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We introduce arlN=1 supersymmetric generalization of the mechanical system describing a particle with
fractional spin inD=1+2 dimensions and being classically equivalent to the formulation based on the Dirac
monopole two-form. The model introduced possesses hidden invariance undéstheoincaresupergroup
with a central charge saturating tiBPS bound. At the classical level the model admits a Hamiltonian
formulation with two first class constraints on the phase sfdd&®?) x £, where the Khler supermani-
fold £111= 0OSp(242)/U(1|1) is a minimal superextension of the Lobachevsky plane. The model is quantized
by combining the geometric quantization @i!! and the Dirac quantization with respect to the first class
constraints. The constructed quantum theory describes a supersymmetric doublet of fractional spin particles.
The space of quantum superparticle states with a fixed momentum is embedded into the Fock space of a
deformed bosonic oscillatofS0556-282(197)07716-3

PACS numbed(s): 11.30.Pb, 71.10.Pm

I. INTRODUCTION arbitrary fractional spin particles one should make use of the
deformed Heisenberg algebf@HA) (see[28,27] and refer-
Anyons[1], being particles with fractional spin and sta- €nces thereinand the superalgebra dg®). Thereby the
tistics [2,3] in (1+2)-dimensional space-time, are not a One-particle anyon states can be realized in Zhgraded
purely group-theoretical concept, but they may originate, foﬂzock space of the.deformed osqlllator, where the grading is
instance, from the field theory in the presence of Cherninduced by the Klein operator being one of the DHA genera-
Simons field 4—7]. Several physical phenomena such as thdors. These results show the actual relationship between

: : - DHA and the fractional spin concept.
fractional Hall effect{8—10] and highT. superconductivity . .
[11] can be explained by means of this concept. In this article we demonstrate that the DHA naturally

We observe today a considerable interest in the study O?rlgmates in the quantum supersymmetric theory of anyons.

. . L We introduceN =1, D=3 super Poincar@variant action
point-particle models of anyorj{d2-23, which is generated for a massive fractional spin superparticle living t?l2
by a possibility to derive a field theory for anyons by quan-

o assical hanical - ) ‘ x £, whereR3/2 denotes thé=1, D=3 flat superspace and
tizing a classical mechanical systemn=1+2 dimensions. 1 5’5 | ghachevsky plane. This mechanical system is a mini-

The most efficient method known to realize the quantumyga| sypersymmetric extension of the special anyon model
anyon states is to use the fields transforming in unitary irresyggested ifi23]. Our interest in the latter is due to the fact
ducible representations of the universal covering group ofnat the model proves to be classically equivalent to the for-
SO(1,2=SU(1,1) [12-15,22-26 These representations mulation based on the monopolelike symplectic two-form
are infinite-dimensional and, hence, an infinite set of equaf17—2Q and, hence, allows interaction to arbitrary back-
tions are required to single out one independent physicajround fields. On the other hand, it can be treated as a re-
component. Although various versions of such equationsluction of the D=(1+ 3)-dimensional massive spinning
have already been suggestédefs. [12—-15,22-2§, the particle model developed ir29].
problem remains open to realize them in a form that admits By construction, the model under consideration is mani-
anyon self-interaction. festly N=1 supersymmetric. But it turns out to possess hid-
A convenient formulation of free field equations for frac- den invariance with respect tN=2 Poincaresupergroup
tional spin particles was suggested in Réf]. In their ap-  with a central charge saturating the Bogomol'nyi-Prasad-
proach, both the mass-shell constraint and the spin-fixinggommerfield(BPS bound (see, for instance,30]) on the
condition (which are imposed as independent equations irmass shell. As is known, this condition on central charge
other modeld12-14,16,20,22,23 originate as integrability corresponds to shortening bf=2 massive supermultiplets.
conditions for the field equations of motion. This is achievedThe appearance df=2 supersymmetry has a remarkable
by making use of the well known realization of(4¢®) as the  counterpart in Hamilton formulation of the theory. Namely,
Lie algebra of quadratic polynomials of the creation and anthe dynamics is restricted to a surface of second class con-
nihilation operators of the harmonic oscillator. As a conse-straints in such a way that it takes the form of the mechanics
quence, only the particles with spins (21)/4, n  on the phase spad (R x 11, where the Kaler super-
=0,1,2,... (called semionsappear in the spectrum of the manifold £!*=0Sp22)/U(1]1) (of complex dimension
model [15]. Recently, it has been recogniz€d7] that in  1+1) is a minimal superextension of the Lobachevsky plane.
order to extend the semion constructidrb] to the case of |t is the “inner” supermanifold£1|l, which supplies the
particle with a superspin degree of freedom. (2R
emerges as the group of all the superholomorphic canonical
*Electronic address: ivan@phys.tsu.tomsk.su transformations o,
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The N=2 Poincaresuperalgebra with central charge and ¢ 1477 747 7—7
i i =>28__ i 2 _
the superalgebra o&})2) prove to be closely related in this n,=—= , i , nf=-—1.
construction both at the classical and quantum level. Let us ¢ 1-2z 1-zz 1-zz

comment on this crucial point in more detail. In Hamilton a — , 12 i _
approach the dynamics is described by one first class and sfiereéx” andz,z are coordinateSon R**andZ, respectively;
second class constraints. The second class constraints havéag@nd¢ are defined by relation®5) and(B7) in Appendix
complicated nonlinear structure that makes it practically im-B: M ands denote the mass and spin of the particle. The
possible to perform straightforwardly the Dirac canonicalModel possesses global invariance with respect to the Poin-
quantizatior(probably, it is the reason why superanyon mod-Care group. Infinitesimal P0|ncgrﬁansformaﬂons(wﬂh fa

els have not been quantized until Howdur solution to the e_md w? parameters of translations and Lorentz transforma-
problem is as follows. We first reduce the dynamics withtions read

respect to four second class constraints arriving to the phase
spaceT* (R'3 x £Y1. As a consequence, the superalgebra
osp(2|2) is naturally realized in terms of the nonlinear Pois-
son bracket. Special structure of the reduced phase space

makes it possible to apply the Berezin-Kostant quantization _ ) — _
method[31,37 for the inner phase space. This method hagVhere the vectorlike object,, &, are defined by Eq(B6).

been recently extended to the supermanifﬁi‘dil [33—35, The Lagrangian(1) is manifes';ly translatiop invariant,
onT*(R) % L1 the rest constraini®ne of first class and whereas the Lorentz transformations change it by a total de-

ox2=f23, §z=6z=0,

3= % w., 8z=—i(w,§), dz=i(w,&), (2)

two of second clagsare equivalent to two first class con- rivative:

straints. In quantum theory, these constraints are imposed to

annihilate physical states, and it proves to be equivalent to SL=— S i ig + i_g_ wd 3)
the requirement of the Poincaseperalgebra to be consistent 2dr\ 9z 5772

guantum mechanically. Thus, combining the geometric

quantization onC!* for the second class constraints and theTo verify Eq. (3), one should know that, by virtue of Egs.
Dirac quantization with respect to the first class ones, we cafB3), (B5), and(B7), n, transforms as a three-vector, hence
quantize the superparticle with arbitrafixed) fractional su-  the first term in the action functional is manifestly Poincare
perspin. Short massive representations ofNi¥e2 Poincare invariant. As to the second term, it can be writtensfi,
superalgebra with central charge are realized on the fieldwith the one-formX, being a solution of the equation
transforming in atypical unitary representations of (@&). d=,0=Q,, for the Lorentz invariant Kialer two-form
Moreover, the known connection between unitary represen- o

tations of osf2|2) and the DHA makes possible an alterna- Qe —2i dz/\dz

tive elegant realization of the superanyon doublet in the Fock 0=~ 4l 2

space of the deformed bosonic oscillator.

