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We introduce anN51 supersymmetric generalization of the mechanical system describing a particle with
fractional spin inD5112 dimensions and being classically equivalent to the formulation based on the Dirac
monopole two-form. The model introduced possesses hidden invariance under theN52 Poincare´ supergroup
with a central charge saturating theBPS bound. At the classical level the model admits a Hamiltonian
formulation with two first class constraints on the phase spaceT* (R1,2)3L1u1, where the Ka¨hler supermani-
fold L1u1>OSp(2u2)/U(1u1) is a minimal superextension of the Lobachevsky plane. The model is quantized
by combining the geometric quantization onL1u1 and the Dirac quantization with respect to the first class
constraints. The constructed quantum theory describes a supersymmetric doublet of fractional spin particles.
The space of quantum superparticle states with a fixed momentum is embedded into the Fock space of a
deformed bosonic oscillator.@S0556-2821~97!07716-3#

PACS number~s!: 11.30.Pb, 71.10.Pm

I. INTRODUCTION

Anyons @1#, being particles with fractional spin and sta-
tistics @2,3# in ~112!-dimensional space-time, are not a
purely group-theoretical concept, but they may originate, for
instance, from the field theory in the presence of Chern-
Simons field@4–7#. Several physical phenomena such as the
fractional Hall effect@8–10# and high-Tc superconductivity
@11# can be explained by means of this concept.

We observe today a considerable interest in the study of
point-particle models of anyons@12–23#, which is generated
by a possibility to derive a field theory for anyons by quan-
tizing a classical mechanical system inD5112 dimensions.
The most efficient method known to realize the quantum
anyon states is to use the fields transforming in unitary irre-
ducible representations of the universal covering group of
SO↑~1,2!>SU(1,1) @12–15,22–26#. These representations
are infinite-dimensional and, hence, an infinite set of equa-
tions are required to single out one independent physical
component. Although various versions of such equations
have already been suggested~Refs. @12–15,22–26#!, the
problem remains open to realize them in a form that admits
anyon self-interaction.

A convenient formulation of free field equations for frac-
tional spin particles was suggested in Ref.@15#. In their ap-
proach, both the mass-shell constraint and the spin-fixing
condition ~which are imposed as independent equations in
other models@12–14,16,20,22,23#! originate as integrability
conditions for the field equations of motion. This is achieved
by making use of the well known realization of so~1,2! as the
Lie algebra of quadratic polynomials of the creation and an-
nihilation operators of the harmonic oscillator. As a conse-
quence, only the particles with spins (2n11)/4, n
50,1,2,... ~called semions! appear in the spectrum of the
model @15#. Recently, it has been recognized@27# that in
order to extend the semion construction@15# to the case of

arbitrary fractional spin particles one should make use of the
deformed Heisenberg algebra~DHA! ~see@28,27# and refer-
ences therein! and the superalgebra osp~2u2!. Thereby the
one-particle anyon states can be realized in theZ2-graded
Fock space of the deformed oscillator, where the grading is
induced by the Klein operator being one of the DHA genera-
tors. These results show the actual relationship between
DHA and the fractional spin concept.

In this article we demonstrate that the DHA naturally
originates in the quantum supersymmetric theory of anyons.

We introduceN51, D53 super Poincare´ invariant action
for a massive fractional spin superparticle living inR3u2

3L, whereR3u2 denotes theN51, D53 flat superspace and
L is a Lobachevsky plane. This mechanical system is a mini-
mal supersymmetric extension of the special anyon model
suggested in@23#. Our interest in the latter is due to the fact
that the model proves to be classically equivalent to the for-
mulation based on the monopolelike symplectic two-form
@17–20# and, hence, allows interaction to arbitrary back-
ground fields. On the other hand, it can be treated as a re-
duction of the D5(113)-dimensional massive spinning
particle model developed in@29#.

By construction, the model under consideration is mani-
festly N51 supersymmetric. But it turns out to possess hid-
den invariance with respect toN52 Poincare´ supergroup
with a central charge saturating the Bogomol’nyi-Prasad-
Sommerfield~BPS! bound ~see, for instance,@30#! on the
mass shell. As is known, this condition on central charge
corresponds to shortening ofN52 massive supermultiplets.
The appearance ofN52 supersymmetry has a remarkable
counterpart in Hamilton formulation of the theory. Namely,
the dynamics is restricted to a surface of second class con-
straints in such a way that it takes the form of the mechanics
on the phase spaceT* (R1,2)3L1u1, where the Ka¨hler super-
manifold L1u15OSp~2u2!/U~1u1! ~of complex dimension
111! is a minimal superextension of the Lobachevsky plane.
It is the ‘‘inner’’ supermanifoldL1u1, which supplies the
particle with a superspin degree of freedom. OSp~2u2!
emerges as the group of all the superholomorphic canonical
transformations onL1u1.*Electronic address: ivan@phys.tsu.tomsk.su
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The N52 Poincare´ superalgebra with central charge and
the superalgebra osp~2u2! prove to be closely related in this
construction both at the classical and quantum level. Let us
comment on this crucial point in more detail. In Hamilton
approach the dynamics is described by one first class and six
second class constraints. The second class constraints have a
complicated nonlinear structure that makes it practically im-
possible to perform straightforwardly the Dirac canonical
quantization~probably, it is the reason why superanyon mod-
els have not been quantized until now!. Our solution to the
problem is as follows. We first reduce the dynamics with
respect to four second class constraints arriving to the phase
spaceT* (R1,2)3L1u1. As a consequence, the superalgebra
osp~2u2! is naturally realized in terms of the nonlinear Pois-
son bracket. Special structure of the reduced phase space
makes it possible to apply the Berezin-Kostant quantization
method@31,32# for the inner phase space. This method has
been recently extended to the supermanifoldL1u1 @33–35#.
On T* (R1,2)3L1u1, the rest constraints~one of first class and
two of second class! are equivalent to two first class con-
straints. In quantum theory, these constraints are imposed to
annihilate physical states, and it proves to be equivalent to
the requirement of the Poincare´ superalgebra to be consistent
quantum mechanically. Thus, combining the geometric
quantization onL1u1 for the second class constraints and the
Dirac quantization with respect to the first class ones, we can
quantize the superparticle with arbitrary~fixed! fractional su-
perspin. Short massive representations of theN52 Poincare´
superalgebra with central charge are realized on the fields
transforming in atypical unitary representations of osp~2u2!.
Moreover, the known connection between unitary represen-
tations of osp~2u2! and the DHA makes possible an alterna-
tive elegant realization of the superanyon doublet in the Fock
space of the deformed bosonic oscillator.

