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I. INTRODUCTION

A fundamental question in gauge theories is the follow-
ing: What is the correct description of an asymptotic field? In
an Abelian theory this problem takes on its most pristine
form, and the obstacle to adopting the naive in-out identifi-
cation of asymptotically free fields is clearly identified with
the infrared divergences associated with the masslessness of
the gauge fields. As such, we will restrict ourselves in this
paper to quantum electrodynamics~QED!, i.e., a nonconfin-
ing, Abelian gauge theory where the gauge symmetry is un-
broken. After presenting and heuristically motivating an an-
satz for a charged particle~henceforth an ‘‘electron’’! in
QED, this description will be put to a highly nontrivial test:
we will calculate the one-loop propagator and show that it is
infrared finite in a suitable~and previously predicted! mass-
shell renormalization scheme. Another interpretation of this
result is that we have found a new class of gauges, param-
etrized by a vectorv, where the usual fermion propagator is
infrared finite.

Mass-shell renormalization of the electron propagator is
hindered in most gauges by the appearance of infrared diver-
gences~see, e.g., p. 410 of Ref.@1#! although the position of
the pole is itself gauge independent@2,3#. It is well known
that these infrared problems are a consequence of the diffi-
culties in defining the physical asymptotic fields correctly. In
the confining theory of quantum chromodynamics~QCD!
this is self-evidently a highly nontrivial problem, but even in
our paradigm theory, perturbative QED, no satisfactory an-
swer has yet been given to this question. It is understood that
the masslessness of the photon means that the electromag-
netic interaction falls off too slowly for us to just ignore it
and replace the physical electron by a bare fermion. The

coherent state technique@4#, where one adds soft photons,
has been developed to deal with these divergences. For a
summary of the usual approaches we refer to Supplement 4
of Ref. @5#. Despite this understanding of the root of the
infrared problem, it does not seem that a full description of
charged states in gauge theories exists. The coherent state
approach has not, for example, been carried through for the
strong interaction. However, even for QED, previous work
on dressing electrons seems somewhatad hocand prescrip-
tive in nature. In what follows we will stress the systematic
and predictive nature of the approach we advocate.

There are certain general properties to be found in any
description of an electron: it must be nonlocal@6–8# and it
must be noncovariant@8–10#. Both these things follow from
the gauge symmetry of QED. Nonlocality can be simply
shown to follow from demanding that Gauss’ law holds on a
physical, gauge-invariant state, a more rigorous proof is con-
tained in Ref.@6#. The noncovariance of such a description is
a result of the difficulties in reconciling Lorentz and gauge
symmetries in the charged sector~see Sec. 8 of Ref.@8#!. At
the naivest level these requirements amount to the need to
dress a charge with an electromagnetic ‘‘cloud,’’ whose ex-
act form depends upon the position and velocity of the
charge. The neglect of such a dressing when one uses a bare
fermion as an asymptotic field is equivalent to switching off
the coupling which is clearly unphysical and this in fact un-
derlies the infrared problem.

Although these divergences may, however, be, essen-
tially, ignored in calculations of scattering processes in QED
it is clear that a better understanding of their origins and of
how to describe physical charged states is highly desirable.
An understanding of bound states cannot come from switch-
ing off the coupling, even asymptotically, and insight into
how to dress the constituent charges of, e.g., positronium
would, we feel, be of great practical value. Furthermore, in
QCD, which is worse affected by such infrared problems, the
asymptotic region is really the short-distance regime@11#
and so an understanding of the dressings associated with
color charges will yield valuable information about the glu-

*Current and permanent address: IFAE, Universitat Auto`noma de
Barcelona. Electronic address: iftebag@cc.uab.es

†After 1st October at Univ. of Plymouth.
‡Electronic address: d.mcmullan@plymouth.ac.uk

PHYSICAL REVIEW D 15 SEPTEMBER 1997VOLUME 56, NUMBER 6

560556-2821/97/56~6!/3732~12!/$10.00 3732 © 1997 The American Physical Society



ons and sea quarks in hadrons—our present lack of under-
standing of this structure being revealed most glaringly in the
so-called proton spin crisis~see, e.g., Ref.@12#!. We remark
that dressings underlie Cornwall’s pinch technique@13# and
also recall here the long-suggested connection between the
severe infrared divergences of QCD and the confinement
phenomenon@14–16#. Further attempts to construct gauge-
invariant descriptions of quarks and gluons may be found in
Refs.@17–19#.

How should we now dress our electron? We expect to
surround the charge with a cloud and, since the dressed par-
ticle should correspond to a physical state, we expect our
expression to be gauge invariant. Many years ago Dirac pre-
sented such a formula@20#:

c f~x!5expS 2 ieE d4z fm~x2z!Am~z! Dc~x!, ~1!

where f m is a field-independent function obeying

]m f m~w!5d~4!~w!, ~2!

and we note that the sign ofe used in this paper is the
opposite to that of Bjorken and Drell. It may be straightfor-
wardly seen that this is gauge invariant. It is also visibly
non-local and, depending upon the choice off m, can be non-
covariant. Several authors have employed this formula~see,
e.g., Refs.@21–25#! to study the construction of physical
states. The stability of such dressings around static charges
in QED was considered in Ref.@26#.