This article is organized as follows. The anyon model onassociated to the Lobachevsky plane. The invarianc@ pf
the configuration spac&’?x £ and its quanitzation is con- implies that=, may get exact contributions under Lorentz
sidered in Sec. Il. In Sec. Ill we analyze tie=1,D=3  transformations. It i, which contributes to the total de-
superanyon model. The global symmetries of the model andvative in the right-hand side of E¢3).
the structure of the reduced phase space are studied in detail. The global symmetries related to the Poincgreup gen-
Section 1V is devoted to the quantization of the superanyorerate all the independent Noether currents of the model. It is
model. Summary and concluding remarks are given in Seawvorth pointing out the existence of another global space-time
V. In Appendix A we collect the conventions used through-symmetry of the action functional
out the paper. In Appendix B we describe the realization of
the Lobachevsky plane as a homogeneous space of the Lor- oxd=—pn?, 6z=0, 6)
entz group.

4

wherep is a constant parameter. This rather unusual trans-
formation commutes with the Poincapees, and the associ-

II. ANYON MODEL ON RY2x £ ated Noether current is trivial. To clarify this fact, consider
the equations of motion. Accounting for the identities

As a starting point for supersymmetric extension, let us_ . 1y 5—(z p the Euler-Lagranae egquations read
consider a model of the fractional spin particle suggested in (&), z=(&.n), grange eq

[23]. The configuration space of the modet?x £, where . . is s,
L£=5SU(1,2)/U(1) denotes a Lobachevsky plane, is a homo- n?=0, (x,£)= _EZZO’ (x,g)zaiz 0,
geneous space of the=3 Poincaregroup. The model is

described by the action functional s0, in particularn? is a conserved vector. Therefore trans-

formation (5) reduces to special space-time translations on-

77— 37 shell.

T

S=Jd7 L, L=m(x,n)+i (1)

1The Lobachevsky spac@is realized as the unit disc of complex
where plane,|z|<1.
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Sincel is a first-order homogeneous function of veloci- TW=p2+m?~0, (129
ties, the action remains invariant under world-line reparam-
etrizations of the form T =(p,n)+m~=0. (12b
5. x3=x3e(1), 8.z=2€(7), 8.2=7€(7), (6)  One can also verify that functions of the Poincgemerators

exhaust all the physical observables in the model. Therefore
with the parametere(7) being arbitrary modulo standard the model must describe the irreducible dynamicef3
boundary conditions. particle with massm and spins. In addition, the particle
Remarkable features of the model become transparent ignergyp® is positive, as a consequence of Ef).
the Hamiltonian formalism. All t@ relations defining Canoni- Remarkab'y, the mixed first and second class constraints
cal momenta conjugate &?, z, z constitute the set of pri- (7) proves to be equivalent to the first class constraihs.

mary constraints: This immediately follows from the decomposition
Ta=Ppa—mn,~0, @ (P.O)— _(p.6)
_ Pa=2— &t 2— &~ (P.n)Ng, (13
T — 2 ¢ ;
T=p,—is-~0, T=p+is-~0. (8)
¢ ¢ which is true for arbitrary three-vectqr,, in virtue of Eq.

(B8). Really, the constraintg7) imply (p,&)=(p,&)=0,

The Hamiltonian is a linear combination of these constraints . .
There are no secondary constraints and Efjsand (8) de- Ezngfsfg?\(el?e?sre fulfilled. On the other hand, by squaring

scribe the complete set of constraints in the model. The ma-
trix of (canonical Poisson brackets of the constraifits and
(8) turns out to have the rank equal to four, which is a maxi-
mal possible value for antisymmetric<®d matrix. Hence, we
have four second class constraints and one of the first clas . : ~
It is expedient for further consideration to reduce the dy_‘?hus, _the cons_tramt$12) |mply (p.£)=(p.£)=0. More-
namics to the surface of the constrairi® removing mo- Vel itis r_eadlly seen that either Of. the two sets of con-
mentap,, py: For s#0 the corresponding Dirac brackets straints defines the same set of physm_al observables. Hence,
are denoted by, }* and have the form the set of three constram(t%_) (among whlch there are two qf
second class and one of first clpase equivalent to the pair
L i of first class constraint®?). The above observation is impor-
X3, pp}* =682, {z.2}*= —£(1—27)2, (9) tant for quantization below.
On the mass shelll2a, Eq. (7) can be treated as a pa-

the rest brackets between the variables equal to zero. Tr{gmetrlzatlon of the mass hyberboloid by local complex co-

reduced phase space obtained in this way is seen to be is%dl_r;a:rensih)z.inTms weans, however, that we can rewrite the
morphic to the product of two symplectic manifolds, o-fo € way

T*(R*) x £, where £ has a standard nonlinear symplectic 1 €% dpAd
structure of the Lobachevsky plafigl,36. Q== € Palpp/NdPc
2 ( _ p2)3/2

Let us discuss the physical observaBlas the model.
transformations(2). For the energy-momentum vect@®, that is, as a Dirac monopole two-form. Consequently, our

2

4@ =p?+(p,n)>. (14)

: (15

First, consider the Hamiltonian generators of the Poincare

and the angular momentum vectdg, one has model proves to be a reformulation of the well known anyon

models based on the monopolelike two-fof@¥—20. This
Pa=Par» Ja=€apX’p+Jy, (10)  fact can be alternatively established by deriving the Dirac

brackets(to be denoted below by, }**) associated to the

whereJ, denotes the spin momentum vector pair of second class constraintg,£)=0, (p,£)=0. These
brackets have the explicit structure

s — s——
Ja=i gapz_igfa_ i€ap7— 5‘9 £a=—SN,. (11 Eabcp

{x2,xP}+* =S ;,2 o XA PR}t = 6%,
Here we have accounted for the constrai@)s With respect (=p%)
to Poisson brackg®), the functions(10) generate the Poin- { v (16)
carealgebra is@l,2), whereas the spin generatdfisl) span Pa.Pb

internal Lorentz algebra $b,2) related to the automorphism a4 reproduce the Poisson brackets for the mentioned par-
group of the Lobachevsky plane. The phase-space Casimiijc models.