This article is organized as follows. The anyon model on
the configuration spaceR1,23L and its quanitzation is con-
sidered in Sec. II. In Sec. III we analyze theN51, D53
superanyon model. The global symmetries of the model and
the structure of the reduced phase space are studied in detail.
Section IV is devoted to the quantization of the superanyon
model. Summary and concluding remarks are given in Sec.
V. In Appendix A we collect the conventions used through-
out the paper. In Appendix B we describe the realization of
the Lobachevsky plane as a homogeneous space of the Lor-
entz group.

II. ANYON MODEL ON R1,23L

As a starting point for supersymmetric extension, let us
consider a model of the fractional spin particle suggested in
@23#. The configuration space of the modelR1,23L, where
L>SU~1,1!/U~1! denotes a Lobachevsky plane, is a homo-
geneous space of theD53 Poincare´ group. The model is
described by the action functional

S5E dt L, L5m~ ẋ,n!1 is
z̄ż2zGz

z
, ~1!

where

na[
za

z
52S 11zz̄

12zz̄
,

z1 z̄

12zz̄
, i

z2 z̄

12zz̄
D , n2[21.

Herexa andz,z̄ are coordinates1 onR1,2 andL, respectively;
za andz are defined by relations~B5! and~B7! in Appendix
B; m and s denote the mass and spin of the particle. The
model possesses global invariance with respect to the Poin-
caré group. Infinitesimal Poincare´ transformations~with f a

and va parameters of translations and Lorentz transforma-
tions! read

dxa5 f a, dz5d z̄50,

dxa5eabcxbvc , dz52 i ~v,j!, d z̄5 i ~v,j̄ !, ~2!

where the vectorlike objectsja , j̄a are defined by Eq.~B6!.
The Lagrangian ~1! is manifestly translation invariant,
whereas the Lorentz transformations change it by a total de-
rivative:

dL52
s

2

d

dtS ]

]z
ja1

]

] z̄
j̄aD va. ~3!

To verify Eq. ~3!, one should know that, by virtue of Eqs.
~B3!, ~B5!, and~B7!, na transforms as a three-vector, hence
the first term in the action functional is manifestly Poincare´
invariant. As to the second term, it can be written ass*(0 ,
with the one-form (0 being a solution of the equation
d(a05V0 , for the Lorentz invariant Ka¨hler two-form

V0522i
dz̀ dz̄

z2 ~4!

associated to the Lobachevsky plane. The invariance ofV0
implies that(0 may get exact contributions under Lorentz
transformations. It is(0 which contributes to the total de-
rivative in the right-hand side of Eq.~3!.

The global symmetries related to the Poincare´ group gen-
erate all the independent Noether currents of the model. It is
worth pointing out the existence of another global space-time
symmetry of the action functional

dxa52rna, dz50, ~5!

wherer is a constant parameter. This rather unusual trans-
formation commutes with the Poincare´ ones, and the associ-
ated Noether current is trivial. To clarify this fact, consider
the equations of motion. Accounting for the identitiesż
[(j,ṅ), zG[( j̄,ṅ), the Euler-Lagrange equations read

ṅa50, ~ ẋ,j!52
is

m
ż50, ~ ẋ,j̄ !5

is

m
zG50,

so, in particular,na is a conserved vector. Therefore trans-
formation ~5! reduces to special space-time translations on-
shell.

1The Lobachevsky spaceL is realized as the unit disc of complex
plane,uzu,1.

56 3745N51, D53 SUPERANYONS, osp~2u2!, AND THE . . .



SinceL is a first-order homogeneous function of veloci-
ties, the action remains invariant under world-line reparam-
etrizations of the form

dex
a5 ẋae~t!, dez5 że~t!, dez̄5zGe~t!, ~6!

with the parametere(t) being arbitrary modulo standard
boundary conditions.

Remarkable features of the model become transparent in
the Hamiltonian formalism. All the relations defining canoni-
cal momenta conjugate toxa, z, z̄ constitute the set of pri-
mary constraints:

Ta5pa2mna'0, ~7!

T5pz2 is
z̄

z
'0, T̄5p z̄1 is

z

z
'0. ~8!

The Hamiltonian is a linear combination of these constraints.
There are no secondary constraints and Eqs.~7! and ~8! de-
scribe the complete set of constraints in the model. The ma-
trix of ~canonical! Poisson brackets of the constraints~7! and
~8! turns out to have the rank equal to four, which is a maxi-
mal possible value for antisymmetric 535 matrix. Hence, we
have four second class constraints and one of the first class.

It is expedient for further consideration to reduce the dy-
namics to the surface of the constraints~8! removing mo-
mentapz , p z̄. For sÞ0 the corresponding Dirac brackets
are denoted by$ , %* and have the form

$xa,pb%* 5da
b , $z,z̄%* 52

i

2s
~12zz̄!2, ~9!

the rest brackets between the variables equal to zero. The
reduced phase space obtained in this way is seen to be iso-
morphic to the product of two symplectic manifolds,
T* (R1,2)3L, whereL has a standard nonlinear symplectic
structure of the Lobachevsky plane@31,36#.

Let us discuss the physical observables2 of the model.
First, consider the Hamiltonian generators of the Poincare´
transformations~2!. For the energy-momentum vectorPa
and the angular momentum vectorJa , one has

Pa5pa , Ja5eabcx
bpc1Ja , ~10!

whereJa denotes the spin momentum vector

Ja5 i japz2
s

2
]ja2 i j̄ap z̄2

s

2
]̄ j̄a52sna . ~11!

Here we have accounted for the constraints~8!. With respect
to Poisson bracket~9!, the functions~10! generate the Poin-
caréalgebra iso~1,2!, whereas the spin generators~11! span
internal Lorentz algebra so~1,2! related to the automorphism
group of the Lobachevsky plane. The phase-space Casimir
functions PaPa5p2 and PaJa52s(p,n) reduce to con-
stants in virtue of the constraints~7!

T~1!5p21m2'0, ~12a!

T~2!5~p,n!1m'0. ~12b!

One can also verify that functions of the Poincare´ generators
exhaust all the physical observables in the model. Therefore
the model must describe the irreducible dynamics ofD53
particle with massm and spins. In addition, the particle
energyp0 is positive, as a consequence of Eq.~7!.

Remarkably, the mixed first and second class constraints
~7! proves to be equivalent to the first class constraints~12!.
This immediately follows from the decomposition

pa[2
~p,j!

z2
j̄a12

~p,j̄ !

z2
ja2~p,n!na , ~13!

which is true for arbitrary three-vectorpa , in virtue of Eq.
~B8!. Really, the constraints~7! imply (p,j)5(p,j̄)50,
hence Eqs.~12! are fulfilled. On the other hand, by squaring
Eq. ~13! one gets

4U~p,j!

z U2

[p21~p,n!2. ~14!

