PHYSICAL REVIEW D VOLUME 56, NUMBER 6 15 SEPTEMBER 1997
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We investigate the properties of a dressed electron which reduces, in a particular class of gauges, to the usual
fermion. A one-loop calculation of the propagator is presented. We show explicitly that an infrared finite,
multiplicative, mass shell renormalization is possible for this dressed electron, or, equivalently, for the usual
fermion in the above-mentioned gauges. The results are in complete accord with previous conjectures.
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[. INTRODUCTION coherent state techniquyd], where one adds soft photons,
has been developed to deal with these divergences. For a
A fundamental question in gauge theories is the follow-summary of the usual approaches we refer to Supplement 4
ing: What is the correct description of an asymptotic field? Inof Ref. [5]. Despite this understanding of the root of the
an Abelian theory this problem takes on its most pristineinfrared problem, it does not seem that a full description of
form, and the obstacle to adopting the naive in-out identifi-charged states in gauge theories exists. The coherent state
cation of asymptotically free fields is clearly identified with approach has not, for example, been carried through for the
the infrared divergences associated with the masslessnessstfong interaction. However, even for QED, previous work
the gauge fields. As such, we will restrict ourselves in thison dressing electrons seems somevdthhocand prescrip-
paper to quantum electrodynami@ED), i.e., a nonconfin- tive in nature. In what follows we will stress the systematic
ing, Abelian gauge theory where the gauge symmetry is unand predictive nature of the approach we advocate.
broken. After presenting and heuristically motivating an an- There are certain general properties to be found in any
satz for a charged particlehenceforth an “electron) in description of an electron: it must be nonlo¢él-8] and it
QED, this description will be put to a highly nontrivial test: must be noncovariafB—10]. Both these things follow from
we will calculate the one-loop propagator and show that it ishe gauge symmetry of QED. Nonlocality can be simply
infrared finite in a suitabléand previously predictgdnass-  shown to follow from demanding that Gauss’ law holds on a
shell renormalization scheme. Another interpretation of thigphysical, gauge-invariant state, a more rigorous proof is con-
result is that we have found a new class of gauges, paramained in Ref[6]. The noncovariance of such a description is
etrized by a vectov, where the usual fermion propagator is a result of the difficulties in reconciling Lorentz and gauge
infrared finite. symmetries in the charged sectsee Sec. 8 of Ref8]). At
Mass-shell renormalization of the electron propagator ighe naivest level these requirements amount to the need to
hindered in most gauges by the appearance of infrared divethess a charge with an electromagnetic “cloud,” whose ex-
gencegsee, e.g., p. 410 of Refl]) although the position of act form depends upon the position and velocity of the
the pole is itself gauge independd3]. It is well known  charge. The neglect of such a dressing when one uses a bare
that these infrared problems are a consequence of the difffermion as an asymptotic field is equivalent to switching off
culties in defining the physical asymptotic fields correctly. Inthe coupling which is clearly unphysical and this in fact un-
the confining theory of quantum chromodynamig3CD) derlies the infrared problem.
this is self-evidently a highly nontrivial problem, but even in  Although these divergences may, however, be, essen-
our paradigm theory, perturbative QED, no satisfactory antially, ignored in calculations of scattering processes in QED
swer has yet been given to this question. It is understood that is clear that a better understanding of their origins and of
the masslessness of the photon means that the electromaww to describe physical charged states is highly desirable.
netic interaction falls off too slowly for us to just ignore it An understanding of bound states cannot come from switch-
and replace the physical electron by a bare fermion. Théng off the coupling, even asymptotically, and insight into
how to dress the constituent charges of, e.g., positronium
would, we feel, be of great practical value. Furthermore, in
*Current and permanent address: IFAE, Universitat Aatoa de  QCD, which is worse affected by such infrared problems, the
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ons and sea quarks in hadrons—our present lack of undewhere the action o¥ ~2 is understood as
standing of this structure being revealed most glaringly in the
so-called proton spin crisigee, e.g., Ref.12]). We remark 1 1 3. 9(X0,2)
that dressings underlie Cornwall’'s pinch technida] and V2 9(Xo.X)= = A f Ix—2] -
also recall here the long-suggested connection between the
severe infrared divergences of QCD and the confinemernit is clear that this is a special case of E#)) and is hence
phenomenor14-1§. Further attempts to construct gauge- gauge invariant. The dressing gauge here is the familiar Cou-
invariant descriptions of quarks and gluons may be found idomb gauge. The appealing feature of this choice of dressing
Refs.[17-19. is that the commutators of the electric and magnetic fields
How should we now dress our electron? We expect tovith Eq. (3) yield just the electric and magnetic fields we

surround the charge with a cloud and, since the dressed pagxpect of a static charge. Using the canonical equal-time
ticle should correspond to a physical state, we expect oucommutator| E;(x),A;(y)]=i6j;8(x—y), one finds, for ex-
expression to be gauge invariant. Many years ago Dirac preample, that taking an eigenstdi of the electric field op-
sented such a formul20]: erator, with eigenvalue;, and adding a dressed fermi)

to the system then

4

wf(x)=exp<—ief dzf(x—2)A,(2) | (%), (1)