functions PP, = p? and P?Ja=—s(p,n) reduce to con- In a sense the “minimal” approach based on the two-

stants in virtue of the constrain(g) form (15) and Poisson brackél6) appears to be very natu-
ral. In particular, it is well adapted for the introduction of
consistent coupling to external fielfls7—20 and for consid-

2Physical observables are understood as phase space functioggation of self-interacting anyo21]. However, the realiza-
weakly commuting with the first class constraints. tion of quantization scheme in terms of “nonlocalizable”
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coordinates has become a difficult problem in view of thegy(1,1) bounded belo36-38,25. The components (),
complicated structure of the Poisson brackets for coordin—0,1,2,... of the fields are obtained by the series expansion
nates. Moreover, it is hardly possible in this approach toof our  wave function in |n)=[T(2s+n)/T'(n
introduce “localizable” coordinates without loss of manifest 1 1)1 (2s)1YZ", Finally let us note that the case®£0 can
covariancd 22]. To the contrary, the_formulatlon on th? €X- pe treated in a similar way by the use of the representation of
tended phase spade (R x £ admits a natural quantiza- SU(L.D) being to the other discrete seri&-° bounded
tion scheme we are going to describe. abov,e -

To quantize the model, we shall make use of the follow- |
ing prominent features of the model. First, all physical ob- c o1 0
servables, which are phase space functions commuting with !l SUPERPARTICLE DYNAMICS ON - T*(R*?)x £

the first class constraints, are actually functions of the Poin- 1pe simplest way to obtain a supersymmetic generaliza-
caregeneratorg10) only. Thus the quantization problem is tjon of the model described is to extend the configuration
to construct an appropriate realization for the unitary repregpace to a supermanifol32x £, where the Grassmann

sentations of the Poincagroup. Classically, the Poincare sector is parameterized by an anticommuting Majorana
generatorg10) in the phase space of the model are split iNtOgpinof 9%, and to substituteX® in the action by

two pieces, one of which includes only space-time variablegya_

and another corresponds to the internal spécdt is the

latter part of the generators which is relevant for nontrivial

spin values. Second, one can observe that the spin(}Brt Z5— 37

of J, coincides with the covariant Berezin symbols of the S:j drL, L=m(Il,n)+is . (20

groupSU(1,1) on the Lobachevsky plan&1,36. In view of 4

?)lilrg::ecfsgg#iizl rgﬁgﬁ%;gﬁé: fsoeretr;:: Sl\’/ﬁ?]if\l\?sli? ggg:ggnse;]t@y construction, the model possesses global symmetry with
respect to theN=1 Poincaresupergroup, and the corre-

freedom W!th a geometric quantization for Spin. sponding infinitesimal transformations read
We realize the Hilbert space of one-particle anyon states

of massm and spins>0 as a space of functiors(p,z), Sx2=f2 5z=0. 50°=0
F: R¥2x £—C to be antiholomorphiton the Lobachevsky ’ ’ ’
plane (that is, antiholomorphic in the unit disk df, |Z|
<1). The operator realization of the classical Poinagea-
eratorsP, and 7, [Eq. (10)] reads

x2—i(0%),50%0°. Then, one results with the
N=1, D=3 superanyon theorywith the action functional

MA=ie(0%) 408, 62=0, 6°=¢%, (2D

) ) ) 5= eP%yw., 0z=—i(w, &), 5aa='§waﬁaﬁ.
Pa=Pa, Ja=—Ii Eabcpbw + J;,
¢ (17)  Here,f?, w?=(w%8,)"s, ande” are the parameters of trans-
35— —g—a— SE lations. Lorentz, and supersymmetry transformations, respec-
a a ar tively. Similarly to the nonsupersymmetric moddl), Lor-
entz transformations change the Lagrangiaf) by total
derivatives.
Along with the dynamical symmetrie@1), the theory
dzdz _ e possesses several invariances which do not lead to new in-
(FIG)=(2s— 1)f d3pf ﬁ(zs*zF(p,Z)G(p,Z)- dependent Noether currents. Such global symmetries are de-
£ (19 scribed by the transformations

where 9= d/dz. The generator§l?7) are Hermitian with re-
spect to the following inner product:

a_ __ a — o
To complete the quantization, we impose operator coun- oX°=—pn?, 6z=0, 66°=0,

terparts of the first-class constraint$2) on the physical

statesePhys ox8=0, 6z=0, 66“=—2iun” 40z, (22
(p?+m?)FPWYYp,z)=0, (19 OX2=—n%(0®) n* 07, 62=0, §6“=—in®znP,
[(p,js)—ms]thVS(p,z_)z 0. wherep and u are bosonic infinitesimal parameters antl

Grassmann ones,” ;= (n%g,)“ 4 is constructed in terms of
This construction corresponds to the well known realizationz, z as in Eq.(1). The transformation&1) and(22) turn out
(see, e.g.[12,25,29) of the D=3 Poincaregroup represen- to generate a closed superalgebra off the mass-shell. To ana-
tations of massm and spins>0 in terms of infinite- |yze the structure of that superalgebra, it is convenient to
component fields transforming by an appropriate irreduciblgyass to the Hamiltonian formalism,
unitary representation of discrete seriesDof of the group

“The reality conditions for spinors in the §1J1) formalism are
3This particular realization is useful, since it provides the corre-described in Appendix A.
spondence principle for Eq), (10), and(11) and gives the proper ~ °The case of extended supersymmebliy-1, deserves special
energy sign. treatment and will be considered elsewhere.
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Introducing the momenta conjugate x8, z ,z, % and
defining the canonical Poisson brackets

{x2,pp}=6%, {z.pt={z.pz}=1, {6* mz}= 6%,

we observe that the model contains the following set of con-

straints:
Ta=Pa—mn,~0, @3
T,=Tot+imn,z0f~0, (249
T=pz—is§%0,T_=pz—+is§%0, (24b)
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(for s>0, m>0) to the surface of second class constraints
(24). To explain this interpretation, consider the respective
Dirac brackets:

NS 19)
{Z,Z} ——2—S 1+§? ,
i 166\
{(9,(9’8} =—Nn ﬁﬁ(l—z?), (30)
i - [[—
{z,6%} :2\/%2 0, {z,6} =3 2mSz 0,

while the rest Dirac brackets involving the space-time vari-

which involve six constraints of the second class and one ofples keep their canonical form, i.e., they vanish except
the first class. As it is obvious, the first class constraint gensya p 1+ = 52 Here we denote

erates world-line reparametrizations and thus the physical

Hamiltonian is zero. The Hamiltonian generators of the super S o s — 0 —1
Poincaretransformationg21) look like m 0=z,0=z6"—- 0", 2—052a0“= 0°—z6";

Pa=Pa: ja:Eachbpc+Ja1 Qi=ipaﬁﬁﬁ—ﬂ-a,
(25

where

i o B s — S
Ja:_i(ga)aﬁe ™ +|§apz_§a§a_|§apz__§a§a-
(26)

further, the generators of transformatid@®) have the form

Z=—(p,n), K=2in,z0%",
P g 27

2 .
Qo= —pupn? 07 +in,Prg.