Thus, the constraints~12! imply (p,j)5(p,j̄)50. More-
over, it is readily seen that either of the two sets of con-
straints defines the same set of physical observables. Hence,
the set of three constraints~7! ~among which there are two of
second class and one of first class! are equivalent to the pair
of first class constraints~2!. The above observation is impor-
tant for quantization below.

On the mass shell~12a!, Eq. ~7! can be treated as a pa-
rametrization of the mass hyberboloid by local complex co-
ordinatesz, z̄. This means, however, that we can rewrite the
two-form ~4! in the way

V05
1

2

eabcpadpb`dpc

~2p2!3/2
, ~15!

that is, as a Dirac monopole two-form. Consequently, our
model proves to be a reformulation of the well known anyon
models based on the monopolelike two-form@17–20#. This
fact can be alternatively established by deriving the Dirac
brackets~to be denoted below by$ , %** ! associated to the
pair of second class constraints (p,j)50, (p,j̄)50. These
brackets have the explicit structure

$xa,xb%** 5s
eabcpc

~2p2!3/2
, $xa,pb%** 5da

b ,

$pa ,pb%** 50 ~16!

and reproduce the Poisson brackets for the mentioned par-
ticle models.

In a sense the ‘‘minimal’’ approach based on the two-
form ~15! and Poisson bracket~16! appears to be very natu-
ral. In particular, it is well adapted for the introduction of
consistent coupling to external fields@17–20# and for consid-
eration of self-interacting anyons@21#. However, the realiza-
tion of quantization scheme in terms of ‘‘nonlocalizable’’

2Physical observables are understood as phase space functions
weakly commuting with the first class constraints.
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coordinates has become a difficult problem in view of the
complicated structure of the Poisson brackets for coordi-
nates. Moreover, it is hardly possible in this approach to
introduce ‘‘localizable’’ coordinates without loss of manifest
covariance@22#. To the contrary, the formulation on the ex-
tended phase spaceT* (R1,2)3L admits a natural quantiza-
tion scheme we are going to describe.

To quantize the model, we shall make use of the follow-
ing prominent features of the model. First, all physical ob-
servables, which are phase space functions commuting with
the first class constraints, are actually functions of the Poin-
carégenerators~10! only. Thus the quantization problem is
to construct an appropriate realization for the unitary repre-
sentations of the Poincare´ group. Classically, the Poincare´
generators~10! in the phase space of the model are split into
two pieces, one of which includes only space-time variables
and another corresponds to the internal spaceL. It is the
latter part of the generators which is relevant for nontrivial
spin values. Second, one can observe that the spin part~11!
of Ja coincides with the covariant Berezin symbols of the
groupSU~1,1! on the Lobachevsky plane@31,36#. In view of
all the features mentioned, it seems sensible to combine the
Dirac canonical quantization for the Minkowski degrees of
freedom with a geometric quantization for spin.

We realize the Hilbert space of one-particle anyon states
of massm and spins.0 as a space of functionsF(p,z̄),
F: R1,23L→C to be antiholomorphic3 on the Lobachevsky
plane ~that is, antiholomorphic in the unit disk ofC, uzu
,1). The operator realization of the classical Poincare´ gen-
eratorsPa andJa @Eq. ~10!# reads

P̂a5pa , Ĵa52 i eabcp
b

]

]pc
1 Ĵa

s ,
~17!

Ĵa
s52 j̄a]̄2s]̄ j̄a ,

where ]̄[]/] z̄. The generators~17! are Hermitian with re-
spect to the following inner product:

^FuG&5~2s21!E d3pE
L

dzdz̄

2p i
z2s22F~p,z̄!G~p,z̄!.

~18!

To complete the quantization, we impose operator coun-
terparts of the first-class constraints~12! on the physical
statesFphys:

~p21m2!Fphys~p,z̄!50,
~19!

@~p,Ĵs!2ms#Fphys~p,z̄!50.

This construction corresponds to the well known realization
~see, e.g.,@12,25,22#! of the D53 Poincare´ group represen-
tations of massm and spin s.0 in terms of infinite-
component fields transforming by an appropriate irreducible
unitary representation of discrete series ofD1

s of the group

SU~1,1! bounded below@36–38,25#. The componentsFn(x),
n50,1,2,... of the fields are obtained by the series expansion
of our wave function in un&[@G(2s1n)/G(n
11)G(2s)#1/2z̄n. Finally let us note that the case ofs,0 can
be treated in a similar way by the use of the representation of
SU~1,1! being to the other discrete seriesD2

2s bounded
above.

III. SUPERPARTICLE DYNAMICS ON T* „R1,2
…3L1z1

The simplest way to obtain a supersymmetic generaliza-
tion of the model described is to extend the configuration
space to a supermanifoldR3u23L, where the Grassmann
sector is parameterized by an anticommuting Majorana
spinor4 ua, and to substitute ẋa in the action by
Pa5 ẋa2 i (sa)abuau̇b. Then, one results with the
N51, D53 superanyon theory5 with the action functional

S5E dtL, L5m~P,n!1 is
z̄ż2zGz

z
. ~20!

By construction, the model possesses global symmetry with
respect to theN51 Poincare´ supergroup, and the corre-
sponding infinitesimal transformations read

dxa5 f a, dz50, dua50,

dxa5 i ea~sa!abub, dz50, dua5ea, ~21!

dxa5eabcxbvc , dz52 i ~v,j!, dua5
i

2
va

bub.

Here,f a, va5(vada)a
b, andea are the parameters of trans-

lations. Lorentz, and supersymmetry transformations, respec-
tively. Similarly to the nonsupersymmetric model~1!, Lor-
entz transformations change the Lagrangian~20! by total
derivatives.

Along with the dynamical symmetries~21!, the theory
possesses several invariances which do not lead to new in-
dependent Noether currents. Such global symmetries are de-
scribed by the transformations

dxa52rna, dz50, dua50,

dxa50, dz50, dua522imna
bub , ~22!

dxa52ha~sa!abnb
gug, dz50, dua52 ina

bhb,

wherer andm are bosonic infinitesimal parameters andha

Grassmann ones,na
b[(nasa)a

b is constructed in terms of
z, z̄ as in Eq.~1!. The transformations~21! and~22! turn out
to generate a closed superalgebra off the mass-shell. To ana-
lyze the structure of that superalgebra, it is convenient to
pass to the Hamiltonian formalism,

3This particular realization is useful, since it provides the corre-
spondence principle for Eqs.~9!, ~10!, and~11! and gives the proper
energy sign.