We now note that there is a gauge in which the argument
of the exponential in~1! vanishes:f m(x)Am(x)50, we will
call such gauges ‘‘dressing gauges.’’ This connection be-
tween a specific type of gauge fixing and the dressing for a
charged state is quite general and explained in more detail in
Ref. @8#. This simple observation, however, has an important
consequence for us: we expect that if one dresses the charge
correctly no infrared problem will arise. We now see that
working in the dressing gauge should also permit an infrared
finite mass-shell renormalization if the dressing is a physical
one. In the light of the known general structures associated
with any construction of an electron, we still need to make
the form of f m , and hence the particular dressing gauge,
precise.

Our first restriction is to limit the form of the nonlocality
of the cloud. In Ref.@8# it was argued that one must avoid
nonlocality in time otherwise there would be no natural pre-
scription for the identification of asymptotic fields for the far
distant past and future. One can, in principal, have a dressing
that is local in time outside some bounded interval of time.
However, for the class of dressings we are interested in here,
we restrict the dressing to a particular time slice, i.e., we
assume thatf 050. This specification notwithstanding, we
still have a great deal of freedom in our choice of the threef i
components.

The next step is to recall that Dirac~see Ref.@20# and Sec.
80 of Ref.@27#! suggested using the following form for the
f i :

cc~x!5expS 2 ie
] iAi

¹2 ~x! Dc~x!, ~3!

where the action of¹22 is understood as

1

¹2 g~x0 ,x!52
1

4p E d3z
g~x0 ,z!

ux2zu
. ~4!

It is clear that this is a special case of Eq.~1! and is hence
gauge invariant. The dressing gauge here is the familiar Cou-
lomb gauge. The appealing feature of this choice of dressing
is that the commutators of the electric and magnetic fields
with Eq. ~3! yield just the electric and magnetic fields we
expect of a static charge. Using the canonical equal-time
commutator,@Ei(x),Aj (y)#5 id i j d(x2y), one finds, for ex-
ample, that taking an eigenstateue& of the electric field op-
erator, with eigenvaluee i , and adding a dressed fermion~3!
to the system then

Ei~x!cc~y!ue&5S e i~x!2
e

4p

xi2yi

ux2yu3Dcc~y!ue&, ~5!

This means that it is natural to interpret this dressed, gauge-
invariant fermion as describing a static charge.

It might be now be argued that this last argument, based
as it is on the free-field canonical commutation relations and
hence completely ignoring renormalization, may not hold in
the full theory. For this reason two of us recently@8# consid-
ered the one-loop propagator of the dressed charge~3! in a
general covariant gauge and in Coulomb gauge.1 The results
demonstrated that a multiplicative, infrared finite, mass-shell
renormalization of the propagator was possible. It was, how-
ever, only possible at the static mass-shell point,p
5(m,0,0,0)—which is of course in complete accord with the
above interpretation of this dressing.

Although this result is highly attractive and sheds new
light on the infrared finiteness of the Coulomb gauge, it cov-
ers in some sense only ‘‘one point’’ in a space of dressings.
In Ref. @8# a gauge-invariant description of a dressed charge
moving with some constant velocity, which reduces in the
static limit to Eq.~3!, was presented~see Sec. II below for
the specific form of this dressing!. It was there conjectured
that the propagator of this dressed electron would be infrared
finite if the correct~moving! renormalization point on the
mass shell was used. In a recent work@29# we demonstrated
that, in the small velocity limit, a multiplicative renormaliza-
tion of this ansatz was possible. No new infrared divergences
arose, but it was clear that this could be the case when terms
of order v2 were retained in the dressing. In this paper we
will consider the dressed propagator for an arbitrary velocity
and verify the conjectures of Ref.@8#. The usual electron
propagator will, in other words, be shown to be infrared fi-
nite in a class of gauges depending upon a free parameter
~the three-vector,v!.

After this introduction, the rest of this paper is structured
as follows. In Sec. II we discuss the exact form of the dress-
ing we use and the equivalent~dressing! gauge. We also

1It may appear that the above description is local in Coulomb
gauge, recall, however, that in that gauge we must use Dirac brack-
ets and the bracket between the fermion and the electric field is
nonlocal. See Refs.@28,8# for details.
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describe the renormalization of the fermion propagator in
different gauges in QED. Section III, the heart of the paper,
is devoted to the explicit regularization and renormalization
of the propagator. Here we obtain the promised result that an

infrared finite mass-shell renormalization is possible. In Sec.
IV a discussion of our results is presented. The Appendix
devoted to the integrals we have required concludes this
work.

II. THE DRESSING, THE GAUGE, AND THE SELF-ENERGY

The dressed electron which we will work with in this paper has the form@8,29#

cv5expS ie

4p
gE d3z

g22]1A1~x0,z!1]2A2~x0,z!1]3A3~x0,z!2v1E1~x0,z!