€ i~ Yi
wheref, is a field-independent function obeying Ei(x)¢e(y)l€)=| € ()~ ar [x—y°? ve(le), (6
a,fH(w)= 5 (w), (2 This means that it is natural to interpret this dressed, gauge-

invariant fermion as describing a static charge.
and we note that the sign @& used in this paper is the It might be now be argued that this last argument, based
opposite to that of Bjorken and Drell. It may be straightfor- as it is on the free-field canonical commutation relations and
wardly seen that this is gauge invariant. It is also visiblyhence completely ignoring renormalization, may not hold in
non-local and, depending upon the choicd©f can be non-  the full theory. For this reason two of us recerfi} consid-
covariant. Several authors have employed this forniséee, ered the one-loop propagator of the dressed chépa a
e.g., Refs.[21-25) to study the construction of physical general covariant gauge and in Coulomb gatigae results
states. The stability of such dressings around static chargelkemonstrated that a multiplicative, infrared finite, mass-shell

in QED was considered in Rei26]. renormalization of the propagator was possible. It was, how-
We now note that there is a gauge in which the argumengver, only possible at the static mass-shell poipt,
of the exponential in(1) vanishes:f#(x)A,(x)=0, we will =(m,0,0,0)—which is of course in complete accord with the

call such gauges “dressing gauges.” This connection beabove interpretation of this dressing.
tween a specific type of gauge fixing and the dressing for a Although this result is highly attractive and sheds new
charged state is quite general and explained in more detail ilight on the infrared finiteness of the Coulomb gauge, it cov-
Ref.[8]. This simple observation, however, has an importaners in some sense only “one point” in a space of dressings.
consequence for us: we expect that if one dresses the charfyeRef. [8] a gauge-invariant description of a dressed charge
correctly no infrared problem will arise. We now see thatmoving with some constant velocity, which reduces in the
working in the dressing gauge should also permit an infraredtatic limit to Eq.(3), was presente¢see Sec. Il below for
finite mass-shell renormalization if the dressing is a physicathe specific form of this dressinglt was there conjectured
one. In the light of the known general structures associatethat the propagator of this dressed electron would be infrared
with any construction of an electron, we still need to makefinite if the correct(moving) renormalization point on the
the form of f,,, and hence the particular dressing gaugemass shell was used. In a recent wi2R| we demonstrated
precise. that, in the small velocity limit, a multiplicative renormaliza-
Our first restriction is to limit the form of the nonlocality tion of this ansatz was possible. No new infrared divergences
of the cloud. In Ref[8] it was argued that one must avoid arose, but it was clear that this could be the case when terms
nonlocality in time otherwise there would be no natural pre-of orderv? were retained in the dressing. In this paper we
scription for the identification of asymptotic fields for the far will consider the dressed propagator for an arbitrary velocity
distant past and future. One can, in principal, have a dressingnd verify the conjectures of Reff8]. The usual electron
that is local in time outside some bounded interval of time.propagator will, in other words, be shown to be infrared fi-
However, for the class of dressings we are interested in herajte in a class of gauges depending upon a free parameter
we restrict the dressing to a particular time slice, i.e., we(the three-vectory).
assume thaf,=0. This specification notwithstanding, we  After this introduction, the rest of this paper is structured
still have a great deal of freedom in our choice of the tHree as follows. In Sec. Il we discuss the exact form of the dress-
components. ing we use and the equivalefdressing gauge. We also
The next step is to recall that Dirésee Ref[20] and Sec.
80 of Ref.[27]) suggested using the following form for the
fi: 4t may appear that the above description is local in Coulomb
JA gauge, recall, however, that in that gauge we must use Dirac brack-
_ . OiR ets and the bracket between the fermion and the electric field is
¢C(x)—ex;{ '€ vz (X)) Y(x), © nonlocal. See Ref$28,8] for details.



3734 EMILI BAGAN, MARTIN LAVELLE, AND DAVID McMULLAN 56

describe the renormalization of the fermion propagator ininfrared finite mass-shell renormalization is possible. In Sec.
different gauges in QED. Section lll, the heart of the paper]V a discussion of our results is presented. The Appendix
is devoted to the explicit regularization and renormalizationdevoted to the integrals we have required concludes this
of the propagator. Here we obtain the promised result that awork.