4The reality conditions for spinors in the SU~1,1! formalism are
described in Appendix A.

5The case of extended supersymmetryN.1, deserves special
treatment and will be considered elsewhere.
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Introducing the momenta conjugate toxa, z ,z̄, ua and
defining the canonical Poisson brackets

$xa,pb%5da
b , $z,pz%5$z̄,p z̄%51, $ua,pb%5da

b,

we observe that the model contains the following set of con-
straints:

Ta5pa2mna'0, ~23!

Ta5pa1 imnabub'0, ~24a!

T5pz2 is
z̄

z
'0, T̄5p z̄1 is

z

z
'0, ~24b!

which involve six constraints of the second class and one of
the first class. As it is obvious, the first class constraint gen-
erates world-line reparametrizations and thus the physical
Hamiltonian is zero. The Hamiltonian generators of the super
Poincare´ transformations~21! look like

Pa5pa , Ja5eabcx
bpc1Ja , Qa

15 ipabub2pa ,
~25!

where

Ja52
i

2
~sa!abuapb1 i japz2

s

2
]ja2 i j̄ap z̄2

s

2
]̄ j̄a .

~26!

further, the generators of transformations~22! have the form

Z52~p,n!, K52inabuapb,
~27!

Qa
252pabnb

gug1 ina
bpb .

The generators~25! and~27! prove to satisfy the~anti! com-
mutation relations

$Ja ,Jb%5eabcJc, $Ja ,Pb%5eabcPc,

$Ja ,Qa
I %5

i

2
~sa!abQIb, $Qa

I ,K%52e IJQa
J , ~28!

$Qa
I ,Qb

J %522id IJpab22e IJeabZ,

the rest brackets being equal to zero, whereI , J51,2, e IJ

52e IJ, e0151. What we have obtained isN52 Poincare´
superalgebra with a central charge described byZ and U~1!
isotopic chargeK acting on the internal index ofQa

I . The
functions~25! generateN51 subalgebra.

Let us discuss in more detail the system of constraints
~23! and ~24! which are different from that defined by Eqs.
~7! and ~8! by the presence of fermionic constraints~24a!.
The latter can be rewritten in a more familiar, for superpar-
ticle models, form

Ta85pa1 ipabub'0 ~29!

on the surface of constraints~23!. We prefer, however, to use
the original representation~24a! in which the fermionic con-
straints do not involve the space-time variables and admit an
interesting geometric interpretation related to the reduction

~for s.0, m.0) to the surface of second class constraints
~24!. To explain this interpretation, consider the respective
Dirac brackets:

$z,z̄%* 52
i z2

2sS 11
1

2

uū

z
D ,

$ua,ub%* 52nab
i

2mS 12
1

2

uū

z
D , ~30!

$z,ua%* 5
i

2A2ms
zau, $z̄,ua%* 5

i

2A2ms
z̄aū,

while the rest Dirac brackets involving the space-time vari-
ables keep their canonical form, i.e., they vanish except
$xa,pb%* 5da

b . Here we denote

A s

2m
u[zaua5zu02u1, A s

2m
ū[ z̄aua5u02 z̄u1;

~31!

the twistorlike variablesza, z̄a are defined in Appendix B.
The complex Grassmann variableu is in a one-to-one
correspondence with Majorana spinorua and, together with
its complex conjugateū, can be used to parametrize the odd
sector of the constrained surface. From Eqs.~30! one de-
duces

$u,ū%* 52
i z

s S 11
1

2

zz̄uū

z
D ,

~32!

$z,ū%* 5
i z

2s
zū, $z̄,u%* 52

i z

2s
z̄u.

Equations~30! and ~32! mean that the symplectic structure
on the reduced phase space is induced by the two-superform

L5dpa`dxa1sV,

where

V52i S 12
11zz̄

2z
uūDdz̀ dz̄

z2

1 i S du`dū

z
2

z̄u

z2
dz̀ dū2

zū

z2
dz̄̀ du D . ~33!

We follow Berezin’s conventions for superforms@31# ~see
Appendix A!. It is noticeable thatV can be represented as

V5 i S dz
]

]z
1du

]W

]u
D `S dz̄

]

] z̄
1dū

]W

]ū
D F, ~34!

where

F~z,z̄,u,ū !522 lnS z1
1

2
uū D , ~35!

so, we conclude thatV and, hence,L are closed,dL5dV
50.
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The above consideration shows that the reduced phase
space has the structure of direct product of symplectic spaces
T* (R1,2)3L1u1, L1u15L3C0u1 being a complex supermani-
fold ~of dimension 111! parametrized by the complex evenz
and oddu coordinates. The symplectic structure onL1u1 is
determined by the closed nondegenerate superformV which
is in fact a Kähler superform, in accordance with Eq.~34!,
and the corresponding superpotential reads as in Eq.~35!.
This Kähler supermanifold has been introduced in Refs.
@34,35# as coadjoint orbit of simplest orthosymplectic super-
groups@degenerate orbit of OSp~2u2! and a regular orbit of
OSp~1u2!# and termedsuperunit disk. Therefore,L1u1 is a
homogeneous space@35# of the supergroup OSp~2u2!, L1u1

5OSp~2u2!/U~1u1! @hence, it can also be realized in the man-
nerL1u15OSp~1u2!/U~1!#.

OSp~2u2! turns out to be the group of allcanonical~with
respect toV! superholomorphic transformationsonL1u1. In-
finitesimally, these transformations look like

dz52 ivaja2eazau, du52
i

2
va

]

]z
jau2 imu12ēaza,

whereva, m are bosonic real parameters andea fermionic
complex ones. The functions

Ja52snaS 12
1

2

uū

j
D , B52sS 11

1

2

uū

z
D ,

~36!

ua5A s

2m

zau2 z̄au

z
, pa5 iAms

2

zaū1 z̄au

z

serve as the corresponding~real! generators of OSp~2u2!, and
their algebra, with respect to the Dirac brackets, reads

$Ja ,Jb%* 5eabcJ
c,

$Ja ,ua%* 5
i

2
~sa!a

bub, $Ja ,pa%* 52
i

2
~sa!a

bpb ,

$ua,B%* 5
1

2m
pa, $pa ,B%* 52

m

2
ua , ~37!

$ua,ub%* 5
i

2ms
Jab, $pa ,pb%* 5

im

2s
Jab ,

$ua,pb%* 52
1

2s
da

bB, $Ja ,B%* 50.

The generatorsJa and ua ~or pa) form a superalgebra
osp~1u2!.

