ga 0.91 0.66 1.20 1.26
wY 1.62 2.24 2.35
a [1074 fm3] 17.8 9.8 95+ 5
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ture caused by the algebra of the axial currents which mixeto calculate other baryon properties. The issue is discussed in
different N orders is common to all models relying on the [11] for (1+ 1)-dimensional models.

1/N¢ expansion.

Both energied~, and Uy, remain almost constant over

The temperature dependence of the free Casimir energhe low-temperature region. Towards the critical temperature
(2.13 and of the internal Casimir energy is made explicit by F, decreases and, increases as expected, but there we

writing

Fead T)=F ;0)+ifmdp5’(p)ln(l—eﬁ‘”)
Ca Ca ﬂ_B 0 ’

IFcad T
UCa4T>=FCa4T>—T—§T“‘ )
B 1 (= wd(p)
—UCaJO)'f';J‘O dpeﬁw—_ (215)

cannot trust the one-loop approximatigmext section The
different behavior of free and internal energies is not surpris-
ing: this is observed already for massless bosons in the
vacuum[compare also Eq3.7)]. The behavior of the axial
couplingg, shown in Fig. 4(dashed lingis more sensitive:

it decreases with increasing temperature already at relatively
low temperatures.

In the chiral limit m—0 the soliton-meson interaction
vanishes at low momentd (p) =byp2+ O(p*) and the Ca-
simir energy(2.15 remains perfectly well defined. In this
limit we obtain for low temperatures a mass shift

As already mentioned the temperature-dependent part is #so(T) =Uso0) +bo(7*/15)T* in accordance with a gen-
nite and requires no extra renormalization. The importangral theorem which states that there is no contribution of
contributions come from the terms proportional to the heaprderT=.

functions contained in the tern@,,G,,G, [last column in
Eg. (2.13]

(mT) JdS p2 1
m,T)= —
do 3(2m)3 w gho_1

T>mg2 m2T2 meT
— __T4_ R T
45 2 teL T (216
- 1 Jd3 1 1 TimTz mT+
ga(m, )_(277)3 Pogpo_1 12 2z

1 1 o

m’T = fda = + . s
92(m.T) 22m3) “ Pp2p efo—1 ~ 87m

which are of Clo(4), ChO(2), and CID(0), respectively.
Although we could have integrateg@.15 directly, we use
Egs.(2.13, (2.14 with the heat function$2.16) to make the
connection to the renormalization at finite temperaiumext
section more transparent.

The temperature dependence by expection of( E45H is
nontrivial. Therefore in the following section we perform the
renormalization at finite temperature in order to obtain a
temperature-dependent solitGree approximation Because
the scaling(1.2) of the tree approximation is simple one
might expect a similar behavior for the total temperature-
dependent contribution. This expection will prove wrong.

Ill. RENORMALIZATION GROUP
AT FINITE TEMPERATURE

Because the temperature-dependent contribution to the
Casimir energy is finite there is of course some ambiguity in
setting up the renormalization scheme. Among the three rele-
vant terms in the Casimir energ2.13, the first one propor-
tional to a, is of higher chiral ordefat least C®(6)] and
numerically small. For the remaining terms proportional to
a, anda, there are several possibilities

(i) No renormalization: both terms are kept in the one-
loop contribution, the renormalized LEC's take their values
at T=0. This was the choice made in Sec. Il.

(i) Minimal renormalization: thex, term is renormalized
into the NLS mode(first term in Eq.(2.1)] and renders the

The temperature-independent tree and the temperaturga ameters and m temperature dependent. The term is
dependent one-loop contributions to the free and mternq{ept in the one-loop contribution, the O4) LEC's /()

soliton energies

InZ/Z
Fso=— B == +Fcas

dinZ/Z
SO|E—TV&C=M+UC%, (2.17

are plotted in Fig. 3dashed lines By construction this en-

are untouched and remain at th€i=0 values. The resulting
temperature dependence foind m will prove to be in ac-
cordance with the expectations of ChPT.