Il. THE DRESSING, THE GAUGE, AND THE SELF-ENERGY
The dressed electron which we will work with in this paper has the f@29|

;{ r Y “29,A1(x%,2) + 9,A,(X°,2) + 93A5(x°,2) — v E 1 (X°,2)
Yo ex 4’J [(X1—20) 272+ (Xo— 2)°+ (Xa— 23272

$(x), (6)

where y=1/J1-v? andv=(v*,0,0). We propose it for the and A’ L()=A,A,(x"). Under a boost with velocityy, in
following reasons: it is gauge invariant and its commutatorgpe 1 dlrectlon we find that the dressing gauge appropriate

with the electric and magnetic fields are such that to the static charge becomes
E(x) e X—y GiA(X) = Y2 (y 201A1+ A+ dsAs— v E ) (X')
=7 2.7 — v 2.2 —v.\2 —v_\27372
4 7 [(X1=Y) Y+ (Xa=Y2) "+ (X3—Y3)“] @ FV292(91A1— dpAg— daAg— dzAs) (X').
(10
and , I .
From Eq.(6) we see that the first term in this expression is
B(x)=VvXE(x), (8)  the dressing gauge for the moving charge and so the second

term here obstructs the identification of the dressing gauge
which one may recognize as the correct electric and maghat we need for our nonstatic charge. Since we know that we
netic fields for a charge moving with constant velocity, can construct the dressing directly from the gauge, this ex-
along thex, axis (see, e.g., Chap. 19 of R€i30]). This  emplifies the fact that on charged states the Lorentz transfor-
expression is analogous to E@) and indeed reduces to it mations are not implemented by the unitary mappidg,
for v—0. In the nonrelativistic case this dressed electrorHowever, as argued in Ref81,8], a gauge-covariant imple-
reduces to mentation of the Lorentz transformations can be constructed

by combining the above unitary transformation with a field-

B 3 djAj+viE; 9 dependent gauge transformation. Thus, to transform the
Po(x)=ex le V2 Y(). ©) static dressing to the boosted one we t&kgx)—A (),
where
The renormalization of the propagator of this field at orefer -
and first order inv is to be found in Ref[29]. Before com- A=A (X)+3,0(x), (11)

puting the propagator af, , we will now briefly discuss its d
complex relation with that of the static dressed electi@n, an
It is important to first note that the form of the dressing 2,2 J» , (01A1— dgAg— oAz~ dgA3) (X4 ,Z')

appropriate to the moving electr@f) does not follow from O(x)= V4y
a naive boost to the dressing for the static elect®n This ™ (12)
is a concrete manifestation of the f§&-10] that Lorentz
transformations cannot be implemented unitarily on charge@vhere the pointX(,z’) in the integrand is the boost applied
fields. As such, it is not possible to argue that the goodo (x,,2).
infrared properties found in the static case can be simply Having constructed the dressing gauge, and hence the
boosted up to the moving dressing. Given the surprising nadressing for a moving charge, we now need to address the
ture of this fact, it is helpful to show how such a boost mustquantum field theoretic aspects of this approach. Given the
act on such a charged field and hence make clear why it igbvious importance of gauge invariance to us we will work
not now a unitary mapping. in a gauge-invariant regularization scheme, viz. dimensional
We recall that as a four-vector, the poten#g)(x) trans-  regularization. In consequence we may drop tadpoles, and
forms under a Lorentz transformation-x"=Ax asA,(x)  we will do this consistently below. As a result we can reex-
=UA (x)U whereU is the appropriate unitary operator press the dressed fermion as

x—2|

(1_ ie f s ¥ 201A1(X°,2) + 9,A5(X°,2) + 93A5(X°,2) —v1E (X0, 2)
Vo [(X2— 20277+ (K= 202+ (Xa— 2) 272

A (X)), (13

since thee? terms we so neglect will just yield tadpoles in the one-loop calculation at hand. This last equation can be rewritten
as
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Y 201ALt doRot d3Ag v oA~ d1A0]
(X)=11—ie o2 22
+ O(ez)] (X), (14
where we have employed the standard identity
<a2+<92+(92)( 1) 1
081 08 o8]\ Am| @+ 8+ g
=0(£1) 6(£2) 8(&3), (15

which under the change of variabl€s— yx;, can be rewrit-
ten as

+¢92 1
ped | e

= 8(X1) 8(X2) 8(X3),

1 a2+a2
Y oxi ax3

Y

X—
VX + x5+ x5

(16)

from which Eq.(14) follows. It proved in practice conve-
nient to further reexpress E¢L4) in a more covariant look-

ing fashion as

. GHA,(X)
l/’v(x)_ 1+ie (92_(7](9)2+(U(?)2+O(e2)] lr//(x)a
17
where
G,=[(n+v)(n—v),—9,,]9", (18