@~x12z1!2g21~x22z2!21~x32z3!2#1/2 Dc~x!, ~6!

whereg51/A12v2 andv5(v1,0,0). We propose it for the
following reasons: it is gauge invariant and its commutators
with the electric and magnetic fields are such that

E~x!52
e

4p
g

x2y

@~x12y1!2g21~x22y2!21~x32y3!2#3/2,

~7!

and

B~x!5v3E~x!, ~8!

which one may recognize as the correct electric and mag-
netic fields for a charge moving with constant velocity,v,
along thex1 axis ~see, e.g., Chap. 19 of Ref.@30#!. This
expression is analogous to Eq.~3! and indeed reduces to it
for v→0. In the nonrelativistic case this dressed electron
reduces to

cv~x!5expS 2 ie
] jAj1v iEi

¹2 Dc~x!. ~9!

The renormalization of the propagator of this field at ordere2

and first order inv is to be found in Ref.@29#. Before com-
puting the propagator ofcv , we will now briefly discuss its
complex relation with that of the static dressed electron,cc .

It is important to first note that the form of the dressing
appropriate to the moving electron~6! does not follow from
a naive boost to the dressing for the static electron~3!. This
is a concrete manifestation of the fact@8–10# that Lorentz
transformations cannot be implemented unitarily on charged
fields. As such, it is not possible to argue that the good
infrared properties found in the static case can be simply
boosted up to the moving dressing. Given the surprising na-
ture of this fact, it is helpful to show how such a boost must
act on such a charged field and hence make clear why it is
not now a unitary mapping.

We recall that as a four-vector, the potentialAm(x) trans-
forms under a Lorentz transformationx→x85Lx asAm8 (x)
5UAm(x)U21 whereU is the appropriate unitary operator

and Am8 (x)5Lm
n An(x8). Under a boost with velocity,v, in

the x1 direction we find that the dressing gauge appropriate
to the static charge becomes

] iAi~x!→g2~g22]1A11]2A21]3A32v1E1!~x8!

1v2g2~]1A12]0A02]2A22]3A3!~x8!.

~10!

From Eq.~6! we see that the first term in this expression is
the dressing gauge for the moving charge and so the second
term here obstructs the identification of the dressing gauge
that we need for our nonstatic charge. Since we know that we
can construct the dressing directly from the gauge, this ex-
emplifies the fact that on charged states the Lorentz transfor-
mations are not implemented by the unitary mapping,U.
However, as argued in Refs.@31,8#, a gauge-covariant imple-
mentation of the Lorentz transformations can be constructed
by combining the above unitary transformation with a field-
dependent gauge transformation. Thus, to transform the
static dressing to the boosted one we takeAm(x)→Ãm(x),
where

Ãm~x!5Am8 ~x!1]mQ~x!, ~11!

and

Q~x!5
v2g2

4p E d3z
~]1A12]0A02]2A22]3A3!~x08 ,z8!

ux2zu
,

~12!

where the point (x08 ,z8) in the integrand is the boost applied
to (x0 ,z).

Having constructed the dressing gauge, and hence the
dressing for a moving charge, we now need to address the
quantum field theoretic aspects of this approach. Given the
obvious importance of gauge invariance to us we will work
in a gauge-invariant regularization scheme, viz. dimensional
regularization. In consequence we may drop tadpoles, and
we will do this consistently below. As a result we can reex-
press the dressed fermion as

cv5S 12
ie

4p
gE d3z

g22]1A1~x0,z!1]2A2~x0,z!1]3A3~x0,z!2v1E1~x0,z!

@~x12z1!2g21~x22z2!21~x32z3!2#1/2 Dc~x!, ~13!

since thee2 terms we so neglect will just yield tadpoles in the one-loop calculation at hand. This last equation can be rewritten
as
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cv~x!5H 12 ie
g22]1A11]2A21]3A31v1@]0A12]1A0#

g22]1
21]2

21]3
2

1O~e2!J c~x!, ~14!

where we have employed the standard identity

S ]2

]j1
2 1

]2

]j2
2 1

]2

]j3
2D S 2

1

4p D 1

Aj1
21j2

21j3
2

5d~j1!d~j2!d~j3!, ~15!

which under the change of variables,j i→gxi , can be rewrit-
ten as

S 1

g2

]2

]x1
2 1

]2

]x2
2 1

]2

]x3
2D S 2

1

4p D
3

g

Ag2x1
21x2

21x3
2

5d~x1!d~x2!d~x3!, ~16!

from which Eq. ~14! follows. It proved in practice conve-
nient to further reexpress Eq.~14! in a more covariant look-
ing fashion as

cv~x!5H 11 ie
GmAm~x!

]22~h•]!21~v•]!2 1O~e2!J c~x!,

~17!

where

Gm5@~h1v !m~h2v !n2gmn#]n, ~18!

and we have introduced the vectors,hm5(1,0,0,0) andvm

5(0,v1,0,0)[(0,v) from which the relationsv•h50, h2

51 andv252v2 follow immediately. We stress thatv is
not the four-velocity,um5g(1,v)5g(h1v)m.

