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We bosonize the massive Thirring model in 311D for a small coupling constant and arbitrary mass. The
bosonized action is explicitly obtained both in terms of a Kalb-Ramond tensor field as well as in terms of a
dual vector field. An exact bosonization formula for the current is derived. The small and large mass limits of
the bosonized theory are examined in both the direct and dual forms. We finally obtain the exact bosonization
of the free fermion with an arbitrary mass.@S0556-2821~97!04918-7#

PACS number~s!: 11.10.Lm, 11.10.Ef

The method of bosonization has proven to be a very pow-
erful tool for investigating two-dimensional theories allow-
ing, for instance, the obtainment of exact solutions of non-
linear theories such as quantum electrodynamics and the
sine-Gordon model@1#. A lot of effort has been spent in
order to generalize this method to higher dimensions@2,3#,
but explicit results are only available in 211D @4–8#.

In the present work we aim to provide an explicit
bosonization of the massive Thirring model~MTM ! in 3
11D. Contrary to earlier approaches, our analysis is valid
for arbitrary mass and coupling. Using the functional meth-
ods developed in@2#, we show that the MTM can be
bosonized either in terms of a second rank pseudotensor
Kalb-Ramond gauge field or in terms of a dual vector gauge
field. An exact bosonization formula for the current is de-
rived both in terms of the tensor and vector fields. We then
perform a small coupling expansion, obtaining thereby con-
crete expressions for the bosonized Lagrangian and its dual
for arbitrary mass. The small and large mass limits are ana-
lyzed in detail. The leading contribution in the small mass
limit behaves as a Proca theory, either in the tensor or vector
cases. In the large mass limit, however, the leading contribu-
tion is nonlocal. This is to be compared with the correspond-
ing analysis in 211D @4–8#, where the roles of the two
limits are reversed.

We also consider the case of a free fermion with an arbi-
trary mass as a limiting situation of the MTM when the
coupling constant vanishes. In this case, we get exact explicit
results for the bosonized Lagrangian and its dual. Interest-
ingly, the tensor field Lagrangian that appears in the small
mass limit has been shown to be connected with QED@9#.

Let us consider the master Lagrangian@2#
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~1!

whereAab is the second rank antisymmetric Kalb-Ramond
tensor field and

Fmna5] [mAna] ~2!

is the corresponding field intensity tensor.Bm is an external
vector field andl is its coupling constant to the fermions.
Note thatl has dimension of mass inverse. This Lagrangian
is invariant under independent gauge transformations on the
vector and tensor fields. Consider the Euclidean generating
functional in the presence of external sources
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whereKm must be conserved in order to preserve gauge in-
variance and the delta functions are for fixing the gauge.
Upon integration overBm andAab @2#, we obtain the MTM
as the resulting theory:
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wherej m5c̄gmc is the fermionic current. By comparing the
generating functionals~3! and~4!, we can make the identifi-
cations

l j m5emnab]nAab52Bm . ~5!

The above results are valid for arbitrary values ofl andm.
Note that the antisymmetric Kalb-Ramond field must be a
pseudotensor. This behavior under parity transformations is a
general feature of the bosonized fields in any dimension and
follows from the current bosonization formulas.

Let us perform now the fermionic integration in Eq.~3!.
Observe that even thoughl is dimensionful, we are just deal-
ing with the familiar fermionic determinant in the presence
of the external fieldl Bm which has the usual dimension.
Hence, only one-loop graphs will contribute to this determi-
nant. In the smalll approximation, the leading order contri-
bution is a two-legs graph. We therefore obtain the effective
action
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wherePmn is the lowest order contribution to the vacuum
polarization tensor of QED, which in Euclidean momentum
space is given by@10#

Pmn~k!5~k2dmn2kmkn!P~k2!,

where
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in which x5(11 4m2/k2)1/2. In the above expression, the
renormalized coupling constantlR is given, in lowest order,
by

lR
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whereL is an ultraviolet cutoff. Notice that in the effective
action ~6! we have set the external sourceKm50 because
after the identification~5!, the use of two sources would be
superfluous.