and we have introduced the vectorg;=(1,0,0,0) andv*
=(0v1,0,0)=(0yv) from which the relations - =0, 7?
=1 andv?=—V? follow immediately. We stress that is
not the four-velocity,u*= vy(1Vv)=y(n+v)*.
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FIG. 1. The diagrams which yield the one-loop dressed propa-
gator. In the appropriate dressing gauge ofdycontributes. In a
general gauge all the diagrams must be evaluated. The dashed lines
indicate the projection of the photon propagator from {ve
dependentvertices in the dressin(see the above Feynman rules

and the free-photon propagator in this gauge has the form

, 1 (1=K —[k-(g—0v)]?y?
D,LLV:EZ —Qut [kZ_(k 7])2+(k'l))2]2 k,ukv
K-(7—v)
- k2—(k- 77)2+(k-v)2 [ku(77+v)v
+(n+v),K ], (20)

where ¢ is a gauge parameter which we set to zero in what
follows; this ensuresg”“D ,,=0. Even then this is really a
class of gauges parametrizednywhich flows into the Cou-
lomb gauge forv—0. We are not aware of any previous
work with such gauges. The Feynman rule for the extra ver-
tex from the dressing is

I

= —ek? (77 + v)u(n — v)p — Gup

I Y
S S~ ek ep

With these rules we can calculate the dressed propagator
in an arbitrary gauge.

At order e we have as well as the usual interaction ver-
tex, contributions from the expansion in the coupling of the
dressing. These effects mean that, even if we work in a co-

We may calculate the gauge-invariant, one-loop propagavariant gauge, the integrand of the sum of all the Feynman
tor of ¢, (x) in one of two ways. One may either work in an diagrams is noncovariant. We have checked explicitly that,
arbitrary Lorentz gauge or one may perform the calculatiorafter discarding tadpoles, the same total integrand is found in
in the dressing gauge. For an arbitrarythe dressing gauge both an arbitrary Lorentz gaugdge., it is independent of the

is now

Y 2911+ A+ IaAg+ v doAL— 91A0]=GHA =0,
(19

Lorentz gauge paramejeand in the dressing gauge, Eq.
(19). In a general gauge one has to take all of the diagrams of
Fig. 1 into account, while in the gaudg&9) only Fig. 1(a)
appears.

The result for the self-energy {1 D=2w dimension$
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'2—2J ™k [1 ! 2 1p-2 2 1)k ! ! 2
miz=e’| o Fz(p—k)z—mZ[ (0—1)p—20m—2(w—1) ]+E2W2_—mz[— (p—m)]

1 1 1 1
p—KZ—m? k2= (k- )2+ (k)2 L2(P =M Utk (=) I+ fomysa e R 24 (ko) 272

i

1 1 1
X(]é—m)[’y_z(k- n_k'v)z_k2]+ P (p_k)Z_mZ k2_(k_ 77)2+(k~v)2 [—(pz—mz)(f]—‘ré)k-(y]—v)

1 1
(p—k)*—m?* [k*= (k- 7)*+ (k-v)

1
= 2Kk (n=0)p-(n+0)]+ 12 772 (p2—m?)K[K?—y (k- p—k-v)?]}.

(21)

Actually this is the self-energy in the dressing gauge. In cofor a multiplicative renormalization to be possible, the ultra-
variant gauges we must include all the diagrams of Fig. lviolet divergences have to also have this form for arbitrary
and so it is more natural there to consider the whole propavalues ofp?, p- 5, p-v, andv?. We find the following such
gator. For simplicity we will use the self-energy henceforth.ultraviolet divergenceésee the Appendix for a discussion of
The detailed renormalization of this will be presented in thehow to perform the integratiois

next section.

a 1
—iZWV=i — —— 1 —=3m+(p—m)[—3—2x(v
Ill. DIVERGENCES AND RENORMALIZATION 47 2-w [ (P I X

In this section we will first recall some facts about the +v?
mass-shell renormalization of the usual fermion propagator +t2(poh=p-mb)| zt Sz x|, (29
and set up our conventions. We will then give the results of
our calculations for the renormalization constants. wherea=(m?)~2(e%/4a) and we have introduced the defi-

nition
A. Setting things up
To renormalize the electron propagator one requires two x(v)= i In 1__|V| (26)
vl 1]y

different renormalizations: a mass shifbi{-m—6m) and a
fermion wave-function renormalization. The first of these is
known to be gauge independent and in noncovariant gauge$his displays the need for our matrix multiplication renor-
such as Coulomb gauge, it is independent of the exact choiowalization. We note that the UV divergences kreal in the

of mass shell pointi.e., it is the same for all choices @f,  external momentum, butonlocalin the velocityv.