The generator§25) and(27) prove to satisfy théanti) com-
mutation relations

{javjb}zeabcjc- {jaypb}zfabcpca
i
{Ja, Qb= 5(02)apQ"’, {Q4 K}=2€"05, (29

{9, Qb =—2i6"p,5—2e"€,,2,

the rest brackets being equal to zero, wherd=1,2, "
=—¢", ”=1. What we have obtained =2 Poincare
superalgebra with a central charge describedZbgnd U1)
isotopic chargel acting on the internal index of,'. The

functions(25) generateN=1 subalgebra.

Let us discuss in more detail the system of constraint
(23) and (24) which are different from that defined by Egs.

(7) and (8) by the presence of fermionic constrainftg.

The latter can be rewritten in a more familiar, for superpar-

ticle models, form

T;=wa+ipa50ﬁ~0 (29

on the surface of constrain{®3). We prefer, however, to use

m m

(31)

the twistorlike variableg®, z* are defined in Appendix B.
The complex Grassmann variabke is in a one-to-one
correspondence with_Majorana spingft and, together with
its complex conjugat®, can be used to parametrize the odd
sector of the constrained surface. From E@) one de-
duces

0,0\* = — i—g( 14t @
{ ’ } - s 2 g ’ (32)
{2,0_}*=%20_, {z_,e}*=—|2—iz_6.

Equations(30) and (32) mean that the symplectic structure
on the reduced phase space is induced by the two-superform

A=dp,Adx*+sQ,

where
0=sil1 14+zz _\dz\dz
=2il1— 27 60 gz
[deAde z6 76
+i ——dzA\d§——dzA\d6|. (33
¢ &

We follow Berezin's conventions for superformid3l] (see
Appendix A). It is noticeable thaf) can be represented as

S

Q—'(d a+o|95)/\o| +d6_5 ® 34
=i\ dzg; +doZ5 | A dzodo— @, (34
106)
§+E ’

where

®(2,2,6,0)=—21In (35)

the original representatiof24a in which the fermionic con-
straints do not involve the space-time variables and admit aso, we conclude tha® and, henceA are closeddA =d(Q
interesting geometric interpretation related to the reduction=0.
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The above consideration shows that the reduced phagke action functional[the second term in Eq(1)]. =,
space has the structure of direct product of symplectic spacehanges at most by total derivatives under the(1S1/7Z,
T* (R x £, £11=£x (O being a complex supermani- transformations. Let us now rewrite the action functional
fold (of dimension 3-1) parametrized by the complex even (20) in the form
and oddé coordinates. The symplectic structure 6HL is o
determined by the closed nondegenerate superfonvhich . a I zdz—zdz
is in fact a Kénler superform, in accordance with E@4), S= | | mnadX*—i| mn,z6°d6”—s I
and the corresponding superpotential reads as in(&s).
This Kahler supermanifold has been introduced in Refs.t is easy to verify that the term in the square brackets is
[34,35 as coadjoint orbit of simplest orthosymplectic super-related to a one-superfor® such thatd==(. Thus, =
groups[degenerate orbit of O%$2) and a regular orbit of changes at most by exact contributions under the (@8p
0OS{1/2)] and termedsuperunit disk Therefore,£! is a  transformations.

homogeneous spad&5] of the supergroup 0%p2), £ It should be emphasized that neither @&p) nor its non-
=0Sp2|2)/U(1|1) [hence, it can also be realized in the man-supersymmetric analogue SU(1,1)/(the internal Lorentz
ner£1‘1:OSFi1|2)/U(1)]. group originate as symmetrysupej groups of the corre-

OSp{22) turns out to be the group of atlanonical(with  sponding mechanical systems. The true symmésnpe
respect td)) superholomorphic transformatiorm £ In- groups of the modelgl) and(20) are the Poincargroup and
finitesimally, these transformations look like its N=1 superextension, respectively, which exhaust all glo-
bal invariance transformations giving rise to independent
Noether currents. However, the internal Lorentz algebra
sa(1,2 and its superextension d@{) naturally appear in
the Hamilton approach as building blocks of tlgupej
wherew®, u are bosonic real parameters agagfermionic  Poincaregenerators. Really, we have seen that the Poincare
complex ones. The functions generator$10) in T* (R¥? X £ consist of two sectors, one of

_ — which is associated with the space-time coordinates and mo-

i d _
0z=—iw?¢,—€,2%0, 66= —EwaE E,0—1nl+2€,2°,

10 10 menta and the second coincides with thé€ls®) generators
Ja= —sna( 1_§ ?) B=-s|1 2 ?) (11). A similar phenomenon takes place in the superparticle
(36) model. It is apparent that on the constrained surfade the
[s z¢0—7%9 Imsz,6+z,6 generators of the Poincasipergroup become phase-space
0%= om T o=l TT functions depending ox?, p, and OS|2|2) generator$36).

This observation will be of primary importance when quan-
tizing the model in the following section.
In spite of the strong analogy mentioned between the par-
ticle and superparticle models, there is an essential difference
{3230} = €ap°, in realization of the global symmetry groups in the reduced
phase space. The action of the Poincgreup is obviously
i i well defined onT* (R¥?) x £. At the same time, supersym-
{Ja,09% = E(oa)aﬂﬁﬁ, {Ja,mo}* =— E(Ua)aﬁﬂ'ﬁ, metry cannot be globally realized arf (R%? x £1* and re-
stores only on the surface of the rest constrai(28).
Straightforward calculations dant) commutation relations

serve as the correspondifigal generators of 0S@|2), and
their algebra, with respect to the Dirac brackets, reads

{6%,B}* = iﬂa, {m, B} = _m 6,, (37) of the generator§25), (27), with respect to the Dirac brack-
2m 2 ets, show that all the bracke®8) remain intact in the strong
_ _ sense excepfQ,,Qp}* and{Z,Q.}*. The latter can be
i im ;
a pfrx — ap *_ presented in the manner
{0 ’0 } 2mSJ ’ {chﬂ-ﬁ} 2 ‘Jaﬁv
. {QL. Q) =—2i87p,p—2€7 €52+ (p?+m?)cy’
{0% mg}* == 556%4B, {Ja,B}*=0. +((p,n)+m)cZy’,
The generators], and 6 (or m,) form a superalgebra (2,01 =(p*+m?)c'Y' + ((p.n) +m)c?",

os(1/2).