(i) Maximal renormalization: both the; and thea,
term are renormalized into the NLS model and theDClh)
piece of the Lagrangian, respectively. Because in the original
Lagrangian there are no other terms this corresponds to a
maximal renormalization of the temperature-dependent one-

ergy definition yields a thermal mass shift that is always reall00P. Now the/j’s also become temperature dependent:

Since at finite temperature the Poincayenmetry is violated

alternative definitions of the mass shift via the recoil mass or

through the thermal propagatftO] do not necessarily lead

/i T)=/ () + G 9a(m,T)

to the same result. For instance the latter definition generally

leads to a complex pole mass which reflects particle absorghrough the heat functiog,(m, T). Unfortunately this func-
tion and the nucleon’s damping. The choice is process ddion diverges in the chiral limim—0 [compare Eq(2.16)]
pendent and the energy mass definition used here capturaad hence also the renormalized’s, leading to an ill-

the essentials of the bulk state properties and is also suitabtiefined Lagrangian. Thus, in this renormalization scheme the
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total finite temperature-dependent contributi@rlH is arti- 2.0
ficially split into infinite tree and one-loop contributions for
vanishing pion mass, which is very unpleasant.

There is another unpleasant feature of the maximal renor- 15
malization scheme: because the coefficigpt- /', in front o
of the symmetric CB®(4) term grows rapidly with increas- %
ing temperature the soliton becomes unstable already at releg 104
tively low temperatures below 100 MeV. This unphysical E
phenomenon is due to the Lagrangiéhl) restricted to 8
ChO(=4); with explicit o mesons there appears no such
difficulty.

For our further discussion we will therefore choose the
minimal renormalization schemdii) with temperature- o .
independent’;’s. The corresponding renormalization group 0 50 100 180 200 280 300 350
(RG) equationg12—-14 for the parameter$ and m of the T [MeV]

NLS model are written in differential form

0.5

FIG. 1. Temperature dependence of the pion decay conktant
P and the pion masm as derived from the RG equatidfull lines).
01 In the chiral limit (dashed linesthe pion d tant ish
2_ _ pion decay constant vanishes
=—2—0al=— + . . " "
df 2 oT dT 2(dg; +g.d mz)' and the pion mass diverges at the critical temperature. All quantities

(3.1) in this and the following figures are plotted relative to their values
atT=0.
d(f?m?)=-3 mz@dT= — im?(dg; +g,dm?).
gt InZva(: 2 2. 3 3m(2)gi( Mo ,T)
BV =foma+ 3 do(mo, T) + T
These equations, augmented by the corresponding expression 0
for the vacuum partition functiof2.5), m2g2(my,T) ,
16f2 [591(mg, T)—3mgga(mg, T)]
INZ5| 3 agod_l_ - 0
BV |~ 2aT 32 e (3.9

the ChPT result of16] is reproduced except for part of one

=d(f?m?)+ $ d(go+m?g;) + 3 m?g,dnm? diagram of CI®(8) which is not of the chain or daisy type.
Although the RG improvement is meant to extend the one-
loop results to higher temperatures and although the relations
(3.3 describe a second order chiral phase transitgubse-

uent subsectiorwe have to be cautious: because the model
does not explicitly include heavier mesons such as vector
mesons and especially the scalar meson which plays a crucial
role in chiral symmetry restoration the results may not be
Nrusted close to the phase transition, e.g., the critical tempera-
ture turns out to be much too high here.

are solved numerically. In order to obtain an analytical solu
tion which can be compared to ChPT the terms proportion
to dm? may be neglected. Becauder is at least CB(4)
[see EQ.(3.3) below| these terms contribute to the action
only at CHO(=6) where many other contributions are also
omitted. On the other hand by solving the RG equations i
this way we sum up a class of diagramsatbchiral orders:
these are just the chain, daisy, and superdaisy gidffias
will be noticed immediately. The solution, where quantities

. ) A. Vacuum sector
evaluated af =0 are marked by the subscript zero, is

All thermodynamical properties of the vacuum are de-
rived from the partition functioZ, .. (3.3). Examples are the