and p which are on shell[8]. Based upon our experience It is clear that after performing the integrals in E§1)
with the renormalization of the dressed electf@ where the (renormalized self-energy including loops and counter-
we only retained terms of first order i we will use the terms will have the general form

following multiplicative, matrix renormalization for the fer-

mion: —iZ=ma+pB+p nhHé+mie, (27
¢—>\/Z—2 exp{ —j Z_' o, 7 V} W, (22) where a,....€ are functions depending upaqt, p- 7, p-v,
Z, " and v2. Our choice of renormalization scheme is to insist

that the on-shell form of the renormalized propagator is just
which is reminiscent of a naive Lorentz boost upon a fer-the tree-level one: i.e., there should be a pole at the physical
mion. At lowest order we can recast this as massm, and this should have residue unity. Since the propa-
gator is noncovariant we must specify for which point on the
7' mass shell we will require this. Our interpretation of this
\/z_2| +— fm) . (23 propagator as corresponding to a dressed electron with ve-
\/Z—z locity given byv leads us to choose the point

—

In the smallv limit such a multiplicative renormalization was p=my(1v1,0,00=my(p+v). (28
found to be possibl¢29]. These relations define our three
renormalization constants. The counterterms in the selfThe conjecture of Refd.8,29 is that the so-renormalized

energy can thus be seen to twéth Z,=1+ 6Z,) propagator will be infrared finite.
To find the mass shift renormalization constasit), we
— i3 counte 57 (h—m)+2iZ' (p- gb—p-vH)+idm. use the mass-shell condition that there is a poleafThis

(29 implies that the renormalized self-energy must obey
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-~ (p?~ pv_ 2m?A+a+28=0,
a+ B+ _r(pmn o+ _pm e=0. (29 at2p

where the bars denote that the functions are now evaluated at

Here the tildes signify that we put the momentpfon shell  P=vym(7+v).

in the self-energypropagator. p?=m?. Note that the coun- Since we confidently expect the mass shift to be fixed by
tertermsZ, andZ’, from Eq.(24) do not enter in29) since  EQ. (29) above, we seem to have three equatifires, Eq.

this is on shell and so jusim will now be determined. As (32)] and two unknown$éZ, andZ’) and one might worry
stated above, the mass shift is gauge parameter independéh@t perhaps no solution exists. However, we can rapidly see
in covariant gauges and it has been seen to be independentthft no such problem exists for our choice of mass-shell
the exact choice of mass shell point in both the CoulomtPoint. If we now explicitly separate out the contributions of
gauge[8] and in the renormalization of the slowly moving the 6Z, andZ’ counterterms to the self-energy from the rest

dressed chargg29]. We therefore expect that ER9) will ~ (and give what is left, i.e., those coming from the loop inte-
hold for any point on the mass shell and this will provide a grations and the mass shift counterterm, a substrighen
check on our calculations of the functions.. e. we find that Eq(32) can be rewritten as

In this notation we may write the Taylor expansion of the

propagator in p2—m?) as i10Z,—2V3Z' =6, — BL—2m?A,

+m -~ = i6Z,~2iZ' =y e — fL—2mPA, 33
is, =i plg_mz Sz (2R B)p ? voashoem 39
_ _ _ i16Z,=—a —2B, —2m?A.
+(2m?A+a+2B)m—p- nhé—mibe
B We point out thal=A, , i.e., no counterterms appearin
+0[(p*~m?)?], (300 This set of equations has a solution if
where y2?L+a_L+E— wW2e =0, (39
A(p-7,p-v,02)= 07_a+ ﬁ+ (p-m)? 90 and we recognize that this is nothing else but &§) at the
P-7.p-v, ap?  gp?  m? gp° physical renormalization poin28). We therefore have the
5 following two equations which determine our counterterms:
p-v de
— — . 31
m 4 2) ( B
P g2 z :E[?’z&_—’)’ﬂ_]:

Note that the infrared divergences that arise are contained in

the function,A. Clearly we will now require the second term 1 — o

in Eq. (30) to vanish at our renormalization point. Requiring 0Z,=— T [a +2BL+2mA]. (35
that the coefficients ofn, #, and# all so vanish at our
physmally motlvate_d mass-ghell conditi(2B) gives us three B. The renormalization constants
independent equations, which we choose to write as

The calculation of the self-energy and the counterterms is

2m2A_+,8_—§= 0, a laborious task.A discussion of the necessary integrations
- may be found in the Appendix. Here we will quote the rel-
y(2m?A+B)—€=0, (32)  evant results. For Eq29) we obtained
|
-~ (PP~ pv_. . a3 . a [p(ntv) ~ ~ ~
a+’6'+_m2_5+?€:_lﬂ §+4 m+|5m+lﬂ —mz—[p~(77—v)|g+p~77I§7+V2p~vlz]
p-(p=v) (1~ ~| pn(le ~\ Vpov[le ~
—2i —p-(ntv) T(E g+1§)+ﬁf(§ I+~ |5 15+ T3
~ (P71~ (p-v)i~ p-7
P (7= )15+ — = 1374 V2 — = 15"+ p- | 1+ p- (=) 157
U . U —~
+peo| 2 22 p (o) [T+ BT (p-v+v2p~n>|gv], (36

we refer to the Appendix for the exact meaning of the additional notation here. Recall that only the mass shift counterterm
appears in Eq(36). The first term on the RHS here arises from the first term on the RHS of2BEgwhich is the integrand

°Both MATHEMATICA and REDUCE were used.
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of the self-energy in Feynman gauge. The gauge invariané@mafneans that this is the correct answer. We need to see that
the other terms all cancel on shell no matter what exact on-shell point is employed. UsingAE2jsand (A23) from the
Appendix, we can see that they do and that we obtain the standard result

Sm= o
=Mz

3
~+4
€

, (37

where 1=1/(2— ») — yg+In 4.