From the effective action~6!, we can obtain the bosonized
theory~or its dual! by integrating either overBm or Aab . The
quadraticBm integration can be made in a straightforward
manner, giving the result
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where the Fourier transform ofG(z2z8) is
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The exponent in the above integrand is the bosonized theory
corresponding to the MTM forarbitrary mass and smalll.
This is one of the central results of our paper.

Let us investigate now the small and large mass limits of
the bosonized theory. From Eq.~7! and Eq.~10! a straight-
forward computation yields, respectively,
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Observe that in the small mass limit, because of the gauge
fixing constraint, the leading term is a mass term for the
Kalb-Ramond field. In the large mass limit, the leading term
is already nonlocal. This is a consequence of the nonconstant
behavior of the vacuum polarization tensor of QED which

must vanish for smallk, in such a way that the Coulomb
potential has vanishingly small corrections at large distances.
Should the vacuum polarization tensor have a constant be-
havior for large mass~small k! we would also have a Proca
type Lagrangian for the bosonized theory. This may happen
in higher dimensions@2,3#.

Let us point out that here we have a similar situation to
the three-dimensional case where the leading behavior in the
small and large mass limits give different expressions@4–8#,
but only the role is reversed because the local form is ob-
tained there in the large mass case.

Now we can get the dual version of the bosonized theory
by starting from Eq.~6! and performing the quadratic inte-
gration over the Kalb-Ramond field. The result is@2#
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whereGmn5]mGn2]nGm andP(z2z8) is the inverse Fou-
rier transform ofP(k2). Observe that the first term came
from the fermionic integration and was not involved in the
integration over the Kalb-Ramond field.

The small and largem limits of the above expression can
be obtained trivially from the expressions in Eq.~11!. Ob-
serve that in the small mass limit, the leading contribution
yields a Proca Lagrangian. It is interesting to see that in this
limit both the original and dual bosonized Lagrangians are of
the Proca type. The fact that the dual of a vector Proca theory
is a Kalb-Ramond Proca theory in arbitrary dimension has
been observed in@2#.

Let us consider now the free fermion field with an arbi-
trary mass. This can be obtained by taking the limitlR→0,
in which case the fermionic integration becomes exact. From
Eq. ~11! we can see that in this case only the second term in
the exponent in Eq.~9! is relevant and the bosonic action
corresponding to a free massive Dirac fermion in 311D is
given by

E d4zc̄~ i ]”2m!c↔2
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where we have rescaled the Kalb-Ramond field as
Amn→lR

21Amn and therefore

G̃~z![lR
2G~z!. ~14!

It is interesting to note that the leading contribution to the
small mass limit of Eq.~13! reproduces the theory studied in
@9# in connection to QED, whereG is proportional to 1/h,
whereas in the large mass limitG will be proportional to
1/(h)2.

A very important remark now is in order. Observe that
according to the identity~5! the Thirring interaction corre-
sponds to the first term in Eq.~9!. We have just seen, on the
other hand, that the free part of the fermion Lagrangian can
be exactly bosonized by Eq.~13!. One could then be tempted
to exactly bosonize the full MTM by just adding the two
pieces as it occurs in 111D. This however is not true here
as our computation clearly shows that only in thelR→0
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limit we can bosonize the free massive fermion Lagrangian
as Eq.~13! and ignore the higher-order insertions in the fer-
mionic determinant. A consequence of this observation is
that in spite of the fact that the linear current bosonization
formula ~5! is always valid, the bosonization formula for the
free fermion Lagrangian depends on the interacting part of
the theory it is embedded on and only in the free case it is
given by Eq.~13!. This is the most remarkable point of de-
parture from the usual bosonization scheme in 111D.

There is an important point which needs further clarifica-
tion. This is related to the fact that even though the MTM is
a nonrenormalizable theory in 311D its bosonized version
in the smalllR limit is a generalized free theory. This may
have some implications concerning the interpretation of a

nonrenormalizable theory which we still do not completely
understand and plan to investigate in the future.

We conclude by remarking that the results obtained here
open a broad field of research in the bosonization of theories
in the physical dimension of 311. One could devise, for
instance, the use of the master Lagrangian given in@2# in
order to obtain explicit bosonization formulas for QED. Also
one could explore the concrete bosonized theories obtained
here through the operator formulation developed in 211D
@4# for the direct bosonization of the fermion field operator.
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