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Explicit bosonization of the massive Thirring model in 3+ 1 dimensions
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We bosonize the massive Thirring model if-3D for a small coupling constant and arbitrary mass. The
bosonized action is explicitly obtained both in terms of a Kalb-Ramond tensor field as well as in terms of a
dual vector field. An exact bosonization formula for the current is derived. The small and large mass limits of
the bosonized theory are examined in both the direct and dual forms. We finally obtain the exact bosonization
of the free fermion with an arbitrary mag$0556-282(97)04918-17
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The method of bosonization has proven to be a very powis the corresponding field intensity tens8r, is an external
erful tool for investigating two-dimensional theories allow- vector field and\ is its coupling constant to the fermions.
ing, for instance, the obtainment of exact solutions of nonNote that\ has dimension of mass inverse. This Lagrangian
linear theories such as quantum electrodynamics and this invariant under independent gauge transformations on the
sine-Gordon mode]l]. A lot of effort has been spent in vector and tensor fields. Consider the Euclidean generating
order to generalize this method to higher dimensit8],  functional in the presence of external sources
but explicit results are only available im+2LD [4-8].

In the present work we aim to provide an explicit _
bosonization of the massive Thirring mod@iTM) in 3 Z=f DB,DA DDy eXp{—f d*z[ Ly
+1D. Contrary to earlier approaches, our analysis is valid
for arbitrary mass and coupling. Using the functional meth-
ods developed in2], we show that the MTM can be +5Mm'8‘9vAaﬁJu+BuKM]]5[(7;43”]5[‘%“[3]’ ©)
bosonized either in terms of a second rank pseudotensor

Kalb-Ramond gauge field or in terms of a dual vector 9aU9G, herek , must be conserved in order to preserve gauge in-
“

f'.eld' An e>_<act bosonization formula for the _current IS de'variance and the delta functions are for fixing the gauge.
rived both in terms of the tensor and vector fields. We the . . .
pon integration oveB, andA,,; [2], we obtain the MTM

perform a small coupling expansion, obtaining thereby con- . ¢
crete expressions for the bosonized Lagrangian and its dudP the resulting theory:

for arbitrary mass. The small and large mass limits are ana-

lyzed in detail. The leading contribution in the small mass _ - _ 4
limit behaves as a Proca theory, either in the tensor or vector Z_f DyD exp{ f d*z
cases. In the large mass limit, however, the leading contribu-
tion is nonlocal. This is to be compared with the correspond-
ing analysis in 2-1D [4-8], where the roles of the two
limits are reversed.

We also consider the case of a free fermion with an arbi- cu . - .
T : . wherej*= yy* s is the fermionic current. By comparing the
trary mass as a limiting situation of the MTM when the 1" =gy y panng

. ) X ~ generating functional&3) and(4), we can make the identifi-
coupling constant vanishes. In this case, we get exact explic

results for the bosonized Lagrangian and its dual. Interest-atlons

ingly, the tensor field Lagrangian that appears in the small .

mass limit has been shown to be connected with QgD Nj#=e"Po A, 5=2B,. ®)
Let us consider the master Lagrang[&i

)\2

wid=myy— i,
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JH+ —
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_ The above results are valid for arbitrary values\aind m.
FAYet g(id—m—\B) i+ e*"*PB,0,A Note that the antisymmetric Kalb-Ramond field must be a
(1) pseudotensor. This behavior under parity transformations is a
general feature of the bosonized fields in any dimension and
whereA ,; is the second rank antisymmetric Kalb-Ramondfollows from the current bosonization formulas.
tensor field and Let us perform now the fermionic integration in E@®).
Observe that even thoughis dimensionful, we are just deal-
Furva= glepvel (2 ing with the familiar fermionic determinant in the presence
of the external field\ B, which has the usual dimension.
Hence, only one-loop graphs will contribute to this determi-
*On leave of absence from S. N. Bose National Center for Basi®iant. In the smalk approximation, the leading order contri-
Sciences, Calcutta, India. Electronic address: rabin@if.ufrj.br bution is a two-legs graph. We therefore obtain the effective
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must vanish for smalk, in such a way that the Coulomb
Seff:j d*z(— § FuapF P+ e"*PB 0, Aupt 3 BLII*'B,  potential has vanishingly small corrections at large distances.
Should the vacuum polarization tensor have a constant be-

+e " Pa,ALpdL), (6)  havior for large masgsmall k) we would also have a Proca

_ o type Lagrangian for the bosonized theory. This may happen
wherelIl*" is the lowest order contribution to the vacuum iy higher dimension§2,3].

polarization tensor of QED, which in Euclidean momentum | et us point out that here we have a similar situation to
space is given by10] the three-dimensional case where the leading behavior in the
BV — (2 SHY LV 2 small and large mass limits give different expressighssg],
I#7(k) = (k*6%” = k*k")IL(KY), but only the role is reversed because the local form is ob-
tained there in the large mass case.