Let us note that the role of O&}2) for the superparticle wherec()}’, c())' are some functions ofi* (R*?x £*I?,
model (20) is similar to the internal Lorentz group whose explicit expressions are rather cumbersome and not
SU(1,1)/7Z,, whose action is defined ofi only, in the par- important here. Hence the Poincaseperalgebra restores

ticle model of Sec. Il. Really, in accordance with E€R0)—  only on the surface of constraintg3). Let us discuss this
(33) the reduced phase spdtke surface of constrain{24)]  point in more detail.
of the superparticle is isomorphic td’*(]Rl'z)x[,l‘l, Similarly to the constraints structure in the anyon model

whereas its particle counterpart & (R x £. OSp2j2)  of Sec. Il, Eq.(23) describes two second class and one first
[respectively, SU(1,1)4,] leaves invariant the Kder two-  class constraints which are equivalent to the pair of first class
superformQ (33) on cit [respectively, the Kialer two-form  constraints(12). The latter can be used to evaluate the Ca-
Qo on £]. We introduce the one-formi,, d3,=0,, into  simir functionsC,="7*P, andC,=PJ,+3Q'*Ql,— 1 2K
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of N=2 Poincaresuperalgebra, which turns out to conserveThus we result ilN=1 superextension of the minimal anyon
identically on the total constraint surface. Then we find thatmodel with monopolelike two-form§15). The superparticle
the model describes a superparticle with masssuperspin  dynamics on the reduced phase superspace is subject to
s, central chargeZ=m, and positive energp®>0. mass-shel(123 only and the Hamiltonian reduces to

Relation Z=m corresponds to saturating the BPS bound
m=|Z| for massive multiplets in extended supersymmetry.
The specific feature of such a choice is multiplet-shortening H=
through central chargd80]. This is the casen=|Z| when a
massive supermultiplet contains the same number of par-
ticles as a massless one. Such massive multiplets are callédieree() is a Lagrange multiplier. Because of the compli-

%e( 7)(p?+m?), (41)

hypermultiplets[30]. In the case ofN=2,D=3 Poincare
superalgebra, a massive multiplguperparticlg of super-
spin s describes a quartet of particles with spirsss¢+3,s
+3,s+1) for m>|2| and a doubletg,s+3) for m=|L|.
We conclude that our model describes a masslve2 hy-
permultiplet of superspiis or, in other words, a supersym-
metric doublet of anyons with spirssands+ 3.

Because of the relatio®=m, not all Hamiltonian gen-
erators(25) and (27) of the N=2 Poincaresuperalgebra are

cated nonlinear structure of Dirac brackéed$), it is a non-
trivial problem to obtain their Hilbert space operator realiza-
tion. That is why we choose another course to quantize this
model.

IV. QUANTIZATION OF THE SUPERANYON MODEL

The quantization scheme of Sec. Il, which was applied to
the anyon model with phase spat&(R*? X £, consists of

functionally independent, when restricted to the total concombining the Dirac canonical quantization for the space-

straint surfaceg23), (24), but only theirN=1 subset(25).
The rest generators can be expressed as follows:
p2
—=m
m

[ 1
Qo= ——p.fQp K=—5-0"Q, Z=- (39)

on the full constraint surface. Moreover, any physical ob-

servable proves to be a function of tNe=1 super Poincare
generatorg25) only.

Equation(38) shows that the hiddeN =2 supersymmetry
(22) can be treated as an artifact of the embeddingl ef2

Poincaresuperalgebra into the universal enveloping algebra{n

of the N=1 one. The transformation®2) present them-
selves special linear combinations of tNe=1 transforma-

tions (21) with the coefficients depending on the on-shell

conserved quantities.

Concluding this section we consider the reduction to the

surface of the rest second class constraiptg)=0, (p,&)

=0. The reduced phase space is originated from the sy

plectic two-superform

A=dp/\dx*+sQ,

1 dpy/\dp. | im | PaPb
Q=3 2z 2| Tab™ TpZ”
(=p9) sV-p P
X 0%(0®) ,pdp°/\d 9P — m P.pd0/NdoP. (39
sy~ p?

The respective nonvanishing Dirac brackets are
Eabcpc m
{Xayxb}** = S( — p2)3/2'( 1_E 00{0&) 1 {Xaa pb}** = 5ab 1

i €°°py(00) 56”

a paykk — _
{X ,19} ZT, (40)
i peh
a gB\kk — _ _
{0 0 } 2m (_p2)1/2'

time degrees of freedom with the geometric quantization for
the curved inner subspace. The efficiency of such an ap-
proach originated from the facts th@} the phase space is a
product of two symplectic space;) the algebra of classical
physical observables is spanned by functions of the Poincare
generators(iii ) the spin part of the Lorentz generators coin-
cides with Berezin's symbols for generators of the unitary
representation@'is‘ of SU(1,1). These features have natural
generalizations in the supersymmetric case, so the quantiza-
tion scheme remains powerful too.

We have seen that the superanyon dynamics can be for-
ulated, upon the reduction with respect to the second class
constraintg24), on the phase spade (R%? x £ which is

a product of two symplecti¢supey manifolds. Similarly to

the nonsupersymmetric case, all the classical observables are
functions of theN=1 super Poincargeneratorg25). On
*(R¥3) x £, the generator&25) are constructed in terms

of the space-time variable€®, p? and osg22) generators
(36). The crucial point is that the 0&)2) generators prove

Mo coincide with Berezin's symbols of generators of an irre-

ducible positive-weight representation of the superaldebra
osp(22) on superunit diskc!! [33—35. That is why the
mentioned quantization procedure is well suited to the super-
anyon model. Begin this procedure with a brief exercise in
the geometric quantization on the superunit disk.

Atypical unitary representations of the superalgebra
osp2|2) can be realized in 4,-graded spacé; of antiho-
lomorphic superfunctions ovet''* of the form

£(z,0)=1o(2) + \s6f,(2), >0, (42)

wheref, ;. L—C are ordinary antiholomorphic functions on
the Lobachevsky plane. A functidne Oy is said to be even
if f1(z)=0 and odd iff,(z)=0. The action of Hamiltonian

generator€36) in T* (R1? x £ can be lifted to the unitary
representation ir0g by the use of geometric quantization

Sstrictly speaking, we deal with so-called atypical representations
of osp(2|2) [35].
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method[31,32. The straightforward computations lead to  Now we are in a position to construct the Hilbert space of
the following expressions for 0&#}2) generatorgsee[35] the superanyon states. The spa¢ef wave functions cho-

for details: sen in the form
A [ 13 1§ F(p.z,0)=Fo(p.2)+ JsOF 1(p.2) (47)
Ja=— &0 0&, s+§0— , B——s+20
a0 is naturallyZ, graded. The operator analogues for the clas-

(43 sical observable&5) are defined by

|| By

- d ~y " ~
Ja= |Eabcp +ja. ’P Pa, Qazlpaﬁﬁ'g—wa

(48)

~ 1___ e JRE—
Vv2m “=§ 0[z%9+2s(dz%)]—

\/mwa—z [2,0+25(9z,)] IZ“,; :