Let us note that the role of OSp~2u2! for the superparticle
model ~20! is similar to the internal Lorentz group
SU~1,1!/Z2 , whose action is defined onL only, in the par-
ticle model of Sec. II. Really, in accordance with Eqs.~30!–
~33! the reduced phase space@the surface of constraints~24!#
of the superparticle is isomorphic toT* (R1,2)3L1u1,
whereas its particle counterpart isT* (R1,2)3L. OSp~2u2!
@respectively, SU(1,1)/Z2] leaves invariant the Ka¨hler two-
superformV ~33! onL1u1 @respectively, the Ka¨hler two-form
V0 on L#. We introduce the one-form(0 , d(05V0 , into

the action functional@the second term in Eq.~1!#. (0
changes at most by total derivatives under the SU~1,1!/Z2
transformations. Let us now rewrite the action functional
~20! in the form

S5E S mnadxa2 i Fmnabuadub2s
z̄dz2zdz̄

z G D .

It is easy to verify that the term in the square brackets is
related to a one-superform( such thatd(5V. Thus, (
changes at most by exact contributions under the OSp~2u2!
transformations.

It should be emphasized that neither OSp~2u2! nor its non-
supersymmetric analogue SU(1,1)/Z2 ~the internal Lorentz
group! originate as symmetry~super! groups of the corre-
sponding mechanical systems. The true symmetry~super!
groups of the models~1! and~20! are the Poincare´ group and
its N51 superextension, respectively, which exhaust all glo-
bal invariance transformations giving rise to independent
Noether currents. However, the internal Lorentz algebra
so~1,2! and its superextension osp~2u2! naturally appear in
the Hamilton approach as building blocks of the~super!
Poincare´ generators. Really, we have seen that the Poincare´
generators~10! in T* (R1,2)3L consist of two sectors, one of
which is associated with the space-time coordinates and mo-
menta and the second coincides with the so~1,2! generators
~11!. A similar phenomenon takes place in the superparticle
model. It is apparent that on the constrained surface~24! the
generators of the Poincare´ supergroup become phase-space
functions depending onxa, pa and OSp~2u2! generators~36!.
This observation will be of primary importance when quan-
tizing the model in the following section.

In spite of the strong analogy mentioned between the par-
ticle and superparticle models, there is an essential difference
in realization of the global symmetry groups in the reduced
phase space. The action of the Poincare´ group is obviously
well defined onT* (R1,2)3L. At the same time, supersym-
metry cannot be globally realized onT* (R1,2)3L1u1 and re-
stores only on the surface of the rest constraints~23!.
Straightforward calculations of~anti! commutation relations
of the generators~25!, ~27!, with respect to the Dirac brack-
ets, show that all the brackets~28! remain intact in the strong
sense except$Qa

I ,Qb
J %* and $Z,Qa

I %* . The latter can be
presented in the manner

$Qa
I ,Qb

J %* 522id IJpab22e IJeabZ1~p21m2!c ab
~1!IJ

1„~p,n!1m…c ab
~2!IJ ,

$Z,Qa
I %* 5~p21m2!c a

~1!I1„~p,n!1m…c a
~2!I ,

where c ab
(•)IJ , c a

(•)I are some functions onT* (R1,2)3L1u1,
whose explicit expressions are rather cumbersome and not
important here. Hence the Poincare´ superalgebra restores
only on the surface of constraints~23!. Let us discuss this
point in more detail.

Similarly to the constraints structure in the anyon model
of Sec. II, Eq.~23! describes two second class and one first
class constraints which are equivalent to the pair of first class
constraints~12!. The latter can be used to evaluate the Ca-
simir functionsC15PaPa and C25PaJa1 1

8QIaQa
I 2 1

4ZK
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of N52 Poincare´ superalgebra, which turns out to conserve
identically on the total constraint surface. Then we find that
the model describes a superparticle with massm, superspin
s, central chargeZ5m, and positive energyp0.0.

RelationZ5m corresponds to saturating the BPS bound
m>uZu for massive multiplets in extended supersymmetry.
The specific feature of such a choice is multiplet-shortening
through central charges@30#. This is the casem5uZu when a
massive supermultiplet contains the same number of par-
ticles as a massless one. Such massive multiplets are called
hypermultiplets@30#. In the case ofN52, D53 Poincare´
superalgebra, a massive multiplet~superparticle! of super-
spin s describes a quartet of particles with spins (s,s1 1

2 ,s
1 1

2 ,s11) for m.uZu and a doublet (s,s1 1
2 ) for m5uLu.

We conclude that our model describes a massiveN52 hy-
permultiplet of superspins or, in other words, a supersym-
metric doublet of anyons with spinss ands1 1

2 .
Because of the relationZ5m, not all Hamiltonian gen-

erators~25! and ~27! of the N52 Poincare´ superalgebra are
functionally independent, when restricted to the total con-
straint surface~23!, ~24!, but only theirN51 subset~25!.
The rest generators can be expressed as follows:

Qa
252

i

m
pa

bQb
1, K52

1

2m
Q1aQa

1, Z52
p2

m
5m ~38!

on the full constraint surface. Moreover, any physical ob-
servable proves to be a function of theN51 super Poincare´
generators~25! only.

Equation~38! shows that the hiddenN52 supersymmetry
~22! can be treated as an artifact of the embedding ofN52
Poincare´ superalgebra into the universal enveloping algebra
of the N51 one. The transformations~22! present them-
selves special linear combinations of theN51 transforma-
tions ~21! with the coefficients depending on the on-shell
conserved quantities.

Concluding this section we consider the reduction to the
surface of the rest second class constraints (p,j)50, (p,j̄)
50. The reduced phase space is originated from the sym-
plectic two-superform

L5dpa`dxa1sV,

V5
1

2

eabcpadpb`dpc

~2p2!3/2
1

im

sA2p2S hab2
papb

p2 D
3ua~sa!abdpb`dub2

im

sA2p2
pabdua`dub. ~39!

The respective nonvanishing Dirac brackets are

$xa,xb%** 5s
eabcpc

~2p2!3/2S 12
m

2s
uauaD , $xa,pb%** 5da

b ,

$xa,ua%** 52
i

2

eabcpb~sc!
a

bub

p2 , ~40!

$ua,ub%** 52
i

2m

pab

~2p2!1/2
.

Thus we result inN51 superextension of the minimal anyon
model with monopolelike two-form~15!. The superparticle
dynamics on the reduced phase superspace is subject to
mass-shell~12a! only and the Hamiltonian reduces to

H5
1

2
e~t!~p21m2!, ~41!

wheree(t) is a Lagrange multiplier. Because of the compli-
cated nonlinear structure of Dirac brackets~40!, it is a non-
trivial problem to obtain their Hilbert space operator realiza-
tion. That is why we choose another course to quantize this
model.