where
Now we can get the dual version of the bosonized theory
)\ge 1 2m2\ /1 X+ 1 by starting from Eq(6) and performing the quadratic inte-
II(k?)=— Tom? [§+2( 1- v) (EX In m—l)] gration over the Kalb-Ramond field. The resul{®§

@)

in which x=(1+ 4m?/k?)*2, In the above expression, the
renormalized coupling constang is given, in lowest order,
by +GHG,+ ZGMJ”“}), (12)

z=f DG, exp(—f d*z{3 G, [11(z—2')]G*"

2 N .
)\%: 1— R2|n A2]\2, ®) vyhereGW—aMG,,—aVZGM andll(z—2") is thg inverse Fou-

127 rier transform ofl1(k“). Observe that the first term came
from the fermionic integration and was not involved in the
whereA is an ultraviolet cutoff. Notice that in the effective integration over the Kalb-Ramond field.

action (6) we have set the external sourke’=0 because The small and largen limits of the above expression can
after the identificatior(5), the use of two sources would be be obtained trivially from the expressions in E4l). Ob-
superfluous. serve that in the small mass limit, the leading contribution

From the effective actio(6), we can obtain the bosonized yields a Proca Lagrangian. It is interesting to see that in this
theory(or its dua) by integrating either ove,, orA,z. The  limit both the original and dual bosonized Lagrangians are of
quadraticB,, integration can be made in a straightforward the Proca type. The fact that the dual of a vector Proca theory

manner, giving the result is a Kalb-Ramond Proca theory in arbitrary dimension has
been observed if2].
Z= | DA,;8(d,A%F exr( _f diz{— LF  FHab Let us cons!der now the free fermlon. field WIFh an arbi-
f sl ) {8 Fluas trary mass. This can be obtained by taking the linjt-0,

in which case the fermionic integration becomes exact. From
— LF i G(z—2')|FreB 4 ervaBy A .3 }) 9) Eg. (11 we can see that in this case only the second term in
pnap viapYyus | . . . .
the exponent in Eq(9) is relevant and the bosonic action
where the Fourier transform @(z—2') is ;ﬁ/r;sg;ndmg to a free massive Dirac fermion i BD is

1
G = ey (10 f d4zﬁm—m)¢ﬂ_>—% f d*zF,,, [ G(z—2')JFAe,

The exponent in the above integrand is the bosonized theory (13
corresponding to the MTM foarbitrary mass and small.  where we have rescaled the Kalb-Ramond field as

This is one of the central results of our paper. A —\21A  and therefore
. . . v R g
Let us investigate now the small and large mass limits of _
the bosonized theory. From E() and Eq.(10) a straight- G(z)=\3G(2). 14

forward computation yields, respectively, L ) ) o
It is interesting to note that the leading contribution to the

3672 m? small mass limit of Eq(13) reproduces the theory studied in
G(k) ~ N 2K2 1+0 2/ [9] in connection to QED, wher& is proportional to 111,
m—0 =R whereas in the large mass lim& will be proportional to
487°m? k2 U .
G(k) ~ — 140 11 A very important remark now is in order. Observe that
(k) A |- (11 ; Y > e .
M AgK m according to the identity5) the Thirring interaction corre-

sponds to the first term in E¢Q). We have just seen, on the
Observe that in the small mass limit, because of the gaugether hand, that the free part of the fermion Lagrangian can
fixing constraint, the leading term is a mass term for thebe exactly bosonized by E¢L3). One could then be tempted
Kalb-Ramond field. In the large mass limit, the leading termto exactly bosonize the full MTM by just adding the two
is already nonlocal. This is a consequence of the nonconstapteces as it occurs in£1D. This however is not true here
behavior of the vacuum polarization tensor of QED whichas our computation clearly shows that only in thg—0
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limit we can bosonize the free massive fermion Lagrangiamonrenormalizable theory which we still do not completely
as Eq.(13) and ignore the higher-order insertions in the fer-understand and plan to investigate in the future.

mionic determinant. A consequence of this observation is We conclude by remarking that the results obtained here
that in spite of the fact that the linear current bosonizatioropen a broad field of research in the bosonization of theories
formula (5) is always valid, the bosonization formula for the in the physical dimension of 81. One could devise, for
free fermion Lagrangian depends on the interacting part Ofnstance, the use of the master Lagrangian givefi2inin

the theory it is embedded on and only in the free case it igrder to obtain explicit bosonization formulas for QED. Also
given by Eq.(13). This is the most remarkable point of de- one could explore the concrete bosonized theories obtained
parture from the usual bosonization scheme i 1D. here through the operator formulation developed in1D

_ There is an important point which needs further clarifica-14] for the direct bosonization of the fermion field operator.
tion. This is related to the fact that even though the MTM is

a nonrenormalizable theory in+31D its bosonized version Both authors were partially supported by CNPg-Brazilian
in the small\g limit is a generalized free theory. This may National Research Council. RB is very grateful to the Insti-
have some implications concerning the interpretation of duto de Fsica-UFRJ for the kind hospitality.
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