We may calculate the gauge-invariant, one-loop propaga-
tor of cv(x) in one of two ways. One may either work in an
arbitrary Lorentz gauge or one may perform the calculation
in the dressing gauge. For an arbitraryv1 the dressing gauge
is now

g22]1A11]2A21]3A31v1@]0A12]1A0#5GmAm50,
~19!

and the free-photon propagator in this gauge has the form

Dmn
v 5

1

k2 H 2gmn1
~12j!k22@k•~h2v !#2g22

@k22~k•h!21~k•v !2#2 kmkn

2
k•~h2v !

k22~k•h!21~k•v !2 @km~h1v !n

1~h1v !mkn#J , ~20!

wherej is a gauge parameter which we set to zero in what
follows; this ensures,GmDmn50. Even then this is really a
class of gauges parametrized byv, which flows into the Cou-
lomb gauge forv→0. We are not aware of any previous
work with such gauges. The Feynman rule for the extra ver-
tex from the dressing is

With these rules we can calculate the dressed propagator
in an arbitrary gauge.

At order e2 we have as well as the usual interaction ver-
tex, contributions from the expansion in the coupling of the
dressing. These effects mean that, even if we work in a co-
variant gauge, the integrand of the sum of all the Feynman
diagrams is noncovariant. We have checked explicitly that,
after discarding tadpoles, the same total integrand is found in
both an arbitrary Lorentz gauge~i.e., it is independent of the
Lorentz gauge parameter! and in the dressing gauge, Eq.
~19!. In a general gauge one has to take all of the diagrams of
Fig. 1 into account, while in the gauge~19! only Fig. 1~a!
appears.

The result for the self-energy is~in D52v dimensions!

FIG. 1. The diagrams which yield the one-loop dressed propa-
gator. In the appropriate dressing gauge only~a! contributes. In a
general gauge all the diagrams must be evaluated. The dashed lines
indicate the projection of the photon propagator from the~v-
dependent! vertices in the dressing~see the above Feynman rules!.
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2 iS5e2E d2vk

~2p!2v H 1

k2

1

~p2k!22m2 @2~v21!p” 22vm22~v21!k” #1
1

k2

1

~p2k!22m2 @22~p” 2m!#

1
1

~p2k!22m2

1

k22~k•h!21~k•v !2 @2~p” 2m!1~h” 1v” !k•~h2v !#1
1

~p2k!22m2

1

@k22~k•h!21~k•v !2#2

3~p” 2m!@g22~k•h2k•v !22k2#1
1

k2

1

~p2k!22m2

1

k22~k•h!21~k•v !2 @2~p22m2!~h” 1v” !k•~h2v !

22k”k•~h2v !p•~h1v !#1
1

k2

1

~p2k!22m2

1

@k22~k•h!21~k•v !2#2 ~p22m2!k” @k22g22~k•h2k•v !2#J .

~21!

Actually this is the self-energy in the dressing gauge. In co-
variant gauges we must include all the diagrams of Fig. 1
and so it is more natural there to consider the whole propa-
gator. For simplicity we will use the self-energy henceforth.
The detailed renormalization of this will be presented in the
next section.

III. DIVERGENCES AND RENORMALIZATION

In this section we will first recall some facts about the
mass-shell renormalization of the usual fermion propagator
and set up our conventions. We will then give the results of
our calculations for the renormalization constants.

A. Setting things up

To renormalize the electron propagator one requires two
different renormalizations: a mass shift (m→m2dm) and a
fermion wave-function renormalization. The first of these is
known to be gauge independent and in noncovariant gauges,
such as Coulomb gauge, it is independent of the exact choice
of mass shell point~i.e., it is the same for all choices ofp0
and p which are on shell! @8#. Based upon our experience
with the renormalization of the dressed electron~9!, where
we only retained terms of first order inv, we will use the
following multiplicative, matrix renormalization for the fer-
mion:

c→AZ2 expH 2 i
Z8

Z2
smnhmvnJ c, ~22!

which is reminiscent of a naive Lorentz boost upon a fer-
mion. At lowest order we can recast this as

c→S AZ2I1
Z8

AZ2

h” v” D c. ~23!

In the smallv limit such a multiplicative renormalization was
found to be possible@29#. These relations define our three
renormalization constants. The counterterms in the self-
energy can thus be seen to be~with Z2511dZ2!

2 iScounter5dZ2~p” 2m!12iZ8~p•hv” 2p•vh” !1 idm.
~24!

For a multiplicative renormalization to be possible, the ultra-
violet divergences have to also have this form for arbitrary
values ofp2, p•h, p•v, andv2. We find the following such
ultraviolet divergences~see the Appendix for a discussion of
how to perform the integrations!:

2 iSUV5 i
a

4p

1

22v H 23m1~p” 2m!@2322x~v!#

12~p•vh” 2p•hv” !F 1

v2 1
11v2

2v2 x~v!G J , ~25!

wherea5(m2)v22(e2/4p) and we have introduced the defi-
nition

x~v!5
1

uvu
ln

12uvu
11uvu

. ~26!

This displays the need for our matrix multiplication renor-
malization. We note that the UV divergences arelocal in the
external momentum, butnonlocal in the velocityv.