IV. QUANTIZATION OF THE SUPERANYON MODEL

The quantization scheme of Sec. II, which was applied to
the anyon model with phase spaceT* (R1,2)3L, consists of
combining the Dirac canonical quantization for the space-
time degrees of freedom with the geometric quantization for
the curved inner subspace. The efficiency of such an ap-
proach originated from the facts that~i! the phase space is a
product of two symplectic spaces;~ii ! the algebra of classical
physical observables is spanned by functions of the Poincare´
generators;~iii ! the spin part of the Lorentz generators coin-
cides with Berezin’s symbols for generators of the unitary
representationsD6

usu of SU~1,1!. These features have natural
generalizations in the supersymmetric case, so the quantiza-
tion scheme remains powerful too.

We have seen that the superanyon dynamics can be for-
mulated, upon the reduction with respect to the second class
constraints~24!, on the phase spaceT* (R1,2)3L1u1 which is
a product of two symplectic~super! manifolds. Similarly to
the nonsupersymmetric case, all the classical observables are
functions of theN51 super Poincare´ generators~25!. On
T* (R1,2)3L1u1, the generators~25! are constructed in terms
of the space-time variablesxa, pa and osp~2u2! generators
~36!. The crucial point is that the osp~2u2! generators prove
to coincide with Berezin’s symbols of generators of an irre-
ducible positive-weight representation of the superalgebra6

osp~2u2! on superunit diskL1u1 @33–35#. That is why the
mentioned quantization procedure is well suited to the super-
anyon model. Begin this procedure with a brief exercise in
the geometric quantization on the superunit disk.

Atypical unitary representations of the superalgebra
osp~2u2! can be realized in aZ2-graded spaceOs of antiho-
lomorphic superfunctions overL1u1 of the form

f ~ z̄,ū !5 f 0~ z̄!1Asū f 1~ z̄!, s.0, ~42!

wheref 0,1: L→C are ordinary antiholomorphic functions on
the Lobachevsky plane. A functionf POs is said to be even
if f 1( z̄)50 and odd iff 0( z̄)50. The action of Hamiltonian
generators~36! in T* (R1,2)3L1u1 can be lifted to the unitary
representation inOs by the use of geometric quantization

6Strictly speaking, we deal with so-called atypical representations
of osp~2u2! @35#.
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method @31,32#. The straightforward computations lead to
the following expressions for osp~2u2! generators~see@35#
for details!:

Ĵa52 j̄a]̄2]j̄aS s1
1

2
ū

]W

]ū
D , B̂52s1

1

2
ū

]W

]ū
,

~43!

A2msûa5
1

2
ū@ z̄a]̄12s~ ]̄ z̄a!#2 z̄a

]W

]ū
,

A2s

m
p̂a5

i

2
ū@ z̄a]̄12s~ ]̄ z̄a!#1 i z̄a

]W

]ū
.

The ~anti! commutation relations forĴa , B̂, ûa, and p̂a
follow from Eqs. ~37! by replacing$ , %*→1/i @ , #7 ~anti-
commutator for two odd operators and commutator in the
rest cases!. It is the representationD1

s of osp~2u2! of positive
weights, which is realized by operators~43!. With respect to
the subalgebra su~1,1!, the representation is decomposed into
a sum of two irreducible unitary representations of discrete
seriesD1

s 5D1
s

% D1
s11/2. The even~odd! component off

POs transforms by representationD1
s (D1

s11/2).
The geometric quantization method onL1u1 implies that

the representation space is equipped with the Hermitian two-
form

^ f ug&L1u1
s

5E
L1u1

dm~z,z̄,u,ū !e2sF~z, z̄ ,u, ū ! f ~ z̄,ū !g~ z̄,ū !,

~44!

where f ,gPOs , F(z,z̄,u,ū) is the Kähler superpotential
~35!, anddm(z,z̄,u,ū) is a Liouville supermeasure onL1u1.
Taking into account the definition of the closed two-

superform ~33!, V[drAVAB̄dr B̄, drA[(dz,du), drĀ

[(dz̄,dū), one can calulate the supermeasure explicitly
@33,24#:

dm~z,z̄,u,ū !52sdetiVAB̄i
dzdz̄

2p i
dud ū

522S 12
1

2

uū

z
D dzdz̄

2p i

dudū

z
. ~45!

Accounting for Eqs.~35!, ~42!, and ~45!, we integrate over
the Grassmann variables in Eq.~44!. Thus, the Hermitian
form turns into

^ f ug&L1u1
s

5^ f 0ug0&L
s 1^ f 1ug1&L

s11/2, ~46!

where^•u•&L
l is the inner product for the representation space

of D1
l

^wux&L
l 5~2l 21!E

uzu.1

dzdz̄

2p i
z2l 22w~ z̄!x~ z̄!.

It is a matter of direct verification to prove that the genera-
tors ~43! realize the irreducible unitary representation of
osp~2u2!.

Now we are in a position to construct the Hilbert space of
the superanyon states. The spaceH of wave functions cho-
sen in the form

F~p,z̄,ū !5F0~p,z̄!1AsūF1~p,z̄! ~47!

is naturallyZ2 graded. The operator analogues for the clas-
sical observables~25! are defined by

Ĵa52 i eabcp
b

]

]pc
1Ĵa , P̂a5pa , Q̂a

15 ipabûb2p̂a .

~48!

Owing to Eq.~38!, the operator extensions for Eq.~27! can
be chosen in the manner

Q̂a
252

i

m
pabp̂b2mûa , K̂5122ū

]W

]ū
, Ẑ5m.

~49!

Now, it is crucial to find the conditions, under which the
operators~48! and ~49! realize a representation of theN52
Poincare´ superalgebra with central charge. Straightforward
calculations show that the operators~48! and ~49! satisfy
almost all algebraic relations~28! but

@Q̂a
I ,Q̂b

J #152d IJpab22ime IJeab

2
1

8ms
~p21m2!

3@4d IJĴab1 i e IJeab~4s211K̂!#

1
1

4ms
@4~p,Ĵ!1m~K̂24s21!#

3~d IJpab2 ime IJeab!. ~50!

Hence we conclude that the operators~48! and~49! form the
superalgebra provided the wave functions are subject to the
equations

~p21m2!F~p,z̄,ū !50,
~51!

@4~p,Ĵ!1mK̂#F~p,z̄,ū !5m~4s11!F~p,z̄,ū !.