QB
S

|| SE

Owing to Eq.(38), the operator extensions for EQ7) can

0 be chosen in the manner
The (ant) commutation relations foﬁa, I§, :9“, and 7, s 5 —J «
follow from Egs. (37) by replacing{ , }* —1/[ , ]~ (anti- Q= ——paﬁw my,, K=1- 2‘9(9_0 Z=m.
commutator for two odd operators and commutator in the (49)

rest cases It is the representation’. of osp(2|2) of positive
weights, which is realized by operatof43). With respectto  Now, it is crucial to find the conditions, under which the
the subalgebra $1,1), the representation is decomposed intooperators48) and (49) realize a representation of tie=2
a sum of two irreducible unitary representations of discretePoincaresuperalgebra with central charge. Straightforward
seriesDS =DS @DS"Y2. The even(odd component off  calculations show that the operatd#8) and (49) satisfy
e O, transforms by representatid»s (D52, almost all algebraic relation®8) but
The geometric quantization method @it implies that -
the representation space is equipped with the Hermitian twd-Q, , Q1+ =238"p,s—2ime" e,z
form

1
- — _— T ——— _ — __(p2+m2)
(f19)ean= | ,,du(z,2,6,0)e" =2 ""1(2,0)9(z,0), 8ms
(44) X[489],5+1 €€, 5(45—1+K)]

where f,ge Os, @g;,z_,a,e_) is the Kaler superpotential
(35), anddu(z,z,6,6) is a Liouville supermeasure ofit!!.
Taking into account the definition of the closed two-

1 - -
+ m[4(p,\])+m(l€—43— 1]

1J i 1J
superform (33, Q=drAQsdrB, dri=(dzde), drA X (8 Pap=IMe €np). (50
=(dzd¢), one can calulate the supermeasure explicitlyqence we conclude that the operatt#8) and (49) form the
(33,24 superalgebra provided the wave functions are subject to the
equations

d 0,0)= —sdetl Q) d0d9 ~p)
w(z,2, ) sdet A—ﬂ (p2+m?)F(p,z,60)=0, (51)

:_2(1_ E@)‘lz_‘“dﬁ_;e 45 [4(p,J)+mKIF(p,zZ,6) =m(4s+1)F(p,Z,0).
i
These equations turn out to [Beiper Poincarecovariant
Accounting for Eqs(35), (42), and(45), we integrate over Moreover, the solutions of E¢51) describe the superanyon
the Grassmann variables in E@4). Thus, the Hermitian doublet with the masm and the superspis>0. Accounting

form turns into for (47) the equationg51) are reduced to
(f1g)7an=(folgo)2+(f1la1)7 2, (46) (p?+m?)Fo(p,2)=0, (p’+m*)Fy(p,2)=

where(-|-)'. is the inner product for the representation space (p,:]S)FO(p,z_)z msky(p,2),

of D,

(p. I MAF(p,2)=m(s+3)F1(p.2),

(elx)e=(21- Dj 27 §2| 2e(@Dx (D). where J'=—¢£,0—19¢,, |=s, s+1/2. Comparing these
equations with Eqg17) and(19), one observes that the even
It is a matter of direct verification to prove that the genera-component of wave functioR(p,z, §) describes the particle
tors (43) realize the irreducible unitary representation ofwith spins, whereas the odd one describes the particle with
os[2)2). spins+ 3.
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Finally, the space{™*® of solutions to Eq.(51) is natu- . 2s I BN 1. N
rally endowed with unique, modulo normalization, SUperJa:_E(Ua)aﬂﬂ'aW'B! 0=_Km® B=—2K(1+vK).
Poincareand os|i2|2) invariant inner product. It looks like (57)

dp _ After that the quantization procedure can be performed in the
(F,.G)= f — (FIG)zu1, p°=Vp*+m?>0, (52  same manner we have already described. Therefore, the su-
P peranyon doublet is naturally realized in terms of the Fock
s . . Space of the deformed bosonic oscillator. For a fixed mo-
v_vhe[)efFlG)Em denotes the I'—Ierm|t|an.forn'(46), p mentum of the superparticle one can conceive the spin-
=(p".p). The generatort48) realize the unitary irreducible  giates Jive in the even subspace of the deformed Fock space
representation of the Poincaseiperalgebra of mass and 54 the spin- €+ 1/2) ones in the odd subspace.

superspins>0 in the spacé{™*. The case 06<0 can be It is worth pointing out that only the generators of super-
treated in a similar way using the doublet of representations oA d odd h
D-SoD 512, Symmetry 9, mix even and odd quantum states. The gen-

erators of the Poincaragebra map the evejodd) subspace

It is remarkable that the construction proposed admits anat 4/ onto itself and this point was used[i7] to realize the

other interpretation which is not related directly to germetrinractionaI spin one-particle states. The physical states
quantization. It turns out that the odd operatats (or 6%), =N _ams ' :
defined by Eqs(43), together with the (IL)-chargek realize Ep(n%c?r Z)qi;{tiongH were postulated to be solutions of the
a representation of the deformed Heisenberg algébk)
[28,27]. This follows from the identities (PapmP+emm,)F(p,z,0)=0, e==*. (58)
One gets,(p,z) =0 for the solutions of Eq(58), while the
even componenEy(p,z) describes the irreducible quantum
(53)  dynamics of the anyon with massm and spin
s=e(1+v)/4. It is the superanyon dynamics which makes
where use of all the power of the DHA construction.
Sorokin, Tkach, and Volkoy15] showed that in three
v=4s—1. (54 dimensions the dynamics ¢upejparticles with(supejspin
1/4,3/4,5/4,... can be naturally described by the use of the
The operatorsa®=2y2s/mm; and a=2y2s/mm, are usual undeformed oscillator representation=Q0). As one
termed creation and annihilation operators, respectively; may see now the deformed Heisenberg algebra provides the
said to be deformation parameter. Fer0 (that corresponds  description of dynamics of arbitrary fractionéupejspin
to supersemiors=1/4 [15]) the operatorsr, describe the (supejparticles.
usual(undeformed Heisenberg algebra. In the framework of

A A m ~ A A ~
[WH,WB]_:gfaﬂ(l"'V’C), [’C,’TTQ,]+:0, IC2:1,

the DHA K is known as Klein operator. V. CONCLUSION
Now, one can reformulate the quantization in terms of the ) ]
deformed oscillator representation. The (@®)- In this paper we have constructed the classical and quan-

representation spac@, provides us with a realization for the tUm dynamics of superparticles with arbitrary fractional su-
Fock space of the deformed bosonic oscillator, the latter beP€rspin in D=1+2 dimensions. Our consideration was
ing defined as a linear space spanned by the ved®rs based on the use d{=1 supersymmetric action functional
Iny=c,(a™)"|0), n=1,2,... €, is chosen in such a way that (20) which generalizes the anyon mechanical systgmvith