It is clear that after performing the integrals in Eq.~21!
the ~renormalized! self-energy including loops and counter-
terms will have the general form

2 iS5ma1p” b1p•hh” d1mv” e, ~27!

wherea,...,e are functions depending uponp2, p•h, p•v,
and v2. Our choice of renormalization scheme is to insist
that the on-shell form of the renormalized propagator is just
the tree-level one: i.e., there should be a pole at the physical
mass,m, and this should have residue unity. Since the propa-
gator is noncovariant we must specify for which point on the
mass shell we will require this. Our interpretation of this
propagator as corresponding to a dressed electron with ve-
locity given byv leads us to choose the point

p5mg~1,v1,0,0!5mg~h1v !. ~28!

The conjecture of Refs.@8,29# is that the so-renormalized
propagator will be infrared finite.

To find the mass shift renormalization constant,dm, we
use the mass-shell condition that there is a pole atm. This
implies that the renormalized self-energy must obey
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ã1b̃1
~p•h!2

m2 d̃1
p•v
m

ẽ50. ~29!

Here the tildes signify that we put the momentump2 on shell
in the self-energy~propagator!: p25m2. Note that the coun-
terterms,Z2 andZ8, from Eq.~24! do not enter in~29! since
this is on shell and so justdm will now be determined. As
stated above, the mass shift is gauge parameter independent
in covariant gauges and it has been seen to be independent of
the exact choice of mass shell point in both the Coulomb
gauge@8# and in the renormalization of the slowly moving
dressed charge@29#. We therefore expect that Eq.~29! will
hold for any point on the mass shell and this will provide a
check on our calculations of the functionsa,...,e.

In this notation we may write the Taylor expansion of the
propagator in (p22m2) as

iSv5 i
p” 1m

p22m22
1

p22m2 $~2m2D̃1b̃ !p”

1~2m2D̃1ã12b̃ !m2p•hh” d̃2mv” ẽ%

1O@~p22m2!0#, ~30!

where

D̃~p•h,p•v,v2!5S ]a

]p2 1
]b

]p2 1
~p•h!2

m2

]d

]p2

1
p•v
m

]e

]p2D U
p25m2

. ~31!

Note that the infrared divergences that arise are contained in
the function,D. Clearly we will now require the second term
in Eq. ~30! to vanish at our renormalization point. Requiring
that the coefficients ofm, h” , and v” all so vanish at our
physically motivated mass-shell condition~28! gives us three
independent equations, which we choose to write as

2m2D̄1b̄2 d̄50,

g~2m2D̄1b̄ !2 ē50, ~32!

2m2D̄1ā12b̄50,

where the bars denote that the functions are now evaluated at
p5gm(h1v).

Since we confidently expect the mass shift to be fixed by
Eq. ~29! above, we seem to have three equations@i.e., Eq.
~32!# and two unknowns~dZ2 andZ8! and one might worry
that perhaps no solution exists. However, we can rapidly see
that no such problem exists for our choice of mass-shell
point. If we now explicitly separate out the contributions of
thedZ2 andZ8 counterterms to the self-energy from the rest
~and give what is left, i.e., those coming from the loop inte-
grations and the mass shift counterterm, a subscriptL! then
we find that Eq.~32! can be rewritten as

idZ222v2iZ85 d̄L2b̄L22m2D̄,

idZ222iZ85g21ēL2b̄L22m2D̄, ~33!

idZ252āL22b̄L22m2D̄.

We point out thatD5DL , i.e., no counterterms appear inD.
This set of equations has a solution if

g2d̄L1āL1b̄L2gv2ēL50, ~34!

and we recognize that this is nothing else but Eq.~29! at the
physical renormalization point~28!. We therefore have the
following two equations which determine our counterterms:

Z85
1

2i
@g2d̄L2gēL#,

dZ252
1

i
@āL12b̄L12m2D̄#. ~35!

B. The renormalization constants

The calculation of the self-energy and the counterterms is
a laborious task.2 A discussion of the necessary integrations
may be found in the Appendix. Here we will quote the rel-
evant results. For Eq.~29! we obtained

ã1b̃1
~p•h!2

m2 d̃1
p•v
m

ẽ52 i
a

4p S 3

ê
14Dm1 idm1 i

a

4p H p•~h1v !

m2 @p•~h2v ! Ĩ 2
g1p•h Ĩ 2

h1v2p•v Ĩ 2
v#J

22i
a

4p
p•~h1v !H p•~h2v !

m2 S 1

2
Ĩ 2

p1Ĩ3
gD1

p•h

m2 S 1

2
Ĩ 2

h1Ĩ3
hD1

v2p•v
m2 S 1

2
Ĩ 2

v1Ĩ3
vD

1p•~h2v ! Ĩ 3
pp1

~p•h!3

m2 Ĩ 3
hh1v2

~p•v !3

m2 Ĩ 3
vv1p•hF11

p•h

m2 p•~h2v !G Ĩ 3
ph

1p•vFv21
p•v
m2 p•~h2v !G Ĩ 3

pv1
p•hp•v

m2 ~p•v1v2p•h! Ĩ 3
hvJ , ~36!

we refer to the Appendix for the exact meaning of the additional notation here. Recall that only the mass shift counterterm
appears in Eq.~36!. The first term on the RHS here arises from the first term on the RHS of Eq.~21! which is the integrand