These equations turn out to besuper Poincare´ covariant.
Moreover, the solutions of Eq.~51! describe the superanyon
doublet with the massm and the superspins.0. Accounting
for ~47! the equations~51! are reduced to

~p21m2!F0~p,z̄!50, ~p21m2!F1~p,z!50,

~p,Ĵs!F0~p,z̄!5msF0~p,z̄!,

~p,Ĵs11/2!F1~p,z̄!5m~s1 1
2 !F1~p,z̄!,

where Ĵl52 j̄a]̄2 l ]̄ j̄a , l 5s, s11/2. Comparing these
equations with Eqs.~17! and~19!, one observes that the even
component of wave functionF(p,z̄,ū) describes the particle
with spin s, whereas the odd one describes the particle with
spin s1 1

2 .
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Finally, the spaceHm,s of solutions to Eq.~51! is natu-
rally endowed with unique, modulo normalization, super
Poincare´ and osp~2u2! invariant inner product. It looks like

~F,G!5E dpW

p0
^FuG!L1u1

s , p05ApW 21m2.0, ~52!

where ^FuG&L1u1
s denotes the Hermitian form~46!, pa

[(p0,pW ). The generators~48! realize the unitary irreducible
representation of the Poincare´ superalgebra of massm and
superspins.0 in the spaceHm,s. The case ofs,0 can be
treated in a similar way using the doublet of representations
D2

2s
% D2

2s21/2.
It is remarkable that the construction proposed admits an-

other interpretation which is not related directly to geometric
quantization. It turns out that the odd operatorsp̂a ~or ûa),
defined by Eqs.~43!, together with the U~1!-chargeK realize
a representation of the deformed Heisenberg algebra~DHA!
@28,27#. This follows from the identities

@p̂a ,p̂b#25
m

8s
eab~11nK̂!, @K̂,p̂a#150, K̂251,

~53!

where

n54s21. ~54!

The operatorsa152A2s/mp̂1 and a52A2s/mp̂0 are
termed creation and annihilation operators, respectively;n is
said to be deformation parameter. Forn50 ~that corresponds
to supersemions51/4 @15#! the operatorsp̂a describe the
usual~undeformed! Heisenberg algebra. In the framework of
the DHA K̂ is known as Klein operator.

Now, one can reformulate the quantization in terms of the
deformed oscillator representation. The osp~2u2!-
representation spaceOs provides us with a realization for the
Fock space of the deformed bosonic oscillator, the latter be-
ing defined as a linear space spanned by the vectorsu0&,
un&5cn(a1)nu0&, n51,2,... (cn is chosen in such a way that
^nun&51). The Fock vacuumu0& is defined by

au0&50, ^0u0&51, K̂u0&5u0&. ~55!

Since

a1aun&5S n1
n

2@11~21!n11# D un&,

the representation is unitary ifn.21(s.0). The Klein op-
erator induces theZ2-graded structure in the Fock space

K̂un&5~21!nun&. ~56!

The states$u2k&, k50,1,2,...% form an orthonormal basis in
the even subspace, while the states$u2k11&, k50,1,2,...%
form the same in the odd subspace.

The osp~2u2! generators can be written in terms of the
DHA as follows:

Ĵa52
2s

m
~sa!abp̂ap̂b, ûa5

i

m
K̂p̂a, B̂52

1

4
K̂~11nK̂!.

~57!

After that the quantization procedure can be performed in the
same manner we have already described. Therefore, the su-
peranyon doublet is naturally realized in terms of the Fock
space of the deformed bosonic oscillator. For a fixed mo-
mentum of the superparticle one can conceive the spin-s
states live in the even subspace of the deformed Fock space
and the spin- (s11/2) ones in the odd subspace.

It is worth pointing out that only the generators of super-
symmetryQ̂a

I mix even and odd quantum states. The gen-
erators of the Poincare´ algebra map the even~odd! subspace
of H onto itself and this point was used in@27# to realize the
fractional spin one-particle states. The physical states
F(p,z̄,ū)PHm,s,H were postulated to be solutions of the
spinor equations

~pabp̂b1emp̂a!F~p,z̄,ū !50, e56. ~58!

One getsF1(p,z̄)50 for the solutions of Eq.~58!, while the
even componentF0(p,z̄) describes the irreducible quantum
dynamics of the anyon with massm and spin
s5e(11n)/4. It is the superanyon dynamics which makes
use of all the power of the DHA construction.

Sorokin, Tkach, and Volkov@15# showed that in three
dimensions the dynamics of~super!particles with~super!spin
1/4,3/4,5/4,... can be naturally described by the use of the
usual undeformed oscillator representation (n50). As one
may see now the deformed Heisenberg algebra provides the
description of dynamics of arbitrary fractional~super!spin
~super!particles.

V. CONCLUSION

In this paper we have constructed the classical and quan-
tum dynamics of superparticles with arbitrary fractional su-
perspin in D5112 dimensions. Our consideration was
based on the use ofN51 supersymmetric action functional
~20! which generalizes the anyon mechanical system~1! with
the Lobachevsky plane in the role of spin space. Thereby,
Eq. ~39! constitutes a supersymmeric generalization of the
Dirac monopole two-form, which is usually used for intro-
ducing consistent couplings ofD5112 particle to uncon-
strained background fields@17–21#. It is believed that the
superextension proposed offers a way to describeN51 su-
peranyon dynamics in the presence of external superfields.
Moreover, the model~20! possesses hidden invariance with
respect to theN52 Poincare´ supergroup with the central
charge whose on-shell value saturates the BPS bound and,
hence, corresponds to the shortening ofN52 massive super-
multiplets.

N52 Poincare´ supersymmetry is not the only hidden al-
gebraic structure originating in the model. In Hamiltonian
approach, the system is characterized by one first class and
six second class constraints. By restricting the dynamics to
the surface of second class constraints~23! and ~24!,
one results in the formulation on reduced phase space
T* (R1,2)3L1u1, where the Ka¨hler supermanifold
L1u15OSp~2u2!/U~1u1! is the minimal superextension of the
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Lobachevysky space. The supergroup OSp~2u2! is related to
the symplectic structure onL1u1 as the group of all superho-
lomorphic canonical transformations onL1u1.

Poincare´ supersymmetry and OSp~2u2! are closely related
to each other, both at the classical and quantum levels. More
precisely, the symplectic two-form~39! dpa`dxa1sV on
the reduced phase space is invariant under theN51 super-
symmetry transformations on the mass-shellp21m250,
while V remains unchanged with respect to OSp~2u2!. That is
why the super Poincare´ generators are built of the generators
of OSp~2u2! along with the space-time coordinates and mo-
menta.