To verify that the infrared singularities cancel we should consﬁewhich we recall is where they arise. We find the
following terms containing infrared divergences:

3+v2—2v2x
2(1-v?x) |’
(39

N o 1 B
m2A|R:| - f duuzw_S
4 0

1 dx 1 dx
—2+2f —————— [1+V2—2v%]— 1—v2f X
0 \/1—x\/1—v2x[ 1= ) 0 1—xy/1-v%x

where the subscript IR signifies that only the infrared singu- IV. CONCLUSIONS

lar terms have been retained. The first term comes from the o ,
covariant part of the self-energy and the others have a non-, We have seen that the ele_ctron propagator IS mfrare_d fi-
covariant origin. We find it remarkable and highly gratifying, M€ in the class of gauged9) if a suitable on-shell condi-
that the sum of the integrals overgives just+2 and so we tion is used. This calculation may also be understood as the

see that there is no infrared divergence in the dressed propg2iculation of a dressed propagator in a general gauge. The

gator. renormalization procedure was completely standard except

Since this is the main result of this paper let us stress tha{Pr t_he mat_rix nature of the fefmion wave-function renormal-
we do not see any priori reason why these divergences ization. This was introduced in R€f29] and appears rather

should cancel—other than our original motivation. It is cer-Natural given the subtleties concerning boosting charged
tainly not the case that they cancel for any point on the masstates. We stress again that the cancellation of the various

shell. We have verified this by changing the relative sign Ofnfrared divergences that appear i_n the individual terms is not
the vectomn between the dressir(§) and the choice of mass- [ortuitous but has been predicted in R¢. 29]. We believe

shell point,(29). The infrared divergences did not then can-

cel. This shows the great sensitivity of the calculation.
For completeness we now give the full expressionsZfor
andZ'. We found

Z,=1+ % [% [3+2X(V)]—4(1—V2)X(V)—4K(V)],

(39
and
Lo (11 14V 1 )
=17 1212 v XV |7z (1=vI)x(v)
1+V?
- K(v>], (40)
where
1
K(V):m[L2(|V|)_|—2(_|V|)]v (41

wherelL, is the dilogarithm [,(x) = — [§dt/t In[1—t]). In

that this is compelling evidence that the description of an
asymptotic electron which we employ has a firm physical
basis. Using Ref[33] it may be seen that the soft diver-
gences will exponentiate and so we expect these results to
hold at all orders. We also stress that we have calculated the
wave-function renormalization constants explicitly and that
they may be used to fin@-matrix elements involving incom-

ing and outgoing dressed charges.

Our requirement of the particular renormalization point
used in this paper makes it clear that gauge invariance alone
does not provide an infrared finite propagator. We have tried
to stress here the need for an understanding of what meaning
(if any) a gauge-invariant dressed field possesses. The dress-
ings we have studied correspond to velocity eigenstates.
Other types of dressings should, we feel, also be constructed
and investigated.

As far as the further applications of the dressed fields of
this paper are concerned, the extension of this approach to
the electron-photon vertex functions is the obvious next step.
If the momentum transfer is nonzero the incoming and out-
going electrons will have different velocities and should ac-
cordingly be differently dressed, we therefore do not expect
the infrared divergences present in the usual, undressed ver-

the smallv limit these reduce to the expressions we found intex to cancel in any particular gauge, since no gauge condi-
Ref.[29], which in turn reduce to the Coulomb gauge resulttion would remove all the dressings. However, if we keep the
[32,8] for v— 0. We have also checked that these agreemenwdressings we expect the dressed vertex to be infrared finite in

hold for the results for the individual functions,....e. (Al-
though to compare with the results of RE29] for infrared

any gauge if the appropriate mass-shell conditions for the
fermions are chosen. These calculations will be presented

divergent terms, one needs to make the translationelsewhere.

1/e—In \??, where\ is a small photon magsThese limits
provide a further check upon our results.