2Both MATHEMATICA andREDUCE were used.
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of the self-energy in Feynman gauge. The gauge invariance ofdm means that this is the correct answer. We need to see that
the other terms all cancel on shell no matter what exact on-shell point is employed. Using Eqs.~A22! and ~A23! from the
Appendix, we can see that they do and that we obtain the standard result

dm5m
a

4p S 3

ê
14D , ~37!

where 1/ê51/(22v)2gE1 ln 4p.
To verify that the infrared singularities cancel we should considerD̄, which we recall is where they arise. We find the

following terms containing infrared divergences:

m2D̄IR5 i
a

4p E
0

1

duu2v55S 2212E
0

1 dx

A12xA12v2x
@11v222v2x#2~12v2!E

0

1 dx

A12xA12v2x
x

31v222v2x

2~12v2x! D ,

~38!

where the subscript IR signifies that only the infrared singu-
lar terms have been retained. The first term comes from the
covariant part of the self-energy and the others have a non-
covariant origin. We find it remarkable and highly gratifying,
that the sum of the integrals overx gives just12 and so we
see that there is no infrared divergence in the dressed propa-
gator.

Since this is the main result of this paper let us stress that
we do not see anya priori reason why these divergences
should cancel—other than our original motivation. It is cer-
tainly not the case that they cancel for any point on the mass
shell. We have verified this by changing the relative sign of
the vectorv between the dressing~6! and the choice of mass-
shell point,~29!. The infrared divergences did not then can-
cel. This shows the great sensitivity of the calculation.

For completeness we now give the full expressions forZ2
andZ8. We found

Z2511
a

4p H 1

ê
@312x~v!#24~12v2!x~v!24k~v!J ,

~39!

and

Z85
a

4p H 1

ê F 1

v2 1
11v2

2v2 x~v!G2
1

v2 ~12v2!x~v!

2
11v2

v2 k~v!J , ~40!

where

k~v!5
1

uvu @L2~ uvu!2L2~2uvu!#, ~41!

whereL2 is the dilogarithm (L2(x)52*0
xdt/t ln@12t#). In

the smallv limit these reduce to the expressions we found in
Ref. @29#, which in turn reduce to the Coulomb gauge result
@32,8# for v→0. We have also checked that these agreements
hold for the results for the individual functions,a,...,e. ~Al-
though to compare with the results of Ref.@29# for infrared
divergent terms, one needs to make the translation:
1/ê→ ln l2/m2, wherel is a small photon mass.! These limits
provide a further check upon our results.

IV. CONCLUSIONS

We have seen that the electron propagator is infrared fi-
nite in the class of gauges~19! if a suitable on-shell condi-
tion is used. This calculation may also be understood as the
calculation of a dressed propagator in a general gauge. The
renormalization procedure was completely standard except
for the matrix nature of the fermion wave-function renormal-
ization. This was introduced in Ref.@29# and appears rather
natural given the subtleties concerning boosting charged
states. We stress again that the cancellation of the various
infrared divergences that appear in the individual terms is not
fortuitous but has been predicted in Refs.@8, 29#. We believe
that this is compelling evidence that the description of an
asymptotic electron which we employ has a firm physical
basis. Using Ref.@33# it may be seen that the soft diver-
gences will exponentiate and so we expect these results to
hold at all orders. We also stress that we have calculated the
wave-function renormalization constants explicitly and that
they may be used to findS-matrix elements involving incom-
ing and outgoing dressed charges.

Our requirement of the particular renormalization point
used in this paper makes it clear that gauge invariance alone
does not provide an infrared finite propagator. We have tried
to stress here the need for an understanding of what meaning
~if any! a gauge-invariant dressed field possesses. The dress-
ings we have studied correspond to velocity eigenstates.
Other types of dressings should, we feel, also be constructed
and investigated.

As far as the further applications of the dressed fields of
this paper are concerned, the extension of this approach to
the electron-photon vertex functions is the obvious next step.
If the momentum transfer is nonzero the incoming and out-
going electrons will have different velocities and should ac-
cordingly be differently dressed, we therefore do not expect
the infrared divergences present in the usual, undressed ver-
tex to cancel in any particular gauge, since no gauge condi-
tion would remove all the dressings. However, if we keep the
dressings we expect the dressed vertex to be infrared finite in
any gauge if the appropriate mass-shell conditions for the
fermions are chosen. These calculations will be presented
elsewhere.

As far as QCD is concerned, it is clearly harder to con-
struct gauge-invariant descriptions of charges. In perturba-
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tion theory, dressings for quarks and gluons have been con-
structed and shown to give a gauge-independent meaning to
the concept of color charges@34#. It has also been seen that
there is an obstruction to dressing colour charges non-
perturbatively@35#. A proof of this, a treatment of perturba-
tive dressings for quarks and gluons in QCD and a full dis-
cussion of the implications of these matters is to be found in
Ref. @8#. We also refer to Refs.@17–19#. For theories where
the gauge symmetry is spontaneously broken, dressings may
be constructed in the Higgs sector@36#. Perturbative and
nonperturbative studies of dressed, non-Abelian Green’s
functions have, we feel, many practical applications.
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APPENDIX: ABOUT THE INTEGRALS

A treatment of integrals required for calculations in Cou-
lomb gauge may be found in Ref.@32#. The integrals consid-
ered here are related to that discussion, but are more general
in that an extra vector is involved in our case.