2_§2__
f=15=29:(m.T), free and internal vacuum energy densities

—1/4 InZ
mz=mg| 1 22T 3y welV=ET ,B\V/acz = 3[go(m,T) +m?g;(m,T)]— F2m?,
f2 ’
dinZ
Uyad/ V=— - o 4 2[3g(m,T)+m2gy(m,T)]
INZ,c B

3
=f2m2+ =[go(m,T)+m2g,(m,T)].
ﬁv 2[90( ) gl( )] _f2m2, (35)
&md the quark condensate. The quark condensate is obtained

These expressions, exact in the chiral limit, were c:heckeas a derivative with respect to the quark m m(z):

against the numerical solution of the RG equati¢8gl),
(3.2): there are only marginal deviations at higher tempera- L 9 [InZ e 9 [InZ
tures. The parametefsandm are plotted in Fig. 1. If Eq. (qq)=— (1NZvec =<qg>° 2/ vae)
(3.3 is systematically expanded to O(8) ‘9mq\ BV fa <9mo\ BV
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| | | | | | e
- C ~ [T-Td* (aq) ~ [T-Td,
mq—»O mq—>0
1.0 == L
N J —
o 087 Y - ;2:” ~ |T-TJ™? (aa) ~ m (3.9
8 \\ « q quO T=T,
o 0.6 N -
2 AN are readily read offa=0, B=3%,y=3,6=3. At least the
3 0.4 AN L coefficientsa, B8, and s agree with the leading terms of an
\ expansion17] [ y=$ instead ofy=13 suffers from the ap-
0.2 1 \\ L proximation leading to Eq(3.3)]. However, they deviate
\\ substantially from those of th@(4) Heisenberg magnet ob-
0.0 | | | - | tained in thdinear o model[18,19]. A smooth conngction of _
0 50 100 150 200 250 300 350 the low-temperature behavior of all these quantities as dis-
T [MeV] cussed here with the linear model results at the critical

temperatureT is highly desirable. A simple Pad&pproxi-

FIG. 2. Temperature dependence of the quark condensate : . .
derived from the RG equatioffull line). In the chiral limit (dashed Mation[20,21] which connects the two temperature regions
cannot be the solution to this problem.

line) the quark condensate vanishes at the critical temperature. For
comparison the one-, two- and three-loop ChPT results are also _
depicted(dotted lineg. B. Soliton sector

o Via the temperature dependencefadndm the soliton in

_ — fm> 29;(m,T) tree approximation is now itself temperature dependent and
<QQ>:<QQ>0W=<QQ>0 1—f—2 so are the fluctuations and the phase shifts. In the end
o'''o 0

InZ/Z,,. (2.5 is given by the temperature-dependent soliton
R ) ) mass plus the Casimir ener@g.13, but now without the
The relation( qq)~ f?m?, which should hold for a consistent erm 2ma, g, which is already taken care of by the RG equa-
RG scheme at finite temperature, follows here from the defition. The Casimir energy must not be forgotten: it destroys
nition after some nontrivial algebra using E€B.3. The  tne scaling behavior of the tree approximation and brings the
quark condensate is compared with one-, two-, and thregegyits back close to those of the one-loop calculat®ec.
loop ChPT result416] in Fig. 2. The pion mass and the ||) The results for the free and internal soliton energies as
quark condensate scale with the pion decay constant as  e|| as the axial-vector coupling constant and the pion-
_ nucleon coupling are shown in Figs. 3 and 4. The tempera-
m~f~1 (qq)~f3? (3.6)  ture dependence of the nucleon mass turns out to be modest
(compared to that of the pion decay constént The cou-
which, although rigorous at low temperatures, is not meant tgling constants tend to decrease with increasing temperature.
remain valid close to the phase transition for the reason¥here are other quantities such as theerm and the electric
already discussed. polarizability which show a much more pronounced
Nevertheless we briefly comment on the chiral limit temperature-dependence. Tiderm plotted in Fig. 5 melts
mo—0 where the expression@.3), (3.5), (3.6) simplify  very quickly with increasing temperature. The RG result
(dashed lines in Figs. 1 and and on the chiral phase tran- starts to deviate from one-loop at relatively low tempera-
sition