As far as QCD is concerned, it is clearly harder to con-
struct gauge-invariant descriptions of charges. In perturba-
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tion theory, dressings for quarks and gluons have been con- o

structed and shown to give a gauge-independent meaning to Xw:m f dyy*~te™. (A2)
the concept of color chargé84]. It has also been seen that 0

there is an obstruction to dressing colour charges NnonThen we make use of

perturbatively[35]. A proof of this, a treatment of perturba-

tive dressings for quarks and gluons in QCD and a full dis- d2ek . . T 1 R
- Lo . - —[kMk—3%] — (UM~
cussion of the implications of these matters is to be found mf (2m)2° e 2m)%° \/— .
Ref.[8]. We also refer to Ref§17—19. For theories where ue det M
the gauge symmetry is spontaneously broken, dressings may (A3)
be constructed in the Higgs sectf®6]. Perturbative and | our case the (@) X (2w) matrix M is
nonperturbative studies of dressed, non-Abelian Green’s
functions have, we feel, many practical applications. My,=(Y+2)6,,— 29,1, 20,0, (A4)
ACKNOWLEDGMENTS wherey andz are the Feynman parameters used to exponen-
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q di bi 4 Fl d M. Stinal f To go from scalar integrals to vector or tensor ones, we
?;spolr;sdcgr?(f:aons in Pisa and Florence, an INGITOT COTgimply have to take derivatives according to the recipe

1 9
APPENDIX: ABOUT THE INTEGRALS k,— 2y apt (A6)

A treatment of integrals required for calculations in Cou-
lomb gauge may be found in R¢B2]. The integrals consid-
ered here are related to that discussion, but are more general y=(1—x)t, z=xt;=dydz=t dx dt; xe[0,1];
in that an extra vector is involved in our case.

Upon changing the variables

te[0r°] (A7)
1. General formulas we get
We need the generic integral 5 5
det M=t“(1—x)(1—Vv*Xx), (A8)
d?ek 1 Ky Ky, I :
and so, back in Minkowski space, we have
(2m)%° (k*=2k-p—M?)* [k*— (k- )+ (k-v)?]#"
(A1) B X X
AL=[M1,,=0,,+ Tox e ™ Ty Vsl

where the second factor in the denominator reflects the struc- (A9)

ture of the gauge boson propagator, E2f)). We first go to
Euclidean space and exponentiate the denominators using One finally thus obtains

d?“k 1 B (-1 B ige 1
(2m%° (K=2k-p—M?)* [K¥=(k-p)?+(k-0)2]?~ 2m% T(al(P) Jo Jiz \/1 VX

(1—-x)* xf1C,

(A10)
where various pairs dB’'s andC'’s are related as follows:
I'a+B—w)
B:]., :ﬁ,
AgTP
I'(at+pB-w)
B=k,, C=(1-x )W(AD)M,
IlNaet+tB-—w) 1 INa+B—-1-w)
B=k,k,, C=(1-x)*Ap).(Ap), (A1)

Angﬁfa) _E nv Ang,B*l*w ’

and lastly



3740 EMILI BAGAN, MARTIN LAVELLE, AND DAVID McMULLAN 56

3 INa+B—w) (1—x)
Bk, KKy, C=(1=X0%AP)L(AP)AP), —sarga — g [Au(AD),+ A, (AD),
9
T(a+p-1-
A A, e (A12)
9

where we have further introduced the notation
Ag=(1-X)[(1=X)p,p, A"+ M?]. (A13)

We also use the relation

1 1 _fl du ALL
k22 o [=2uk-p-u(m?—pI P’ (ALY

to, where necessary, combine the two covariant denominators coming from the fermion propagator and the vector boson
propagator.

For integrals with one or two covariant denominator structukgstakes on different forms. For an integral with one
covariant and one noncovariant denominator tésmtwo structures in totalwe have, forAg,

(1—x)x

Ap=(1=x)(I+mP=p?), TI=(1-x)p*+X(p- 1)’ T

(p-v)?. (A15)

If we have two noncovariant structures and one noncovariant term in the denominator, then we hAge, for
Ag=u(1—x){ull+m?—p?}, (A16)
the similarity between these last two equations indicates the utility of this notation.

2. The on-shell integrals needed for the mass shift

To compute the mass shift, we need to know the following integralpferm? and arbitraryp- 5, p-v, v:

167 d?k 1 K, _ip .
i(m2)a)—2 (277)2(1; (p_k)2_m2 k2—(k- 7])2+(k'l})2 - Zpu+p' n 27],u,

+p-vlw, (AL17)

where we define, for on-shell momentym

- fl dx 1% L A,
= ———— (1-X)|=—In =,
2 Jo J1—xy1—v%x € m?
M7= fl L X E_m & (A18)
2 Jo Ji—xJ1—-v?x | € m?}’
~ 1 dx —X(1-x) |1 Kz
= =—1In ,
2 Jo JI—xy1-v& 1-VX |e m?

and, as in the main body of the paper, a tilde signifies that the function is evaluated on an arbitrary point on the mass shell,
2_ 2
pc=m-.
We also need the integrals