1. General formulas

We need the generic integral

E d2vk

~2p!2v

1

~k222k•p2M2!a

km1
•••kmn

@k22~k•h!21~k•v !2#b ,

~A1!

where the second factor in the denominator reflects the struc-
ture of the gauge boson propagator, Eq.~20!. We first go to
Euclidean space and exponentiate the denominators using

X2a5
1

G~a!
E

0

`

dyya21e2Xy. ~A2!

Then we make use of

E
Euc

d2vk

~2p!2v e2@ktMk2Jtk#5
pv

~2p!2v

1

AdetM
e~1/4!JtM21J.

~A3!

In our case the (2v)3(2v) matrixM is

Mmn5~y1z!dmn2zhmhn2zvmvn , ~A4!

wherey andz are the Feynman parameters used to exponen-
tiate the two denominators in our generic integral. Similarly
in our case

Jm52ypm . ~A5!

To go from scalar integrals to vector or tensor ones, we
simply have to take derivatives according to the recipe

km→
1

2y

]

]pm . ~A6!

Upon changing the variables

y5~12x!t, z5xt;⇒dydz5t dx dt; xP@0,1#;

tP@0,̀ # ~A7!

we get

detM5t2v~12x!~12v2x!, ~A8!

and so, back in Minkowski space, we have

Amn[@M21#mn5gmn1
x

12x
hmhn2

x

12v2x
vmvn .

~A9!

One finally thus obtains

E d2vk

~2p!2v

1

~k222k•p2M2!a

B

@k22~k•h!21~k•v !2#b 5
~21!a1b

~2p!2v

ipv

G~a!G~b!
E

0

1 dx

A12xA12v2x
~12x!a21xb21C,

~A10!

where various pairs ofB’s andC’s are related as follows:

B51, C5
G~a1b2v!

Dg
a1b2v ,

B5km , C5~12x!
G~a1b2v!

Dg
a1b2v ~Ap!m ,

B5kmkn , C5~12x!2~Ap!m~Ap!n

G~a1b2v!

Dg
a1b2v 2

1

2
Amn

G~a1b212v!

Dg
a1b212v , ~A11!

and lastly
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B5kmknkr , C5~12x!3~Ap!m~Ap!n~Ap!r

G~a1b2v!

Dg
a1b2v 2

~12x!

2
@Amn~Ap!r1Amr~Ap!n

1Anr~Ap!m#
G~a1b212v!

Dg
a1b212v , ~A12!

where we have further introduced the notation

Dg5~12x!@~12x!pmpn Amn1M2#. ~A13!

We also use the relation

1

k2

1

~p2k!22m2 5E
0

1 du

@k222uk•p2u~m22p2!#2 , ~A14!

to, where necessary, combine the two covariant denominators coming from the fermion propagator and the vector boson
propagator.

For integrals with one or two covariant denominator structuresDg takes on different forms. For an integral with one
covariant and one noncovariant denominator term~so two structures in total! we have, forDg ,

D25~12x!~P1m22p2!, P5~12x!p21x~p•h!22
~12x!x

12v2x
~p•v !2. ~A15!

If we have two noncovariant structures and one noncovariant term in the denominator, then we have, forDg ,

D35u~12x!$uP1m22p2%, ~A16!

the similarity between these last two equations indicates the utility of this notation.

2. The on-shell integrals needed for the mass shift

To compute the mass shift, we need to know the following integrals forp25m2 and arbitraryp•h, p•v, v:

16p2

i ~m2!v22 E d2vk

~2p!2v

1

~p2k!22m2

km

k22~k•h!21~k•v !2 5I 2
ppm1p•hI 2

hhm1p•vI 2
vvm ~A17!

where we define, for on-shell momentump,

Ĩ 2
p5E

0

1 dx

A12xA12v2x
~12x!F1

ê
2 ln

D̃2

m2G ,
Ĩ 2

h5E
0

1 dx

A12xA12v2x
xF1

ê
2 ln

D̃2

m2G , ~A18!

Ĩ 2
v5E

0

1 dx

A12xA12v2x

2x~12x!

12v2x F1

ê
2 ln

D̃2

m2G ,
and, as in the main body of the paper, a tilde signifies that the function is evaluated on an arbitrary point on the mass shell,
p25m2.

We also need the integrals

16p2

i ~m2!v22 E d2vk

~2p!2v

1

k2

1

~p2k!22m2

kmkn

k22~k•h!21~k•v !2 5I 3
ggmn1I 3

hhmhn1I 3
vvmvn1I 3

pppmpn1~p•h!2I 3
hhhmhn

1~p•v !2I 3
vvvmvn1p•hI 3

ph~pmhn1hmpn!1p•vI 3
pv~pmvn

1vmpn!1p•hp•vI 3
hv~vmhn1hmvn!, ~A19!

where
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I 3
g5

1

2
I 2

p2E
0

1

du ln uE
0

1 dx

A12xA12v2x
~12x!5

1

2
I 2

p1I3
g ,

I 3
h5

1

2
I 2

h2E
0

1

du ln uE
0

1 dx

A12xA12v2x
x5

1

2
I 2

h1I3
h , ~A20!