The structure of the reduced phase space implies a natural
technique to quantize the model. It consists of combining the
geometric quantization onL1u1 and conventional Dirac quan-
tization on T* (R1,2). The N52 Poincare´ supersymmetry
turns out to be consistent provided imposing the quantum
equation of motion which single out the physical states of
superparticle. Then the massive super Poincare´ representa-
tion with the superspins.0 and the central charge equal to
the massm is realized on the superfields transforming in the
atypical representation of osp~2u2! @35#, which splits, with
respect to the subalgebra su~1,1! of osp~2u2!, into the doublet
of discrete series representationsD1

s
% D1

s11/2. Hence we ob-
tain a direct superextension of the well studied description of
fractional spin states using the representations
D1

s @12– 15,22,24#.
The space of superparticle states with a fixed momentum

is shown to be embedded into the Fock space of the de-
formed quantum oscillator. The deformation parametern is
related to the superspin by simple expressionn54s21(s
.0). This result generalizes some known constructions for
anyons@27# and ~super! semions@15#.

We have studied the case ofN51 supersymmetric dy-
namics of anyons. It would be of interest to extend the above
consideration to the case ofN-extended Poincare´ supersym-
metry. Here it is crucial to find an adequate analogue of the
spin phase spaceL1u1. We hope to present respective con-
structions elsewhere.

Note added. While this paper was being completed, we
received a paper@40# in which the relationship between
DHA and anyon wave equations is also discussed.
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APPENDIX A: CONVENTIONS

We defineD5112 Minkowski metric hab and Levi-
Civita tensoreabc as follows:hab5diag(2,1,1) and e012
52e01251. Latin letters are used to denote vector indices
and Greek letters for spinor ones. Due to the well-known
isormorphism SO↑(1,2)>SU(1,1)/Z2 , the fundamental
spinor representation and its conjugate are defined by the
transformation lawsca→Na

bcb , where a,b50,1, and

c̄ ȧ[(ca)→N̄˙a
ḃc̄ ḃ, respectively. HereNPSU(1,1) andN̄

its complex conjugate

iNa
bi5S a b

b̄ āD , uau22ubu251. ~A1!

The spinor representations are equivalent, since SU~1,1! pos-
sesses not only invariant spinor antisymmetric metriceab5
2eba52eab (e0151) and its conjugate, which are used for
raising and lowering spinor indices by the ruleca5eabcb,
ca5eabcb , but also the invariant tensor with mixed indices

gaȧ5S 1 0

0 21D ~A2!

that allows to convert dotted spinor indices into undotted
ones in the mannerc̄a5ga

ȧc̄ ȧ, c̄ ȧ5gȧ
ac̄a , wherega

ȧ

5eȧḃgaḃ and gȧ
a5eabgbȧ. This makes it possible to use

undotted spinors only.
Spinors may be subject to a covariant reality condition of

the form

c̄a5Dca⇔c̄a52Dca, uDu51, ~A3!

for some parameterD. We chooseD51 for the odd coordi-
natesua of N51, D53 superspace.

The Dirac matrices are chosen in the form

~s0!ab5S 0 1

1 0D , ~s1!ab5S 1 0

0 1D , ~s2!ab5S 2 i 0

0 i D ,

~A4!

~sa!ag~sb!g
b5 i eabc~sc!ab2habeab ,

such that the matrices (sa)aȧ5gȧ
b(sa)ab are Hermitian.

The double-sheeted covering mapp: SU~1,1!→SO↑~1,2!
mentioned is constructed with the help of thes matrices by
associating with an elementN5iNa

biPSU(1,1) its image
L(N)5iLa

biPSO↑(1,2), in the connected component of
the identity of the Lorentz group, defined by

Lb
a~sb!aȧ5Na

bN̄ȧ
ḃ~sa!bḃ. ~A5!

We follow Berezin’s conventions for superforms@31#.
The Grassmann paritye(V) in a superalgebra of exterior
superforms is defined by requiring that~i! the Grassmann
parity of an even~odd! 0-form is equal to 0~1!; ~ii ! the
Grassmann parity of exterior differential is equal to 1,
e(dV)5e(V)11. Thus, if r A are coordinates on a super-
manifold of parity eA , then r Ar B5(21)eAeBr Br A, drAr B

5(21)eB(eA11)r BdrA, drAdrB5(21)(eA11)(eB11)drBdrA.
Finally, the Leibniz rule looks liked(V1V2)5d(V1)V2

1(21)e(V1)V1dV2 .

APPENDIX B: LOBACHEVSKY PLANE
AS A HOMOGENEOUS SPACE

Here we describe a ‘‘manifestly Lorentz-covariant’’ real-
ization of Lobachevsky planeL5SU~1,1!/U~1! as a homo-
geneous space of SO↑(1,2). This realization is used through-
out the paper.L is identified with a unit open disc in a
complex plane,L>$zPC,uzu,1%. The proper orthochro-
nous Lorentz group SO↑(1,2)>SU(1,1)/Z2 acts onL by
fractional linear transformations
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N: z→z85
az2b

ā2b̄z
, NPSU~1,1!. ~B1!

One can rewrite Eq.~B1! in a manifestly covariant form by
introducing the two-component twistorlike objects

za[~1,z!, z̄a[~z# ,1! ~B2!

transforming by the law

N: za→za85S ]z8

]z D 1/2

N21
b

a,
~B3!

z̄a→ z̄a85S ] z̄ 8

] z̄ D 1/2

N21
b

az̄b,

or, in infinitesimal form,

dz5
i

2
vabzazb, d z̄52

i

2
vabz̄az̄b, ~B4!

where vab[(vasa)ab are the parameters of infinitesimal
Lorentz transformations. As it is seen, each ofza and z̄a

transforms simultaneously as aD53 Lorentz spinor and a
tensor field onL. Using za and z̄a we may construct the
following vector densities

za[2~sa!abzaz̄b52„11zz̄,z1 z̄,i ~z2 z̄!…, ~B5!

ja[2
1

2
~sa!abzazb52

1

2
„2z,11z2,i ~z221!…, j̄a[~ja!,

~B6!

and the scalar density

z[eabzaz̄b512zz̄, zaza522jaj̄a52z2 ~B7!

as well. The identity

4
jaj̄b

z2
[ i eabcn

c1nanb1hab , na[
za

z
~B8!

is useful in practice. The chief advantage of the technique
described consists in the fact thatza and z̄a are the only
independent tensorlike fields associated with the homoge-
neous space structure onL. Our treatment here follows Ref.
@39# where objects likeza were introduced on two-sphere
S2.
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