(n|ny=1). The Fock vacuun) is defined by the Lobachevsky plane in the role of spin space. Thereby,
Eqg. (39) constitutes a supersymmeric generalization of the
al0y=0, (0|0)=1, £]0)=|0). (55) Dirac monopole two-form, which is usually used for intro-

ducing consistent couplings @=1+2 particle to uncon-
strained background fieldsl7—-21. It is believed that the
superextension proposed offers a way to desdibel su-
Y peranyon dynamics in the presence of external superfields.
ataln)= n+_[1+(_1)n+1] In), Moreover, the mode{20) possesses hidden invariance with
2 respect to theN=2 Poincaresupergroup with the central
o . . . charge whose on-shell value saturates the BPS bound and,
the representation is unitary #>—1(s>0). The Klein op-  pence, corresponds to the shortenindNef 2 massive super-
erator induces thé&,-graded structure in the Fock space multiplets.
R N=2 Poincaresupersymmetry is not the only hidden al-
Kln)y=(—=1)"|n). (56)  gebraic structure originating in the model. In Hamiltonian
approach, the system is characterized by one first class and
The stateg|2k), k=0,1,2,..} form an orthonormal basis in six second class constraints. By restricting the dynamics to
the even subspace, while the staf¢k+ 1), k=0,1,2,..} the surface of second class constraii3) and (24),
form the same in the odd subspace. one results in the formulation on reduced phase space
The 0s|§2]2) generators can be written in terms of the T*(RYx Y, where the Khler supermanifold
DHA as follows: £Y11=0Sp2/2)/U(1]1) is the minimal superextension of the

Since
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Lobachevysky space. The supergroup @& is related to ab
the symplectic structure o8%/* as the group of all superho- INGPll= b_E)’ |a?—[b]>=1. (A1)
lomorphic canonical transformations at/*.

Poincaresupersymmetry and O§2) are closely related The spinor representations are equivalent, sincel QYpos-
to each Other, both at the classical and quantum levels. Mor%sses not on|y invariant spinor antisymmetric m@gﬁ:
precisely, the symplectic two-for89) dp,/\dx*+s() on — ¢, =— ¢ (¢y=1) and its conjugate, which are used for
the reduced phase space is invariant undemMthel super-  rajsing and lowering spinor indices by the ruflﬁzeaﬁ,pﬁ,

symmetry transformations on the mass-shgft+m*=0, “=ePy,, but also the invariant tensor with mixed indices
while Q) remains unchanged with respect to @&%). That is

why the super Poincargenerators are built of the generators 1 0
of OS{22) along with the space-time coordinates and mo- 9ai=\g _q (A2)
menta.

Th_e structure of_the reduced phase space implies_a_ naturgdat allows to convert dotted spinor indices into undotted
technique to quantize the model. It consists of combining the)nas in the manneg,, =g é‘z/;- W.=0.%,, whereg a

geometric quantization of'/* and conventional Dirac quan- aBey - a _ap . : .

tization on T*(R>?. The N=2 Poincafesupersymmetry €. Jap 8NdQ;“=e€*"gg,. This makes it possible to use
turns out to be consistent provided imposing the quantunlrmdm_t'EOI spinors only._ . . .
equation of motion which single out the physical states of Spinors may be subject to a covariant reality condition of
superparticle. Then the massive super Poincapresenta- the form
tion with the superspis>0 and the central charge equal to - e « _

the massn is realized on the superfields transforming in the V=B yt=—Ay", [A[=1, (A3)
atypical representation of o&2) [35], which splits, with ¢ some parametes. We chooseA=1 for the odd coordi-
respect to the subalgebra($il) of osf2/2), into the doublet | 5tes9? of N=1. D=3 superspace.

of discrete series representatidd$ @ DS" 2. Hence we ob- The Dirac matrices are chosen in the form

tain a direct superextension of the well studied description of

fractional spin states using the representations 0 1 1 0 —-i 0
Di[12_15’22’2} . ' . (O'O)aﬁz 1 0 (0'1)(1,32 0o 1/’ (Uz)aﬁz 0 il
The space of superparticle states with a fixed momentum (A4)

is shown to be embedded into the Fock space of the de-

formed quantum oscillator. The deformation parametés

related to the superspin by simple expressionds—1(s

>0). This result generalizes some known constructions fosuch that the matrice&rg)ngdﬂ(oa)aﬁ are Hermitian.

anyons[27] and (supey semiong 15]. The double-sheeted covering map SU(1,1)—S0/(1,2)
We have studied the case Bf=1 supersymmetric dy- mentioned is constructed with the help of thenatrices by

namics of anyons. It would be of interest to extend the abovassociating with an elemeht=IIN,#|l e SU(1,1) its image

consideration to the case bi-extended Poincarsupersym- A (N)=IIA%;lle SO (1,2), in the connected component of

metry. Here it is crucial to find an adequate analogue of thehe identity of the Lorentz group, defined by

spin phase spacél‘l. We hope to present respective con- .

structions elsewhere. AP 2(01) aa=Nuo PN, P(02) g (A5)
Note added While this paper was being completed, we

received a papef40] in which the relationship between We follow Berezin's conventions for superformi81].

(02)ay(00)7 =1 €abd 0°) ap~ Nab€agp

DHA and anyon wave equations is also discussed. The Grassmann paritg({)) in a superalgebra of exterior
superforms is defined by requiring th@) the Grassmann
ACKNOWLEDGMENTS parity of an even(odd) O-form is equal to O(1); (ii) the

Grassmann parity of exterior differential is equal to 1,

The authors are grateful to B. F. Samsonov for interesting.(q()) = (Q) + 1. Thus, ifr® are coordinates on a super-
discussions and for drawing our attention to R¢83, 34,  manifold of parity ex, then rArB=(—1)csrBrA qrArB
35]. The work of I. V. G. was supported in part by the IN- =(—1)(eatDrBgrA grAgrB=(—1)(eat(ea+grByrA,
TAS Grant No. 93-2058-Ext. Finally, the Leibniz rule looks liked(Q:0,)=d(0,)Q,

+(—1)<0,dQ,.
APPENDIX A: CONVENTIONS

APPENDIX B: LOBACHEVSKY PLANE

We defineD=1+2 Minkowski metric »,, and Levi-
AS A HOMOGENEOUS SPACE

Civita tensore,, as follows: 7,,=diag(—,+,+) andeg»

= —€”?=1. Latin letters are used to denote vector indices Here we describe a “manifestly Lorentz-covariant” real-
and Greek letters for spinor ones. Due to the well-knownzation of Lobachevsky plan€=SU(1,1)/U(1) as a homo-
isormorphism  SQ(1,2)=SU(1,1)/Z,, the fundamental geneous space of $(1.2). This realization is used through-
spinor representation and its conjugate are defined by theyt the paper. is identified with a unit open disc in a
transformation lawsy,—N, "¢z, where @,=0.1, and  complex plane,L={ze(,|z|<1}. The proper orthochro-
%E(wa)ﬁN-aﬁwb, respectively. Her& € SU(1,1) andN nous Lorentz group SQ1,2)=SU(1,1)/Z, acts onL by
its complex conjugate fractional linear transformations
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az
N: z—2z'=