I 3
v5

1

2
I 2

v2E
0

1

du ln uE
0

1 dx

A12xA12v2x

2x~12x!

12v2x
5

1

2
I 2

v1I3
v ,

and we see that theu integral is just21; similarly for on-shellp we have

Ĩ 3
pp5E

0

1

duE
0

1 dx

A12xA12v2x

2~12x!2

P̃
,

Ĩ 3
hh5E

0

1

duE
0

1 dx

A12xA12v2x

2x2

P̃
,

Ĩ 3
vv5E

0

1

duE
0

1 dx

A12xA12v2x

2x2~12x!2

~12v2x!2

1

P̃
,

~A21!

Ĩ 3
ph5E

0

1

duE
0

1 dx

A12xA12v2x

2x~12x!

P̃
,

Ĩ 3
pv5E

0

1

duE
0

1 dx

A12xA12v2x

x~12x!2

12v2x

1

P̃
,

Ĩ 3
hn5E

0

1

duE
0

1 dx

A12xA12v2x

x2~12x!

12v2x

1

P̃
,

and the trivialu integral just yields 1. It takes some algebra to show that

p•~h2v ! Ĩ 3
pp1

~p•h!3

m2 Ĩ 3
hh1v2

~p•v !3

m2 Ĩ 3
vv1p•hF11

p•h

m2 p•~h2v !G Ĩ 3
ph1p•vFv21

p•v
m2 p•~h2v !G Ĩ 3

pv

1
p•h p•v

m2 ~p•v1v2p•h! Ĩ 3
hv52

1

m2 E
0

1 dx

A12xA12v2x
H p•h2p•v

12x

12v2xJ , ~A22!

and similarly that

p•~h2v !

m2 Ĩ3
g1

p•h

m2 Ĩ3
h1v2

p•v
m2 Ĩ3

v5
1

m2 E
0

1 dx

A12xA12v2x
H p•h2p•v

12x

12v2xJ , ~A23!

but armed with these results we may easily obtain the standard result for the mass shift, as given by Eq.~36!.

3. An example

We now round off this appendix by showing how the above general discussion may be applied to compute a particular
noncovariant integral. Consider therefore

1

~m2!v22 E d2vk

~2p!2v

1

~p2k!22m2

1

k22~k•h!21~k•v !2 5
ipv

~2p!2v E
0

1 dx

A12xA12v2x

G~22v!

~D2 /m2!22v , ~A24!

whereD2 is given in Eq.~A15!. This relation follows from Eq.~A10!. We now expand this in«5(22v) and obtain
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i

16p2 E
0

1 dx

A12xA12v2x
H 1

ê
2 ln D2J 1O~e!. ~A25!

The change of variables,x5(12t2)/(12v2t2), is now useful. The integral coefficient of the pole in« can then be reexpressed
as

E
0

1 dx

A12xA12v2x
52E

0

1

dt
1

12v2t2 5
1

uvu
ln

12uvu
11uvu

[2x~v!, ~A26!

where we recall the definition ofx from Eq. ~26!.
The second integral in Eq.~A25! depends onp. We will not calculate it for an arbitraryp, but rather in a Taylor expansion

around the correct, physical pole for the dressing we use. Again employing the notation that bars over functions signify that
they are evaluated atp5mg(h1v), we find

P̄5
m2

12v2x
, D̄25~12x!

m2

12v2x
,

]

]p2 D2U
p5mg~h1v !

52x~12x!. ~A27!

Thus we obtain

E
0

1

dx
ln~D2 /m2!

A12xA12v2x
5E

0

1

dx
ln~12x!2 ln~12v2x!

A12xA12v2x
2

p22m2

m2 E
0

1

dx
x~12v2x!

A12xA12v2x
. ~A28!

Repeating the transformation of variables, these two integrals yield, respectively,

E
0

1

dx
ln~12x!2 ln~12v2x!

A12xA12v2x
52E

0

1

dt
ln t2

12v2t2 5
2

uvu @L2~2uvu!2L2~ uvu!#[22k~v!, ~A29!

and

E
0

1

dx
x~12v2x!

A12xA12v2x
5

3

4
2

1

4v22
~12v2!~113v2!

8v2 x~v!. ~A30!

Putting everything together we obtain for our exemplary integral

1

~m2!v22 E d2vk

~2p!2v

1

~p2k!22m2

1

k22~k•h!21~k•v !2 5
i

16p2 H 2x~v!
1

ê
12k~v!1

p22m2

m2 F3

4
2

1

4v2

2
~12v2!~113v2!

8v2 x~v!G J 1O@~p22m2!2#. ~A31!

In the limit v→0 this correctly yields

i

16p2 H 2

ê
141

p22m2

m2

4

3J . ~A32!

Very similar manipulations yield the other integrals we require.
Finally we should also mention that various consistency relations between integrals have been checked@e.g., replacing a

factor of (k•h)2 in a numerator byk21k2 and performing the two resulting integrals separately# and seen to hold.
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