2.0 ' '
T2 T2 —1/4
2~ f1-—| m o~ mi1-—|
mgo—0 6f0 mp—0 6fo
1.5 -
772 772 Usol ///
Fvac/V - = _T4: Uvac/V + —T4, (3.7 =
my—0 30 my—0 10 1.0 = ——’_“_::__ _ -
T2 3/4 Fsol
o~ a1 T
(qa) mOH0<qq>o 512 - I
Pion decay constarit quark condensa(er?q), and the gluon
condensateé*/8(/',+/,) become zero at the same critical 0.0 T | |
50 100 150 200

temperaturd .= \/Efo. The diverging pion mass and the too
large critical temperature are artifacts of the missing heavier
mesons, in particular, thee meson. Critical exponents ac- FIG. 3. Temperature dependence of the free soliton engggy
cording to the standard definitions(specific heat and the internal soliton energys,. The one-loop calculations
C=—Td?F . /dT?) (dasheg are compared to the RG resu(solid).

T [MeVv]
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0.8+ ~ L

o term

0.2 1 -

0.0 \ T I
1 1 0 50 100 150 200
0 50 100 150 200 T [MeV]

T [MeV]

0.0 I

FIG. 5. Temperature dependence of theéerm. The one-loop

FIG. 4. Temperature dependence of the axial-vector cougling calculation(dashed is compared to the RG resuolid).
and the pion-nucleon coupling,yy- The one-loop calculations

(dashediare compared to the RG resultlid). such as, e.g., the term and the electric polarizability, which
show a much more pronounced temperature dependence, the
tures, obviously higher loops are much more important foRG treatment deviates from the naive one-loop result with
this quantity as compared to the soliton energies and coupncreasing temperature indicating the importance of higher
ling constants already discussed. For the electric polarizabiloop effects. Unfortunately these quantities are hardly experi-
ity (not plotted there is the opposite finding: it increases mentally accessible in a hot environment.
rapidly with increasing temperature. However, it seems ques- No simple scaling law was found in this investigation.
tionable whether these observables can be measured in a hidie scaling hypothesis relies on the tree approximation and
environment. the one-loop contribution destroys this behavior. If we allow
for temperature-dependent Of4) LEC’s according to the
maximal renormalization scheme, in particular for a
IV. CONCLUSION temperature-dependent Skyrme parametehe scaling be-
havior is improved but still far from being satisfactory. This

The chiral soliton model is quite suitable for the study ofjs caused by the higher chiral order terms contained in one-
the nucleon in the heat bath of hot pions because it contair]gop which are important in the soliton sector.
both ingredients which are necessary: the pions and the The RG improvement presented here extends the rigorous
nucleon as chiral soliton in one and the same model. ThehpT results to higher temperatures and leads to a second
temperature-dependence of baryon properties enters via thgder phase transition. Nevertheless, the validity of this in-
one-loop contribution. For the most important quantities devestigation remains limited to the low temperature region
termining the behavior of hot nucleonic matter this leads toyecause of serious shortcomings of the underlying model. To
an almost constant mass and to a modestly decreasing piogxtend the procedure towards the phase transition a RG treat-
nucleon coupling in the low-temperature regime. ment which includes heavier mesons, in particulardhme-

In order to implement the temperature dependence alkon, has to be developed. At present, there is not even a RG
ready on the tree levetemperature-dependent solijofhie  scheme which connects the ChPT results in the low-
finite temperature RG equatio_ns are studied. These CompriQGmperature region smoothly with th@(4) symmetry ex-
and extend the well-established ChPT results for theected in the linear model at critical temperature. More
temperature-dependent pion decay constant, pion mass, afithn that, quark degrees of freedom which cannot be treated

chiral quark condensate. There is no need to lend these quagithin the framework of effective Lagrangians may certainly
tities from other models. Via these temperature-dependeecome important close to the phase transif22).
parameters the soliton is now itself temperature dependent,

however, the remaining one-loop contribution cannot be dis-
regarded. If this contribution is taken properly into account,
the nucleon mass and the axial-vector coupling are again | have benefited from numerous discussions with G.
back close to the naive one-loop result. For other quantitiesllolzwarth, H. Geyer, and S. Marculescu.
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