, NeSu1,1). (B1)

bz

QO

One can rewrite Eq(B1) in a manifestly covariant form by
introducing the two-component twistorlike objects

z2°=(172), z°=(z,)) (B2
transforming by the law
7' 1/2
N: z“—>z“'=(—) N~tze,
Jz
(B3)
ar -1 «
Z,—Z _(ﬂ_Z_) N B ?,
or, in infinitesimal form,
i i
5z= Ewaﬁz“zﬁ, S5z= —Ewaﬁz“zﬁ, (B4)

where w,5=(w?0,),s are the parameters of infinitesimal
Lorentz transformations. As it is seen, eachz6fand z¢
transforms simultaneously asx=3 Lorentz spinor and a
tensor field onZ. Using z* and z* we may construct the
following vector densities
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La=—(0y) aﬂza?= — (j_—{—z?Z-i—Z_,i(Z—Z_)), (BY)

1 s L s —
o=~ 5(02)ap22"=—5(22,142%1(2°-1)), &=(&a),
(B6)
and the scalar density
(= €2 PP=1-122 (*{;=—28%,=-{" (B
as well. The identity
4§Z§b =i€apd°+ NNy T 7ap, NZ= % (B8)

is useful in practice. The chief advantage of the technique
described consists in the fact thzt and z* are the only
independent tensorlike fields associated with the homoge-
neous space structure gh Our treatment here follows Ref.
[’3;9] where objects likez* were introduced on two-sphere
S

[1] F. Wilczek, Phys. Rev. Leté8, 1144(1982; 49, 957 (1982.

[2] J. M. Leinaas and J. Myrheim, Nuovo Ciment®BR 1 (1977).

[3] G. A. Goldin, R. Menikoff, and D. H. Sharp, J. Math. Phys.
(N.Y.) 21, 650(1980; 22, 1664(1981).

[4] D. P. Arovas, R. Schrieffer, F. Wilczek, and A. Zee, Nucl.
Phys.B251, 117(1985.

[5] C. Hagen, Phys. Rev. B1, 2135(1985.

[6] G. W. Semenoff, Phys. Rev. Letil, 517 (1988.

[71J. Franlich and P. A. Marchetti, Lett. Math. Phy46, 347
(1988; Commun. Math. Phys121, 177 (1988; Nucl. Phys.
B356, 533(1991), and references therein.

[8] D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett.
48, 1559(1982.

[9] R. B Laughlin, Phys. Rev. Letb0, 1395(1983.

[10] F. D. M. Haldane, Phys. Rev. Lefil, 605(1983; B. I. Hal-
perin, ibid. 52, 1583(1984); 52, 239QE) (1984).

[11] F. Wilczek,Fractional Statistics and Anyon Superconductivity
(World Scientific, Singapore, 1990

[12] M. S. Plyushchay, Phys. Lett. B62 71 (1991; Nucl. Phys.
B362 54 (1991).

[13] M. S. Plyushchay, Phys. Lett. B73 250(1991).

[14] M. S. Plyushchay, Int. J. Mod. Phys. A 7045(1992.

[15] D. P. Sorokin, V. I. Tkach, and D. V. Volkov, iRroblems of
modern quantum field thegredited by A. A. Belavin, A. V.
Klimyk, and A. B. Zamolodchikov(Springer-Verlag, Berlin,
1989; D. P. Sorokin and D. V. Volkov, Nucl. PhyB409, 547
(1993.

[16] D. Dalmazi and A. de Souza Dutra, Phys. Lett.3B3 225
(1995.

[17] C. Chou, V. P. Nair, and A. P. Polychronakos, Phys. Lett. B
304, 105(1993.

[18] C. Chou, Phys. Lett. B23 147 (1994.

[19] M. Chaichian, R. Gonzales Felipe, and D. Louis Martinez,
Phys. Rev. Lett71, 3405(1993; R. Jackiw and V. P. Nair,
ibid. 73, 2007 (1994.

[20] S. Ghosh, Phys. Lett. B38 235 (1994); Phys. Rev. D51,
5827(1999; S. Ghosh and S. Mukhopadhyaiid. 51, 6843
(1995.

[21] N. Banerjee and S. Ghosh, Phys. Rev5®) 6130(1995.

[22] J. L. Corfes and M. S. Plyushchay, Int. J. Mod. Phys.1A,
3331(1996.

[23] I. V. Gorbunov, S. M. Kuzenko, and S. L. Lyakhovich, Int. J.
Mod. Phys. A(to be published

[24] M. S. Plyushchay, Phys. Lett. 848 107 (1990.

[25] R. Jackiw and V. P. Nair, Phys. Rev. 48, 1933(199)).

[26] S. Forte and J. Jolicoeur, Nucl. Phy350 589 (199J).

[27] M. S. Plyushchay, Phys. Lett. B20, 91 (1994; Ann. Phys.
(N.Y.) 245 339(1996.

[28] M. A. Vasiliev, Piss'ma Zh. Eksp. Teor. Fi%0, 344 (1989;
Int. J. Mod. Phys. A6, 1115(1991).

[29] S. L. Lyakhovich, A. Yu. Segal, and A. A. Sharapov, Phys.
Rev. D54, 5223(1996.

[30] P. Fayet, Nucl. PhysB51, 135(1976; M. F. Sohnius,ibid.
B138 109(1978; Phys. Rep128 39 (1985.

[31] F. A. Berezin, Commun. Math. Phy40, 153 (1979; Sov. J.
Nucl. Phys.29, 153(1979.

[32] B. Kostant,Quantization and unitary representatigrisecture
Notes in Mathematics Vol. 197@®pringer-Verlag, New York,
1970, p. 47; Graded manifolds, graded Lie theory and
prequantization in Conference on Differential Geometric
Methods in Mathematical Physics, edited by K. Bleuler and A.



56 N=1, D=3 SUPERANYONS, o0s{2|2), AND THE . .. 3755

Reetz, Lecture Notes on Mathematics Vol. 38pringer, Ber- Moskow, 1987.

lin, 1977, p. 177. [37] N. Ya. Vilenkin, Special functions and the group representa-
[33] A. B. Balantekin, H. A. Schmitt, and B. R Barrett, J. Math. tions (Nauka, Moskow, 19656

Phys.(N.Y.) 29, 1634(1988. [38] I. M. Gelfand, M. I. Graiev, and N. Ya. VilenkirGeneralized
[34] A. M. El Gradechi, J. Math. Phy$N.Y.) 34, 5951(1993. functions(Academic, New York, 1966 Vol. 5.
[35] A. M. El Gradechi and L. M. Nieto, Commun. Math. Phys. [39] S. M. Kuzenko, S. L. Lyakhovich, and A. Yu. Segal, Int. J.

175 521(1996. Mod. Phys. A10, 1529(1995; Phys. Lett. B348 421(1995.

[36] M. A. Perelomov, Generalized Coherent State@Nauka, [40] M. S. Plyushchay, Mod. Phys. Lett. A1, 2953(1996.