1672 d?k 1 1 kK, g 7 v pp 2y
i(m2)w72 (2,”_)211) F (p_k)z_mz k2_(k_ 7])2+(k_v)2:|39ﬂu+|377ﬂ77v+|3vﬂvv+|3 p/,l,pl/—’_(p. 77) I3 77,u77v

+(p'v)2|gvv,uvv+p' ﬂlgn(p,unv—'— ﬂ#pv)+p'vlgv(puvv
+U/.va)+p' 7IP'U|§7U(UM7IV+ ny,vv)v (Alg)

where
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1 1 1 dx 1
Igz—lp—J’ duln uf ———— (1-x)== 15+ 13,
322 Jo 0 \/1—x\/1—v2x( =gl
|’7—1|’7 fd I f —1I’7 s A20
372 uind VI—xyV1-vx PRCAREE (420
I”—1I” fld | dx —X(1—Xx) 1|U 7
3_52 uinu \ X+v/1— VZX 1VX _52 3
and we see that the integral is just—1; similarly for on-shellp we have
—(1-x)?
o= o]} (=
1-xv1-v 1
—x2
) =
1-v3x
- 1 1 dx -x3(1-x)% 1
= [au| .
0 JO {1—xy1-v% (1-v¥)? 11
(A21)
_ 1 1 dx —X(1—x)
§”=j du —-—,
0 J0 J1-xy1-v& U
X(1—x)2 1
fduj =,
Vi-xy1-vZx 1— 11
~ 1 1 dx x2(1-x) 1
|gV=f du =,
0 0 /1—x /1—v2x 1-vex 11
and the trivialu integral just yields 1. It takes some algebra to show that
3
v
p-(n— v)lpp+(pm77) 17 +V2(pm) 9 +p- 7y 1+p—p (n—v) 187+ p-v| V2 +p p-(n—v) I
p-np-v 5 T 1 fl dx 1-x ADD
t—z (P tVvip plf=— s N vl L v (A22)
and similarly that

p-(7—v) ~ |0 ~ ,Ppv~ 1 (1 dx 1—x
m?2 Zg+ Ig+V Fzg _ZJ \/—\/m p-n—p-v 1 v2x (A23)

but armed with these results we may easily obtain the standard result for the mass shift, as give3By. Eq

3. An example
We now round off this appendix by showing how the above general discussion may be applied to compute a particular

noncovariant integral. Consider therefore

1 d2ek 1 1 w1 dx r(2—-w)
W72 | @ (p - m = (k 7t (ko) (2m% Jo Ty vix Bz o (A%

whereA, is given in Eq.(A15). This relation follows from Eq(A10). We now expand this i =(2— ) and obtain
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—In A,p+0O(e). (A25)

w7 |y T

The change of variables= (1—t?)/(1—v?t?), is now useful. The integral coefficient of the polesigan then be reexpressed
as

1 1-|v_

1 dx 1 1
——— =2 dt——>>= In V), A26
J'o J1—xy1—v2x fo 1-v22 V] 1+|V| —xw) (A26)

where we recall the definition gf from Eqg. (26).

The second integral in EA25) depends omp. We will not calculate it for an arbitrarp, but rather in a Taylor expansion
around the correct, physical pole for the dressing we use. Again employing the notation that bars over functions signify that
they are evaluated gt=my(#n+v), we find

M2 2 d
Hzl—vzx’ A =(1-x )1 x {9—p2A2 i =—X(1-x). (A27)
p=my(n+v)
Thus we obtain
In(A,/m?) ld IN(1—x)—In(1—v?x) p2—m? 1d X(1—Vv?x) (A28)
X - X ——
\/ Xv1-— vzx 0 VI—xy1—v2 m? 0 JI-xy1-v
Repeating the transformation of variables, these two integrals yield, respectively,
J'ld In(l—x)—ln(l—vzx) fd In t L= VD) = Lo([v]) 1= — 2x() (A29)
X v|)— v|)]=—-2k(v),
0 V1-xy1-v -V~ |V| 2
and
1 X(1—v?x 3 1 (1-v?)(1+3v?
O X(A=vix) ( )( ) (A30)

— -
,/ XA/1— V X 4 W 8v X(V
Putting everything together we obtain for our exemplary integral

1 d>“k 1 1 i
(m*)e=2 | (2m)* (p—k)*—m?* k*= (k- 9)*+(k-v)* 167

1 ) p?-m?[3 1
TV gkt T 1T g

(1-Vv?)(1+3v?)
— g X(W)|[+O[(pPP=m*)?].  (A3D)
In the limit v— O this correctly yields
2, pmd A32
62| T 3 (A32)

Very similar manipulations yield the other integrals we require.
Finally we should also mention that various consistency relations between integrals have been [@hgckegblacing a
factor of (k- #)2 in a numerator b+ k? and performing the two resulting integrals separdtalyd seen to hold.
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